
AN 5-CONFIGURATION IN EUCLIDEAN AND 
ELLIPTIC n-SPACE 

SAHIB RAM MAN DAN 

I n t r o d u c t i o n . " T h e remarkable analogies which exist between the com­
plete quadrilateral and the desmic system of points suggest t h a t it may be 
possible to extend the properties considered above to spaces of higher dimen­
sions", remarks Prof. N . A. Court a t the end of his paper (2). Here is an 
a t t e m p t in t h a t direction in Euclidean as well as in elliptic 4-space, suggesting 
extensions in higher spaces. The corresponding figure, called an S-configuration, 
is discussed. I t s vertices lie in pairs on the edges of a simplex, separated har­
monically by the respective pairs of vertices of the simplex, called its diagonal 
simplex in analogy with the diagonal triangle of a quadrilateral in a plane 
and a diagonal te t rahedron of a desmic system in a solid. The vertices of the 
dual of an ^-configuration form a closed set of 2n points w.r.t . their diagonal 
simplex such t h a t all quadrics for which the simplex is selfpolar, passing 
through one of them pass through all of them, and each vertex is the harmonic 
inverse of every other w.r.t. a pair of opposite elements of the simplex. T h e 
S-configuration reduces to a cross polytope and its dual to a hypercube reci­
procal to this polytope, when a cell of the diagonal simplex recedes to infinity 
as a selfpolar simplex for the absolute polarity, while the remaining vertex 
of the simplex (opposite this cell), is the common centre of the polytopes. 
This is analogous to a desmic system and its conjugate reducing respectively 
to an octahedron and a cube, when a face of the diagonal te t rahedron recedes 
to infinity as a selfpolar triangle for the absolute polarity while the remaining 
vertex of the te t rahedron (opposite this face) is the common centre of the 
polyhedra. T h e midpoints of the segments determined by the pairs of opposite 
vertices of an 5-configuration lie in a hyperplane, called its Newtonian hyper-
plane. 

T h e centres of similitude of a set of hyperspheres, with centres a t the 
vertices of a simplex, taken in pairs, form an 5-configuration with the given 
simplex as its diagonal simplex. 

I. SPACE OF FOUR DIMENSIONS 

1. Construction. 

(a) Let QxnÇkj JJL = A, B, C, D, E, X/z = /*X, X 3^ ju) be the traces of a given 
solid on the ten edges X/x of a given simplex (5) = ABCDE, and PXM the 
harmonic conjugates of Qx/* for the corresponding pairs of vertices of (5) . 
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T h e twenty points P\M, Qxn are said to form an S-configuration (S-C) with 
P\n, Q\n as ten pairs of its opposite vertices and (5) as its diagonal simplex 
in analogy with the diagonal triangle of a complete quadri la teral in a plane 
and a diagonal te t rahedron of a desmic system. 

(b) &\M„ = Q^vQv\Q\yi{v = A, B, C, D, E; \, n ?* v) is a t r iad of collinear 
points on the line of intersection of the given solid with a plane face \JJLV of 
(S) and then lUv = Q»vPvxPx», mXfiV = P^vQvxPx^ n^v = PnVPp\Q\^ form three 
other t r iads of collinear points so t h a t we have a complete quadri la teral 
(2) for which X/JLV is the diagonal triangle. T h u s there are four t r iads of collinear 
points in each plane face of (S) and 4 X 10 = 40 in all, such t h a t (40 X 3 ) /20 
= 6 of their forty lines pass through each point, two in each of the three 
plane faces of (S) through its edge on which lies the point considered. 

