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Grade of membership (GoM) models are popular individual-level mixture models for multivariate
categorical data. GoM allows each subject to have mixed memberships in multiple extreme latent profiles.
Therefore, GoM models have a richer modeling capacity than latent class models that restrict each subject
to belong to a single profile. The flexibility of GoM comes at the cost of more challenging identifiability
and estimation problems. In this work, we propose a singular value decomposition (SVD)-based spectral
approach to GoM analysis with multivariate binary responses. Our approach hinges on the observation that
the expectation of the data matrix has a low-rank decomposition under a GoMmodel. For identifiability, we
develop sufficient and almost necessary conditions for a notion of expectation identifiability. For estimation,
we extract only a few leading singular vectors of the observed data matrix and exploit the simplex geometry
of these vectors to estimate the mixed membership scores and other parameters. We also establish the
consistency of our estimator in the double-asymptotic regime where both the number of subjects and the
number of items grow to infinity. Our spectral method has a huge computational advantage over Bayesian
or likelihood-based methods and is scalable to large-scale and high-dimensional data. Extensive simulation
studies demonstrate the superior efficiency and accuracy of our method. We also illustrate our method by
applying it to a personality test dataset.

Key words: grade of membership model, identifiability, latent variable model, mixed membership model,
successive projection algorithm, singular value decomposition, spectral method.

Multivariate categorical data are routinely collected in various social and behavioral sciences,
such as psychological tests (Chen et al., 2019), educational assessments (Shang et al., 2021), and
political surveys (Chen et al., 2021b). In these applications, it is often of great interest to use latent
variables to model the unobserved constructs such as personalities, abilities, political ideologies,
etc. Popular latent variable models for multivariate categorical data include the item response
theory models (IRT; Embretson & Reise 2013) and latent class models (LCM; Hagenaars &
McCutcheon 2002), which employ continuous and discrete latent variables, respectively. Different
from thesemodeling approaches, the grade ofmembership (GoM)models (Woodbury et al., 1978;
Erosheva, 2002; Erosheva, 2005) allow each observation to have mixed memberships in multiple
extreme latent profiles. GoMmodels assume that each observation has a latent membership vector
with K continuous membership scores that sum up to one. Each membership score quantifies the
extent to which this observation belongs to each of K extreme profiles. So GoM can be viewed as
incorporating both the continuous aspect (via the membership scores) and discrete aspect (via the
K extreme latent profiles) of latent variables. More generally, GoM belongs to the broad family
of mixed membership models for individual-level mixtures (Airoldi et al., 2014). Thanks to their
nice interpretability and rich expressive power, variants of mixed membership models including
GoM are widely used in many applications such as survey data modeling (Erosheva et al., 2007),
response time modeling (Pokropek, 2016), topic modeling (Blei et al., 2003), social networks
(Airoldi et al., 2008), and data privacy (Manrique-Vallier & Reiter, 2012).

The flexibility of GoM models comes at the cost of more challenging identifiability and esti-
mation problems. In the existing literature on GoM model estimation, Bayesian inference using
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Markov Chain Monte Carlo (MCMC) is perhaps the most prevailing approach (Erosheva, 2002;
Erosheva et al., 2007; Gormley & Murphy, 2009; Gu et al., 2023). However, the posterior distri-
butions of the GoM model parameters are complicated, after integrating out the individual-level
membership scores. Many studies developed advanced MCMC algorithms for approximate pos-
terior computation. Yet MCMC sampling is time-consuming and typically not computationally
efficient. On the other hand, the frequentist estimation approach of marginal maximum likeli-
hood (MML) would bring a similar challenge, because the marginal likelihood still involves the
intractable integrals of those latent membership scores. Actually, it was pointed out in Borsboom
et al. (2016) that GoM models are very useful in identifying meaningful profiles in applications
including depression, personality disorders, etc., but they are temporarily not widely used in
psychometrics due to the lack of readily accessible and efficient statistical software.

Recently, the development of the R package sirt (Robitzsch & Robitzsch, 2022) provides
a joint maximum likelihood (JML) algorithm for GoMs based on the iterative estimation method
proposed in Erosheva (2002). In contrast with MML, the JML approach treats the subjects’ latent
membership scores as fixed unknown parameters rather than random quantities. This approach
hence circumvents the need of evaluating the intractable integrals during estimation. JML is
currently considered the most efficient tool for estimating GoM models. However, due to its
iterative manner, JML’s efficiency is still unsatisfactory when applied to very large-scale data
with many observations and many items. Therefore, it is desirable to develop more scalable and
non-iterative estimation methods and aid psychometric researchers and practitioners to perform
GoM analysis of modern item response data.

In addition to the difficulty of estimation, model identifiability is also a challenging issue for
GoM models. A model is identifiable if the model parameters can be reliably recovered from the
observed data. Identifiability is crucial to ensuring valid statistical estimation aswell asmeaningful
interpretation of the inferred latent structures. The handbook of Airoldi et al. (2014) emphasizes
theoretical difficulties of identifiability in mixed membership models, including GoM models.
Recently, recognizing the difficulty of establishing identifiability of GoMmodels, Gu et al. (2023)
proposed to incorporate a dimension-grouping modeling component to GoM and established the
population identifiability for this new model. However, their identifiability results do not apply to
the original GoM. In addition, their identifiability notion only concerns the population parameters
in the model, but excludes the individual-level latent membership scores.

To address the aforementioned issues, we propose a novel singular value decomposition
(SVD)-based spectral approach to GoM analysis with multivariate binary data. Our approach
hinges on the observation that the expectation of the response matrix admits a low-rank decom-
position under GoM. Our contributions are three-fold. First, we consider a notion of expectation
identifiability and establish identifiability for GoM models with binary responses. Under this
new notion, the identifiable quantities include not only the population parameters, but also the
individual membership scores that indicate the grades of memberships. Specifically, we derive
sufficient conditions that are almost necessary for identifiability. Second, based on our new iden-
tifiability results, we propose an SVD-based spectral estimation method scalable to large-scale
and high-dimensional data. Third, we establish the consistency of our spectral estimator in the
double-asymptotic regime where both the number of subjects N and the number of items J grow
to infinity. Both the population parameters and the individual membership scores can be consis-
tently estimated on average. In the simulation studies, we empirically verify the identifiability
results and also demonstrate the superior efficiency and accuracy of our algorithm. A real data
example also illustrates that meaningful interpretation can be drawn after applying our proposed
method.

The rest of the paper is structured as follows. Section1 introduces the model setup and lays
out the motivation for this work. Section2 presents the identifiability results. Section3 proposes
a spectral estimation algorithm and establishes its consistency. Section4 conducts simulation
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studies to assess the performance of the proposed method and empirically verify the identifiability
results. Section5 illustrates the proposed method using a real data example in a psychological
test. Finally, Sect. 6 concludes the paper and discusses future research directions. The proofs of
the identifiability results are included in Appendix.

1. Model Setup and Motivation

GoM models can be used to model multivariate categorical data with a mixed membership
structure. In this work, we focus on multivariate binary responses, which are very commonly
encountered in social, behavioral, and biomedical applications, including yes/no responses in
social science surveys (Erosheva et al., 2007; Chen et al., 2021b), correct/wrong answers in edu-
cational assessments (Shang et al., 2021), and presence/absence of symptoms inmedical diagnosis
(Woodbury et al., 1978).Wepoint out that our identifiability results and spectral estimationmethod
in the binary case will illuminate the key structure of GoM and pave the way for generalizing to
the general categorical response case. We will briefly discuss the possibility of such extensions
in Sect. 6. In our binary response setting, denote the number of items by J . For a random subject
i , denote his or her observed response to the j-th item by Ri j ∈ {0, 1} for j = 1, . . . , J .

A GoM model is characterized by two levels of modeling: the population level and the
individual level. On the population level, K extreme latent profiles are defined to capture a finite
number of prototypical response patterns. For k ∈ 1, . . . , K , the k-th extreme latent profile is
characterized by the item parameter vector θk = (θ1k, . . . , θJ K ) with θ jk ∈ [0, 1] collecting the
Bernoulli parameters of conditional response probabilities. Specifically,

θ jk = P(Ri j = 1 | subject i solely belongs to the k-th extreme latent profile). (1)

We collect all the item-level Bernoulli parameters in a J × K matrix � = (θ jk) ∈ R
J×K . On the

individual level, each subject i has a latent membership vector π i = (πi1, . . . , πi K ), satisfying
πik ≥ 0 and

∑K
k=1 πik = 1. Here πik indicates the extent to which subject i partially belongs

to the k-th extreme profile, and they are called membership scores. It is now instrumental to
compare the assumption of the GoM model with that of the latent class model (LCM; Goodman
1974; Hagenaars & McCutcheon 2002). Both GoM and LCM share a similar formulation of the
item parameters � as defined in (1). However, under an LCM, each subject i is associated with
a categorical variable zi ∈ [K ] instead of a membership vector. This means LCM restricts each
subject to solely belonging to a single profile, as opposed to partially belonging tomultiple profiles
in the GoM. Further, the fundamental representation theorem in Erosheva et al. (2007) shows that
a GoM model can be reformulated with an LCM but with K J latent classes instead of K latent
classes. In summary, GoM is a more general and flexible tool than LCM for modeling multivariate
data, but also exhibits a more complicated model structure. It is therefore more challenging to
establish identifiability and perform estimation under the GoM setting.

