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Asymptotics for symmetrized positive
moments of odd ranks
Edward Y. S. Liu
Abstract. In 2007, Andrews introduced Durfee symbols and k-marked Durfee symbols so as to give
a combinatorial interpretation for the symmetrized moment function η2k(n) of ranks of partitions.
He also considered the relations between odd Durfee symbols and the mock theta function ω(q),
and proved that the 2kth moment function η0

2k(n) of odd ranks of odd Durfee symbols counts
(k + 1)-marked odd Durfee symbols of n. In this paper, we first introduce the definition of
symmetrized positive odd rank moments η0+

k (n) and prove that for all 1 ≤ i ≤ k + 1, η0+
2k−1(n) is

equal to the number of (k + 1)-marked odd Durfee symbols of n with the ith odd rank equal to
zero and η0+

2k (n) is equal to the number of (k + 1)-marked Durfee symbols of n with the ith odd
rank being positive. Then we calculate the generating functions of η0+

k (n) and study its asymptotic
behavior. Finally, we use Wright’s variant of the Hardy–Ramanujan circle method to obtain an
asymptotic formula for η0+

k (n).

1 Introduction and statement of results

This paper is concerned with combinatorial interpretations and asymptotic formulas
for the symmetrized positive moments of odd ranks of odd Durfee symbols and k-
marked Durfee symbols. Odd Durfee symbols and k-marked Durfee symbols were
first introduced by Andrews [2] in 2007, and were used to give a natural combinatorial
explanation to an identity associated with Watson’s third-order mock theta function
ω(q) [11], which is defined as

ω(q) ∶=
∞
∑
n=0

q2n(n+1)

(q; q2)2
n+1

,

where

(a; q)n ∶=
n−1
∏
m=0

(1 − aqm).

Definition 1.1 (Odd Durfee symbols) An odd Durfee symbol of n is a two-rowed
array with a subscript

(α, β)d ∶= (α1 α2 . . . αs

β1 β2 . . . βt
)

d
,
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1732 E. Y. S. Liu

where α i and β i are all positive odd numbers, 2d + 1 ≥ α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ αs > 0, 2d + 1 ≥
β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ βt > 0 and n = ∑s

i=1 α i +∑t
i=1 β i + 2d2 + 2d + 1.

Here, we use the rephrased version of the definition of odd Durfee symbols due to
the work of Ji [9].

Recall that qω(q) is also the generating function for partitions in which at least all
but one instance of the largest part is one of a pair of consecutive nonnegative integers.
It is trivial to see that the summation of two consecutive nonnegative integers is odd,
and conversely that every odd number is a sum of two consecutive integers. We also
observe that any odd positive integer can been decomposed into some 2’s and one 1.
Then there is a simple bijection between the set of partitions of n in which at least all
but one instance of the largest part is one of a pair of consecutive nonnegative integers
and the set of odd Durfee symbols of n. For example, the partition 8 + (4 + 3) +
(3 + 2) + (3 + 2) + (1 + 0) + (1 + 0) can been seen as “odd Ferrers diagram”

1 1 1 1

1 2 2 2

1 2 2

1 2 2

1 1 1 1

1

1

of shape (8, 4, 3, 3, 1, 1). The top row of 1’s represents 8; the second row is (4 + 3); the
third row is (3 + 2) as is the fourth row; the last two rows represent (1 + 0). As it
shown, this odd Ferrers diagram has a Durfee square of size 3 indicated by the dotted
lines. Then we see that it is mapped to the odd Durfee symbol:

( 3 1 1 1 1
5 1 1 )

2
.

Analogues to ordinary rank of partitions, Andrews [2] defined odd rank of an odd
Durfee symbol to be the number of entries in the top row minus the number of entries
in the bottom row. Let N0(m, n) denote the number of odd Durfee symbols of n with
odd rank m. According to this definition, it is easy to see that N0(m, n) = N0(−m, n).
Wang [10] showed that N0(m, n) = 0 for n ≡ m(mod 2). Denote the number of odd
Durfee symbols of n with odd rank congruent to a modulo b by N0(a, b; n). Wang [10]
also obtained some generating functions for N0(a, b; cn + d), where c ∈ {2, 4, 8}, and
thus derived many congruences for odd rank modulo powers of 2.

In order to study the relations between cranks and ranks of partitions, Atkin and
Garvan [3] considered the kth moment of the rank which is defined by

Nk(n) ∶=
∞
∑

m=−∞
mk N(m, n).

Here, N(m, n) denotes the number of partitions of n with ordinary rank m. Andrews
[2] found that there is a rich combinatorial and enumerative structure related to the
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Asymptotics for symmetrized positive moments of odd ranks 1733

moments of ranks. He defined the kth symmetrized moment of rank as

ηk(n) ∶=
∞
∑

m=−∞
(m + ⌊ k

2 ⌋
k

)N(m, n),

and discovered that η2k(n) counts (k + 1)-marked Durfee symbols of n. For our pur-
pose, we do not give the definitions of Durfee symbols and k-marked Durfee symbols
here. Bringmann et al. [5] introduced two-parameter generalizations of k-marked
Durfee symbols and the kth symmetrized rank moment and studied automorphic
properties of their generating functions. In 2014, Chen, Ji, and Shen [7] defined the
kth symmetrized positive moment ηk(n) of ranks of partitions of n by

ηk(n) ∶=
∞
∑
m=1

(m + ⌊ k−1
2 ⌋

k
)N(m, n).

They also gave a combinatorial interpretation of ηk(n). More precisely, for 1 ≤ i ≤
k + 1, η2k−1(n) counts those (k + 1)-marked Durfee symbols of n with the ith rank
equal to 0; η2k(n) counts those (k + 1)-marked Durfee symbols of n with the ith rank
being positive.

Furthermore, Andrews [2] considered the symmetrized kth moment function of
odd ranks of odd Durfee symbols

η0
k(n) ∶=

∞
∑

m=−∞
(m + ⌊ k

2 ⌋
k

)N0(m, n),

and showed that η0
2k(n) is equal to the number of (k + 1)-marked odd Durfee symbols

of n. It is the right time to give the definition of k-marked odd Durfee symbols.