(c) T h e ten plane faces of (S) form the diagonal triangles of the ten quadr i ­
laterals determined by the ten te t rads of lines enumerated above. There are 
forty more quadri laterals determined by these forty lines. Eight of them lie 
in each cell of (S) t h a t together with the four in the four plane faces of the 
cell form a 126 configuration of Poncelet and Reye (3, p . 473)—twelve points 
lying by sixes in twelve planes, six planes through each point. T h e y are 
enumerated in the following five octads of planes. 

p4> = kxuvktJLvekvexke-x», p<y = kx^vn^venivexlexnt 

Q<t> = lxtivnnVenVQ\nexn, q<\>' = l\nvkpVolv6\Wio\p, 
r<t> = m\iXVmii.VQ/mv%\mB\lL, ?y = m^J^ekpexnexn, 

U = nxfjLvlnvdlrdxleXfi, V = ti\nvmnvonvo\ke\p, 

w h e r e 6, <t> = A, B, C, D, E; A, /*, v j * 6 ^ </>. 
I t may be observed here t h a t four of these forty planes pass through each 

of the forty lines (§ l (b) ) and twelve through each vertex of the (S-C). 
(d) T h e ten points (?xM(§l(a)), the ten lines fe\MV(§l(b)) and the five planes 

£x(§l(c)) form a Desargues ' 103 configuration as the intersection of the given 
solid with the different elements of the simplex (S). There are sixteen such solids 
containing such configurations, one each. T h e following list shows t h a t a 
pair of them pass through each of the forty planes (§ l ( c ) ) : 

SO = pApBpCpDpE, Sv = pA'rB>tC'pD>pE, 
si = aAdBrcaD>aE, Sv = QAQB'Qc'qnQE, 

$2 = rA>rBrc>rDrE, Sv = rApB>qcrD>rE, 

S 3 = tAqBpC'tD>tE, Sz> — tA>tB>tctDtE, 

S4 = qA>pB>Pc>pDpE', s±> = qArBtcpD'pE>, 

SO = pAtB'rcQn'QE', sv = pA>qBqcqDqE', 

6̂ = tArB'T crDY E>, S&' = tA>pB<LcrD'rE', 

S7 = rA>qB>pctD>tE>, sv = TAtBtç>tr>tE>. 

I t is readily seen t h a t four of these solids pass through each of the forty lines 
(§1 (b)) and eight through each vertex of the (S-C). 
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AN S-CONFIGURATION 491 

(e) T h u s the 5-configuration is 

20(., 6, 12, 8)40(3, ., 4, 4)40(6, 4, ., 2)16(10, 10, 5, .) 

in Baker 's notat ion for configurations (1). 

2. T h e d u a l of a n ^-conf igurat ion . 

(a) The dual (R.S-C) of an 5-configuration is thus 

16(., 5, 10, 10)40(2, ., 4.6)40(4, 4, ., 3)20(8, 12, 6, .) , 

t h a t is, it consti tutes sixteen points, forty lines, forty planes, and twenty 
solids such t ha t : 

Through each point pass five lines, ten planes, and ten solids. 
Each line contains two points, and four planes and six solids pass through 

it. 
Each plane contains four points and four lines, and three solids pass through 

it. 
Each solid contains eight points, twelve lines, and six planes. 
(b) In fact, we s ta r t with a point, say £7(1, 1, 1, 1, 1), the uni t point re­

ferred to the given simplex (S), and join it to the ten plane faces of (S) 
giving the ten solids ut = Uj(i ^ j ; i, j = a, b, c, d, e), where ut = 0, % = 0 
represent the five solid faces of (S). These ten solids together with their ten 
harmonic conjugates ut — — Uj w.r.t. Ui = 0 and Uj = 0, two through each 
plane face of (S) separated harmonically by two of its solid faces through 
this plane face, const i tute the twenty solids of the (R.S-C) for which (S) is 
said to be the diagonal simplex. 

The sixteen points or ra ther the sixteen vertices of the (R.S-C) are then no 
other than ( ± 1 , ± 1 , ± 1 , ± 1 , 1) referred to (5) , which form a closed set 
(7) w.r.t . it in the sense t ha t all quadrics, for which (S) is self polar, passing 
through one of them pass through all of them, and every vertex of this con­
figuration is an harmonic inverse of another w.r.t . a pair of opposite elements 
of (S). 

T h u s : The vertices of the dual of an S-configuration form a closed set of sixteen 
points w.r.t. their diagonal simplex. 