Given themembership score vectorπ i and the item parameters�, the conditional probability
of the i-th subject providing a positive response to the j-th item is

P(Ri j = 1 | π i ,�) =
K∑

k=1

πikθ jk . (2)

In other words, the positive response probability for a subject to an item is a convex combination
of the extreme profile response probabilities θ jk weighted by the subject’s membership scores πik .
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The GoM model assumes that a subject’s responses Ri,1, . . . , Ri,J are conditionally independent
given the membership scores π i . We consider a sample of N i.i.d. subjects and collect all the
membership scores in a N × K matrix � = (πik) ∈ R

N×K .
In the GoM modeling literature (e.g., Erosheva 2002), there are two perspectives of dealing

with the membership scores π i : the random-effect and the fixed-effect perspectives. The random
effect perspective treats π i as random and assumes that they follow some distribution parameter-
ized by α: π i ∼ Dα(·). Note that π i ∈ �K−1 = {x = (x1, . . . , xK ) : xi ≥ 0,

∑K
i=1 xi = 1}

where �K−1 denotes the probability simplex. A common choice of the distribution Dα for π i is
the Dirichlet distribution (Blei et al., 2003).

From the above random-effect perspective, themarginal likelihood function for aGoMmodel
is

L(�,α | R) =
N∏

i=1

∫

�K−1

J∏

j=1

(
K∑

k=1

πikθ jk

)Ri j (

1 −
K∑

k=1

πikθ jk

)1−Ri j

dDα(π i ), (3)

where the membership scores π i ’s are marginalized out with respect to their distribution Dα .
The integration of the products of sums in (3) poses challenges to establishing identifiability. This
difficulty motivated Gu et al. (2023) to introduce a dimension-grouping component to simplify the
integrals and then prove identifiability for that new model. In terms of estimation, the marginal
maximum likelihood (MML) approach maximizes (3) to estimate the population parameters
(�,α) rather than the individual membership scores �. Bayesian inference with MCMC is also
often used for estimation (Erosheva et al., 2007; Manrique-Vallier & Reiter, 2012; Gu et al.,
2023), where inferring parameters like α in the Dirichlet distribution Dα(·) typically require the
Metropolis–Hastings sampling.

On the other hand, the fixed-effect perspective of GoM treats the membership scores π i as
fixed unknown parameters and aims to directly estimate them. This approach does not model the
distribution of the membership scores and hence circumvents the need to evaluate the intractable
integrals during estimation. In this case, if still adopting the likelihood framework, the joint
likelihood function of both � and � for a GoM model is

L(�,� | R) =
N∏

i=1

J∏

j=1

(
K∑

k=1

πikθ jk

)Ri j (

1 −
K∑

k=1

πikθ jk

)1−Ri j

. (4)

The joint maximum likelihood (JML) approach maximizes (4) to estimate � and �. Based on an
iterative algorithm proposed by Erosheva (2002), the R package sirt (Robitzsch & Robitzsch,
2022) provides a function JML to solve this optimization problem under GoM. JML methods
are typically known as inconsistent for many traditional models (Neyman & Scott, 1948) when
the sample size goes to infinity (large N ), but the number of observed variables is finite (fixed
J ). Nonetheless, in modern large-scale assessments or surveys where the data collection scope
is unprecedentedly big and high-dimensional, both N and J can be quite large. JML is currently
considered themost efficient tool for estimatingGoMmodels.However, due to its iterativemanner,
JML’s efficiency is still unsatisfactorywhen applied tomodern big datasetswithmanyobservations
and many items. Therefore, it is desirable to develop more scalable and non-iterative estimation
methods and aid psychometric researchers and practitioners in performing GoM analysis of item
response data.

To address the above issues in the GoM analysis, in this work, we propose a novel singular
value decomposition (SVD) based spectral approach. Our approach hinges on the observation that
the expectation of the response matrix under a GoM model admits a low-rank decomposition. To
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see this, it is useful to summarize (2) in matrix form

R0 := E[R] = �︸︷︷︸
N×K

��
︸︷︷︸
K×J

, (5)

whereR = (Ri j ) ∈ {0, 1}N×J denotes the binary response datamatrix, andR0 = (R0,i j ) ∈ R
N×J

is the element-wise expectation of R. Note that the factorization in (5) implies that the N × J
matrixR0 has rank at most K , which is the number of extreme latent profiles. Since K is typically
(much) smaller than N and J , the decomposition (5) exhibits a low-rank structure. Therefore, we
can consider the singular value decomposition (SVD) of R0:

R0 = U�V�, (6)

where� is a K ×K diagonal matrix collecting the K singular values ofR0; denote these singular
values by σ1 ≥ · · · ≥ σK ≥ 0 and write � = diag(σ1, . . . , σK ). Matrices UN×K , VJ×K collect
the corresponding left and right singular vectors and satisfy U�U = V�V = IK . Our high-level
idea is to utilize the top K left singular vectors of the data matrix R to identify and estimate �

and subsequently �. In the following two sections, we will present new identifiability results and
develop a spectral estimation algorithm for GoM models based on the SVD in (6).

2. Identifiability Results

The study of identifiability in statistics dates back to Koopmans & Reiersol (1950). A model
is identifiable if the model parameters can be reliably recovered from the observed data. Identifi-
ability is a crucial property of a statistical model as it is a prerequisite for valid and reproducible
statistical inference. In latent variable modeling, identifiability is especially essential since it is a
foundation for meaningful interpretation of the latent constructs.

Traditionally, identifiability of a statistical model means that the population parameters can
be uniquely determined from the marginal distribution of the observed variables (Koopmans
& Reiersol, 1950; Goodman, 1974). In the context of GoM models, this notion of population
identifiability is equivalent to identifying parameters (�,α) from the marginal distribution in (3).
The complicated integrals in (3) make it difficult to establish population identifiability, which
motivated Gu et al. (2023) to propose a dimension-grouping modeling component to simplify
GoM and prove identifiability for that new model. However, it remains unknown whether the
original GoM models can be identified.

In this work, we consider a new notion of identifiability, which we term as expectation iden-
tifiability. This notion concerns not only the item parameters, but also the individual membership
scores. Similar identifiability notions are widely adopted and studied in the network modeling
and topic modeling literature, e.g., Jin et al. (2023), Ke & Jin (2023), Mao et al. (2021), and Ke &
Wang (2022). Specifically, recall from (5) that the expectation of the data matrixR has a low-rank
decomposition R0 = ���, we seek to understand under what conditions this decomposition is
unique. Note that both the Bernoulli probabilities � and the membership scores � are treated as
parameters to be identified. We call a parameter set (�,�) valid if π i ∈ �K−1 and θ jk ∈ [0, 1]
for all i , j , and k. We formally define expectation identifiability below.

Definition 1. (Expectation identifiability) A GoM model with parameter set (�,�) is said to

be identifiable, if for any other valid parameter set (�̃, �̃), �̃�̃
� = ��� holds if and only if

(�,�) and (�̃, �̃) are identical up to a permutation of the K extreme profiles.
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One might ask whether identifying � and � from the expectation R0 has any implications
on identifying � and � from the observed data R. In fact, when both N and J are large with
respect to K , it is known that the difference between the low-rank decompositions of R0 and
R is small in a certain sense (Chen et al., 2021a). We will revisit and elaborate on this subtlety
when describing our estimation method and presenting the simulation results. Briefly speaking,
studying the expectation identifiability problem fromR0 is very meaningful in modern large-scale
and high-dimensional data settings with large N and J .

We next present our new identifiability conditions for GoM models. We first define the
important concept of pure subjects.

Definition 2. (Pure subject) Subject i is a pure subject for extreme profile k if the only positive
entry of π i is located at index k, that is,

π i = (0, . . . , 0, 1︸︷︷︸
k-th entry

, 0, . . . , 0).

In words, subject i is a pure subject for profile k if it solely belongs to this profile and has no
membership in any other profile. We consider the following condition for �.

Condition 1. � satisfies that every extreme latent profile has at least one pure subject.

Condition 1 is a quite mild assumption on �, because it only requires that each of the
K extreme profiles has at least one representative subject among all N subjects. Intuitively,
this condition is reasonable because the existence of these representative subjects indeed helps
pinpoint the meaning and interpretation of the extreme profiles. In real data applications of the
GoM model, each pure subject is characterized by a prototypical response pattern indicating a
particular classification or diagnosis. Specifically, each column of the J × K item parameter
matrix � is examined to coin the interpretation of each extreme profile. So, the existence of a
pure subject in the kth (1 ≤ k ≤ K ) extreme profile means that there indeed exists a prototypical
subject characterized by the parameters in the kth column of the � matrix. As a concrete applied
example, Woodbury et al. (1978) fitted the GoM model to a clinical dataset, where the item
parameters for four extreme latent profiles were estimated. Then each of the extreme profiles
was interpreted according to its response characteristics revealed via the item parameters. There,
the four extreme profiles were interpreted as “Asymptomatic,” “Moderate,” “Acyanotic Severe,”
“Cyanotic Severe” in Woodbury et al. (1978). In this context, having pure subjects in each of
these extreme profiles is a practically meaningful assumption, because it just means that in the
sample with a large number of N subjects, there exist an “Asymptomatic” subject, a “Moderate”
subject, an “Acyanotic Severe” subject, and a “Cyanotic Severe” subject.

Under Condition 1, � contains one identity submatrix IK after some row permutation. For
any matrix A, we use AS,: to denote the rows with indices in S. Under Condition 1, denote
S = (S1, . . . , SK ) as the index vector of one set of K pure subjects such that �S,: = IK . So
S1, . . . , SK are distinct integers ranging in {1, . . . , N }. For example, if the first K rows of � is
equal to IK , then S = (1, 2, . . . , K ). RecallR0 = U�V� is the SVD forR0, whereU is a N × K
matrix collecting the K left singular vectors as columns. Interestingly, Condition 1 induces a
simplex geometry on the row vectors of U. We have the following important proposition, which
serves as a foundation for both our identifiability results and estimation procedure.

Proposition 1. Under Condition 1, the left singular matrix U satisfies

U = �US,:. (7)
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Figure 1.
Illustration of the simplex geometry of the N × K left singular matrix U with K = 3. The solid dots represent the row
vectors of U in R

3, and the three simplex vertices (i.e, vertices of the triangle) correspond to the three types of pure
subjects. All the dots lie in this triangle.