Definition 1.2 (k-marked odd Durfee symbols) A k-marked odd Durfee symbol of n
is composed of k-pairs of partitions into odd parts with the subscript, which is defined
as

η0 ∶= (αk , αk−1 , . . . , α1

βk , βk−1 , . . . , β1 )
d

,

where α i (resp. β i ) are all partitions with odd parts and ∑k
i=1(∣α i ∣ + ∣β i ∣) + 2d2 + 2d +

1=n. Furthermore, the partitions α i and β i must satisfy the following three conditions:
(i) For 1 ≤ i < k, α i must be non-empty partition, while αk and β i could be empty;

(ii) β i−1
1 ≤ α i−1

1 ≤ β i
�(β i) for 2 ≤ i ≤ k;

(iii) βk
1 , αk

1 ≤ 2d + 1,
where α i

1 (resp. β i
1) is the largest part of the partition α i (resp. β i ) and α i

l(α i) (resp.
β i

l(β i)) is the smallest part of the partition α i (resp. β i ), and �(β) denotes the number
of parts of the partition β. Moreover, the ith odd rank of η0 is defined as

r i(η0) ∶= { �(α i) − �(β i) − 1, for 1 ≤ i < k,
�(αk) − �(βk), for i = k.

Some open problems and conjectures proposed by Andrews in [2] have since
driven the study of this combinatorial structure. For example, Bringmann [4] gave
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effective asymptotic formulas for the symmetrized second moment functions η2(n)
and η0

2(n). Namely, we have

η2(n) =
⌊
√

n⌋
∑
k=1

Ak(n)[ − 3
2(24n − 1) 1

4
I1/2(

π
6k

√
24n − 1) + π(24n − 1) 1

4

12k

× I−1/2(
π

6k
√

24n − 1) + π
12k(24n − 1) 3

4
I3/2(

π
6k

√
24n − 1)] + O(n1+ε),

and

η0
2(n) = − i√

2

⌊
√

n⌋
∑
k=1

kodd

A0
k(n)[ − 3π2(3n − 1) 1

4

4
I−1/2(

π
3k

√
3n − 1)

+ π(3n − 1) 3
4

16k
I−3/2(

π
3k

√
3n − 1)] + O(n2+ε),

where A0
k(n) is a certain Kloosterman type summation and the function Ik(x) is the

usual I-Bessel function of order k. Alfes et al. [1] introduced two-parameter general-
izations of (k + 1)-marked odd Durfee symbols and the 2kth symmetrized odd rank
moment and studied automorphic properties of their generating functions. With the
help of Mittag-Leffler decomposition and Wright’s variant of the Hardy–Ramanujan
circle method, Bringmann and Mahlburg [6] found an asymptotic formula of the
symmetrized positive moments η+k (n) of ranks of partitions, where

η+k (n) ∶=
∞
∑
m=1

(m + ⌊ k−1
2 ⌋

k
)N(m, n).

If the kth symmetrized positive moment η0+
k (n) of odd ranks of odd Durfee

symbols of n is given by

η0+
k (n) ∶=

∞
∑
m=1

(m + ⌊ k−1
2 ⌋

k
)N0(m, n),

it is natural to ask which combinatorial structure counted by η0+
k (n) and study the

asymptotic behavior of η0+
k (n).

One of main objectives of this paper is to give an combinatorial interpretation of
η0+

k (n) in terms of k-marked Durfee symbols. Denote the number of k-marked odd
Durfee symbols of n with the ith odd rank equal to m i by D0

k(m1 , m2 , . . . , mk ; n).
Andrews [2] showed that D0

k(m1 , m2 , . . . , mk ; n) is symmetric with respect to
m1 , m2 , . . . , mk for k ≥ 2. Moreover, Ji [9] found the following relation:

D0
k(m1 , m2 , . . . , mk ; n) =

∞
∑
j=0

( j + k − 2
k − 2

)N0 (
k
∑
i=1

∣m i ∣ + 2 j + k − 1, n) .

With the aid of symmetry of D0
k(m1 , m2 , . . . , mk ; n) and the relation above, we find

the following combinatorial interpretations of η0+
k (n).
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Theorem 1.3 For any k ≥ 1 and fixed i ≥ 1, we have:
(1) η0+

2k−1(n) is equal to the number of (k + 1)-marked odd Durfee symbols of n with
the ith odd rank equal to zero;

(2) η0+
2k (n) is equal to the number of (k + 1)-marked odd Durfee symbols of n with the

ith odd rank being positive.

Notice that the generating function of the odd rank function N0(m, n) of odd
Durfee symbols is

R0(w; q) ∶=
∞
∑
n=1

∞
∑

m=−∞
N0(m, n)wm qn

=
∞
∑
n=0

q2n(n+1)+1

(wq; q2)n+1(w−1q; q2)n+1

= 1
(q2; q2)∞

∞
∑

n=−∞

(−1)n q3n2+3n+1

1 − wq2n+1 .(1.1)

The last identity is equivalent to Watson’s first identity on page 66 of [11]. By expanding
the summand of (1.1), we find that for any m,

∞
∑
n=0

N0(m, n)qn = 1
(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+∣m∣(2n+1) .(1.2)

Using this generating function (1.2) of N0(m, n) and the combinatorial interpretation
of η0+

r (n) in Theorem 1.3, we obtain the following generating functions of η0+
r (n).

Theorem 1.4 For any r ≥ 1, we have
∞
∑
n=0

η0+
r (n)qn = 1

(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+(2n+1)⌊ r+1
2 ⌋

(1 − q2n+1)r+1 .(1.3)

Although Wright’s approach is lesser-known, and gives much weaker results than
Hardy and Ramanujan in the study of the coefficients of modular forms, it is powerful
enough to provide an asymptotic expansion for the coefficients and flexible enough
that it applies to nonmodular generating functions such as the symmetrized positive
odd rank moments. Let I� denote the usual I-Bessel function of order �. The Dirichlet
beta function β(s) (also known as the Catalan beta function) is defined as

β(s) ∶=
∞
∑
n=0

(−1)n

(2n + 1)s ,

where we assume Re(s) > 0. Based on the generating function of η0+
r (n) in Theorem

1.4, we apply Wright’s variant of the Hardy–Ramanujan circle method to study the
asymptotic behavior of the symmetrized positive moments.

