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Elimination of lock-in phenomenon in
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Theoretical analysis and numerical results have shown that frequency lock-in in
vortex-induced vibration (VIV) is caused by the instability of the structural mode rather
than a resonant response to external excitations. However, there is a lack of experimental
evidence supporting relevant theoretical research findings. This study investigates VIV
suppression with a passive modal controller (PMC) for a circular cylinder at Reynolds
numbers Re = 60 and Re = 40, using experiments to distinguish the effects of stable and
unstable wake modes. Comparative analysis before and after the implementation of the
PMC reveals significant reduction in the vibration amplitude and the disappearance of
the lock-in phenomenon at Re = 60. The vibration frequency closely follows the vortex
shedding frequency after control, while dynamic mode decomposition of the flow field
indicates that the wake mode is dominant. For Re = 40, the vibration is eliminated and
the flow becomes steady. Additionally, the root loci of the coupled system are investigated
before and after the PMC implementation via linear stability analysis. The results indicate
that the PMC can alter the dynamic characteristics of the original system, causing the
structural mode and PMC mode to couple when approaching the PMC frequency. Then,
the interaction typically improves the stability of the structural mode. Finally, a parametric
study is conducted in the experiment, as well as a linear stability analysis. The study
provides experimental evidence that stability control of the structural mode is the key
to suppressing VIV and eliminating the lock-in phenomenon.

Key words: vortex shedding, flow–structure interactions, instability control

1. Introduction

Vortex-induced vibration (VIV) of a rigid cylinder and its control are of practical
importance in a range of applications. The phenomenon has garnered extensive interest
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owing to its widespread occurrence and significant impact on the safety and performance
of engineering structures subjected to fluid dynamics. In the pursuit of improved
understanding and effective mitigation of the VIV problem, researchers have explored a
variety of approaches, ranging from experimental investigations to numerical simulations
and theoretical analyses. Relevant review articles include Bearman (1984), Williamson &
Govardhan (2004), Sarpkaya (2004) and Gabbai & Benaroya (2005). As such, the study
of VIV continues to be an active area of research, with ongoing efforts focused on gaining
new insights and developing innovative control strategies.

1.1. Mechanism of VIV
A substantial number of studies have focused on understanding the mechanism of
VIV, especially the frequency lock-in phenomenon, by applying either experimental or
numerical methods. Researchers (Bishop & Hassan 1964; Feng 1968) have found that the
vibration frequency of the cylinder no longer follows the vortex shedding frequency but
becomes consistent with the natural frequency of the cylinder as the natural frequency
approaches the vortex shedding frequency of the fixed cylinder. This unusual phenomenon
is called frequency ‘lock-in’. Later, the lock-in phenomenon and VIV at subcritical
Reynolds numbers (Re < 47) were verified in experiments and simulations (Buffoni
2003; Mittal & Singh 2005). Bourguet (2023) found that forced rotation could even
enhance cylinder VIV at a subcritical Reynolds number. However, there has been ongoing
discussion regarding the mechanism of the lock-in phenomenon. Since the work of Den
Hartog (1985) and Blevins (1979), the conventional view has been that large-amplitude
oscillations occurring at velocities where the vortex shedding frequency is comparable to
the natural frequency are caused by resonance. Yet, this interpretation has its limitations
for explaining why VIV can happen at subcritical Reynolds numbers and the maximum
amplitude is not at the resonance point. De Langre (2006) utilized a semi-empirical
model which neglected all nonlinear and dissipative terms. The results show that the
frequency lock-in is primarily caused by the coupled-mode flutter. This idea opens up
a new perspective for the interpretation of the frequency lock-in phenomenon, although it
was not widely accepted at first because of the simplified semi-empirical model.

Given the complexity of fluid–structure interaction (FSI) problems and the lack of
ideal theoretical models, direct experimental and numerical methods have difficulty in
addressing the underlying physical mechanisms of frequency lock-in in VIV. Thus, more
and more researchers tend to use dynamic stability analysis methods. Cossu & Morino
(2000) utilized a global stability analysis of an elastically supported cylinder at subcritical
Re and proved that the occurrence of vortex shedding is due to the instability of the
structural mode. Meliga & Chomaz (2011) investigated the stability characteristics of the
coupled system through an asymptotic expansion method and pointed out the significance
of the structural mode (SM). Zhang et al. (2015) studied a reduced-order model (ROM)
via the autoregressive with exogenous input (ARX) technique and divided the frequency
lock-in into a ‘resonance-induced’ region and a ‘flutter-induced’ region. Furthermore, Yao
& Jaiman (2017) found that there is only a ‘flutter-induced’ region when Re > 70. Kou
et al. (2017) and Lyu, Kou & Zhang (2022) obtained the stable van Kármán mode using
dynamic mode decomposition (DMD) at subcritical Re ≈ 20. Such strategies can also
provide guidance for flow control (Feng, Wang & Pan 2011; Noack et al. 2016). These
studies generally agree that frequency lock-in is a significant vibration problem caused by
the SM instability, but lack strong evidence from experimental perspectives.
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1.2. Control of VIV
The control of VIV has been a popular research topic in both academic research and
engineering applications. Recent reviews have been provided by Choi, Jeon & Kim (2008),
Rashidi, Hayatdavoodi & Esfahani (2016) and Chen et al. (2022). According to whether
external energy input is required, control strategies are usually divided into passive ways
and active ways. However, to better understand the ideas of control strategies, we generally
divide the research on VIV control into two categories: (i) changing the flow field to reduce
or eliminate vortex shedding from the perspective of flow stability; (ii) direct application
on the structure to reduce or eliminate the vibration response from the perspective of forced
response.