Furthermore, � and � can be written as

� = UU−1
S,: , (8)

� = V�U��(���)−1 = V�U�
S,:. (9)

We elaborate more on Proposition 1. Equation (7) in Proposition 1 implies that the left
singular matrix U and the membership score matrix � differ by a linear transformation, which is
the K × K matrix US,:. Condition 1 and the properties of the singular value decomposition (such
as the columns of V being orthogonal to each other and � being invertible) are used to prove (7).
Equations (8) and (9) imply that if an index set of pure subjects S is known, then the parameters
of interest � and � can be written in closed forms in terms of the SVD and S. More specifically,
(7) is equivalent to

Ui,: =
K∑

k=1

πikUSk ,:, i = 1, . . . , N . (10)

Each Ui,: is the embedding of the i-th subject into the top-K left singular subspace of R0, and
all the rows U1,:, . . . ,UN ,: can be plotted as points in the K -dimensional Euclidean space RK .
Geometrically, since

∑K
k=1 πik = 1 with πik ≥ 0, we know that eachUi,: is a convex combination

of US1,:, . . . ,USK ,:, which are the embeddings of the K types of pure subjects. This means in
R

K , all the subjects lie in a simplex (i.e., the generalization of a triangle or tetrahedron to higher
dimensions) whose vertices are these K types of pure subjects. Note that Ui and Ui ′ overlap if
they have the same membership score vectors π i = π i ′ . Figure1 gives an illustration of this
simplex geometry on such embeddings in R

3 with K = 3.
Similar simplex structure in the spectral domain was first discovered and used for estimation

under the degree-corrected mixed membership network model (Jin et al. 2023, first posted on
arXiv in 2017). Later, spectral approaches to estimating mixed memberships via exploiting the
simplex structure are also used for related networkmodels (Mao et al., 2021) and topicmodels (Ke
&Wang, 2022). Compared to networkmodelswhere the datamatrix is symmetric, theGoMmodel
has an N × J asymmetric data matrix. Compared to topic models, the entries of the perturbation
matrix R −R0 in the GoM model independently follow Bernoulli distributions, whereas in topic
models, the entries of the perturbation matrix follow multinomial distributions.
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It is worth noting that the expectation identifiability in Definition 1 is closely related to the
uniqueness of non-negative matrix factorization (NMF, Donoho & Stodden 2003; Hoyer 2004;
Berry et al. 2007). NMF seeks to decompose a nonnegative matrix M ∈ R

m×n into M = WH,
where both W ∈ R

m×r and H ∈ R
r×n are non-negative matrices. An NMF is called separable

if each column of W appears as a column of M (Donoho & Stodden, 2003). If we write M =
R�
0 ,W = �,H = ��, then the separability condition for this NMF aligns with Condition 1.

It is also generally assumed that W is of full rank, otherwise H typically cannot be uniquely
determined (Gillis &Vavasis, 2013). Theorem 2 shows that when Condition 1 holds,� being full-
rank suffices for GoMmodel identifiability.Wewill also show that model identifiability still holds
with certain relaxations on the rank of �. On another note, estimating an NMF usually involves
direct manipulation of the original data matrix, which can be computationally inefficient when
dealing with large datasets. In our approach, we employ an NMF algorithm in Gillis & Vavasis
(2013) on the SVD of the data matrix instead of the data matrix itself to estimate GoM parameters.
Since our procedure operates on the singular subspace with significantly lower dimension than the
original data space, it yields lower computational cost compared to conventional NMFprocedures.

We next present our identifiability results for GoMmodels.We first show that the pure-subject
Condition 1 is almost necessary for the identifiability of a GoM model.

Theorem 1. Suppose θ jk ∈ (0, 1) for all j = 1, . . . , J and k = 1, . . . , K. If there is one extreme
profile that does not have any pure subject, then the GoM model is not identifiable.

The proofs of the theorems are all deferred to Appendix. Theorem 1 reveals the importance
of Condition 1 for identifiability. In fact, later we will use this condition as a foundation for our
estimation algorithm. Our next theorem presents sufficient and almost necessary conditions for
GoM models to be identifiable.

Theorem 2. Suppose � satisfies Condition 1.

(a) If rank(�) = K, then the GoM model is identifiable.
(b) If rank(�) = K − 1 and no column of � is an affine combination of the other columns

of �, then the GoM model is identifiable. (An affine combination of vectors x1, . . . , xn
is defined as

∑n
i=1 aixi with

∑n
i=1 ai = 1.)

(c) In any other case, if there exists a subject i such that πik > 0 for every k = 1, . . . , K,
then the GoM model is not identifiable.

The high-level proof idea of Theorem 2 shares a similar spirit to Theorem 2.1 in Mao et al.
(2021). We next explain and interpret the three settings in Theorem 2. According to part (a), if
the K item parameter vectors θ1, . . . , θK (i.e., the K columns of �) are linearly independent,
then the GoM model is identifiable under Condition 1. In part (b), for identifiability to hold when
rank(�) = K − 1, any item parameter vector θk cannot be written as an affine combination of
the remaining vectors {θk′ : k′ �= k}. This is a weaker requirement on � compared to part (a).
Part (c) states that if the conditions in parts (a) or (b) do not hold and if there exists a completely
mixed subject that partially belongs to all profiles (i.e., πik > 0 for all k), then the model is not
identifiable. Part (c) also shows that the sufficient identifiability conditions in (a) and (b) are close
to being necessary, because the existence of a completely mixed subject is a verymild assumption.
We next further give three toy examples with K = 3 and J = 4 to illustrate the conditions in
Theorem 2.

Example 1. Consider

� =

⎛

⎜
⎜
⎝

0.2 0.8 0.8
0.2 0.8 0.2
0.8 0.2 0.8
0.8 0.2 0.2

⎞

⎟
⎟
⎠ .
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It is easy to verify that rank(�) = K = 3. This case falls into scenario (a) in Theorem 2, so a
GoM model parameterized by (�,�) is identifiable if � satisfies Condition 1.

Example 2. Consider

� =

⎛

⎜
⎜
⎝

0.2 0.8 0.8
0.2 0.8 0.8
0.8 0.2 0.8
0.8 0.2 0.8

⎞

⎟
⎟
⎠ .

Now rank(�) = K − 1 = 2 since the third column of � is a linear combination of the first two
columns. However, there is no column of � that is an affine combination of the other columns of
�. This case falls into scenario (b) in Theorem 2, so a GoM model parameterized by (�,�) is
identifiable if � satisfies Condition 1.

Example 3. Consider

� =

⎛

⎜
⎜
⎝

0.2 0.8 0.5
0.2 0.8 0.5
0.8 0.2 0.5
0.8 0.2 0.5

⎞

⎟
⎟
⎠ .

In this case, rank(�) = K − 1 = 2, and the third column of � is an affine combination of the
first two columns. This case falls into scenario (c) in Theorem 2, so if there exists a subject that
partially belongs to all K profiles, then the GoM model is not identifiable.

3. SVD-Based Spectral Estimation Method and Its Consistency

3.1. Estimation Algorithm

In the literature of GoM model estimation, the most prevailing approaches are perhaps
Bayesian inferences using Markov chain Monte Carlo (MCMC) algorithms such as Gibbs and
Metropolis–Hastings sampling (Erosheva, 2002; Erosheva et al., 2007; Gu et al., 2023). However,
MCMC is time-consuming and typically not computationally efficient. As Borsboom et al. (2016)
points out, despite their usefulness, GoM models are somewhat underrepresented in psychomet-
ric applications due to the lack of readily accessible statistical software. Recently, the R package
sirt (Robitzsch & Robitzsch, 2022) provides a joint maximum likelihood (JML) algorithm to
fit GoM models. This algorithm implements the Lagrange multiplier method proposed in Ero-
sheva (2002) and solves the optimization problem in a gradient descent fashion. Although this
JML algorithm is computationally more efficient compared to MCMC algorithms, it is still not
scalable to very large-scale response data due to its iterative manner. Therefore, it is of interest
to develop a non-iterative estimation method suitable to analyze modern datasets with a large
number of items and subjects.

We next propose a fast SVD-based spectral method to estimate GoM models. Recall that
Proposition 1 establishes the expressions for �,� in (8) and (9). In practice, since S is not
known, we propose to estimate it using a vertex-hunting technique called successive projection
algorithm (SPA;Araújo et al. 2001; Gillis&Vavasis 2013). As stated in Proposition 1, Condition 1
induces a simplex geometry on the row vectors of U and the simplex vertices correspond to the
pure subjects S. To locate K vertices for any input matrix U ∈ R

N×K that has such a simplex
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structure, SPA first finds the subject with the maximum row norm in U. That is, the first vertex
index is

Ŝ1 = argmax
1≤i≤N

‖Ui,:‖2.

Here and after we use ‖x‖2 = √
x�x to denote the �2 norm of any vector x. Since the l2 norm

of any convex combination of the vertices is at most the maximum l2 norm of the vertices, this
step is guaranteed to return one of the vertices of the simplex. SPA then projects all the remaining
row vectors {Ui,: : i �= Ŝ1} onto the subspace that is orthogonal to UŜ1,:. Mathematically, denote
v1 := UŜ1,:/‖UŜ1,:‖2 as the scaled vector with unit norm, then the projected vectors are the rows
of the matrix U(IK − v1v�

1 ), where IK − v1v�
1 is a K × K projection matrix. In the second step,

SPA finds the second vertex index as the one that has the maximum norm among the projected
row vectors,

Ŝ2 = argmax
i �=Ŝ1

‖Ui,:(IK − v1v�
1 )‖2.