Theorem 1.5 Suppose that r ≥ 2. As N → ∞,

η0+
r (N) = λr N

2r−1
4 Ir− 1

2

⎛
⎝

π
√

N
3
⎞
⎠
+ μr N

2r−3
4 Ir− 3

2

⎛
⎝

π
√

N
3
⎞
⎠
+ O (N

2r−5
4 e

π
√

N√
3 ) ,
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where the constants λr and μr are given by

λr ∶= 2r− 1
2 3

2r−1
4 π−r β(r + 1),

μr ∶= − π
24

√
3

λr − 3
2r−3

4 2r− 7
2 π−r+1 [3β(r − 1) − 2(1 + r − 2 ⌊ r + 1

2
⌋) β(r) + β(r + 1)] .

Utilizing the well-known asymptotic formula for the modified Bessel functions:

Is(x) = ex
√

2πx
+ O ( ex

x 3
2
) , as x → ∞,

we obtain the following asymptotic formula of symmetrized positive moments of odd
ranks.

Corollary 1.6 Suppose that r ≥ 2. As N → ∞,

η0+
r (N) ∼ 2r−13

r
2 π−r−1β(r + 1)N

r−1
2 eπ

√
N
3 .

Remark 1.7 It should be noted that the asymptotic formula for η0+
r (N) in Corollary

1.6 also holds for r = 1, although the proof is simpler, but slightly different from those
for r ≥ 2 in the proof of Theorem 1.5.

This paper is organized as follows: In Section 2, we first define the kth symmetrized
positive moment η0+

k (n) of odd ranks by

η0+
k (n) ∶=

∞
∑
m=1

(m + ⌊ k−1
2 ⌋

k
)N0(m, n).

Then we prove that for all 1 ≤ i ≤ k + 1, η0+
2k−1(n) is equal to the number of (k + 1)-

marked Durfee symbols of n with the ith odd rank equal to zero and η0+
2k (n) is equal

to the number of (k + 1)-marked Durfee symbols of n with the ith odd rank being
positive, which are stated in Theorem 1.3. In Section 3, we show that the generating
function, given in Theorem 1.4, of η0+

k (n)(k ≥ 1) is
∞
∑
n=0

η0+
k (n)qn = 1

(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+(2n+1)⌊ k+1
2 ⌋

(1 − q2n+1)k+1 .

In Section 4, we first study the asymptotic behavior of the generating function of
η0+

k (n), and then use Wright’s variant of the Hardy–Ramanujan circle method to
obtain an asymptotic formula for η0+

k (n)(k ≥ 2) in Corollary 1.6:

η0+
k (n) ∼ 2k−13

k
2 π−k−1β(k + 1)n

k−1
2 eπ

√ n
3 ,

as n tends to infinity in which β(k) is the Dirichlet beta function.

2 Combinatorial interpretations for η0+
k (n)

Motivated the work of Chen, Ji, and Shen [7], we consider the kth symmetrized
positive moment η0+

k (n) of odd ranks of odd Durfee symbols of n. Before giving
combinatorial interpretations of η0+

k (n), we need some definitions and related results.
Denote the number of k-marked odd Durfee symbols of n with the ith odd rank equal
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to m i by D0
k(m1 , m2 , . . . , mk ; n). Andrews [2] showed that D0

k(m1 , m2 , . . . , mk ; n) is
symmetric in m1 , m2 , . . . , mk for k ≥ 2. Ji [9] found the following relation between
D0

k(m1 , m2 , . . . , mk ; n) and N0(m, n).
Theorem 2.1 [9, Theorem 4.9] For k ≥ 2, we have

D0
k(m1 , m2 , . . . , mk ; n) =

∞
∑
j=0

( j + k − 2
k − 2

)N0 (
k
∑
i=1

∣m i ∣ + 2 j + k − 1, n) .(2.1)

Note that ( j+k−2
k−2 ) is the number of nonnegative integer solutions to t1 + t2 + ⋅ ⋅ ⋅ +

tk−1 = j. Then we find that the identity (2.1) is equivalent to

D0
k(m1 , m2 , . . . , mk ; n) =

∞
∑

t1 , . . . ,tk−1=0
N0 (

k
∑
i=1

∣m i ∣ + 2
k−1
∑
i=1

t i + k − 1, n) .(2.2)

Based on this relation above, we give the combinatorial interpretations of η0+
k (n) in

Theorem 1.3.
Proof of Theorem 1.3 (1) Since D0

k(m1 , m2 , . . . , mk ; n) is symmetric, it suffices to
show that

∞
∑

m2 ,m3 , . . . ,mk+1=−∞
D0

k+1(0, m2 , m3 , . . . , mk+1; n) = η0+
2k−1(n).

From the relation (2.2), we derive that
∞
∑

m2 ,m3 , . . . ,mk+1=−∞
D0

k+1(0, m2 , m3 , . . . , mk+1; n)(2.3)

=
∞
∑

m2 ,m3 , . . . ,mk+1=−∞

∞
∑

t1 , . . . ,tk−1=0
N0 (

k+1
∑
i=2

∣m i ∣ + 2
k
∑
i=1

t i + k, n) .

For fixed k and n, let ck(n) denote the number of integer solutions to the equation

∣m2∣ + ∣m3∣ + ⋅ ⋅ ⋅ + ∣mk+1∣ + 2t1 + ⋅ ⋅ ⋅ + 2tk = n,

where t i ≥ 0 for 1 ≤ i ≤ k. Then the generating function of ck(n) is
∞
∑
n=0

ck(n)qn = (1 + 2q + 2q2 + 2q3 + . . .)k(1 + q2 + q4 + q6 + . . .)k

= ( 1 + q
1 − q

)
k

( 1
1 − q2 )

k

= 1
(1 − q)2k

=
∞
∑
n=0

(n + 2k − 1
2k − 1

)qn .

Therefore, the identity (2.3) is equivalent to
∞
∑

m2 ,m3 , . . . ,mk+1=−∞
D0

k+1(0, m2 , m3 , . . . , mk+1; n) =
∞
∑
m=0

(m + k − 1
2k − 1

)N0(m, n),(2.4)

which is equal to η2k−1(n).
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(2) It suffices to show that
+∞
∑
m1=1

m2 ,m3 ,.. . ,mk+1=−∞

D0
k+1(m1 , m2 , . . . , mk+1; n)

=
+∞
∑
m1=1

m2 ,m3 ,.. . ,mk+1=−∞

∞
∑

t1 , . . . ,tk=0
N0 (m1 +

k+1
∑
i=2

∣m i ∣ + 2
k
∑
i=1

t i + k, n) .

