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Abstract

A Euclidean first passage percolation model describing the competing growth between
k different types of infection is considered. We focus on the long-time behavior of this
multitype growth process and we derive multitype shape results related to its morphology.
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1. Introduction

In standard planar first passage percolation [9], each pair x and y of nearest neighbors in Z2

has an edge connecting them and each edge is equipped with a nonnegative random variable
(the passage time) which may be interpreted as the time it takes for an infection to be transmitted
from x to y. We assume that these random variables are independent and identically distributed
with a continuous distribution F. The passage time, t (γ ), for a nearest-neighbor path γ is
simply the sum of the passage times along the path. For x, y ∈ Z2, the first passage time
from x to y, which we denote by T (x, y), is the infimum of t (γ ) over all paths γ from x to y.
For t ≥ 0, let B(t) be the set of sites x reached from the origin, 0, by time t , i.e. for which
T (0, x) ≤ t . One may think of sites in B(t) as being infected and those in B(t)c as being
healthy, and of the origin as being infected by some type of disease at time 0. The process
{B(t) : t ≥ 0} is then a model for the growth of an infection.

An interesting aspect of the evolution of the infection, namely the tree of infection, is
constructed as follows. First notice that, since the passage time distribution is continuous,
for all x, y ∈ Z2 there is (almost surely) a unique time-minimizing path (or geodesic) from
x to y, which we denote by ρ(x, y), such that T (x, y) = t (ρ(x, y)). Thus, ρ(x, y) may be
interpreted as the path through which the infection was transmitted from x to y. With this
picture in mind, the tree of infection, �, is defined by the union over all x ∈ Z2 of the edges
e ∈ ρ(0, x). Newman [14] has shown that the number,K(�), of topological ends of �, i.e. the
number of semi-infinite self-avoiding paths in �, is infinite provided there exist an exponential
moment condition on F and a certain hypothesis concerning the uniformly bounded curvature
of the asymptotic shape of B(t). Although the curvature hypothesis is plausible, it has so far
not been proved.

In order to study the tree of infection, Häggström and Pemantle [7], [8] have introduced
the following multitype growth model. At time 0 we start with k different sites of Z2, say
x1, . . . , xk , each one representing a different type of infection. A site y ∈ Z2 is then infected at
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Figure 1: We performed numerical simulations for the multitype first passage percolation model on Z2

with (mean-1) exponential passage times. We chose there to be four different species (k = 4), starting
from the initial conditions x1(r) = (r, 0) (light gray), x2(r) = (0, r) (medium gray), x3(r) = (−r, 0)
(dark gray), and x4(r) = (0,−r) (black). These pictures show the result at time t = 200 for (a) r = 1,
(b) r = 3, (c) r = 50, and (d) r = 100. Notice that in (a) type 1 (light gray) has not survived, while in

(d) each type has conquered almost the same volume.

time min{T (x1, y), . . . , T (xk, y)}, by the infection which first arrives there, i.e. by the unique
type j ∈ {1, . . . , k} such that T (xj , y) = min{T (x1, y), . . . , T (xk, y)} (see Figure 1). It may
happen that at some early stage one of the types of infection completely surrounds another one,
which then is prevented from growing indefinitely. If this does not occur or, equivalently, if all
types of infection grow unboundedly, we say that k-coexistence occurs.

Returning to the subject of the topological ends of�, Häggström and Pemantle [7] have noted
that if k-coexistence occurs with positive probability, thenK(�) ≥ k with positive probability.
They have also shown that if one considers an exponential passage time distribution, then
2-coexistence occurs with positive probability and, thus, K(�) ≥ 2 with positive probability.
Later, Garet and Marchand [6] and Hoffman [10] extended this last result to stationary and
ergodic first passage percolation models on Zd .

In this work we focus on the long-time behavior of this multitype growth model. However,
unlike the above-mentioned authors, we choose a first passage percolation setup on a random
Delaunay triangulation [20] whose spherical symmetry (isotropy) ensures that the asymptotic
shape of the corresponding growth process is a Euclidean ball. This choice allows us, by
following Newman [14], to prove various statements concerning path minimization, such as
Propositions 4.1, 4.2, and 4.3 (see also [11] and [12] for other Euclidean first passage percolation
models). In this setting, the main results we will prove are as follows.