(c) Let the secant from U to the edge DE and the opposite plane face ABC 
of (S) meet them in PDE and PDE> respectively. PDE is then (0, 0, 0, 1, 1) and 
PDE> is (1, 1, 1, 0, 0) referred to (S). Let V be such t ha t (UPDEU'PDE>) 
= — 1 . Z7r is then ( — 1, — 1 , — 1 , 1, 1). The harmonic conjugate QDE(0, 0, 0, 
— 1, 1) of PDE w.r.t . D, E lies in the polar (9) solid of U, viz. s0 = YLU% = 0 
w.r.t . (S). T h u s we can construct points like PDE on the remaining nine edges 
of (S) other than DE and their harmonic conjugates w.r.t . the respective 
pairs of its vertices, and identify these twenty points with the ten pairs of 
opposite vertices of the (S-C) (§ l (a ) ) . T h u s : The sixteen solids of an S-con-
figuration (S-C) are the sixteen polar solids of the sixteen vertices of its dual 

(R.S-C) w.r.t. their diagonal simplex such that through every vertex of the (S-C) 
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pass the joins of four pairs of vertices of the (R.S-C) lying in one of its twenty 
solids corresponding to the vertex of the (S-C) considered. For example, through 
PDE pass the joins of four pairs of vertices (dbl , zhl , ± 1 , 1, 1)—UUf is one— 
lying in the solid ABCPDE. 

3. A cross p o l y t o p e a n d h y p e r c u b e . 

(a) T h e six pairs of points P^, (?\M(^> M ^ E) (§ l (a)) form a desmic system 
(2) of three te t rahedra such t h a t any two of them are quadrup ly perspective 
from the vertices of the third, in the solid face A BCD of the simplex (S). 
Let the two te t rads of planes %E and %E> (£ = p,q,r,t) (§1 (c)) form respectively 
two te t rahedra TE> and TV' . T h e y are readily seen to be the other two diagonal 
te t rahedra (10) of the desmic system considered besides the one TE = A BCD 
such t h a t TV, TV, TV" form the conjugate system (6). 

Let the plane ABC recede to infinity, in which case the four lines \f/ABc 
(yp = k, I, m, n) (§ l (b) ) and the six points PxM, Q\n(Xf M = A, B, C), lying in 
the same plane, likewise recede to infinity, thus leaving the three pairs of 
points PD\, QD\ respectively on the three edges DA, DB, DC of TV with D 
as the common midpoint of their segments. 

Let ABC be so chosen t h a t it forms a self polar triangle for the circle a t 
infinity. DA, DB, DC then form a rectangular system of axes. Let further the 
three points PD\ be equidis tant from D. PD\, QD\ then form the three pairs of 
opposite vertices of an octahedron with £#, %E' as the four pairs of its parallel 
opposite t r iangular faces. TE>, TE>> form a stella octangula (3, p . 378) whose 
vertices then form a cube reciprocal to this octahedron. 

T h u s : A desmic system of points and its conjugate one reduce to an octahedron 
and a cube respectively, when a face of its diagonal tetrahedron recedes to infinity 
as a s elf polar triangle for the circle at infinity there, with centre at the vertex of 
the tetrahedron opposite this face. 

(b) Now let the solid A BCD recede to infinity, in which case the eight planes 
%E, £E> (§3(a)) , the sixteen lines \p\^(\, \x, v 9^ E) (§1 (b)) and the twelve 
points Pxn, Q^ (§3(a)), lying in the same solid, likewise recede to infinity, 
thus leaving the four pairs of points PE\, QE\ respectively on the four edges 
EA, EB, EC, ED of (S) with E as the common midpoint of their segments. 
T h e dual (R.S-C) of the 5-configuration (§2(c)) becomes a parallelotope 
(5, p . 122) with E as its centre, and PE\, QE\ become the centres of the eight 
parallelepiped faces of it. 