For fixed k and n, let ck(n) denote the number of integer solutions to the equation

m1 + ∣m2∣ + ∣m3∣ + ⋅ ⋅ ⋅ + ∣mk+1∣ + 2t1 + ⋅ ⋅ ⋅ + 2tk = n,

where m1 is a positive integer and t i ≥ 0 for 0 ≤ i ≤ k. Then the generating function of
ck(n) is

∞
∑
n=0

ck(n)qn = q
(1 − q)2k+1 =

∞
∑
n=0

(n + 2k − 1
2k

)qn .

It follows that
∞
∑
m1=1

m2 ,m3 ,.. . ,mk+1=−∞

D0
k+1(m1 , m2 , . . . , mk+1; n) =

∞
∑
m=0

(m + k − 1
2k

)N0(m, n),

which is equal to η0+
2k (n). ∎

3 Generating functions of η0+
k (n)

In this section, we use the generating function of N0(m, n) to calculate the generating
functions of Dk+1(0, m2 , . . . , mk+1; n) and Dk+1(m1 , m2 , . . . , mk+1; n)(m1 > 0). Then
we obtain the generating functions of η0+

2k−1(n) and η0+
2k (n).

Theorem 3.1 For k ≥ 1, we have
∞
∑

m2 ,m3 , . . . ,mk+1=−∞

∞
∑
n=0

D0
k+1(0, m2 , . . . , mk+1; n)xm2

1 . . . xmk+1
k qn

= 1
(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+k(2n+1)

∏k
j=1(1 − x jq2n+1)(1 − x−1

j q2n+1)
.

Proof Define

Gk(x1 , . . . , xk ; q) ∶=
∞
∑

m2 , . . . ,mk+1=−∞

∞
∑
n=0

D0
k+1(0, m2 , . . . , mk+1; n)xm2

1 . . . xmk+1
k qn .

With the help of the generating function (1.2) of N0(m, n) and the relation (2.2), we
find that

Gk(x1 , . . . , xk ; q)

=
∞
∑

m2 , . . . ,mk+1=−∞

∞
∑

t1 , . . . ,tk=0
xm2

1 xm3
2 . . . xmk+1

k

∞
∑
n=0

N0 (
k+1
∑
i=2

∣m i ∣ + 2
k
∑
i=1

t i + k, n) qn
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= 1
(q2; q2)∞

∞
∑

m2 , . . . ,mk+1=−∞

∞
∑

t1 , . . . ,tk=0
xm2

1 . . . xmk+1
k

×
∞
∑
n=0

(−1)n q3n2+3n+1+(∑k+1
i=2 ∣m i ∣+2∑k

i=1 t i+k)(2n+1)

= 1
(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+k(2n+1)
∞
∑

m2 , . . . ,mk+1=−∞

×
∞
∑

t1 , . . . ,tk=0
xm2

1 . . . xmk+1
k q(2n+1)(∑k+1

i=2 ∣m i ∣+2∑k
i=1 t i).

Applying the formula

∞
∑

a=−∞

∞
∑
b=0

xa q(2n+1)(∣a∣+2b) = 1
(1 − xq2n+1)(1 − x−1q2n+1)

repeatedly, we find that

Gk(x1 , . . . , xk ; q) = 1
(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+3n+1+k(2n+1)

∏k
j=1(1 − x jq2n+1)(1 − x−1

j q2n+1)
.

∎

Setting x i = 1(1 ≤ i ≤ k) in Theorem 3.1 and using Theorem 1.3, we derive the
following generating function of η0+

2k−1(n).

Theorem 3.2 For k ≥ 1, we have

∞
∑
n=0

η0+
2k−1(n)qn = 1

(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+(2k+3)n+k+1

(1 − q2n+1)2k .

Similar to the proof of Theorem 3.1, one may obtain the generating function of
D0

k+1(m1 , m2 , . . . , mk+1; n).

Theorem 3.3 For k ≥ 1, we have

∞
∑
m1>0

m2 ,m3 ,.. . ,mk+1=−∞

∞
∑
n=0

D0
k+1(m1 , m2 , . . . , mk+1; n)xm1

1 . . . xmk+1
k+1 qn

= 1
(q2; q2)∞

∞
∑
n=0

(−1)n x1q3n2+3n+1+k(2n+1)

(1 − x1q2n+1)∏k+1
j=2(1 − x jq2n+1)(1 − x−1

j q2n+1)
.

Setting x i = 1(1 ≤ i ≤ k + 1) in Theorem 3.3 and using Theorem 1.3, we obtain the
following generating function of η0+

2k (n).
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Theorem 3.4 For k ≥ 1, we have

∞
∑
n=0

η0+
2k (n)qn = 1

(q2; q2)∞

∞
∑
n=0

(−1)n q3n2+(2k+3)n+k+1

(1 − q2n+1)2k+1 .

Proof of Theorem 1.4 Combining Theorem 3.3 with Theorem 3.4 yields Theorem
1.4. ∎

4 Asymptotic behavior for η0+
k (n)

In this section, we apply Wright’s variant of the Hardy–Ramanujan circle method to
study the asymptotic behavior of the symmetrized positive moments. Throughout this
section, we set q = e2πiτ with τ = x + iy ∈ H, whereH denotes the upper half complex
plane.

4.1 Asymptotic behavior of generating functions

Now, we use these generating functions of symmetrized positive moments of odd
ranks to study the asymptotic behavior analytically. For convenience, we define a
“false” Appell-type sum by

Sr(q) ∶=
∞
∑
n=0

(−1)n q3n2+(2⌊ r
2 ⌋+3)n+⌊ r

2 ⌋+1

(1 − q2n+1)r .(4.1)

For r ≥ 1, we set

Fr(q) ∶=
∞
∑
n=0

η0+
r (n)qn = 1

(q2; q2)∞
Sr+1(q).

From the factor 1
(q2 ;q2)∞ , we see that the dominant poles are at q = ±1. Since the asymp-

totic behavior of 1
(q2 ;q2)∞ can be easily understood through modular transformations,

the asymptotic behavior of Fr(q) is reduced to study that of Sr+1(q)near the dominant
poles q = ±1.