The above procedure of first finding the rowwith themaximumprojected norm and then projecting
the remaining rows onto the orthogonal space is iteratively employed until finding all K vertex
indices. Sequentially, for each k = 1, . . . , K − 1, define a unit-norm vector vk = UŜk ,:/‖UŜk ,:‖2,
then the (k + 1)-th vertex index is estimated as

Ŝk+1 = argmax
i �∈{Ŝ1,...,Ŝk }

‖Ui,:(IK − v1v�
1 ) · · · (IK − vkv�

k )‖2.

Here the projection matrices (IK − v1v�
1 ), . . . , (IK − vkv�

k ) sequentially project the rows of U to
the orthogonal spaces of those already found vertices UŜ1,:, . . . ,UŜk ,:. This SPA procedure can
be intuitively understood by visually inspecting the toy example in Fig. 1. Since U1,:, . . . ,UN ,:
lie in a triangle in Fig. 1, it is not hard to see that the vector with the largest norm should be
one of the three vertices US1,:,US2,:,US3,:, say US3,:. Furthermore, after projecting the remaining
Ui,: onto the space orthogonal to US3,:, the maximum norm of the projected vectors should
correspond to i = S1 or S2. This observation intuitively justifies that SPA can find the correct set
of pure subjects given a simplex structure. With the estimated pure subjects Ŝ, � and � can be
subsequently obtained via (8) and (9).

The above estimation procedure is based on the assumption thatR0 is known. In practice, we
only have access to the binary random data matrix R whose expectation is R0. Fortunately, it is
known that for a large-dimensional random matrix with a low-rank expectation, the top-K SVD
of the random matrix and the SVD of its expectation are close (e.g., see Chen et al. 2021a). This
nontrivial theoretical result is our key insight and motivation to consider the top-K SVD of R as
a surrogate for that of R0:

R ≈ Û�̂V̂�, (11)

where �̂ is a K × K diagonal matrix collecting the K largest singular values of R, and ÛN×K ,
V̂J×K collect the corresponding left and right singular vectors with Û�Û = V̂�V̂ = IK . Specifi-
cally, Chen et al. (2021a) proved that the difference betweenU and Û up to a rotation is small when
N and J are large with respect to K . Therefore, since Proposition 1 shows that the population row
vectors U1,:, . . . ,UN ,: form a simplex structure, the empirical row vectors {Ûi,:}Ni=1 are expected
to form a noisy simplex cloud distributed around the population simplex. We call this noisy cloud
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Algorithm 1
Prune

Input: Empirical top-K left singularmatrix Û, the number of nearest neighbors r , twoquantilesq, e ∈ (0, 1).
Output: Set of subject indices P̂ to be pruned (i.e., removed)
1: for i ∈ 1, . . . , N do
2: li = ‖Ûi,:‖2
3: end for
4: P̂0 = {i : li ≥ upper-q quantile of {li : 1 ≤ i ≤ N }}
5: for i ∈ P̂0 do
6: di = {the distances from Ûi to its r nearest neighbors}
7: xi = average(di )
8: end for
9: P̂ = {i : xi ≥ upper-e quantile of {xi : i ∈ P̂0}}

the empirical simplex. For an illustration of the population and the empirical simplex, see Fig. 2
in Sect. 4.

In order to recover the population simplex from the empirical one, we use a pruning step
similar to that in Mao et al. (2021) to reduce noise. We summarize this pruning procedure in
Algorithm 1. The high-level idea behind pruning is that if Ûi,: has a large norm but very few
close neighbors, then it is likely to be outside of the population simplex and hence should be
pruned (i.e., removed) before performing SPA to achieve higher accuracy in vertex hunting. More
specifically, Algorithm 1 first calculates the norm of each row of Û (line 1- 3) and identifies the
vectors with norms in the upper q-quantile (line 4). The larger q is, the more such points are
found. Then for each vector found, its average distance xi to its r nearest neighbors is calculated
(line 5- 8). Finally, the subjects to be pruned are those whose xi belong to the upper e-quantile
of all the xi ’s (line 9). A larger value of e indicates that a larger proportion of the points will be
pruned. According to our preliminary simulations, we observe that the estimation results are not
very sensitive to these tuning parameters r, q, e. After pruning, we can use SPA to hunt for the K
vertices of the pruned empirical simplex to obtain Ŝ and then estimate � and �.

Algorithm 2 summarizes our proposed method of estimating parameters (�,�) based on
SPA with the pruning step. We first introduce some notation. The index of the element in x
that has the maximum value is denoted by argmax(x). For any matrix A = (ai j ), denote by
A+ = (max{ai j , 0}) the matrix that retains the nonnegative values of A and sets any negative
values to zero. Denote by diag(x) the diagonal matrix whose diagonals are the entries of the
vector x. If S2 is a subvector of S1, denote by S1\S2 the complement of vector S2 in vector S1. For
a positive integer M , denote [M] = {1, . . . , M}. After obtaining the index vector of the pruned
subjects P̂ (which is a subvector of (1, 2, . . . , N )) from Algorithm 1 (line 2), we use SPA on the
pruned matrix Û[N ]\P̂,: to obtain the estimated pure subject index vector Ŝ (line 3- 8). Once this is
achieved, � and � can be estimated by modifying (8) and (9) in Proposition 1. We first calculate

�̃ = Û
(
ÛŜ,:

)−1
(12)

based on (8). The �̃ obtained above does not necessarily fall into the parameter domain for �.
Therefore, we first truncate all the entries of �̃ to be nonnegative and then re-normalize each row
to sum to one (line 10). Based on �̂, we can also estimate � by

�̃ = V̂�̂Û��̂(�̂
�
�̂)−1 (13)
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Algorithm 2
GoM Estimation by Successive Projection Algorithm with Pruning

Input: Binary response matrix R ∈ {0, 1}N×J , number of extreme profiles K , threshold parameter ε,
pruning parameters r, q, e.

Output: Estimated Ŝ, �̂, �̂

1: Get the top K singular value decomposition of R as Û�̂V̂�
2: P̂ = Prune(Û, r, q, e)
3: Y = Û
4: for k ∈ {1, . . . , K } do
5: Ŝk = argmax({‖Yi,:‖2 : i ∈ [N ]\P̂})
6: u = YŜk ,:/‖YŜk ,:‖2
7: Y = Y(IK − uu�)

8: end for
9: �̃ = Û(ÛŜ,:)−1

10: �̂ = diag(�̃+1K )−1�̃+
11: �̃ = V̂�̂Û��̂(�̂

�
�̂)−1

12: Write �̂ as (θ̂ j,k), where θ̂ j,k =

⎧
⎪⎨

⎪⎩

θ̃ j,k if ε ≤ θ̃ j,k ≤ 1 − ε

ε if θ̃ j,k < ε

1 − ε if θ̃ j,k > 1 − ε

(ε ≥ 0 can be set to zero. In the numerical studies, we choose ε = 0.001 to be consistent and comparable
with the default setting in the JML function in the R package sirt.)

according to (9). Our proposed method can be viewed as a method of moments. Equations (12)
and (13) are based on the first moment of the response matrix R, where we equate the low-rank
structure of the population first-moment matrix R0 with the observed first-moment matrix R.
Lastly, we truncate �̃ to be between [ε, 1 − ε] and obtain the final estimator �̂ (line 12). When
ε = 0, this truncation ensures that entries of �̂ lie in the parameter domain [0, 1]. In the numerical
studies, we choose ε = 0.001 to be consistent and comparable with the default setting in the JML
function in the R package sirt.

Remark 1. There are two possible ways to estimate � according to (9). The first one is defining
�̂ as the truncated version of

�̃ = V̂�̂Û�̂
S,:,

which only uses the information of Û corresponding to the K pure subjects indexed by Ŝ. Another
approach is estimating � via (13), which uses information from all of the N subjects. The latter
approach is expected to give more stable estimates. Our preliminary simulations also justify that
using (13) indeed gives higher estimation accuracy, so we choose to estimate � that way.

3.2. Estimation Consistency

In this subsection, we prove that our spectral method guarantees estimation consistency of
both the individual membership scores � and the item parameters �. We consider the double-
asymptotic regimewhere both the number of subjects N and the number of items J grow to infinity
and K is fixed. At the high level, since our estimators are functions of the empirical SVD, we will
prove consistency by leveraging singular subspace perturbation theory (Chen et al., 2021a) that
quantifies the discrepancy between the SVD of R and that of the low-rank expectation R0.
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Before stating the theorem, we introduce some notations. Write f (n) � g(n) if there exists a
constant c > 0 such that | f (n)| ≤ c|g(n)| holds for all sufficiently large n, and write f (n) � g(n)

if there exists a constant c > 0 such that | f (n)| ≥ c|g(n)| holds for all sufficiently large n. For
any matrix A, denote its kth largest singular value as σk(A), and define its condition number
κ(A) as the ratio of its largest singular value to its smallest singular value. For any m × n matrix

A = (ai j ) ∈ R
m×n , denote its Frobenius norm by ‖A‖F =

√∑m
i=1

∑n
j=1 a

2
i j .

Condition 2. κ(�) � 1, κ(�) � 1, σK (�) �
√
N, and σK (�) �

√
J .

Condition 2 is a reasonable and mild assumption on the parameter matrices. As a simple
example, it is not hard to verify that if � and � both consist of many identity submatrices IK
vertically stacked together, then Condition 2 is satisfied. The following theorem establishes the
consistency of estimating both � and � using our spectral estimator.

Theorem 3. Consider �̃ = ÛÛ−1
Ŝ,: , �̃ = V̂�̂Û�̂

S,:. Assume that Conditions 1 and 2 hold. If

N , J → ∞ with N/J 2 → 0 and J/N 2 → 0, then we have

1√
NK

‖�̃ − �P‖F P→ 0,
1√
J K

‖�̃P − �‖F P→ 0, (14)

where the notation
P→ means convergence in probability, and P is a K × K permutation matrix

which has exactly one entry of “1” in each row/column and zero entries elsewhere.