The first strategy, modifying the flow field to control VIV from the perspective of flow
stability, is a commonly used method by fluid mechanics researchers. The most direct
approach is to modify the surface shape of the structure such as by introducing roughness
(Gao et al. 2015; Jiang et al. 2023), grooves (Lim & Lee 2002; Huang 2011; Law &
Jaiman 2018), shroundings (Kumar et al. 2018) and so on. However, this approach may
have limited effects on VIV control, as it often results in relatively small disturbances
to the flow field and insignificant changes to the stability characteristics of the flow. In
order to enhance the perturbations to the flow field, additional passive measures have been
employed, such as the splitter plate (Pfister & Marquet 2020; Cui & Feng 2022; Mittal &
Sharma 2022), strakes (Sui et al. 2016) and tripping wires (Kim et al. 2009; Quadrante
& Nishi 2014). Research findings have revealed that under appropriate parameter settings,
these methods can effectively suppress vortex shedding and mitigate VIV. Compared with
passive control methods, active control techniques such as blowing and suction (Dong,
Triantafyllou & Karniadakis 2008; Qu et al. 2017) can directly inject energy into the flow
field, changing the stability of the wake mode. Furthermore, machine learning methods
provide a brand new approach to flow control (Ren, Wang & Tang 2019; Maceda et al.
2021; Li, Li & Noack 2022). However, the location of the actuation, the velocity of
the blowing or suction and other factors have crucial influences on the control effect.
Nevertheless, active strategies are not well received in engineering, considering their cost
and complexity.

Regarding the second strategy, the direct control applied to the structure from the
perspective of forced response represents a conventional approach. On the one hand,
increasing structural damping (Soti et al. 2018) or adjusting the structural frequency to
avoid the lock-in region is common in practical engineering applications. On the other
hand, direct actuation on the structure (Baz & Kim 1993; Zhang et al. 2014) can reduce
the amplitude of VIV, but the operating condition is typically stringent.

Although controlling flow stability is a valid approach, it might not be required in
all technical applications for VIV suppression, nor might it be practical. Meanwhile,
controlling VIV from the perspective of forced response makes it challenging to achieve
satisfactory results. In essence, the challenge lies in the lack of a comprehensive
understanding and control design based on the VIV mechanism.

1.3. Motivation for passive modal control in VIV
Previous studies on the mechanism of VIV emphasize the importance of SM stability
for VIV. However, it is difficult to directly extract SM stability in the experiment. To
deal with this problem, a passive modal controller (PMC) is used to suppress VIV
and a series of analyses on the control mechanism is conducted. The PMC, such as
a mass–stiffness–damping device attached to the main system (Frahm 1909), is widely
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regarded as a relatively simple and effective control method for flow-induced vibration
in civil engineering. The traditional PMC control design theory is based on a forced
vibration with external excitation of sinusoidal or random signals (Den Hartog 1985;
Villaverde 1985; Argenziano et al. 2022). The main idea is to use energy transfer and
dissipation mechanisms for vibration amplitude reduction. However, this analysis method
for flow-induced vibration problems of bluff bodies neglects the FSI effect and has
considerable limitations. On the one hand, VIV, which is a finite-amplitude vibration in
civil engineering fields, is often treated as a response problem with the aim of reducing the
response amplitude. On the other hand, due to the lack of effective analysis methods, the
PMC control mechanism of VIV has not been thoroughly studied. In recent years, scholars
have recognized that PMC parameters cannot be designed solely from the perspective of
mechanical structure response control. Bakis et al. (2017) replaced the forced excitation
with a Theodorsen aerodynamic model. Dai, Abdelkefi & Wang (2017) introduced a wake
oscillator model to design PMC parameters for VIV control of bridge sections. The FSI
effect has been considered in these studies, but the semi-empirical model has limitations
in regard to revealing the deep physical mechanisms. Tumkur et al. (2017) studied the
control effect and response characteristics of a nonlinear energy sink on VIV by numerical
simulation techniques. We have primarily analysed the stability characteristics in VIV
control with a PMC (Luo, Gao & Zhang 2022). However, none of the above studies have
conducted experimental verification of the numerical analysis results.

1.4. Contribution and organization
The primary objective of the present study is to investigate and provide answers to
the following research questions: (i) How can a PMC (a supplementary subsystem) be
used for the purpose of VIV control at the lock-in region? (ii) What is the principle
underlying VIV? Is the PMC solely a device used for anti-resonance or energy dissipation
in VIV suppression? How do PMC parameters affect the efficacy of control? (iii) What
is the primary determinant for VIV suppression? Is the VIV caused by unsteady vortex
shedding?

The present work focuses on understanding the mechanisms behind the passive
suppression of VIV by the following means: (i) carrying out experiments in a
rotating water channel at Re = 60 and Re = 40; (ii) examining the vorticity field from
time-averaged particle image velocimetry (PIV) data; (iii) examining the vibration
response from digital image correlation (DIC) data; (iv) performing linear stability
analysis based on a FSI ROM; (v) conducting DMD of the vorticity field from PIV data.

This article is organized as follows. Section 2 describes the problem set-up and the
methodology, including the experimental set-up and the ROM establishment. Section 3
presents the results of the experiments, stability analysis and DMD. Section 4 shows the
parametric studies of the effect of PMC parameters on VIV suppression. Discussion and
conclusions are presented in § 5 and the final section.

2. Problem set-up and methodology

This section describes the problem set-up and the methodology used in this study. The
schematic of a transversely vibrating cylinder with a PMC is sketched in figure 1.
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Figure 1. Schematic of a one-degree-of-freedom transversely vibrating cylinder with a PMC.