Let ABCD be so chosen t h a t it forms a self polar te t rahedron for the absolute 
polarity. EA, EB, EC, ED then form a rectangular system of axes. T h e (R.S-C) 
is then an or thotope (5, p . 123). Fur ther , let the four points P E\ be equidis tant 
from E. PE\, QE\ then form the four pairs of opposite vertices of a cross 
polytope /34(3, p . 376) with su st> (i = 0, . . . , 7) (§1 (d)) as the eight pairs 
of its parallel opposite te t rahedral faces, £x, fX' as its sixteen pairs of parallel 
opposite t r iangular faces and ^ \ M as its twenty-four edges. T h e (R.S-C) is 
now a hypercube 74 (5, p. 123) reciprocal to this polytope. 
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Thus: The S-configuration reduces to a cross polytope and its dual to a hyper-
cube reciprocal to this polytope, when a solid face of their diagonal simplex 
recedes to infinity as a self polar tetrahedron for the absolute polarity, with centre 
at the vertex of the simplex opposite this face. 

(c) A hypercube has eight pairs of opposite vertices, sixteen pairs of opposite 
parallel edges, twelve pairs of opposite parallel plane faces (i.e., twenty-four 
squares), and four pairs of opposite parallel solid faces (i.e., eight cubes). 
It may be asked here what happens to the other eight lines, sixteen planes, and 
twelve solids of the (R.S-C) that becomes a hypercube. The answer to this 
query lies in the enumeration of its eight diagonals joining the eight pairs of 
its opposite vertices, sixteen central rectangles determined by the sixteen 
pairs of its opposite parallel edges, and twelve central rectangular parallel­
epipeds determined by the twelve pairs of its opposite parallel square faces. 

(d) When the (R.S-C) becomes a hypercube (§3(b)), the four pairs of 
tetrahedra T\, T\> formed by the tetrads of planes £\, £\> (§§3(b), 1(c)) form 
four stellae octangulae (§3(a)) inscribed in four cubes with their common 
centre at E. These cubes are reciprocal to the four octahedra formed by the 
four sets of three diagonals of the cross polytope (§3(b)) reciprocal to the 
hypercube. The twenty-four square faces of these four cubes are readily 
recognized to be the eight triads of the central square sections of the eight 
cube faces of the hypercube. 

4. The Newtonian solid. 

(a) The ten midpoints of the ten segments determined by the pairs of opposite 
vertices of an S-configuration lie in a solid, referred to as its Newtonian solid, 
and form a Desargues1 (IO3) configuration there. 

We shall refer to this as a Newton's Theorem. 
(b) Conversely : If on the edges of a simplex pairs of points are marked har­

monic to the respective pairs of its vertices and so that the midpoints of the ten 
segments so marked lie in a solid, the ten pairs of points marked form an S-
configuration. 

This follows from the converse of the Newton's Theorem (2) in space. For 
the midpoints of the six such segments marked on the six edges of the tetra­
hedron of a solid face of (S) lie in a plane, common to this solid and the solid 
of the ten points under consideration, leading to the desmic system of the 
six pairs of points marked in the solid face of (S) considered. Five such systems, 
in the five solid faces of (S) constitute an 5-configuration and hence the 
proposition. 

(c) An S-configuration is determined by its diagonal simplex and its New­
tonian solid. 

For a desmic system of points is determined (2) by its diagonal tetrahedron 
in a solid face of (5) and its Newtonian plane common to this solid and the 
given Newtonian solid. 
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(d) The ten harmonic conjugates, w.r.t. the pairs of opposite vertices of an S-
configuration, of the points of intersection of the edges of its diagonal simplex 
with a given transversal solid, lie in a solid. 

This is a projective form of the Newton ' s Theorem (§4(a)). 
(e) The pairs of points of contact of the pairs of hyper spheres coaxal with a 

given hypersphere and the circumhy per sphere of a given simplex touching its 
edges form the pairs of opposite vertices of an S-configuration. 

The pairs of points of contact under consideration on each edge of (5) form 
respectively the united elements or foci of the involution determined by the 
pairs of its intersections with the family of coaxal hyperspheres considered. 
T h e y therefore are separated harmonically by the respective pairs of vertices 
of (5) , being the intersections of its edges with its c ircumhypersphere t h a t 
belongs to the family. Again the midpoints of their segments evidently lie 
on the radical solid of the family and hence the proposition (§4(b)) . 