Theorem 3 implies that

1√
NK

‖�̃ − �P‖F =
√
√
√
√ 1

NK

N∑

i=1

K∑

k=1

(π̃i,k − πi,φ(k))2
P→ 0;

1√
J K

‖�̃P − �‖F =
√
√
√
√ 1

J K

J∑

j=1

K∑

k=1

(θ̃ j,φ(k) − θ j,k)2
P→ 0,

where φ : {1, . . . , K } → {1, . . . , K } is a permutation map determined by the K ×K permutation
matrix P. These results mean that as N , J → ∞, the average squared estimation error across all
entries in the mixed membership score matrix � and that across all entries in the item parameter
matrix � both converge to zero in probability. This double-asymptotic regime with both N and
J going to infinity and this consistency notion in scaled Frobenius norm are similar to those
considered in the joint MLE approach to item factor analysis in Chen et al. (2019) and Chen et al.
(2020). To the best of our knowledge, this is the first time that consistency results are established
for GoM models in this modern regime.

4. Simulation Studies

4.1. Evaluating the Proposed Method

We carry out simulation studies to evaluate the accuracy and computational efficiency of our
new method. We consider K ∈ {3, 8}, N ∈ {200, 1000, 2000, 3000, 4000, 5000}, and J = N/5,
which correspond to large-scale and high-dimensional data scenarios. Such simulation regimes
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Figure 2.
Row vectors of U and Û projected to R2 in the simulation setting with N = 2000 and K = 3. The red-shaded area is the
population simplex, the green crosses are the removed subjects in pruning, and the blue dots form the empirical simplex
retained after pruning.

share a similar spirit with those in Zhang et al. (2020), which proposed and evaluated an SVD-
based approach for item factor analysis. In each simulation setting, we generate 100 independent
replicates. Within each setting and each replication, the rows of � are independently simulated
from the Dirichlet(α) distribution with α equal to the K -dimensional all-one vector, and the first
K rows of � are set to the identity matrix IK in order to satisfy the pure-subject Condition 1. The
entries in� are independently simulated from the uniform distribution on [0, 1]. Our preliminary
simulations suggest setting the tuning parameters in the pruning Algorithm 1 to r = 10, q = 0.4,
e = 0.2 with 8% subjects removed before SPA, so that the pruned empirical simplex is adequately
close to the population simplex. We use the above setting throughout all the simulations and the
real data analysis unless otherwise specified. It turns out the performance of our method is robust
to these tuning parameter values and not much tuning is needed in practice.

To illustrate the simplex geometry of the population and empirical left singular matrices U
(from the SVD ofR0) and Û (from the top-K SVD ofR), we plotUi,: and Ûi,: with N = 2000 and
K = 3 in Fig. 2. All vectors are projected to two dimensions for better visualization of the simplex
(i.e., triangle) structure. In Fig. 2, the red-shaded area corresponds to the population simplex, the
green crosses are the removed subjects selected by the pruning Algorithm 1, and the blue dots
form the empirical simplex obtained after pruning. As we can see, the empirical row vectors Ûi,:
approximately form a simplex cloud around the population simplex. After pruning out the noisy
vectors, the resulting empirical simplex is close to the population one. This fact not only illustrates
the effectiveness of the pruning procedure in Algorithm 1, but also confirms the usefulness of our
notion of expectation identifiability by showing the close proximity ofU and Û. The resemblance
between the scatter plots of the rows of U and Û implies that the simplex geometry of U holds
approximately for Û, and hence justifies that SPA can be applied to Û to estimate � and �.

We compare the performance of our proposed method with the JML algorithm (Joint Maxi-
mum Likelihood) in the R package sirt, because the latter is currently considered as the most
efficient estimation method for GoM models. We follow the default settings of JML with the
maximum iteration number set as 600, the global parameter convergence criterion as 0.001, the
maximum change in relative deviance as 0.001, and the minimum value of πik and θ jk as 0.001.
We measure the parameter estimation error by the mean absolute error (MAE). That is, the error
between the estimated �̂ and the ground truth � for each replicate is quantified by the mean

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 04:44:02, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


640 PSYCHOMETRIKA

Figure 3.
Computation time for K = 3 (left) and K = 8 (right) in simulations. For each simulation setting, we show the median,
25% quantile, and 75% quantile of the computation time for the 100 replications.

absolute bias (and similarly for �):

l(�, �̂) := 1

NK

N∑

i=1

K∑

k=1

|πik − π̂ik |, l(�, �̂) := 1

J K

J∑

j=1

K∑

k=1

|θ jk − θ̂ jk |.

We present the comparisons between our spectral method and JML in terms of computation
time and estimation error in Table 1 and Figs. 3, 4, 5. As shown in Fig. 3, the computation time for
both methods increases as the sample size N and the number of items J increase. Notably, JML
takes significantly more time than our proposed method, especially when N and J are large. For
example, when N = 5000, J = 1000, K = 8, it takes about 3h for JML to reach the maximum
iteration number for each replication, while it takes less than 40s on average for our proposed
method. Table 1 further records the mean computational time in seconds across replications for
JML and the proposed method. Moreover, we observe that JML is not able to converge in almost
all replications when K = 8, including when the sample size is as small as N = 200. In summary,
when the number of extreme latent profiles K is large enough, JML not only takes a long time to
run but also is unable to reach convergence given the default convergence criterion.

The huge computational advantage of the proposed method does not come at the cost of
degraded estimation accuracy. Figures4 and 5 show that the estimation error decreases as the
sample size N and the number of items J increase for both methods. When the sample size is
large enough (N ≥ 2000) for K = 3, our proposed method gives more accurate estimation
on average compared to JML. For K = 8, our proposed method yields higher estimation accu-
racy for � for all sample sizes on average. When N ≥ 2000, the estimation accuracy of � is
slightly worse but comparable to JML. We point out that due to their non-iterative nature, SVD or
eigendecomposition-based methods typically tend to give worse estimation compared to iterative
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Table 1.
Table of average computational time in seconds across replications for JML and the proposed spectral method for K = 3
and K = 8

K Method N = 200 N = 1000 N = 2000 N = 3000 N = 4000 N = 5000

K = 3 JML 30.3 170.9 473.9 923.4 1528.4 2363.9
Proposed 7.5e-2 1.5 6.8 17.5 42.3 10.6

K = 8 JML 1.7 691.5 1957.5 3761.7 6134.3 9251.7
Proposed 6.4e-2 1.3 5.0 11.6 23.0 37.2

Figure 4.
Simulation results of estimation error for K = 3. The boxplots represent the mean absolute error for� (left) and� (right)
versus the sample size N .

methods that aim to find the MLE; for example, see the comparison of an SVD-based method
and a joint MLE method for item factor analysis in Zhang et al. (2020). However, it turns out that
given a fixed computational resource (i.e., the default maximum iteration number in the sirt
package), the iterative method JML can give worse estimation accuracy than our spectral method.

We also compare our spectral method with the Gibbs sampling method for the GoM model.
The parameters in the Gibbs sampler are initialized from their prior distributions. The number of
burn-in samples is set to 5000. We take the average of 2000 samples after the burn-in phase as the
Gibbs sampling estimates. Since Gibbs sampling is an MCMC algorithm, the computation can
take a long time when the sample size N and number of items J are large. Therefore, we only
consider N = 200, 1000, 2000, and K = 3. We compare the computation time and estimation
accuracy of our proposed method, JML, and Gibbs sampling. The results are summarized in
Tables 2 and 3. Compared to Gibbs sampling, our proposed method is approximately 10,000
times faster when N = 2000 and K = 3. In terms of the estimation accuracy, when the sample
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Figure 5.
Simulation results of estimation error for K = 8. The boxplots represent the mean absolute error for� (left) and� (right)
versus the sample size N .

Table 2.
Average computation time in seconds for each method and sample size in simulations when K = 3

N = 200 N = 1000 N = 2000

Proposed 0.1 1.5 6.8
JML 30.3 170.9 473.9
Gibbs 566.7 13119.2 52255.8

Table 3.
Average mean absolute error for � and � for each method and sample size in simulations when K = 3

� N = 200 N = 1000 N = 2000 � N = 200 N = 1000 N = 2000

Proposed 0.12 0.04 0.03 Proposed 0.17 0.08 0.06
JML 0.13 0.04 0.03 JML 0.16 0.07 0.06
Gibbs 0.09 0.03 0.02 Gibbs 0.13 0.07 0.05

size is small, the Gibbs sampling has better accuracy. When the sample size is large enough, the
three methods are comparable in terms of estimation accuracy. These simulation results justify
that our method is more suitable for large-scale and high-dimensional datasets.

We also note that without the pure-subject Condition 1, one can still obtain estimates from
the JML or the Gibbs sampler by directly running their corresponding estimation algorithms.
However, simply running those algorithms for arbitrary data generated under the GoMmodel may
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Figure 6.
Comparison of estimation results with and without the pruning procedure when K = 3.

give misleading results if the model is not identifiable, because identifiability is the prerequisite
for any valid statistical inference. In contrast, for our proposed spectral estimator, under the pure
subject condition, we have established both identifiability (Theorem 1) and estimation consistency
(Theorem 3) for both the mixed membership scores � and the item parameters �.

We also compare the simulation results of our proposed method with and without the pruning
step when K = 3 to examine the effectiveness of pruning. The comparison of the estimation
accuracy for the two approaches is summarized in Fig. 6. For the estimation of �, estimation
with pruning is consistently better for all sample sizes. For the estimation of �, estimation results
are comparable for the two approaches. When sample size is large, pruning gives slightly better
results.