4.2 Bounds near the dominate poles

To investigate the asymptotic behavior of Sr(q) at the poles q = 1 and q = −1, we need
the Mittag-Leffler partial fraction decomposition (for example, see [6, Equation (3.1)])
as follows:

( eπiw

1 − e2πiw )
r

= 1
(−2πiw)r + ∑

0< j<r
j≡r(mod 2)

α j

(−2πiw) j

+ ∑
0< j≤r

j≡r(mod 2)

α j

(−2πi) j ∑
m≥1

(−1)mr [ 1
(w − m) j +

1
(w + m) j ] ,(4.2)

where w ∈ C and α j are certain constants. In particular, αr = 1.
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We start with investigating Sr(q) near q = 1. Setting w = (2n + 1)τ, we see that

Sr(q) =
∞
∑
n=0

(−1)n q
3n2+(2⌊ r

2 ⌋+3−r)n+⌊ r
2 ⌋−

r
2+1

[ 1
(−2πi(2n + 1)τ)r

+ ∑
0< j<r

j≡r(mod 2)

α j

(−2πi(2n + 1)τ) j(4.3)

+ ∑
0< j≤r

j≡r(mod 2)

α j

(−2πi) j ∑
m≥1

(−1)rm( 1
((2n + 1)τ − m) j +

1
((2n + 1)τ + m) j )].

Now, we first consider the contribution from the first bracketed term in (4.3) for
r ≥ 3 and ∣x∣ ≤ y = 1

4
√

3N
. To this end, we define

g j(τ) ∶=
∞
∑
n=0

(−1)n(2n + 1)− jq3n2+(2⌊ r
2 ⌋+3−r)n+⌊ r

2 ⌋−
r
2+1 .

Then the first term of Sr(q) in (4.3) can be expressed as (−2πiτ)−r gr(τ). Thus, it is
sufficient to study the functions g j(τ). For convenience, we set a ∶= 2 ⌊ r

2 ⌋ + 3 − r and
b ∶= ⌊ r

2 ⌋ −
r
2 + 1. If j ≥ 1, then g j(τ) is convergent at τ = 0, and

g j(0) = lim
τ→0

g j(τ) = β( j),

where β( j) is the Dirichlet beta function. Notice that if j ≥ 2, then g j is absolutely (and
uniformly) convergent for all ∣q∣ ≤ 1, since

∣g j(τ)∣ ≤
∞
∑
n=0

1
(2n + 1) j = 2 j − 1

2 j ζ( j).

Here, ζ( j) denotes the Riemann ζ-function. We will apply Taylor’s theorem to obtain
lower-order asymptotic terms in g j , and make use of the fact that the resulting
derivatives can be expressed recursively using

1
2πi

∂
∂τ

g j(τ) = 3
4

g j−2(τ) + a − 3
2

g j−1(τ) + 1
4

g j(τ),

( 1
2πi

)
2 ∂2

∂τ2 g j(τ) = 9
16

g j−4(τ) + 3(a − 3)
4

g j−3(τ)

+ 2a2 − 18a + 12b + 27
8

g j−2(τ)

+ a − 3
4

g j−1(τ) + 1
16

g j(τ).

We use Taylor’s theorem for j ≥ 6 and get the following truncated expansion:

g j(τ) − g j(0) − g′j(0)τ ≪ ∣τ∣2 sup
w∈H

∣g′′j (w)∣ ≪ ∣τ∣2 ≪ N−1 .(4.4)
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A simple calculation shows that for j ≥ 6,

g j(0) = β( j),(4.5)

and

1
2πi

g′j(0) = 3
4

β( j − 2) + a − 3
2

β( j − 1) + 1
4

β( j).(4.6)

Additionally, we should individually consider the small value of j, that is, −1 ≤ j ≤ 1.
Here, we make use of Zagier’s technical tool [13, Proposition 3] to study the asymptotic
expansions of series such as g j . Bringmann and Mahlburg [6] gave a generalization of
Zagier’s result.

Lemma 4.1 [6, Proposition A.1] Suppose that f (t) is a smooth function on the positive
reals and has the asymptotic expansion

f (t) =
s
∑
n=0

bn tn + O(tS+1),

for any S ≥ 0, as t → 0+. Assume also that f (t) and all of its derivatives are of rapid decay
at infinity and that I f ∶= ∫

∞
0 f (u)du converges. Then we have the following asymptotic

expansion:

∞
∑
m=0

f ((m + a)t) =
I f

t
−

s
∑
n=0

bn
Bn+1(a)

n + 1
tn ,

where Bn(x) is the nth Bernoulli polynomial, defined by tex t

e t−1 = ∑n≥0 Bn(x) tn

n! .

Now, we aim to prove that g j(τ)(−1 ≤ j ≤ 1) can be uniformly bounded in a
neighborhood of τ = 0 with ∣x∣ ≤ y. With the aid of Lemma 4.1, we first deal with the
case of j = 0.

Proposition 4.2 Suppose that y = 1
4
√

3N
and ∣x∣ ≤ y. Then

g0(τ) ≪ 1 and g−1(τ) ≪ 1.

Proof Observe that

g0(τ) =
∞
∑
n=0

(−1)n q3n2+an+b = qb− a2
12

∞
∑
n=0

(−1)n q3(n+ a
6 )

2
.

We separate the odd terms and even terms, and consider only the real part, as the
imaginary part can be treated in the same way. We have

Re(g0(τ))

= cos(2π(b − a2

12
)x)e−2π y(b−a2/12)

∞
∑
n=0
[e−24π y(n+a/12)2

cos(24πx(n + a/12)2)
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− e−24π y(n+ a+6
12 )

2
cos(24πx(n + a + 6

12
)

2

)]

= cos(2π(b − a2/12)x)e−2π y(b−a2/12)∑
n≥0
( f x

y
((n + a/12)√y) − f x

y
((n + a + 6

12
)√y)),

where

fv(t) ∶= e−24πt2
cos(24πvt2).

Note that fv(t) is an even function, and thus its Taylor series at t = 0 only has even
powers of t as follows:

fv(t) = 1 − 24πt2 + Ov (t4) .

It is easy to see that

I f ∶= ∫
∞

0
fv(t)dt = ∫

∞

0
e−24πt2

cos(24πvt2)dt

converges and has a uniform bound, since

∣I f ∣ ≤ ∫
∞

0
e−24πt2

dt < ∞.