The equations of motion can be written as

myÿ + cd(ẏ − ż) + kyy + kd( y − z) = L

mdz̈ + cd(−ẏ + ż) + kd(−y + z) = 0

}
, (2.1)

where m is the actual mass, c is dimensional damping and k is the stiffness. The above
equations can be written in the dimensionless form

Y ′′ + ε · 4πλdFd(Y ′ − Z′) + (2πFy)
2Y + (2πFd)

2(Y − Z) = 2Cl/(πm∗
y)

Z′′ + 4πλdFd(−Y ′ + Z′) + (2πFd)
2(−Y + Z) = 0

}
, (2.2)

where Y and Z denote the transverse displacements of the cylinder and PMC, respectively.
We define the reduced natural frequency as F = fD/U, where f denotes the natural
frequency, so that Fy = fyD/U and Fd = fdD/U. The mass ratio of the cylinder can be
defined as m∗

y = 4my/(πρD2), where my is the actual mass of the oscillator and ρ is the
density of the fluid. Furthermore, the dimensionless damping of the PMC is denoted by
λd = cd/(4πmdfd). We also introduce the mass ratio ε and frequency ratio Ω of the PMC
to the cylinder, defined as ε = md/my and Ω = Fd/Fy, respectively. The hydrodynamic
coefficient is determined by Cl = 2L/(ρUD2), where L signifies the Y-component of the
hydrodynamic force acting on the cylinder, U represents the free-stream velocity and D is
the diameter of the cylinder. Notably, we define U∗ = 1/Fy. For more detailed definitions
and information, please refer to the Appendix.

Thus, the generalized structural model is as follows:

Mζ ′′ + Gζ ′ + Kζ = Q, (2.3)

where

ζ =
[

Y
Z

]
, M =

[
1 0
0 1

]
, G =

[
ε · 4πλdFd −ε · 4πλdFd

−4πλdFd 4πλdFd

]

K =
[

(2πFy)
2 + ε(2πFd)

2 −ε(2πFd)
2

−(2πFd)
2 (2πFd)

2

]
, Q =

[
2Cl/πm∗

y

0

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.4)
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(a)

Cylinder

Cylinder

Connector

Magnet blockAluminium sheet

Fulcrum bar

Base

PVC strip

Laser sheet

Camera

Motor
Rotating channel

(b)

Figure 2. Sketch of (a) the rotating water channel and measurement techniques and (b) the experimental
model of the cylinder with a PMC.

2.1. Experimental set-up
To achieve a very low but stable flow, a rotating channel is designed by referring to the
rotating tank in geophysical studies (Griffiths & Hopfinger 1986; Afanasyev & Peltier
1998). As shown in figure 2(a), the rotating channel mainly consists of two concentric
cylinders with diameters of 500 mm and 380 mm. The channel is driven by a stepper
motor which allows the channel to rotate in an angular speed range of 0–0.306 rad s−1.
To eliminate the effect of temperature on the viscosity coefficient, the temperature of the
environment and the water is strictly controlled at 18 ± 0.1 ◦C. PIV is utilized to quantify
the speed distribution of the flow field in the rotating channel at a rotational speed of
N = 0.102 rad s−1.

A continuous laser provides an illumination plane with a thickness of approximately
1 mm at a distance of 45 mm from the bottom of the water tank. A high-speed camera
(Pointgrey GS3-U3-23S6M-C) with 1920 × 1200 image resolution is used to capture the
particle images. In total, 2000 snapshots were captured at a sample rate of 100 Hz for
each single test case. The post-processing to acquire the velocity fields is conducted
with an open-source package, PIVlab v2.3.1 (Thielicke & Sonntag 2021). Meanwhile, the
displacements of the cylinder were revolved with the DIC method by tracking the reflected
light on the cylinder surface.

Figure 2(b) depicts a schematic diagram of the experimental model set-up. The model
in the experiment is an aluminium cylinder with a diameter of D = 2 mm and a length of
l = 100 mm. The top of the cylinder is firmly held by a wooden block. The two sides of
the wooden block are connected to the fixed base with polyvinyl chloride (PVC) strips to
provide elastic support. A rectangular magnet block is the lumped mass of the PMC. The
stiffness of the PMC is provided by a PVC strip. The relative motion between the magnet
and the aluminium sheet adhered to the light wooden board can generate eddy currents,
providing damping. The frequency of the model and PMC can be changed by adjusting
the length of the PVC strip. The damping of the PMC can be changed by adjusting the
relative distance between the magnet block and the aluminium sheet. It is noted that, in
this study, PMC closure refers to the fixed connection between the PMC and the cylinder,
while opening means the release of PMC degrees of freedom.
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Figure 3. Distribution of (a) flow velocity and (b) turbulence intensity in the cross-section of the rotating
channel at a rotational speed of N = 0.102 rad s−1.

Figure 3(a) depicts the instantaneous speed distribution of the horizontal cross-section
of the channel, and the flow speed is rather uniform. Figure 3(b) shows that the turbulence
intensity distribution I∞ is less than 1 % in the centre of the channel. To evaluate the
effect of rotation, the Rossby number, defined as Ros = U/2ND, is introduced. When
Ros > 1, the effect of rotation on the flow is negligible (Boyer & Kmetz 1983; Pham et al.
2006). In this research, Ros = 55, which is substantially larger than 1. Thus, the effect
of rotation on the flow can be neglected. Considering the effect of the wake on vortex
shedding, the diameter of the cylinder used in the experiment is rather small (D = 2 mm),
so the wake can be dissipated completely after the channel rotates half a circle. The PIV
measurement approximately 10D upstream of the model shows that the incoming flow
meets the uniformity condition, so the influence of the wake can be ignored. Lyu et al.
(2022) has conducted a series of tests at different Re, and the Strouhal number is in good
agreement with previous experiments and numerical simulations.

Figure 4 shows the maximum transverse displacement and the dimensionless response
frequency F∗ (defined as F∗ = Fv/Fy) varying with the reduced natural frequency of
the cylinder in the experiment and computational fluid dynamics/computational structural
dynamics (CFD/CSD) simulation for Re = 60. The details of the simulation are discussed
in Zhang et al. (2015) and Luo et al. (2022). Because of the structural damping in the
experiment, the vibration amplitude is smaller than that in the CFD/CSD simulation.
However, the frequency lock-in is well captured in the experiment, as well as the onset
of the frequency lock-in.