• If a type of infection survives then the region it conquers is (asymptotically) a cone with
a random angle (see Theorem 1.1 and Remark 1.1).

• If the k initial sites form a regular polygon of radius r centered at the origin, then the
probability that k-coexistence occurs tends to 1 as r tends to ∞. Moreover, for all ε > 0,
the probability that for all j ∈ {1, . . . , k} the region conquered by infection j contains
(asymptotically) the cone with axis through 0 and xj and angle π/k − ε also tends to 1
(see Theorem 1.2).

To prove our results, the main idea is to explore the relation between this multitype growth
model and the asymptotic behavior of T (x, yn) − T (0, yn) as yn goes to ∞ along a ray of
angle α (see Theorems 1.3 and 1.4). We also study some roughening aspects of the one-
dimensional boundary between the infections (the competition interface) which were pointed
out by physicists in numerical simulations [3], [19] (see Remark 1.1). We note that analogous
problems in the context of last passage percolation and totally asymmetric exclusion processes
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were treated by Ferrari and Pimentel [4] and Ferrari et al. [5]. Also, Deijfen et al. [2] have
considered isotropic multitype growth models in Rd where the growth is driven by outbursts in
the infected region.

1.1. The multitype growth process

Consider the random graph D := (Dv,De), named the Delaunay triangulation, constructed
as follows. The vertex set, Dv ⊆ R2, is the set of points realized in a two-dimensional
homogeneous Poisson point process with intensity 1. To each vertex v corresponds an open
and bounded polygonal region Cv (the Voronoi tile at v) consisting of the set of points in R2

which are closer to v than to any other vertex v′ ∈ Dv. The edge set, De, consists of nonoriented
pairs (v, v′) such that Cv and Cv′ share a one-dimensional edge (see Figure 2). One can see
that (with probability 1) each Voronoi tile is a convex and bounded polygon, and the graph
D := (Dv,De) is a triangulation of the plane. The Voronoi tessellation, V := (Vv,Ve), is
defined by choosing the vertex set Vv to equal the set of vertices of the Voronoi tiles and the
edge set Ve to equal the set of edges of the Voronoi tiles.

Each edge e ∈ De is independently assigned a nonnegative random variable τe (the passage
time) from a common distribution F (the passage time distribution) that is independent of the
Poisson process Dv. We assume throughout that F is continuous and that

∫
eaxF(dx) < ∞ for some a ∈ (0,∞). (1.1)

We denote by (�,F ,P) our underlying probability space: from each realization ω ∈ �, we
can determine the Poisson point process as well as the passage time configuration. This model
inherits the Euclidean (translation and rotation) invariance of the Poisson point process.

The passage time, t (γ ), of a path γ in D is the sum of the passage times of the edges in γ :

t (γ ) :=
∑
e∈γ

τe.

The first passage time between two vertices v and v′ in Dv is defined by

T (v, v′) := inf{t (γ ) : γ ∈ C(v, v′)},
where C(v, v′) is the set of all paths connecting v and v′. We extend the definition of the first
passage time T to x, y ∈ R2 by setting T (x, y) := T (v(x), v(y)), where v(x) is the almost
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Figure 2: The Delaunay triangulation (solid lines) and the Voronoi tessellation (dashed lines).
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surely unique vertex v ∈ P with x ∈ Cv . We say that ρ(v, v′) ∈ C(v, v′) is a geodesic between
v and v′ if t (ρ(v, v′)) = T (v, v′). For each x, y ∈ R2 we let ρ(x, y) := ρ(v(x), v(y)). We
see that if F is a continuous function, then for all v, v′ ∈ Dv there almost surely exists a unique
geodesic ρ(v, v′) [18]. A self-avoiding and semi-infinite path ρ = (v1, v2, . . . ) in D is called
a semi-infinite geodesic if, for all vj , vk ∈ ρ, the path (vj , vj+1, . . . , vk) is the unique geodesic
connecting vj and vk .