Therefore, we apply Zagier’s lemma to Re(g0(τ)) and obtain the asymptotic
expansion

Re(g0(τ)) =(y−
1
2 I f − B1 (

a
12

) + O x
y
(y) − (y−

1
2 I f − B1 (

a + 6
12

) + O x
y
(y)))

⋅ cos (2π(b − a2/12)x) e−2π y(b−a2/12) .

Since ∣ x
y ∣ ≤ 1, we see that

Re(g0(τ)) ≪ 1.

The proof of the case j = −1 is similar as that of j = 0. ∎

We turn to deal with the case for j = 1.

Proposition 4.3 Suppose that y = 1
4
√

3N
and ∣x∣ ≤ y. Then

g1(τ) ≪ √y.

Proof We first define

g̃1(τ) = ∑
n≥0

(−1)n(2n + 1)−1q3(n+ a
6 )

2
.

Then it follows that g1(τ) = qb− a2
12 ⋅ g̃1(τ). As above, we split g̃1(τ) into odd terms and

even terms, and consider only the real part, as the imaginary part is treated identically.
So we have
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Re(g̃1(τ)) = ∑
n≥0

( e−24π y(n+a/12)2
cos(24πx(n + a/12)2)
4n + 1

− e
−24π y(n+(a+6)/12)

2

cos(24πx(n + (a + 6)/12)2)
4n + 3

).(4.7)

In order to combine these two terms, we write

1
4n + 1

= 1
4n + 3

+ O ( 1
n2 ) .

If the big-O term is inserted into (4.7), the sum is absolutely and uniformly convergent,
so we may discard this error term without affecting the overall convergence.

Here, we present two trivial but useful estimates:

∣ cos(x + a) − cos(x)∣ ≤ min{∣a∣, 2}, for x , a ∈ R,

∣1 − e−x ∣ ≤ min{x , 1}, for x ≥ 0.

To apply these bounds, we rewrite the second term of (4.7) in the following way:

e−24π y(n+ a+6
12 )

2
cos(24πx (n + a+6

12 )2)
4n + 1

= e−24π y(n+ a
12 )

2

4n + 1
(e−24π y(n+ a+3

12 ) − 1) cos(24πx (n + a + 6
12

)
2
)(4.8)

+ e−24π y(n+ a
12 )

2

4n + 1
(cos(24πx (n + a + 6

12
)

2
) − cos(24πx (n + a

12
)

2
))

+ e−24π y(n+ a
12 )

2

4n + 1
cos(24πx (n + a

12
)

2
) .

The contribution of the first pair of terms in (4.8) to the sum in (4.7) is asymptotically
bounded by

∑
n≥0

e−24π y(n+ a
12 )

2

4n + 1
min{1, 24πy (n + a + 3

12
)}

≪ y ∑
0≤n≤ 1

24π y −
a+3
12

e−n2 y + ∑
n≥ 1

24π y −
a+3
12

n−1e−n2 y

≪ √y + y ∑
n≥ 1

24π y −
a+3
12

e−n2 y ≪ √y.

For the second pair of terms in (4.8), we note that ∣x∣ ≤ y and obtain that
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∑
n≥0

e−24π y(n+ a
12 )

2

4n + 1
min{2, 24π∣x∣ (n + a + 3

12
)}

≤ ∑
n≥0

e−24π y(n+ a
12 )

2

4n + 1
min{2, 24πy (n + a + 3

12
)} ≪ √y.

Since the third term in (4.8) cancels the first term in (4.7), and the real part is bounded
overall, we complete the proof. ∎

The second bracketed term in (4.3) is a finite summation on j. Employing the
following simple uniform bound:

g j(τ) ≪
∞
∑
n=0

e−Cn2 y

(2n + 1) j ≪
⎧⎪⎪⎨⎪⎪⎩

1, if j ≥ 2,
1 + 1√y ≪ N 1

4 , if j = 1,(4.9)

for some constants C, we conclude that the contribution of the second bracketed term
is absorbed into the error term.

The final bracketed term in (4.3) is also a finite summation on j. Noticing the
constraint ∣x∣ ≤ y, we easily deduce that for m ∈ Z/{0},

1
(2n + 1)τ + m

≪ 1
m

.

So when j > 1, we see that
∞
∑
n=0

(−1)n q3n2+an+b ∑
m≥1

(−1)mr ( 1
((2n + 1)τ − m) j +

1
((2n + 1)τ + m) j )

≪ ∑
m≥1

m− j ∑
n≥0

e−6πn2 y ≪ y−1/2 ≪ N
1
4 .(4.10)

Moreover, for j = 1, we have

1
(2n + 1)τ − m

+ 1
(2n + 1)τ + m

≪ (2n + 1)τ
m2 .

Thus, the corresponding contribution can be bounded by

∣τ∣ ∑
n≥0

(2n + 1)e−6πn2 y ≪ N−
1
2 y−1 ≪ 1.(4.11)

As a consequence, combining equations (4.4)–(4.6) and (4.9)–(4.11) with Proposi-
tions 4.2 and 4.3, we could determine the first terms in the asymptotic expansion of
Sr(q) near q = 1.
Proposition 4.4 Assume r ≥ 3, ∣x∣ ≤ y = 1

4
√

3N
. As N → ∞, we have

Sr(q) − cr(−2πiτ)−r + dr(−2πiτ)−r+1 ≪ N
r
2−1

with
cr = β(r) for r ≥ 3,

dr =
3
4

β(r − 2) + a − 3
2

β(r − 1) + 1
4

β(r) for r ≥ 3.
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Corollary 4.5 Assume that r ≥ 2, y = 1
4
√

3N
, and ∣x∣ ≤ y. As N → ∞, we have

Fr(q) − c∗r+1(−2πiτ)− 1
2−r e

πi
24τ − d∗r+1(−2πiτ) 1

2−r e
πi

24τ ≪ N
2r−3

4 eπ
√

N
12 ,

where

c∗r ∶= cr√
π

and d∗r ∶= 1√
π
(− cr

12
− dr) .

Proof Recall the modular inversion formula for Dedekind’s eta-function, which
states that

η(− 1
τ
) =

√
−iτη(τ).