5. C e n t r e s of s i m i l i t u d e of five h y p e r s p h e r e s . 

(a) The centres of similitude of five hyperspheres taken two at a time form an 
S-configuration the diagonal simplex of which has for its vertices the centres of 
the given hyperspheres. 

The centres of similitude of a pair of hyperspheres are defined in (8), by 
analogy with those of a pair of spheres, as a pair of points dividing the seg­
ment between their centres in the rat io of their radii or as the double points 
(10) of the involution determined by their centres and their limiting points 
t h a t represent the two zero-hyperspheres belonging to their family of coaxals. 
T h u s : 

(i) T h e centres of similitude of a pair of hyperspheres are the same as those 
of their great spheres or great circles lying in a solid or a plane through the 
line of their centres as its sections with them. 

(ii) T h e centres of similitude of three hyperspheres taken two a t a t ime 
are the same as those of their great spheres lying in a solid through the plane 
of their centres, or of their great circles in this plane itself, as its sections with 
them, and therefore form the three pairs of vertices (10) of a quadri lateral in 
this plane such t h a t their centres form its diagonal triangle. 

(iii) T h e centres of similitude of four hyperspheres taken two a t a t ime 
are the same as those of the great spheres in the solid of their centres as its 
sections with them, and therefore form the six pairs of vertices (2) of a desmic 
system such t h a t their centres form its diagonal te t rahedron. 

(iv) The centres of similitude of five hyperspheres taken two a t a t ime 
form a configuration such t h a t those of four of them form a desmic system 
as its section with the solid of the centres of the four hyperspheres considered 
and hence the proposition (§3(a)). 

(b) Conversely : With the vertices of the diagonal simplex of an S-configuration 
as centres five hyperspheres may be drawn so that the pairs of its opposite vertices 
will be the centres of similitude of the five hyperspheres taken in pairs. 
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We can draw four spheres with centres a t the vertices of the diagonal te tar-
hedron of a desmic system so t h a t the pairs of opposite vertices of the system 
are the centres of similitude of the four spheres (2) taken in pairs. Therefore 
we can draw four such hyperspheres and consequently five hyperspheres 
satisfying the necessary conditions of the proposition. 

(c) The ten hyperspheres of similtude of five hyperspheres taken in pairs belong 
to a coaxal net, that is, they are orthogonal to a coaxal family of hyperspheres. 

T h e hypersphere of similitude (8) of a pair of hyperspheres is the one drawn 
on the join of their centres of similitude as diameter and therefore their 
centres are a pair of inverse points (10) w.r.t. this hypersphere. Hence any 
hypersphere through the centres of a pair of given hyperspheres is orthogonal 
to their hypersphere of similitude which is coaxal with them and therefore 
orthogonal to any hypersphere orthogonal to them. T h u s the ten hyperspheres 
of similitude of five given hyperspheres taken in pairs are orthogonal to the 
one orthogonal to the given five and to the other through their five centres. 

6. Elliptic space.1 

(a) When deriving the elliptic 3-space from a 3-sphere in Euclidean 4-
space by identifying antipodal points, it is observed by Coxeter (3, p. 478) 
t h a t : 'When antipodal points are identified, the four hexagonal central sections 
of a cuboctahedron yield the sides of a complete quadrilateral , and the twelve 
cuboctahedral central sections of {3, 4, 3} yield the twelve planes of Reye 's 
configuration.' The Reye's configuration (§l(c)) is identical with a desmic 
system (§3 (a)) t ha t consti tutes the regular honeycomb d[30] of Coxeter 
(3, p. 478) in the elliptic space. 

I t may be observed here tha t , when antipodes are identified, the three 
squares 2i02, which are t runcat ions of the three central squares 02 of an octa­
hedron 03, give the twelve diagonals of the six square faces of the cuboctahedron 
/i/?3 which is a t runcat ion of 03, and yield the three diagonals of the quadri­
lateral yielded by the four hexagonal central sections of tips. In short, the 
cuboctahedron /i03 of a Euclidean space yields a complete quadri lateral and 
its diagonal triangle in an elliptic plane. 