To summarize, the above simulation results demonstrate the superior efficiency and accuracy
of our proposed method to estimate GoM models. Our method provides comparable estimation
results compared with JML and Gibbs sampling and is much more scalable to large datasets with
many subjects and many items.

4.2. Verifying Identifiability

We also conduct another simulation study to verify the identifiability results. We consider
three different cases with K = 3, N ∈ {200, 1000, 2000, 3000}, and J = N/5. In Case 1, we
set the ground truth � by vertically concatenating copies of the identifiable 4 × 3 �-matrix in
Example 1, and the generation mechanism for � remains the same as in Sect. 4.1. In Case 2, we
use the same � as in Case 1, while for �, after generating rows of �′ = (π ′

ik) from Dirichlet(1),
we truncate π ′

ik to be no less than 1/3 and then re-normalize each row of it; after this operation
the minimum entry in the resulting � is 0.2. Such a generated � = (πik) does not satisfy the
pure-subject Condition 1. In Case 3, we generate � using the same mechanism as in Sect. 4.1,
but generate � whose rows are replicates of the vector (0.8, 0.5, 0.2) so that rank(�) = 1.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 04:44:02, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


644 PSYCHOMETRIKA

Figure 7.
A simulation study verifying identifiability. Estimation errors for three different cases; see the concrete settings of Cases
1, 2, and 3 in the main text. The box plots represent the mean absolute error for � (left) and � (right) versus the sample
size N .

Case 1 falls into part (a) in Theorem 2 and is identifiable, whereas Cases 2 and 3 correspond
to part (c) and are not identifiable. Figure7 shows that the estimation errors in Cases 2 and 3
are significantly larger than those in Case 1. These results empirically verify our identifiability
conclusions in Theorem 2.

5. Real Data Example

We illustrate our proposed method by applying it to a real-world personality test dataset,
the Woodworth Psychoneurotic Inventory (WPI) dataset. WPI was designed by the United States
Army during World War I to identify soldiers at risk for shell shock and is often credited as the
first personality test. The WPI dataset can be downloaded from the Open Psychometrics Project
website: http://openpsychometrics.org/_rawdata/. The dataset consists of binary yes/no responses
to J = 116 items from 6019 subjects. We remove subjects with missing responses and only keep
the subjects who are at least ten years old. This screening process leaves us with N = 3842
subjects.

We apply both the JML method and our new spectral method to the WPI dataset to compare
computation time. Figure8 shows the computation time in seconds versus the number of extreme
profiles K for the two methods. For K ≥ 4, the number of iterations for JML reaches the default
maximum iteration number in thesirtpackage anddoes not converge. Similar to the simulations,
our spectral method takes significantly less computation time compared to JML. This observation
again confirms that the proposed method is scalable to real-world datasets with a large sample
size and a relatively large number of items.
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Figure 8.
Computation time for the WPI dataset. The lines indicate the run time in seconds versus K for JML and our spectral
method. Note that for K ≥ 4, the number of iterations in JML reaches the default maximum iteration number.

Choosing the number of extreme latent profiles K is a nontrivial problem for GoM models
in practice. Available model selection techniques include the Akaike information criterion (AIC;
Akaike 1998) and the Bayesian information criterion (BIC; Schwarz 1978) for likelihood-based
methods, and the deviance information criteria (DIC; Spiegelhalter et al. 2002) for Bayesian
MCMC methods. For factor analysis and principal component analysis, parallel analysis (Horn,
1965; Dobriban & Owen, 2019) is one popular eigenvalue-based method to select the latent
dimension. For the WPI dataset, when choosing K = 3, we observe that the estimated �̂ matrix
has three well-separated column vectors, which imply a meaningful interpretation of the extreme
profiles.When increasing K to 4, the columns of the estimated �̂ are no longer that well separated
and interpretable. Moreover, choosing K = 3 produces the least reconstruction error compared

to K = 2 or 4. That is, K = 3 leads to the smallest mean absolute error between �̂�̂
�
and

the observed data matrix R. Since the goal of the current data analysis is mainly to illustrate the
proposed spectral method, we next present and discuss the estimation results for K = 3. The
important problem of how to select K in GoM models in a principled manner is left as a future
direction.

We next take a closer look at the estimation result given by the proposed method for K = 3.
In order to interpret each extreme latent profile, we present the heatmap of part of the estimated
item parameter matrix �̂ in Fig. 9. Since the number of items J = 116 is large, we only display
a subset of the items for better visualization. More specifically, 30 out of 116 items are chosen in
Fig. 9 based on the criterion that the chosen items have the largest variability in (θ̂ j,1, θ̂ j,2, θ̂ j,3).
Based on Fig. 9, we interpret profile 1 as people who are physically unhealthy since they have
higher probabilities of fainting, dyspepsia, and asthma or hay fever. People belonging to profile
2 tend to be socially passive since they are worrying, do not find their way easily, and get tired of
things or people easily. Profile 3 on the other hand is identified as the healthy group.

Figure 10 shows the ternary diagram of the estimated membership scores �̂ made with the R
package ggtern. TheWPI dataset comes with the age information of each subject, and we color
code the subjects in Fig. 10 according to their ages. The darker color represents older people while
the lighter color represents younger people. Each dot represents a subject, and the location of the
dot in the equilateral triangle depicts the threemembership scores of this subject. Specifically, dots
with a large membership score on a profile are closer to the vertex of this profile. One can see that
the pure-subject Condition 1 is satisfied here since there are dots located almost exactly at each
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Have your employers generally treated you right?

Did the teachers in school generally treat you right?

Is it easy to make you laugh?

Can you stand pain quietly?

Can you stand the sight of blood?

Can you do the little chores of the day without worrying over them?

Did the other children let you play with them?

Have you a good appetite?

Can you stand disgusting smells?

Do you get used to new places quickly?

Do you like outdoor life?

Do you find your way about easily?

Did you ever have the habit of wetting the bed?

Have you ever fainted away?

Did you ever have dyspepsia [indigestion]?

Did you ever have asthma or hay fever [allergies]?

Were you shy with other boys [or girls]?

Do you worry too much about little things?

As a child did you like to play alone better than to play with other children?

Do ideas run through your head so that you cannot sleep?

Do you think you worry too much when you have an unfinished job on your hands?

Do you get tired of work?

Do you have nightmares?

Have you ever had fits of dizziness?

Do your interests change frequently?

Do you have the sensation of falling when going to sleep?

Did you ever have the habit of biting your finger nails?

Does your mind wander badly so that you lose track of what you are doing?

Do you get tired of people quickly?

Is it easy to get you cross or grouchy?

profile 1 profile 2 profile 3

Figure 9.
Heatmap of �̂ of a subset of 30 WPI items. The values are the estimated probability of responding “yes” for each item
given each extreme profile.

of the three vertices in Fig. 10. This figure also reveals that darker dots are more gathered around
the vertex of profile 1, which means that older people are more likely to belong to the extreme
profile identified as physically unhealthy. Correspondingly, younger people are closer to profile
2 or 3. Recalling our earlier interpretation of the extreme profiles from Fig. 9, these results are
intuitively meaningful since older people tend to be less healthy compared with younger people.
It is worth emphasizing that the age information is not used in our estimation of the GoM model,
but our method is able to generate interpretable results with respect to age.

6. Discussion

In this paper, we have adopted a spectral approach to GoM analysis of multivariate binary
responses. Under the notion of expectation identifiability, we have proposed sufficient conditions
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Figure 10.
Barycentric plot of the estimated membership scores �̂ for WPI data, color coded with the age covariate.

that are close to being necessary for GoM models to be identifiable. For estimation, we have
proposed an efficient SVD-based spectral algorithm to estimate the subject-level and population-
level parameters in the GoM model. Our spectral method has a huge computational advantage
over Bayesian or likelihood-based methods and is scalable to large-scale and high-dimensional
data. Simulation results demonstrate the superior efficiency and accuracy of our method, and also
empirically corroborate our identifiability conclusions. We hope this work provides a useful tool
for psychometric researchers and practitioners by making GoM analysis less computationally
daunting and statistically mysterious.

The expectation identifiability considered in this work is a suitable identifiability notion
for large-scale and high-dimensional GoM models. A recent paper Gu et al. (2023) studied the
population identifiability of a variant of the GoM model called the dimension-grouped mixed
membership model. Generally speaking, population identifiability is a traditional notion of iden-
tifiability which aims at identifying the population parameters in the model but not the individual
latent variables. In the context of the dimension-grouped GoM model, population identifiability
in Gu et al. (2023) means identifying the item parameters � and the distribution parameters for
� (i.e., the Dirichlet distribution parameters (α1, . . . , αK ), where each row in � is assumed to
follow Dirichlet(α1, . . . , αK )), but not identifying the entries in � directly. Such a traditional
identifiability notion is more suitable for the low-dimensional case with small J and large N , as
considered in Gu et al. (2023). In contrast, in this work we are motivated by the large-scale and
high-dimensional setting with both N and J going to infinity. In this setting, expectation identifi-
ability that concerns both � and � is a suitable notion to study, and we have also established the
corresponding consistency result for � and � when the pure subject condition for expectation
identifiability is satisfied.