Then we have
1

(q2; q2)∞
=
√
−2iτe

2πi
24 (2τ+ 1

2τ ) (1 + O(e−π
√

12N))(4.12)

=
√
−2iτe

πi
24τ (1 + πiτ

6
+ O(N−1)) , for ∣x∣ ≤ y.(4.13)

Combining this with Proposition 4.4, we find that

1
(q2; q2)∞

Sr+1(q) =
√
−2iτe

πi
24τ (1 − −2πiτ

12
+ O(N−1))

⋅ (cr+1(−2πiτ)−r−1 − dr+1(−2πiτ)−r + O(N
r+1

2 −1))

= c∗r+1(−2πiτ)− 1
2−r e

πi
24τ + d∗r+1(−2πiτ) 1

2−r e
πi

24τ + O (N
2r−3

4 eπ
√

N
12 ) .

∎

Now, we turn to investigate the asymptotic behavior of Fr(q) near q = −1.

Proposition 4.6 Assume that r ≥ 1, y = 1
4
√

3N
, and ∣x − 1

2 ∣ ≤ y. As N → ∞, we have

Sr(q) ≪ 1.

Proof By setting z ∶= τ − 1
2 = x − 1

2 + iy and Q ∶= e2πiz = −q, we derive that

Sr(q) = Sr(−Q) = ∑
n≥0

(−1)n (−Q)3n2+(2⌊ r
2 ⌋+3)n+⌊ r

2 ⌋+1

(1 − (−Q)2n+1)r

= ∑
n≥0

(−1)n+⌊ r
2 ⌋+1 Q3n2+(2⌊ r

2 ⌋+3)n+⌊ r
2 ⌋+1

(1 + Q2n+1)r .

We recall that a = 2 ⌊ r
2 ⌋ + 3 − r and b = ⌊ r

2 ⌋ −
r
2 + 1, and then obtain that

Sr(q) = ∑
n≥0

(−1)n+⌊ r
2 ⌋+1Q3n2+an+b Q(n+ 1

2 )r

(1 + Q2n+1)r .
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By setting w ∶= (2n + 1)z + 1
2 in (4.2), we find that

ir eπi(2n+1)rz

(1 + e2πi(2n+1)z)r

= ∑
0< j≤r

j≡r(mod 2)

α j

(−πi) j ((4n + 2)z + 1) j + ∑
0< j≤r

j≡r(mod 2)

α j

(−πi) j ∑
m≥1

(−1)rm

× ( 1
((4n + 2)z + 1 − 2m) j +

1
((4n + 2)z + 1 + 2m) j ) .

We first consider the contribution of the final term. It is clear that for m ∈ Z (note
that z = (x − 1

2 ) + iy and ∣x − 1
2 ∣ ≤ y),

1
(4n + 2)z + 2m + 1

≪ 1
2m + 1

.

Notice that for j > 1,

∑
m≥1

(−1)m ( 1
(1 − 2m) j +

1
(1 + 2m) j ) ≪ ∑

m≥1
m− j ≪ 1.

If r is odd, then, for the case j = 1, we have
1

(4n + 2)z + 1
+ ∑

m≥1
(−1)m ( 1

(4n + 2)z + 1 − 2m
+ 1

(4n + 2)z + 1 + 2m
)

= ∑
m≥1

(−1)m ( 1
(4n + 2)z + 1 − 2m

− 1
(4n + 2)z − 1 + 2m

)

= ∑
m≥1

(−1)m 4m − 2
(4n + 2)2z2 − (2m − 1)2 .

By splitting this fraction into two terms:
4m − 2

(4n + 2)2z2 − (2m − 1)2 = (4m − 2)( 1
(4n + 2)2z2 − (2m − 1)2 +

1
(2m − 1)2 ) −

2
2m − 1

,

and noting that

∣ 1
(4n + 2)2z2 − (2m − 1)2 + 1

(2m − 1)2 ∣

= ∣ (4n + 2)2z2

((4n + 2)2z2 − (2m − 1)2)(2m − 1)2 ∣ ≤
2(4n + 2)2 y2

(2m − 1)4 .

Therefore, we derive that

∑
m≥1

(−1)m 4m − 2
(4n + 2)2z2 − (2m − 1)2

≤ 4(4n + 2)2 y2 ∣∑
m≥1

1
(2m − 1)3 ∣ + ∣∑

m≥1

(−1)k

2k − 1
∣

≤ π3(2n + 1)2 y2

2
+ π

4
.
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Moreover, we observe that

∑
1< j≤r

j≡r(mod 2)

α j

(−πi) j ((4n + 2)z + 1) j ≪ 1.

Therefore, we have

ir eπi(2n+1)rz

(1 + e2πi(2n+1)z)r ≪ 1 + π3(2n + 1)2 y2

2
+ π

4
+ 1 ≪ π3(2n + 1)2 y2

2
.

Thus, by using Lemma 4.1, we find that the contribution of the final term to Sr(q) can
be bound by

Sr(q) = ∑
n≥0

(−1)n+⌊ r
2 ⌋+1Q3n2+an+b Q(n+ 1

2 )r

(1 + Q2n+1)r ≪ ∑
n≥1

(2n + 1)2 y2e−6π yn2
≪ 1,

which completes the proof. ∎

Corollary 4.7 Assume that r ≥ 0, y = 1
4
√

3N
, and ∣x − 1/2∣ ≤ y. As N → ∞, we have

Fr(e2πiτ) ≪ N−
1
4 eπ
√

N
12 .

Proof We note that
1

(q2; q2)∞
= 1

(Q2; Q2)∞
=
√
−2ize

2πi
24 (2z+ 1

2z )(1 + O(e−π
√

12N)), for ∣x − 1
2
∣ ≤ y,

and the proof follows. ∎

4.3 Bounds away from the dominate poles

Finally, there is a position to estimate the asymptotic behavior of Fr(q) away from the
dominate poles q = ±1.

Proposition 4.8 For r ≥ 0 and y > 0 with y ≤ ∣x∣ ≤ 1
2 − y,

Sr(q) ≪ y−r−1/2 .

Proof From the Taylor expansion, we see that
1

1 − ∣q∣ =
1

1 − e−2π y = O(y−1).