T h u s the four cuboctahedra which are t runcat ions of the four central 
octahedra 03 of a cross poly tope 04 (§3(d)) yield four quadrilaterals whose 
four diagonal triangles consti tute a diagonal te t rahedron of the desmic system 
yielded by the 24-cell {3, 4, 3} or hP* (5, p. 148) while the other eight central 
cuboctahedrons of /i04 yield the other eight quadrilaterals of the Reye's 
configuration, whose diagonal triangles form the eight faces of the other two 
diagonal te t rahedra (§3(a)) of the desmic system. 

In fact, the 24-cell {3, 4, 3} = /i04 of a Euclidean 4-space yields, in elliptic 
3-space, a desmic system of three quadruply perspective te t rahedra and its 
conjugate formed by its three such diagonal te t rahedra . 

xThe idea of elliptic space was suggested by the referee. 
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(b) Following the above chain of argument we may now expect and observe 
that: The truncation Jift (4) of a Euclidean 5-dimensional cross poly tope ft 
yields an S-configuration (S-C) and its diagonal simplex (S) in an elliptic 
espace, when antipodal points are identified. For the five 24-cells {3, 4, 3} 
which are truncations of the five central cross polytopes ft of ft(5, p. 136) 
yield five desmic systems (§3(a)) which constitute the (S-C) derived from 
/ift, and the ten cuboctahedra which are truncations of the ten central octa-
hedra ft of ft yield ten quadrilaterals whose ten diagonal triangles (§l(c)) 
constitute the simplex (S) (§l(à)), and whose forty sides give the forty 
triads (§1 (b)) of collinear points of the (S-C). The said ten central cubocta­
hedra of /ift lie by fours in each central £ift of /ift, the other five octads of 
central cuboctahedra (one octad in each central /ift) of Jift yield the forty 
quadrilaterals (§l(c)) of the (S-C). Finally the twenty diagonals of /ift yield 
the twenty vertices (§l(a)) of the (S-C) and the sixteen pairs of parallel trun­
cations t\on of the sixteen pairs of parallel opposite cells a± of ft yield the six­
teen (§1 (d)) Desargues' IO3 configurations of the (S-C). For one t\a\ consists 
of ^rve octahedra which are truncations of the five tetrahedral faces of an «4, 
that contain twenty triangles and fifteen squares; thus the elements of a 
pair of parallel tia± will constitute a pentad of cuboctahedra which yield a 
pentad of quadrilaterals of the Desargues' configuration. 

For further elucidation we work out some details of the 5-dimensional 
polytope Jift following Coxeter (5, pp. 145-48, 158, 197-202) as follows. It is 
denoted by 

-O or \ 3 , 3 ,4 ) 

Its elements consists of: 

3840/(2.48) = 40 vertices, 

3840/(2.8) = 2 4 0 edges, © 

3840/(6.8) = 80 triangles, © 

3840/(6.2) = 320 triangles, ©-

3840/24 = 160 tetrahedra {3, 3}, © 

3840/(24.2) = 80 octahedra < H , ©-

3840/120 = 32 ha, or të A , ©-

3840/384 = 10 ft or {3, 3, 4}, ©-

The 40 vertices form its 20 diagonals. 
The 240 edges form its 40 central hexagons yielding the forty triads of 

collinear points of the (S-C). 
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The 80 triangles and the 60 central squares of the 10 £4 form its first central 
10 cuboctahedra yielding the diagonal simplex of the (S-C). 

The 320 triangles and the 240 central squares of the 80 octahedra form its 
other 40 central cuboctahedra. 

The 160 tetrahedra form its 10 #4. 

II . SPACE OF U DIMENSIONS 

7. S-configuration. 

(a) Analogously (§l(a)) we can define an S-configuration (S-C)n in an n-
dimensional space as one constituted by 

(*r) 
traces of a hyperplane s on the edges of a given w-dimensional simplex (S)n 
and their harmonic conjugates w.r.t. the respective pairs of vertices on each 
edge of (S)n, which therefore is called analogously the diagonal simplex of the 
(S-C)n. 