Given k different points x1, . . . , xk ∈ R2, the initial configuration of seeds, we define the
multitype growth process {(Bx1(t), . . . ,Bxk (t)) : t ≥ 0} with

Bxj (t) := {x ∈ R2 : x ∈ c(Cv) for some v ∈ Bxj (t)},
where

Bxj (t) :=
{
v ∈ Dv : T (xj , v) ≤ t and min

l=1,...,k
{T (xl , v)} = T (xj , v)

}

and c(Cv) denotes the closure of the tile Cv . If there exists a j < l such that vxj = vxl , then
we set Bxj as before and Bxl (t) = ∅.

If k = 1 then we have a single growth process, Bx(t), which represents the set of points
reached by time t starting from the initial seed x. For a continuous distribution F satisfying
(1.1), the following shape theorem [18], [21] holds: there exists a constant µ(F) ∈ (0,∞),
namely the time constant, such that, for all ε > 0,

P((1 − ε)tD(1/µ) ⊆ B0(t) ⊆ (1 + ε)tD(1/µ) eventually) = 1,

where D(r) := {x ∈ R2 : |x| ≤ r} and 0 := (0, 0).
For k ≥ 2, the process {(Bx1(t), . . . ,Bxk (t)) : t ≥ 0} is a model for competing growth on

the plane where each point x ∈ R2 is acquired by the species j ∈ {1, . . . , k} which first arrives
there. The competition interface, ψ , is the one-dimensional boundary between the species
when t = ∞. This interface can be seen as a finite union of polygonal curves determined by
edges in V (the Voronoi tessellation) which are shared by tiles acquired by different species.
A branch of the competition interface is a self-avoiding path ϕ = (xn)n≥1 in V such that
{xn : n ≥ 1} ⊆ ψ .

For each α ∈ [0, 2π), we say that a self-avoiding path (xn)n≥1, with vertices in R2 and such
that |xn| → ∞ when n → ∞, is an α-path if

lim
n→∞

xn

|xn| = eiα := (cosα, sin α).

In this case we also say that (xn)n≥1 has the asymptotic orientation eiα . This is equivalent to

lim
n→∞ ang(xn, eiα) = 0,

where ang(x, y) denotes the angle in [0, π ] between the points x, y ∈ R2, measured at the
origin. Thus, a sufficient condition for a path (xn)n≥1 to be an α-path for some α ∈ [0, 2π) is
that, for some fixed δ ∈ (0, 1), some constant c > 0, and sufficiently large n,

ang(xn, xm) ≤ |xn|−δ for m > n.

This is the δ-straightness property for semi-infinite paths, introduced by Newman [14].
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Theorem 1.1. For k ≥ 2, let �k be the event that, for the competing growth model with k
different species, there exists a finite subset
 := {θ1, . . . , θm} of [0, 2π) such that every branch
ϕ of the competition interface is a θi(ϕ)-path for some θi ∈ 
. Under (1.1), P(�k) = 1.

Remark 1.1. In Section 4.4 we will give a sketch of the proof that, for all α ∈ [0, 2π),

P(θi = α for some θi ∈ 
) = 0,

and that if ξ ∈ ( 3
4 , 1) then, for all branches ϕ = (xn)n≥1 of the competition interface, there

almost surely exists a constant c > 0 such that

ang(xn, eiθ(ϕ)) ≤ c|xn|ξ−1 eventually.

Let x1(r) = (0, r), . . . , xk(r) be the vertices of a regular polygon with k sides and radius r .
For each j = 1, . . . , k, define the projection of the random set Br

j := Bxj (r)(∞) onto S1, the
set of unit vectors, by

Sj,r := {x = eiα ∈ S1 : Lsx(α) ⊆ Br
j for some s > 0},

where Lx(α) denotes the line with origin x and direction eiα . For each ε ∈ (0, π/k) and
j ∈ {1, . . . , k}, define

Sj (ε) := {x ∈ S1 : ang(x, xj (r)) ≤ π/k − ε}.
Theorem 1.2. Let k ≥ 2. Under (1.1), for all ε > 0,

lim
n→∞ P(Sj (ε) ⊆ Sj,n for all j = 1, . . . , k) = 1.