2.2. The ARX-based ROM
In this article, an identification technique via the ARX model is employed to construct
the reduced-order unsteady aerodynamic model at Re = 60 and Re = 40. The work of
Cowan, Arena & Gupta (2001) was one of the earliest to use such a model for unsteady
aerodynamic modelling. Thereafter, extensive studies on analysing and explaining the
mechanisms of different aeroelastic and flow-induced vibration problems have been
conducted by Zhang and his coworkers (Gao & Zhang 2020; Kou & Zhang 2021).

The compressible Navier–Stokes equations were utilized to simulate the two-dimensional
laminar flow past a circular cylinder at Re = 40 and Re = 60. The ROM is trained based
on the unstable steady-state base flow, which is computed by a time-filtering method. More
details have been demonstrated in our prior work (Zhang et al. 2015; Luo et al. 2022).

The ARX model provides a general description of linear dynamic systems in the
discrete-time domain, which are governed by linear differential equations. The model
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Figure 4. (a) The maximum transverse displacement Ymax and (b) the response frequency F varying with the
reduced natural frequency of the cylinder Fy in the experiment and CFD/CSD simulation for Re = 60.

formulation is as follows:

f (k) =
na∑

i=1

Ai f (k − i) +
nb−1∑
i=0

Biu(k − i) + e(k), (2.5)

where f is the output vector of the system and u is the input vector, Ai and Bi are constant
coefficients to be estimated, and na and nb are the delay orders determined by the user.
For the current single-input–single-output model, u = [Y] (transverse displacement of the
cylinder) and f = [Cl] (hydrodynamic coefficient).

To couple the structural equations, the discrete-time state-space form is converted
into the continuous-time form. The model in the continuous-time state-space form is
constructed as follows:

ẋa(t) = Aaxa(t) + Bau(t)

f a(t) = Caxa(t) + Dau(t)

}
. (2.6)

The structural equations in state-space form and the output equations can be expressed
as follows:

ẋs(t) = Asxs(t) + qBs f a(t)

u(t) = Csxs(t) + qDs f a(t)

}
. (2.7)

Coupling the structural state equation (2.7) and the aerodynamic state equation (2.6),
the state equations for the aeroelastic system can be obtained, which are{

ẋs(t)

ẋa(t)

}
= AFS ·

{
xs(t)

xa(t)

}
=

[
As + q · BsDaCs q · BsCa

BaCs Aa

]
·
{

xs(t)
xa(t)

}
, (2.8)
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τ
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Figure 5. Identified results under the training signal compared with those of direct numerical simulations for
(a) Re = 60 and (b) Re = 40.

where Bs = Bs1Bs2 and q = 2/(πm∗
y). The subscript a denotes the aerodynamic force and

subscript s denotes the structure. The matrices are

As =
[

O I

−M−1K −M−1G

]
, Bs1 =

[
O

M−1

]
, Bs2 =

[
I

O

]
, Cs = [

I O
]
,

(2.9a–d)
where I and O represent the identity matrix and zeros matrix, respectively.

Thus, an analysis model for FSI based on ROM, as represented in (2.8), is conducted.
The FSI stability problem is converted into solving for and analysing the eigenvalues of
AFS . The real part of the eigenvalue represents the growth rate of the eigenmode, whereas
the imaginary part corresponds to the circular frequency, which is equal to 2π times
the eigenfrequency of the eigenmode. For the given Reynolds number and mass ratio,
the natural frequency of the cylinder or the PMC is changed to obtain the root loci of
the coupled system. On this basis, the effects of different PMC parameters such as the
frequency, damping and mass ratio on the stability of the coupled system can be studied,
as well as the coupling among various modes after the introduction of the control mode
(CM).

In this study, a chirp signal with a broadband reduced frequency of [0.04, 0.20] is
used as the training signal. We consider the aerodynamic modelling with delay orders
na = nb = 120 at Re = 60 and Re = 40. The identified results are compared with those
of direct numerical simulations in figure 5; good agreement is observed between the two
sets of results. The modelling error is less than 1 %. Therefore, it can be concluded that
the identification method based on the ARX model has high numerical accuracy. Figure 6
shows the eigenvalues of the coupled system varying with the reduced natural frequency
of the cylinder (Fy) for Re = 60 and Re = 40. Two neutral modes of interest exist, namely
the ‘nearly structural mode’ (referred to here as the SM) and the ‘von Kármán mode’
(referred to here as the wake mode, WM). The critical Reynolds number of a rigid cylinder
is Recr ≈ 47. Therefore, the WM is absolutely unstable for Re = 60 while it is stable
at Re = 40. Meanwhile, the SM becomes unstable at certain frequencies because of the
interaction with the WM. The instability of the SM plays an important role in the frequency
lock-in of VIV.

3. Mechanism of lock-in elimination with a PMC

This section reports the results obtained from experiments on VIV suppression with a
PMC for Re = 60 and Re = 40. The mechanism of lock-in elimination is analysed through
linear stability analysis based on the FSI ROM.
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Figure 6. Root loci of the coupled system without control for (a) Re = 60 and (b) Re = 40.

3.1. Supercritical case: Re = 60
Figure 7 shows the maximum transverse displacement Ymax and the vibration frequency
of the cylinder with and without PMC control for Re = 60 and m∗

y = 21. Here, the
PMC mass ratio is ε = 5.35 %, the damping coefficient is λd = 5 % and the frequency
is Fd = 0.14. As seen in figure 7(a), the cylinder undergoes large-amplitude vibration
at 0.1 < Fy < 0.18. The maximum displacement reaches approximately 0.5D. After PMC
control, the vibration amplitude of the cylinder can be reduced by two orders of magnitude.
Meanwhile, figure 7(b) depicts the lock-in phenomenon for the plain cylinder. Notably, the
lock-in phenomenon has been eliminated after the introduction of the PMC. The response
frequency is consistent with the frequency of unsteady vortex shedding. Figure 8 shows
the comparisons of time responses and power spectral density (PSD) results for the plain
cylinder and the cylinder attached to a PMC at Fy = 0.169. The small oscillation caused
by vortex shedding after control is negligible. The PSD analysis shows that the response
frequency has shifted before and after control.