Evidently: The section of an n-dimensional S-configuration by an r-dimen-
sional face of its diagonal simplex is an r-dimensional S-configuration there with 
the r-dimensional simplex of the face considered as its diagonal simplex. 

Thus : The S-configuration in a solid and a plane face of the diagonal simplex 
of an n-dimensional S-configuration are the desmic system and the complete 
quadrilateral there respectively, as their sections with it, of which the diagonal 
tetrahedron and the diagonal triangle are those in the faces considered. 

(b) On each edge of (S)n there are two points of the (S-C)n, called a pair 
of its opposite vertices, separated harmonically by the pair of vertices of 
(S)n on the edge considered. In each plane face of (S)n there are then three 
pairs of opposite vertices of the (S-C)n on the three edges of this face, as the 
three pairs of opposite vertices of its quadrilateral section of the (S-C)n. Thus: 
The 

<-r) 
vertices of an n-dimensional S-configuration lie by twos on the edges of its diagonal 
simplex separated harmonically by the corresponding pairs of vertices of the 
simplex, by threes on four lines in each plane face of the simplex as the six ver­
tices of the quadrilateral formed by them, therefore by threes on 

<"V) 
lines in all which then constitute the S-configuration. Through each vertex of it 
there pass two of its lines in each plane face of the simplex and 2{n — 1) in all. 
For through each edge of (S)n there pass (n — 1) of its plane faces and each 
vertex of the (S-C)n lies on an edge of (S)n. 
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(c) n independent lines through a point determine an w-dimensional space 
and (n — 1) of them a hyperplane. If through a vertex of the (S-C)n we take 
one of two lines (§7(b)) in each plane face of (S)n through that edge of S(n) 
on which lies the vertex of the (S-C)n considered, we obtain 2n~1 sets of (n — 1) 
independent lines that determine 2n~1 hyperplanes. 

Now if we take any two lines of the said (n — 1) lines determining a hyper­
plane, we observe two more such lines completing a quadrilateral in their 
plane, intersecting in a vertex of the (S-C)n on that edge of (S)n which is the 
sixth edge of the tetrahedral face of (S)n determined by the two of its plane 
faces that contain the two lines considered, one in each, and five of its edges 
or those of its tetrahedral face under consideration (§7(a)). Thus each of the 
2n~1 hyperplanes through a vertex of the (S-C)n meets every edge of (S)n in 
a vertex of the (S-C)n, or in other words, each such hyperplane contains 

(T) 
vertices of the (S-C)n. Therefore there are 

2 ( W J 1 ) x 2 » - 1 / ( W J 1 ) = 2 » 
hyperplanes in all, of the type of the given one, viz. (§7(a)), we started with, 
that constitute the (S-C)n. Thus: The n-dimensional S-configuration consists 
of 

<-v) 
vertices and 2n hyperplanes such that through each vertex there pass 2n~1 (half 
the number) of its hyperplanes and each hyperplane contains 

(half the number) of its vertices. 

8. Dual of an ^-configuration. 

(a) The dual (R.S-C)n of an S-configuration is then one constituted by 

(T) 
hyperplanes through the (n — 2)-dimensional faces of a given simplex S(n) 
joined to a given point and their harmonic conjugates w.r.t. the respective 
pairs of cells through each (n — 2)- dimensional face of (S)n which therefore 
is called analogously the diagonal simplex of the (R.S-C)n. 

(b) We can arrive at the 2n vertices (dbl, . . . , ± 1 , 1) of the (R.S-C)n, 
referred to (S)n, in the manner we did for a four dimensional (R.S-C) (§2(b)). 
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Thus: The vertices of an n-dimensional reciprocal of an S-configuration form a 
closed set of 2n points, w.r.t. their diagonal simplex, such that all quadrics, for 
which this simplex is self polar, passing through one of them passes through all 
of them, and each vertex is an harmonic inverse of every other w.r.t. a pair of 
opposite elements of the simplex (7). 