The pure subject Condition 1 is amild condition that is crucial to both our identifiability result
and estimation procedure. It may be of interest to test whether this condition holds in practice.
Testing Condition 1 is equivalent to testing whether a data cloud in a general K -dimensional
space has a simplex structure, which is a non-trivial problem. When K = 3, a visual inspection
is plausible by plotting the row vectors of the left singular matrix and checking if the point cloud
forms a triangle in the 3-dimensional space. However, when K is larger than 3, visual inspection
becomes infeasible. Recently, a formal statistical procedure has been proposed by a working
paper Freyaldenhoven et al. (2023) to test the anchor word assumption for topic models, which
is another type of mixed membership models. The anchor word assumption requires that there
exists at least one anchor word for each topic, which is analogous to our pure subject Condition 1.
Freyaldenhoven et al. (2023) considers the hypothesis testing of the existence of anchor words.
They first characterizes that for a matrix P that admits a low-rank factorization under the anchor
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word assumption, one can write P = CP for somematrixC that belongs to a certain set CK . Based
on this property, Freyaldenhoven et al. (2023) then construct a test statistic T = infC∈CK ‖P−CP‖
to test the null hypothesis that the anchor-word assumption holds. To achieve a level-α test, the
null hypothesis will be rejected if T is larger than the (1− α)% quantile of the distribution of the
test statistic under the null. We conjecture that it might be possible to generalize this procedure
to the GoM setting and leave this direction as future work.

There are several additional research directions worth exploring in the future. First, this work
has focused on binary responses, while in practice it is also of interest to perform GoM analysis of
polytomous responses, such as Likert-scale responses in psychological questionnaires (see, e.g.,
Gu et al. 2023). It would be desirable to extend our method to such multivariate polytomous data.
Under a GoM model for polytomous data, a similar low-rank structure as (5) should still exist
for each category of the responses. Since our method is built upon the low-rank structure and the
pure subject condition, we conjecture that exploiting such structures in polytomous data could
still lead to nice spectral algorithms. Second, it is worth considering developing a model that
directly incorporates additional covariates into the GoM analysis. Our current method does not
use additional covariates, such as the age information in the WPI dataset. Proposing a covariate-
assisted GoM model and a corresponding spectral method may be methodologically interesting
and practically useful.
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Appendix A: Proofs of the Identifiability Results

Proof of Proposition 1. If we take the rows that correspond to S of both sides in the SVD (6) and
use the fact that �S,: = IK , then

US,:�V� = [R0]S,: = �S,:�� = ��. (15)

This gives an expression of �

� = V�U�
S,:. (16)
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Further note that
U = R0V�−1 = ���V�−1. (17)

If we plug (15) into (17) and note that V have orthogonal columns, we have

U = �US,:�V�V�−1 = �US,:. (18)

Equation (18) also tells us thatUS,: must be full rank since bothU and� have rank K . Therefore,
we have an expression of �:

� = U(US,:)−1.

On the other hand, based on the singular value decomposition U�V� = ���, we can left
multiply (���)−1�� with both hand sides to obtain

(���)−1��U�V� = ��

�⇒ � = V�U��(���)−1. (19)

We next show that (16) and (19) are equivalent. Since U�U = IK , (18) leads to

U�
S,:���US,: = IK ,

which yields
(���)−1 = US,:U�

S,:.
Plugging this equation into (19), we have

� = V�U��US,:U�
S,:

= V�U�U(US,:)−1US,:U�
S,:

= V�U�
S,:

This shows the equivalence of (16) and (19) and completes the proof of the proposition. ��
Proof of Theorem 1. Without loss of generality, assume that the first extreme latent profile does
not have a pure subject. Then πi1 ≤ 1 − δ, ∀i = 1, . . . , N for some δ > 0. For each 0 < ε < δ,
define a K × K matrix

Mε =
[
1 + (K − 1)ε2 −ε21�

K−1
0K−1 ε1K−11�

K−1 + (1 − (K − 1)ε)IK−1

]

.

We will show that �̃ε = �Mε and �̃ε = �M−1
ε form a valid parameter set. That is, each

element of �̃ε and �̃ε lies in [0, 1] and the rows of �̃ε sum to one. Since M0 = IK and
by the continuity of matrix determinant, Mε is full rank when ε is small enough. Also notice
that Mε1K = 1K . Therefore, �̃ε1K = �Mε1K = �1K = 1N . For each i = 1, . . . , N ,
π̃i1 = πi1(1 + (K − 1)ε2) ≥ 0. For any fixed k = 2, . . . , K , (Mε)kk = 1 − (K − 2)ε and
(Mε)mk = ε for m �= k. Thus when ε ≤ 1/(K − 1), we have (Mε)mk ≥ ε for any m = 1, . . . , K .
Therefore, the following inequalities hold for each i = 1, . . . , N and k = 2, . . . , K :

π̃ik = −ε2πi1 +
K∑

m=2

πim(Mε)mk≥ − ε2πi1 + ε

K∑

m=2

πim
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≥ −ε2(1 − δ) + ε(1 − πi1) ≥ −ε2(1 − δ) + εδ ≥ εδ2 > 0.

Here we also used
∑K

k=1 πik = 1, πi1 ≤ 1 − δ, and ε < δ.
Further notice that

Mε − IK =
[
ε2(K − 1) −ε21�

K−1
0K−1 ε1K−11�

K−1 − ε(K − 1)IK−1

]

,

which leads to ‖Mε − IK ‖F ε→0−→ 0. Here ‖A‖F =
√∑m

i=1
∑n

j=1 a
2
i j is the Frobenius norm of

any matrix A = (ai j ) ∈ R
m×n . By the continuity of matrix inverse and Frobenius norm,

‖M−1
ε − IK ‖F ε→0−→ 0.

Therefore,

‖�̃ − �‖F = ‖�(IK − M−1
ε )‖F ≤ ‖�‖2‖IK − M−1

ε ‖F ε→0−→ 0.

Since all the elements of � are strictly in (0, 1), the elements of �̃ must be in [0, 1] when ε is
small enough. Also note that Mε is not a permutation matrix when ε > 0; thus, the GoM model
is not identifiable up to a permutation. This completes the proof of the theorem. ��
Proof of Theorem 2. Suppose rank(�) = r ≤ K . Now, consider SVD R0 = U�V� with
U ∈ R

N×r ,V ∈ R
J×r ,� ∈ R

r×r . For simplicity, we continue to use the same notations U,�,V
here even though the matrix dimensions have changed. Without loss of generality, we can reorder
the subjects andmemberships so that�1:K ,: = IK fromAssumption1.According toProposition 1,

U = �U1:K ,:. (20)

Since rank(�) = K , rank(U) = r , we must have rank(U1:K ,:) = rank(U) = r .
Suppose another set of parameters (�̃, �̃) yields the same R0 and we denote its corresponding
pure subject index vector as S̃ so that �̃S̃,: = IK . Similarly, we have

U = �̃US̃,:. (21)

Taking the S̃ rows of both sides of (20) and the first K rows of both sides of (21) yields

�S̃,:U1:K ,: = US̃,:, U1:K ,: = �̃1:K ,:US̃,:.

The above equation shows that US̃,: is in the convex hull created by the rows of U1:K ,:, and U1:K ,:
is in the convex hull created by the rows of US̃,:. Therefore, there must exist a permutation matrix
P such that US̃,: = PU1:K ,:. Combining this fact with (20) and (21) leads to

(� − �̃P)U1:K ,: = 0. (22)
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Proof of part (a). For part (a), r = K and U1:K ,: is full rank according to (20). In this case, (22)
directly leads to � = �̃P and thus �̃ = �P�.
Now generally consider r < K . By permuting the rows and columns of �, we can write

� =
[

C CW1

W�
2 C W�

2 CW1

]

, (23)

where C ∈ R
r×r is full rank, W1 ∈ R

r×(K−r) and W2 ∈ R
r×(J−r). Now comparing the block

columns of (23) and � = V�(U1:K ,:)� gives

[
Ir
W�

2

]

C = V�(U1:r,:)�,

[
Ir
W�

2

]

CW1 = V�(U(r+1):N ,:)�. (24)

Since C is full rank, U1:r,: has to also be full rank and (24) can be translated into

U(r+1):N ,: = W�
1 U1:r,:.

Therefore,

U1:K ,: =
[
Ir
W�

1

]

U1:r,:. (25)

By plugging the (25) into (22) and again using the fact that U1:r,: is full rank, we have

(� − �̃P)

[
Ir
W�

1

]

= 0. (26)

Proof of part (b). Denote A := � − �̃P. If r = K − 1, W1 = (W1,1, . . . ,W1,K−1) is a
(K − 1)-dimensional vector and (26) gives us

A:, j + W1, jA:,k = 0, ∀ j = 1, . . . , K − 1. (27)

Denote an r -dimensional column vector with all entries equal to one by 1r . Right multiplying 1r
to both sides of (26) yields

A
[

1r
W�

1 1r

]

= 0.

Also, note that both � and �̃P have row sums of 1. Hence,

K∑

j=1

A:, j = 0N ,

K−1∑

j=1

A:, j + W�
1 1rA:,K = 0N .
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Taking the difference of the two equations above gives (1 − W�
1 1r )A:,K = 0N . If W�

1 1r �= 1,
then A:,K has to be 0N , which implies A:, j = 0N for all j = 1 . . . , K − 1 according to (27).
Therefore, A = � − �̃P = 0N , which leads to �̃ = �P�.
Note that using (25) leads to

�� = U1:K ,:�V� =
[
IK−1

W�
1

]

U1:(K−1),:�V� =
[
IK−1

W�
1

]

(�:,1:(K−1))
�.

Hence �:,K = �:,1:(K−1)W1. Therefore, the condition W�
1 1r �= 1 is equivalent to the K -th

column of � not being an affine combination of the other columns.
Proof of part (c). Now consider the case of either r = K − 1 with W�

1 1r = 1, or r < K − 1.
Assume subject m is completely mixed so that πm,k > 0,∀k = 1, . . . , K . Define

π̃�
i =

{
π�
i if i �= m

π�
m + εβ�[−W�

1 , IK−r ] if i = m
,

where ε > 0 is small enough so that π̃ i ∈ (0, 1), and β ∈ R
K−r is such that β�(1K−r −W�

1 1r ) =
0. Note that such β �= 0 always exists under the assumption in part (c), because if r = K −1 with
W�

1 1r = 1, then β�(1K−r − W�
1 1r ) = β(1 − 1) = 0 holds for any β ∈ R; if r < K − 1, then

K−r ≥ 2 and β has dimension at least two, so the inner product equationβ�(1K−r −W�
1 1r ) = 0

must have a nonzero solution β. The constructed �̃ have row sums of 1 by the construction of β.
Furthermore, �̃U1:K ,: and �U1:K ,: can only be different on the m-th row, and

π̃�
mU1:K ,: = π�

mU1:K ,: + εβ�[−W�
1 , IK−r ]

[
Ir
W�

1

]

U1:r,: = π�
mU1:K ,:.