The linear stability analysis of VIV control for Re = 60 is performed based on the
FSI ROM. The PMC parameters are consistent with experimental values where m∗

y =
21, ε = 5 %, λd = 5 % and Fd = 0.14. Particularly, the structural damping coefficient is
assigned a zero value. Figure 9 shows the root loci of the controlled system varying with
the reduced natural frequency Fy, as well as the real and imaginary parts of the root loci.
From figure 9(a), it can be seen that the root loci of the WM are still unstable, while the SM
is stable at low or high reduced natural frequency conditions under which the interaction
between the SM and WM is weak. However, compared with figure 6(a), the root loci of
the SM become stable as the reduced natural frequency of the cylinder approaches the
PMC frequency. Although the FSI effect is strong at these frequencies, the SM is not
tightly coupled with the WM but with the CM. That is the reason PMC can eliminate
the frequency lock-in and suppress VIV. The experimental results also indicate that when
the SM becomes stable, the frequency lock-in will exit and the large-amplitude vibration
will be significantly suppressed. However, it is also observed in the experiment that after
introducing PMC control, although frequency lock-in has been eliminated, there are still
weak periodic oscillations. From the PSD results, it is found that the vibration frequency
is consistent with the vortex shedding frequency. The results of the linear stability analysis
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parameters are as follows: mass ratio ε = 5.35 %, damping λd = 5 % and frequency Fd = 0.14.
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(b,d) the cylinder attached to a PMC, where f = 2.56 Hz corresponds to the reduced frequency F = 0.165
and f = 2.1 Hz corresponds to the reduced frequency F = 0.135.

also prove that the unstable WM does not change due to the introduction of the PMC. The
final weak periodic oscillation is a kind of forced vibration caused by the unsteady vortex
shedding. Next, the above viewpoint will be further validated by analysing the flow field
snapshots captured in the experiment with the DMD method.
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For a detailed study of frequency lock-in elimination mechanisms with a PMC, figure 10
depicts the vorticity of the flow field and the dominant mode obtained by DMD in
three scenarios (elastic cylinder with frequency Fy = 0.169 with and without control, and
stationary cylinder). Figure 10(a−c) shows the comparison of the vorticity fields in the
three scenarios. The 2S mode (two single vortices formed per cycle) is observed for the
elastic cylinder with PMC control and the stationary cylinder, whereas the C(2S) mode is
observed for the elastic cylinder without control. The C(2S) mode is very similar to the
2S mode except that the vortices coalesce in the far wake, which is typical evidence of the
flutter response (Williamson 1988; Singh & Mittal 2005; Zhang et al. 2015). In the case of
Fy = 0.169, the wake begins to coalesce from the fifth to the sixth vortices (figure 10a).
Figure 10(d−f ) illustrates the dominant mode of flow around the cylinder for the three
conditions. It can be seen that the dominant mode for the cylinder without control is the
VIV mode. The frequency obtained by DMD is FDMD = 0.163, which indicates that the
SM is unstable. Meanwhile, the dominant mode for the stationary cylinder and the cylinder
with PMC control is the von Kármán mode. The frequency of the dominant mode for the
stationary cylinder is FDMD = 0.132, whereas the frequency of the dominant mode for the
cylinder with PMC control is FDMD = 0.133. This means that the stability of the SM is
typically improved after PMC control, so the vibration has been greatly suppressed and
the frequency lock-in has been eliminated. The results provide evidence that the stability
of the SM is the key to VIV control.

3.2. Subcritical case: Re = 40
To further explore the role of the SM in the VIV of a cylinder, an experiment is conducted
at a subcritical Reynolds number, Re = 40. A reduced natural frequency of the cylinder
(Fy = 0.149) with a larger amplitude in the lock-in region is selected to compare the
phenomenon before and after PMC control. Owing to the impact on engineering structures,
VIV and associated control strategies have been the subject of a number of studies at higher
Re, as reviewed, for example, by Williamson & Govardhan (2004), Choi et al. (2008) and
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Figure 10. The vorticity of the flow field and the dominant mode obtained by DMD at Re = 60 for (a,d) the
elastic cylinder without control, (b,e) the elastic cylinder with PMC control and (c, f ) the stationary cylinder.

Chen et al. (2022). In recent years, Boersma et al. (2021) presented experimental evidence
of VIV at subcritical Re. There are no experimental reports of VIV control at subcritical
Re to our knowledge. The study of VIV control at subcritical Re can further enhance our
understanding of the mechanism of frequency lock-in and PMC control.

Figure 11(a) shows the vorticity of the flow field around the elastic cylinder at Re = 40
for Fy = 0.149. Modal analysis of the flow around the cylinder is performed via DMD.
Figure 11(b) illustrates the dominant mode, which represents the VIV mode. The dominant
frequency of the flow is FDMD = 0.145 and it is similar to the reduced natural frequency
of the cylinder, indicating that the SM is unstable. Meanwhile, figure 12 depicts the
comparisons of time responses and PSD results at Re = 40 for the elastic cylinder with
and without control. The black dashed line represents the displacement of the uncontrolled
cylinder with a dimensionless amplitude close to 0.5D. Through PSD analysis, it can be
obtained that the vibration response frequency of the uncontrolled cylinder is 1.52 Hz
(figure 12b), corresponding to the reduced frequency F = 0.145. The result is consistent
with the dominant frequency obtained from DMD. The solid red line represents the
response after PMC control, and it can be seen that the vibration has almost been
completely suppressed. Figure 13 illustrates the vorticity of the flow field at Re = 40 for
the controlled cylinder and the stationary cylinder. It can be seen from figures 12(a) and
13(a) that after applying PMC control, the vibration of the cylinder has been eliminated
and there is no vortex shedding. The vorticity of the flow field for the controlled cylinder
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Figure 11. (a) The vorticity of the flow field and (b) the dominant mode obtained by DMD at Re = 40 for the
elastic cylinder without control.
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Figure 13. The vorticity of the flow field at Re = 40 for (a) the controlled cylinder and (b) the stationary
cylinder.