So we have

∣Sr(q)∣ ≤ ∣q∣⌊ r
2 ⌋+1

(1 − ∣q∣)r ∑
n≥0

∣q∣3n2+(2⌊ r
2 ⌋+3)n ≪ 1

yr ⋅ y−1/2 = y−r−1/2 ,

where the final summation follows through a comparison with a Gaussian integral.
∎

Corollary 4.9 Assume that r ≥ 0, y = 1
4
√

3N
, and y ≤ ∣x∣ ≤ 1

2 − y. As N → ∞, we have

Fr(q) ≪ N
r+1

2 e
√

3N( π
6 −

1
π (1− 1√

2
)) .
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Proof From [8, Equation (4.4)], we know that

∣ 1
(q2; q2)∞

∣ ≪
√

2y exp [ 1
y
( π

24
− 1

4π
(1 − 1√

2
))] .

Combined with Proposition 4.8, this gives the claimed expression. ∎

4.4 The circle method

Now, we apply Wright’s variant of the Hardy–Ramanujan circle method. Cauchy’s
theorem gives an integral representation for the coefficients of Fr(q), namely,

η0+
r (N) = 1

2πi ∫C

Fr(q)
qN+1 dq = ∫

1
2

− 1
2

Fr(e2πix− π
2
√

3N )e−2πiNx+ π
√

N
2
√

3 dx ,(4.14)

where the contour is the counterclockwise traversal of the circle C ∶= {∣q∣ = e−
π

2
√

3N }.
We sperate (4.14) into three ranges

η0+
r (N) =∫∣x ∣≤y

Fr(e2πix− π
2
√

3N )e−2πiNx+ π
√

N
2
√

3 dx

+ ∫
y≤∣x ∣≤ 1

2−y
Fr(e2πix− π

2
√

3N )e−2πiNx+ π
√

N
2
√

3 dx

+ ∫∣x− 1
2 ∣≤y

Fr(e2πix− π
2
√

3N )e−2πiNx+ π
√

N
2
√

3 dx

=∶I1 + I2 + I3 ,

where y = 1
4
√

3N
.

Next, we will show that the integral I1 contributes the main term and the integrals
I2 and I3 are absorbed in the error term.

We first evaluate the integral I1 and aim to rewrite the integral I1 in terms of Bessel
functions up to an error term. To this end, we need to introduce an auxiliary function,
which is defined by Wright [12],

Ps(u) ∶= 1
2πi ∫

1+Mi

1−Mi
vs eu(v+ 1

v )dv ,

where M > 0 is fixed and u ∈ R+. Adopting the similar approach of [6, Lemma 4.2],
one may find that the auxiliary function Ps(u) can be rewritten in terms of the I-Bessel
function up to an error term.

Lemma 4.10 Assume that u = π
√

N
6 . As N → ∞, we have

Ps(u) − I−s−1(2u) ≪ e
3
2 u .

With the help of this lemma, we can evaluate the integral I1.
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Proposition 4.11 Assume that r ≥ 2. As N → ∞,

I1 − c∗r+1 (
π

2
√

3N
)

1
2 −r

Ir− 1
2

⎛
⎝

π
√

N
3
⎞
⎠
+ d∗r+1 (

π
2
√

3N
)

3
2 −r

Ir− 3
2

⎛
⎝

π
√

N
3
⎞
⎠
≪ N

2r−5
4 eπ

√
N
3 .

Proof By making the change of variables v = 1 − i4
√

3Nx, we arrive at

I1 =∫
1+i

1−i

1
i4
√

3N
(c∗r+1(

πv
2
√

3N
)
− 1

2−r

e
π
√

N
2
√

3v

+ d∗r+1(
πv

2
√

3N
)

1
2−r

e
π
√

N
2
√

3v + O(N
2r−3

4 eπ
√

N
12 ))e

π
√

Nv
2
√

3 dv

= 1
i4
√

3N ∫
1+i

1−i
[c∗r+1(

πv
2
√

3N
)
− 1

2−r

e
π
√

N
2
√

3
(v+v−1) + d∗r+1(

πv
2
√

3N
)

1
2−r

e
π
√

N
2
√

3
(v+v−1)]dv

+ O(N
2r−5

4 eπ
√

N
3 )

=c∗r+1(
π

2
√

3N
)

1
2−r

P− 1
2−r(π

√
N
12

) + d∗r+1(
π

2
√

3N
)

3
2−r

P 1
2−r(π

√
N
12

)

+ O(N
2r−5

4 eπ
√

N
3 ).

By applying Lemma 4.10, we conclude that

I1 =c∗r+1 (
π

2
√

3N
)

1
2−r

Ir− 1
2

⎛
⎝

π
√

N
3
⎞
⎠
+ d∗r+1 (

π
2
√

3N
)

3
2−r

Ir− 3
2

⎛
⎝

π
√

N
3
⎞
⎠

+ O (N
2r−5

4 eπ
√

N
3 ) .

∎

We now turn to the integrals I2 and I3 and find that they are exponentially smaller
than the main asymptotic terms.

Proposition 4.12 As N → ∞, we have

I2 ≪ N
r+1

2 eπ
√

N
3 −

3N
π (1−

√
2

2 ) and I3 ≪ N−
3
4 eπ
√

N
3 .

Proof

∣I2∣ ≤∫ 1
4
√

3N
≤∣x ∣≤ 1

2−
1

4
√

3N

∣Fr(e2πix− π
2
√

3N )e−2πiNx+ π
√

N
2
√

3 ∣dx

≪N
r+1

2 e
√

3N( π
6 −

1
π (1− 1√

2
))e

π
√

N
2
√

3 = N
r+1

2 eπ
√

N
3 −

√
3N
π (1−

√
2

2 ).
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For the integral I3, we have

∣I3∣ =∫∣x− 1
2 ∣≤

1
4
√

3N

∣Fr(e2πix− π
2
√

3N )e−2πiNx+ π
√

N
2
√

3 ∣dx

≪N−
1
4 eπ
√

N
12 ∫∣x− 1

2 ∣≤
1

4
√

3N

e
π
√

N
2
√

3 dx

≪N−
3
4 eπ
√

N
3 .

∎

Combining with Propositions 4.11 and 4.12, we obtain the following asymptotic
formula.

Theorem 4.13 Assume that r ≥ 2. As N → ∞,

η0+
r (N) − c∗r+1 (

π
2
√

3N
)

1
2 −r

Ir− 1
2

⎛
⎝

π
√

N
3
⎞
⎠
− d∗r+1 (

π
2
√

3N
)

3
2 −r

Ir− 3
2

⎛
⎝

π
√

N
3
⎞
⎠
≪ N

2r−5
4 e

π
√

N√
3 .

This completes the proof of Theorem 1.5.
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