Hence, �̃U1:K ,: = �U1:K ,:. This gives us

��� = �U1:K ,:�V� = �̃U1:K ,:�V� = �̃��.

We can see that (�,�) and (�̃,�) yield the same model but � �= �̃. This completes the proof
for part (c). ��

Appendix B: Proof of the Consistency Theorem 3

For any matrix A with SVD A = UA�AV�
A , define

sgn(A) := UAV�
A .

According to Remark 4.1 in Chen et al. (2021a), for any two matrices A,B ∈ R
n×r , r ≤ n:

sgn(A�B) = arg min
O∈Or×r

‖AO − B‖,
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where Or×r is the set of all orthonormal matrices of size r × r . The 2-to-∞ norm of matrix A is
defined as the maximum row l2 norm, i.e., ‖A‖2,∞ = maxi ‖e�

i A‖. Define

r = max{N , J }
min{N , J } .

Under Condition 2, we have κ(R0) = σ1(���)

σK (���)
≤ σ1(�)σ1(�)

σK (�)σK (�)
= κ(�)κ(�) � 1 and σK (R0) ≥

σK (�)σK (�) �
√
N J .

Lemma 1. Under Condition 2, if N/J 2 → 0 and J/N 2 → 0, then with probability at least
1 − O((N + J )−5), one has

‖Û − U · sgn(U�Û)‖2,∞ �
√
r +√

log(N + J )√
N J

(28)

‖Û�̂V̂� − U�V�‖∞ �
√
r log(N + J )

min{N , J } . (29)

Here the infinity norm ‖A‖∞ for any matrix A is defined as the maximum absolute entry value.
We write the RHS of (28) as ε and the RHS of (29) as η.

Proof of Lemma 1. We will use Theorem 4.4 in Chen et al. (2021a) to prove the lemma and will
verify the conditions of that theorem are satisfied.

Define the incoherence parameter μ := max

{
N‖U‖22,∞

K ,
J‖V‖22,∞

K

}

. Note that

‖U‖2,∞ ≤ ‖US,:‖2,∞ ≤ ‖US,:‖ = 1

σK (�)
� 1√

N
,

since all rows of U are convex combinations of US,:. On the other hand,

‖V‖2,∞ = ‖�U−�
S,: �−1‖2,∞ ≤ ‖�‖2,∞‖U−�

S,: �−1‖
≤ ‖�‖2,∞‖U−1

S,: ‖ · 1

σK (���)
= ‖�‖2,∞σ1(�)

σK (���)

≤ ‖�‖2,∞κ(�)

σK (�)
≤

√
Kκ(�)

σK (�)
� 1√

J
.

Therefore, μ � 1.
On the other hand, we will show that

√
log(N + J )/min{N , J } � 1. By the symmetry of N and

J , we assume J ≤ N without loss of generality. Thus,

√
log(N + J )

min{N , J } =
√
log(N + J )

J
�

√
log(J 2 + J )

J
→ 0.

Therefore, Assumption 4.2 in Chen et al. (2021a) holds and (28) and (29) can be directly obtained
from Theorem 4.4 in Chen et al. (2021a). ��
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Lemma 2. Let Conditions 1 and 2 hold. Then, there exists a permutation matrix P such that with
probability at least 1 − O((N + J )−5),

‖ÛŜ,: − PUS,: · sgn(U�Û)‖ � ε. (30)

Proof of Lemma 2. Using Proposition 1, we will apply Theorem 4 in Klopp et al. (2023) with
G̃ = Û, G = U · sgn(U�Û), W = �, Q = US,: · sgn(U�Û), N = Û − Usgn(U�Û), N =
Û − U · sgn(U�Û). According to Lemma 1, ‖e�

i N‖ ≤ ε and ε �
√
r+√

log(N+J )√
N J

. On the

other hand, σK (Q) = σK (US,:) = 1
σ1(�)

≥ 1√
N

since U = �US,: and σ1(�) ≤ ‖�‖F ≤
√
N maxi

∥
∥e�

i �
∥
∥
2 ≤ √

N . Therefore, ε ≤ C∗ σK (US,:)
K

√
K

for some C∗ > 0 small enough. Then we
can use Theorem 4 in Klopp et al. (2023) to get

‖Û − PUS,: · sgn(U�Û)‖ ≤ C0
√
Kκ(US,: · sgn(U�Û))ε

= C0
√
Kκ(US,:)ε

(i)= C0
√
Kκ(�)ε

� ε with probability at least 1 − O((N + J )−5).

Here (i) is because U = �US,:. ��
Proof of Theorem 3. First show that ÛŜ,: is not degenerate. By Weyl’s inequality and Lemma 2,
with probability at least 1 − O((N + J )−5), we have

σK (ÛŜ,:) ≥ σK (PUS,:O) − ‖ÛŜ,: − PUS,: · sgn(U�Û)‖
≥ σK (US,:) − ‖ÛŜ,: − PUS,: · sgn(U�Û)‖F
� 1

σ1(�)
− ε

� 1√
N

−
√
r +√

log(N + J )√
N J

� 1√
N

when N , J are large enough and N
J 2

converges to zero. Therefore, ÛŜ,: is invertible.
For the estimation of �,

‖�̃ − �P‖F = ‖ÛÛ−1
Ŝ,: − UU−1

S,:P‖F
≤ ‖Û(Û−1

Ŝ,: −sgn(U�Û)�U−1
S,:P)‖F

︸ ︷︷ ︸
I1

+‖(Û−Usgn(U�Û))[P−1US,:sgn(U�Û)]−1‖F
︸ ︷︷ ︸

I2

=: I1 + I2.

We will look at I1 and I2 separately.

I1 = ‖Û(Û−1
Ŝ,: − sgn(U�Û)�U−1

S,:P
�)‖F

≤ ‖Û−1
Ŝ,: − sgn(U�Û)�U−1

S,:P
�‖F
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≤ ‖Û−1
Ŝ,: ‖‖sgn(U�Û)�U−1

S,:P
�‖‖ÛŜ,: − PUS,:sgn(U�Û)‖F

�
√
N · σ1(�) · ε

�
√
N ·

√
r +√

log(N + J )√
J

with probability at least 1 − O((N + J )−5);

and

I2 = ‖(Û − Usgn(U�Û))[P−1US,:sgn(U�Û)]−1‖F
≤ ‖Û − Usgn(U�Û)‖F‖U−1

S,: ‖
≤ √

N · ε · σ1(�)

�
√
N ·

√
r +√

log(N + J )√
J

with probability at least 1 − O((N + J )−5).

Therefore, with probability at least 1 − O((N + J )−5),

1√
NK

‖�̃ − �P‖F �
√
r +√

log(N + J )√
J

=
⎧
⎨

⎩

√
N
J +

√
log(N+J )√

J
if N > J,

1√
N

+
√

log(N+J )√
J

if N ≤ J.

Therefore, 1√
NK

‖�̃ − �P‖F converges to zero in probability as N , J → ∞ and N
J 2

→ 0.

For the estimation of �,

‖�̃P − �‖F
= ‖P�ÛŜ,:�̂V̂� − US,:�V�‖F
≤ ‖(P�ÛŜ,: − US,:sgn(U�Û))�̂V̂�‖F + ‖(US,:sgn(U�Û) − ÛS,:)�̂V̂�‖F

+ ‖ÛS,:�̂V̂� − US,:�V�‖F
≤ ‖P�ÛŜ,: − US,:sgn(U�Û)‖F · σ1(R) · ‖V̂‖ + ‖US,:sgn(U�Û) − ÛS,:‖ · σ1(R) · ‖V̂‖

+ √
K J‖ÛS,:�̂V̂� − US,:�V�‖∞

(i i)
� ε · σ1(R0) + ε · (σ1(R) − σ1(R0)) + √

K J · η with probability at least 1 − O((N + J )−5),

where (i i) results from Lemma 2. By Weyl’s inequality, |σ1(R) − σ1(R0)| ≤ ‖R − R0‖, where
R − R0 is a mean-zero Bernoulli matrix. According to Eq (3.9) in Chen et al. (2021a), with
probability at least 1 − (N + J )−8,

‖R − R0‖ �
√
N + J +√

log(N + J ).

Furthermore, σ1(R0) ≥ σK (R0) �
√
N J by Condition 2; thus, we know that σ1(R0) � |σ1(R)−

σ1(R∗)| with probability at least 1− (N + J )−8. Therefore, with probability at least 1− O((N +
J )−5),

‖�̂P − �‖F � ε · σ1(R0) + √
K J · η
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�
√
r +√

log(N + J )√
N J

· √
N · √

J + √
J

√
r log(N + J )

min{N , J }

= √
r +√

log(N + J ) + √
J

√
r log(N + J )

min{N , J } .

Thus,

1√
J K

‖�̂P − �‖F �
√
r +√

log(N + J )√
J

+
√
r log(N + J )

min{N , J }

=
⎧
⎨

⎩

√
N
J +

√
log(N+J )√

J
+

√
N log(N+J )

J if N > J

1√
N

+
√

log(N+J )√
J

+
√

J log(N+J )

N if N ≤ J
.

Therefore, 1√
J K

‖�̂P− �‖F converges to zero in probability as N , J → ∞ and N
J 2

, J
N2 → 0. ��
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