is the same as that for the stationary cylinder, indicating that the unstable SM has been
successfully suppressed. It is noted that the frequency lock-in at subcritical Re no longer
exists when the SM becomes stable. Therefore, the experimental results verify that the
instability of the SM is the key factor for the frequency lock-in in VIV.

Moreover, linear stability analyses on the uncontrolled and controlled coupled systems
at Re = 40 are performed based on the FSI ROM. Figure 14 shows the root loci and the
real parts of the root loci for the uncontrolled system (figure 14a,b) and the controlled
system with PMC (figure 14c,d). The PMC parameters are set to ε = 5 %, λd = 5 % and
Ω = 0.9. It can be seen that the WM is absolutely stable at Re = 40. As the reduced
natural frequency of the cylinder approaches the WM, the FSI effect becomes strong.
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Figure 14. The root loci and their corresponding real parts at Re = 40 for (a,b) the uncontrolled system and
(c,d) the controlled system with PMC.

Finally, the SM becomes unstable at certain natural frequencies (0.102 < Fy < 0.159).
This is also the fundamental cause of subcritical VIV (Kou et al. 2017; Li, Zhang &
Gao 2018). As shown in figure 14(a,b), the root loci of the coupled system undergo
significant changes due to the application of the PMC. The instability range of the SM
has been narrowed from the uncontrolled 0.102 < Fy < 0.159 to 0.1 < Fy < 0.122. Thus,
the SM becomes stable for Fy = 0.149, and that is why the vibration has been eliminated.
It is noted that the WM is stable at Re = 40 so there is no unsteady vortex shedding
after control, which is also observed in the experiment (figure 13a). The results of the
experiments and linear stability analysis indicate that the VIV phenomenon at subcritical
Reynolds numbers is a SM instability problem caused by the coupling of the SM and the
stable WM. By introducing a dynamic subsystem to adjust the SM to stability, the vibration
is eliminated and there is no vortex shedding anymore.

4. Effects of PMC parameters on VIV control

This section studies the effects of PMC parameters on VIV control at Re = 60.

4.1. The effect of PMC frequency
The PMC frequency plays an essential role in determining the performance of VIV
suppression. Figure 15 displays the maximum vibration amplitude varying with the
reduced natural frequency of the PMC at Re = 60 for Fy = 0.163. The PMC mass ratio
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Figure 15. The maximum vibration amplitude varying with the reduced natural frequency of the PMC at
Re = 60 for Fy = 0.163.

is set to ε = 5.35 % and the damping coefficient is λd = 5 %. The long dashed line in
figure 15 represents the vibration amplitude of the plain cylinder without control for
Fy = 0.163. Compared with the uncontrolled cylinder, the vibration amplitude of the
controlled cylinder with the PMC has decreased in general. Even in the scenario where
the frequency lock-in is not eliminated, the amplitude has decreased by approximately
25 %. However, this is different from the traditional civil engineering perspective, which
considers the optimal frequency of PMC to be consistent with the natural frequency of the
structure. The experimental results indicate that the frequency range in which the PMC
can effectively eliminate lock-in is mainly below the structural frequency, and the range
is wide. Our previous work has provided an explanation for why the optimal frequency
does not occur at the structural natural frequency by considering the coupling between
the SM and WM. Furthermore, the modal analysis method is adopted here to validate the
explanation.

Figure 16 depicts the root loci and the real parts of the root loci of the controlled system
at Re = 60. The mass ratio and damping coefficient of the PMC are both set to 5 %.
Figure 16(a,b) shows the frequency ratio of the PMC to the cylinder for Ω = 0.6. The real
part of the SM can be observed to cross the imaginary axis at Fy = 0.163, transitioning
from unstable to stable by becoming negative. Meanwhile, figure 16(c,d) demonstrates that
for Ω = 1.1, the real part of the SM switches from unstable to stable at Fy = 0.163. To
more clearly demonstrate the change in structural modal stability with PMC frequency,
Fy is kept at 0.163 during the linear stability analysis and the PMC frequency is varied
to obtain the root loci and eigenvalue real part change curve of the coupled system, as
shown in figure 17(a,b). Figure 17(b) indicates that the real part of the eigenvalue of the
SM is stable (less than 0) when Ω ranges from 0.6 to 1.1 and unstable (greater than 0)
when Ω < 0.6 or Ω > 1.1. See also the supplementary movies available at https://doi.org/
10.1017/jfm.2024.180. The experimental results demonstrate that the effective frequency
range of the PMC in this scenario is 0.67 < Ω < 1.0 (seen in figure 17c), which is slightly
narrower than the frequency range predicted by the linear stability analysis. The reason
for this difference may be that the mass ratio and damping coefficient provided in the
ROM do not completely match the actual measurements. Nevertheless, the experimental
result indicates that it is reasonable and feasible to design VIV control via modal stability
analysis.