(c) Extending the idea of polarity (7) w.r.t. an w-dimensional simplex we 
can state (cf. §2(c)) that: The 2n hyperplanes of an n-dimensional S-configuration 
are the polar hyperplanes of the vertices of the reciprocal configuration w.r.t. 
their diagonal simplex such that through each vertex of the S-configuration there 
pass the joins of 2n~2 pairs of vertices, of the reciprocal, lying in one of its 

.hyperplanes corresponding to the vertex of the S-configuration considered. 

9. Cross polytopes and hypercubes. Following the line of argument above 
(§3(b)) we are now in a position to state that: The n-dimensional S-configura-
iion reduces to an n-dimensional cross polytope and its reciprocal to an n-dimen­
sional hypercube reciprocal to this polytope, when a cell of their diagonal simplex 
recedes to infinity as a self polar (n — 1)-dimensional simplex for the absolute 
polarity, with centre at the vertex of the simplex opposite this cell. 

The apparent deficiencies of elements of the hypercube as a reduction of 
an (R.S-C)n are supplemented by its diagonal elements (§3(c)), those of the 
cross polytope as a reduction of an (S-C)n lie at infinity (§3(b)). 

10. Newtonian hyperplanes. 

(a) The midpoints of the 

(*r) 
segments determined by the pairs of opposite vertices of an n-dimensional S-
configuration lie in a hyperplane, referred to as its Newtonian hyperplane. 

We shall refer to this as a Newton's Theorem. This and the following 
results of this article and those of the next two articles follow by the method 
of induction (§4). 

(b) Conversely : If on the edges of an n-dimensional simplex pairs of points 
are marked harmonic to the respective pairs of its vertices so that the midpoints 
of the 

("V) 
segments so marked lie in a hyperplane, the 

(T) 
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pairs of points marked form the pairs of opposite vertices of an n-dimensional 
S-configuration. 

(c) An n-dimensional S-configuration is determined by its diagonal simplex 
and its Newtonian hyperplane. 

(d) The 

("t1) 
harmonic conjugates, w.r.t. the pairs of vertices of an S-configuration, of the 
points of intersection of the edges of its diagonal simplex with a given transversal 
hyperplane lie in a hyperplane (projective form of the Newton's Theorem 
above). 

(e) As an immediate application of the above Theorem (§10(b)) we have: 
The pairs of points of contact of the pairs of the hyperspheres, coaxal with a 
given hyper sphere and the circumhyper sphere of a given simplex {n-dimensional),, 
touching its edges form the pairs of opposite vertices of an n-dimensional S-con­
figuration, the Newtonian hyperplane of which is the radical hyperplane of the 
family of the coaxal hyperspheres considered. 

11. Centres of similitude of n + 1 hyperspheres. 

(a) The centres of similitude of n + 1 hyperspheres taken in pairs form an 
S-configuration, the diagonal simplex of which is the central simplex of the given 
hyperspheres. 

(b) Conversely : With the vertices of the diagonal simplex of an n-dimensional 
S-configuration as centres (n + 1) hyperspheres may be drawn so that the pairs 
of its opposite vertices will be the centres of similitude of the n + 1 hyperspheres 
taken in pairs. 

(c) The 

er) 
hyperspheres of similitude of n + 1 hyperspheres taken in pairs belong to a coaxal 
net, that is, they are orthogonal to a coaxal family of hyperspheres. 

Extending the argument above (§5(c)) to an ^-dimensional space, we may 
note that the 

CD 
hyperspheres of similitude of (n + 1) given hyperspheres taken in pairs are 
orthogonal to the hypersphere, orthogonal to the given hyperspheres, and to 
the circumhypersphere of their central simplex, and therefore to the family of 
coaxals determined by these two hyperspheres. 

12. Elliptic space. When elliptic n-space is derived from an n-sphere in 
Euclidean (n + 1)-space by identifying antipodal points, the (n + I)-dimensional 
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polytope Jij3n+i (which is a truncation of the (n + 1)-dimensional crosspolytope 
0n+i) will yield an n-dimensional S-configuration (§(6)). 

Here ti/3n+i is denoted by 

° °r {1 . . . , 3, 4 } 
Thanks are due to the referee for the present form of the paper, and to 

Professor B. R. Seth for due encouragement and for providing necessary 
facilities to continue my pursuits. 
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