The range of Ω = 0.6–1.1 obtained from the linear stability analysis corresponds to the
effective frequency range of the PMC under the condition of a single natural frequency
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Figure 18. The root loci and their corresponding real parts of the controlled system varying with the reduced
natural frequency of the cylinder at Re = 60 for (a,b) Ω = 0.74 and (c,d) Ω = 1.08.

of the cylinder at Fy = 0.163, which can be referred to as ‘local stability’. To obtain the
range of Ω ensuring that the SM is stable at any natural frequency of the cylinder, further
linear stability analysis is performed via the ROM, as shown in figure 18. The real parts of
the root loci for the SM will be less than 0 at any natural frequency of the cylinder from
Ω = 0.74 to Ω = 1.08. This can be referred to as ‘global stability’. Compared with the
frequency ratio range required for ‘local stability’, it is noted that the frequency ratio range
for achieving ‘global stability’ is more stringent. Therefore, by incorporating the FSI ROM
with PMC, appropriate PMC parameters can be determined based on whether the actual
problem requires ‘local stability’ at a certain natural frequency of the structure or ‘global
stability’ at multiple natural frequencies.

4.2. The effect of the PMC damping and mass ratio
The mass ratio and damping of the PMC determine the margin of the improved stability
of the SM. Therefore, an experiment is conducted to study the effect of the PMC damping
and mass ratio on VIV suppression.

In the experiment, the mass ratio of the PMC is relative to the number of magnet blocks.
By adjusting the length of the PVC strips as well as the distance between the magnet and
the aluminium sheet, the PMC frequency is fixed at Fd = 0.14 for each mass ratio. The
PMC damping coefficient is approximately 5 %. Figure 19 shows the transverse responses
of the cylinder with different PMC mass ratios measured in the experiment over a period
of 1 second, as well as the corresponding amplitudes varying with the PMC mass ratios.
The results indicate that, within a certain range, the greater the mass ratio of the PMC, the
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Figure 19. Time responses of the cylinder at Re = 60 for Fy = 0.163, as well as the maximum vibration
amplitude Ymax varying with the PMC mass ratio.

better the control effect. However, it is observed that the lock-in has not been eliminated
for ε = 2.67 %, although the response amplitude has been reduced by half.

The damping of the PMC is the core parameter that determines whether
the PMC can eliminate the frequency lock-in. Six PMC damping coefficients
(λd = 0.47 %, 1.82 %, 5.39 %, 10.19 %, 29.07 % and 66.84 %) are investigated in the
experiment. The PMC damping can be adjusted by changing the distance between
the permanent magnet and the aluminium sheet. The PMC free attenuation response
is measured by DIC to extract the damping coefficient. Analogously, the tests are
conducted at Re = 60 for Fy = 0.163, and the PMC frequency and mass ratio are set
to Fd = 0.14 and ε = 5.35 %. Figure 20 demonstrates the transverse responses of the
cylinder for different PMC damping coefficients, as well as the maximum vibration
amplitude varying with the PMC damping coefficient. The findings reveal that the
PMC with a damping coefficient ranging from 5 % to 10 % can yield substantial
control benefits, effectively suppressing VIV and eradicating frequency lock-in. However,
when the PMC damping coefficient is too small (λd = 0.47 %, 1.82 %), the amplitude
of the cylinder after introducing PMC control is similar to that of an uncontrolled
cylinder, indicating that the PMC has almost no effect on VIV control. When the
damping coefficient of the PMC increases, or even approaches overdamping, the
vibration amplitude of the cylinder decreases but the frequency lock-in is not eliminated.
This observation suggests that there is no direct correlation between the dampening
of the PMC and the quality of the control effect. Furthermore, it is evident that
the elucidation of the control mechanism of the PMC through energy dissipation is
hindered.

5. Discussion

There are two misunderstandings in traditional VIV control and PMC design: (i) VIV
is caused by vortex shedding or turbulence; (ii) the PMC suppresses VIV by damping
dissipation.

Firstly, although the importance of structural mode stability has been recognized, VIV
is still primarily treated as a forced response in most engineering applications. Figure 21
shows the transverse vibration amplitude of the cylinder as a function of Fy obtained by
FSI simulation and forced response simulation. The vibration amplitude is generally small

984 A30-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.180


F. Luo, C. Gao, Z. Lyu and W. Zhang

8.0
–0.5

Y

0

Y
m

ax

0.5

1.0
0.4

Plain cylinder
0.2

0 20 40
λd%

60

λd = 0.47 %

λd = 1.82 %

λd = 5.39 %

λd = 10.19 %

λd = 29.07 %

λd = 66.84 %

8.2 8.4 8.6

t (s)
8.8 9.0

Figure 20. Time responses of the cylinder at Re = 60 for Fy = 0.163, as well as the maximum vibration
amplitude Ymax varying with the PMC damping coefficient.
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Figure 21. Transverse vibration amplitude of the cylinder as a function of the reduced natural frequency
obtained by FSI simulation and forced response simulation.

except at the resonance point in the forced response simulation, which is not consistent
with the VIV phenomenon in the experiment. Hence, VIV cannot be treated as a resonance
response without the FSI effect. The numerical research on the mechanism of frequency
lock-in in VIV mainly focuses on the low-Reynolds-number range. In particular, research
on the mechanism of VIV from the perspective of stability based on feature analysis
methods mostly concentrates on Reynolds numbers from the tens to the hundreds, and
is limited by the extraction of the base flow. Although scholars have gradually recognized
that the frequency lock-in in VIV is mainly due to the instability of the SM, there are few
reports on VIV experiments and related control studies at such a low Reynolds number. In
recent years, Boersma et al. (2021) and Lyu et al. (2022) utilized the rotating water channel
as the experimental platform at low Reynolds number and provided experimental evidence
of VIV at subcritical Reynolds numbers. The flow at subcritical Reynolds numbers is
stable. It is quite difficult to directly extract SM stability in experiments, so we want to
conversely prove that SM instability is the key to frequency lock-in by making the SM
stable and causing the lock-in to exit. Therefore, the PMC is carefully designed. As an
additional subsystem of the structure, the PMC is not directly coupled with the WM
but can improve the SM stability. Besides, at low Reynolds numbers, the linear stability
analysis can specifically provide the mechanism of PMC for VIV control. The results
obtained by the FSI ROM show good agreement with the experimental observations.
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Figure 22. (a) Time responses and (b,c) PSD results of the cylinder for structural damping λy = 0.04 and
PMC control obtained by FSI simulation.

Meanwhile, the PMC is not just a damping dissipation device in VIV control (Blanchard,
Bergman & Vakakis 2020; Chen et al. 2020). Figure 22(a) depicts the time responses of
the cylinder for structural damping coefficient λy = 0.04 and PMC control. The PMC
parameters are set to ε = 0.1, Fd = 0.135 and λd = 0.04. The vibration amplitude is
indeed reduced with structural damping, but the vibration frequency is still dominated by
the SM, indicating that the SM is still unstable. Compared with directly adding structural
damping (figure 22b), the vibration has been effectively suppressed by the PMC and the
response frequency after PMC control is consistent with the vortex shedding frequency
(figure 22c), which means that lock-in has been eliminated. Han et al. (2023) confirmed a
phenomenon of VIV forever at any reduced velocity, even with high structural damping.
Therefore, it is difficult to suppress VIV with just damping dissipation, let alone in
engineering applications.

6. Conclusions

For a single-degree-of-freedom transversely vibrating cylinder in cross-flow at Re =
60 and Re = 40, this study has demonstrated that the PMC is capable of efficiently
suppressing VIV. The experiment is conducted in a rotating water channel. An ROM-based
linear stability analysis is performed to reveal the mechanism of lock-in elimination with
the PMC. Finally, we investigated the effects of PMC parameters on VIV suppression. The
main conclusions are as follows:

(i) The proposed PMC achieves significant VIV control of the cylinder in the lock-in
region with a simple structure and minimal mass cost. A rotating water channel
is used to provide low-Reynolds-number experimental conditions. The mass ratio,

984 A30-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

18
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.180


F. Luo, C. Gao, Z. Lyu and W. Zhang

frequency and damping of the PMC are adjustable. The time responses of the
cylinder and the flow pattern are obtained by DIC and PIV. For Re = 60, it is
found that the vibration amplitude decreases significantly and the frequency lock-in
is eliminated after PMC control. For Re = 40, the vibration has been suppressed
completely and there is no vortex shedding after PMC control.

(ii) The PMC couples with the main system to stabilize the unstable SM, thereby
suppressing the VIV in the lock-in region. The results of the linear stability analysis
indicate that the introduction of a PMC as a dynamic subsystem alters the unstable
SM in the original FSI system, resulting in stability through the FSI feedback
mechanism when proper PMC parameter settings are applied. In addition, at a
cost of increasing the mass by 5 %, the VIV amplitude is reduced by two orders
of magnitude. Meanwhile, the equivalent damping of the PMC is only 1/20 of
the directly applied structural damping, but the vibration amplitude decreases by
10 times.

(iii) The effects of the PMC frequency, mass ratio and damping coefficient on VIV
suppression are studied in the experiment. The results show that, unlike the
traditional perception that the effective frequency ratio of PMC is Ω ≈ 1, the
frequency range in which the PMC can effectively eliminate frequency lock-in at
Re = 60 is mainly below the structural frequency, closer to the vortex shedding
frequency. Although the PMC has the disadvantage of single frequency control, it is
indeed a very effective control method for the large-amplitude vibration of VIV in
the lock-in region (essentially single-degree-of-freedom flutter).

(iv) The experimental results further confirm that the frequency lock-in of VIV is not a
nonlinear resonance problem, but rather a single-degree-of-freedom flutter problem
caused by SM instability. The results indicate that flow mode stability is not a
necessary condition for the control of VIV, but that SM stability is the key factor.
This conclusion is similar to that of Bukka, Magee & Jaiman (2020).

Based on this study, future research can further explore how to improve SM stability
for VIV control and frequency lock-in exit methods so that VIV can be suppressed
more efficiently. Meanwhile, this article only discusses the simple configuration of a
single-degree-of-freedom PMC with linear stiffness and damping. For a nonlinear energy
sink, which is currently a popular research topic, a combination of theoretical and
experimental research can also be performed with the above methods and ideas to explore
more complex phenomena such as chaos (Tumkur et al. 2017).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.180.
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Appendix

Important dimensional parameters
my: Mass of the cylinder
md: Mass of the PMC
ρ: Density of the fluid
D: Diameter of the cylinder
U: Free-stream velocity
L: The Y-component of the hydrodynamic force acting on the cylinder
ν: Kinematic viscosity of the fluid
fv : Vibration frequency of the cylinder in the fluid
fy: Natural frequency of the cylinder
fd: Natural frequency of the PMC
fw: Saturated vortex shedding frequency past a fixed cylinder

Important non-dimensional parameters
m∗

y : Mass ratio, m∗
y = 4my/(πρD2)

U∗: Reduced velocity, U∗ = 1/Fy
Y: Transverse displacement of the cylinder normalized by D
Z: Transverse displacement of the PMC normalized by D
τ : Non-dimensional time, τ = Ut/D
ε: PMC mass ratio, ε = md/my
λy: Structural damping coefficient of the cylinder, cy/(4πmyfy)
λd: Structural damping coefficient of the PMC, cd/(4πmdfd)
Cl: Hydrodynamic coefficient, Cl = 2L/(ρU2D)

Re: Reynolds number, Re = UD/ν

ωy: Circular frequency of the cylinder, ωy = 2πFy
ωd: Circular frequency of the PMC, ωd = 2πFd
Ω: Frequency ratio of the PMC to the cylinder, defined as ωd/ωy
F∗: Non-dimensional response frequency, defined as Fv/Fy
Fy, Fd , Fw and Fv : Non-dimensional forms of fy, fd , fw and fv , defined as F = fD/U
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