1.2. Busemann-type asymptotics and the competition interface

To illustrate the approach we follow in this work to study the competition interface, assume
that k = 2. Consider the line, L0(α), with origin 0 and direction eiα . Then we have three
possibilities: (i) it intersects the competition interface infinitely many times; (ii) it is eventually
contained in Bx1(∞); or (iii) it is eventually contained in Bx2(∞). Notice that option (i) implies
that

lim inf
s→∞ (T (x1, se

iα)− T (x2, se
iα)) ≤ 0 ≤ lim sup

s→∞
(T (x1, se

iα)− T (x2, se
iα)),

option (ii) implies that

lim sup
s→∞

(T (x1, se
iα)− T (x2, se

iα)) ≤ 0,

and option (iii) implies that

0 ≤ lim inf
s→∞ (T (x1, se

iα)− T (x2, se
iα)).

It turns out that the above expressions resemble Busemann-type asymptotics for T . New-
man [14] and Licea and Newman [13] have shown for the lattice model that, under suitable
assumptions on the curvature of the limit shape, T (x1, yn) − T (x2, yn) eventually attains a
nonzero value Hα(x1, x2), called the Busemann function. By following Newman’s method,
and by exploiting the isotropy in our model, we will prove the following result.
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Theorem 1.3. For α ∈ [0, 2π), let �0(α) be the event that for all v, v̄ ∈ Dv there exists an
Hα(v, v̄), nonzero for v 	= v̄, such that

lim|x|→∞
x/|x|→eiα

(T (v, x)− T (v̄, x)) = Hα(v, v̄).

Under (1.1), P(�0(α)) = 1.

(We also refer the reader to [11], where an analogous result was proved in a Euclidean first
passage percolation setup.)

For x, y ∈ R2, we let Hα(x, y) := Hα(v(x), v(y)). It was conjectured by Howard and
Newman [12] that

lim
n→∞

Hα(n
e1, 0)
n

= −µ(F) cosα,

where 
e1 := (1, 0). This observation is related to the asymptotic behavior of our multitype
growth model and the result key in proving Theorem 1.2 is the following, which is a small step
towards the above conjecture.

Theorem 1.4. For α ∈ [0, π/2), let �1(α) ⊆ �0(α) be the event that

−µ(F) ≤ lim inf
n→∞

Hα(n
e1, 0)
n

≤ lim sup
n→∞

Hα(n
e1, 0)
n

≤ −µ(F) cosα

1 + sin α
.

Under (1.1), P(�1(α)) = 1. In particular, with probability 1,

lim
n→∞

H 0(n
e1, 0)
n

= −µ(F).

1.3. Overview

In Section 2 we will deduce Theorems 1.1 and 1.2 from Theorems 1.3 and 1.4. In Section 3
we will start by defining the probability space underlying our model, and we will prove a
‘modification lemma’ that will play an important rule in the study of the coalescence of semi-
infinite geodesics. Then we will study some geometrical aspects ofVoronoi tilings. We note that
in the Delaunay triangulation context some technical difficulties are imposed by its long-range
dependence. Some of them will be avoided by appealing to results of previous work of the
author [18], [17]. To conclude Section 3 we will recall some geometrical lemmas concerning
the δ-straightness of semi-infinite paths. Finally, in Section 4 we will study the existence and
coalescence of semi-infinite geodesics to prove Theorems 1.3 and 1.4. Our treatment will
largely parallel the analogous study on the lattice and in the Euclidean first passage percolation
models that was developed by Newman and various co-authors [12], [13], [14], [15].

2. Proof of the multitype shape theorems

Proof of Theorem 1.1. For each j = 1, . . . , k, let Sj denote the set of unit vectors eiβ such
that Lseiβ (β) ⊆ Bxj (∞) for some s > 0, and let

S0 :=
( l⋃
j=1

Sj

)c

.
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Let
Dn := {eiβ : β = 2kπ/2n for some k, 1 ≤ k ≤ 2n}

and D := ⋃
n≥1 Dn. Consider the event,

⋂
α∈D �0(α), that for all α ∈ D and v, v̄ ∈ Dv there

exists an Hα(v, v̄), nonzero for v 	= v̄, such that

lim|x|→∞
x/|x|→eiα

(T (v, x)− T (v̄, x)) = Hα(v, v̄).

By Theorem 1.3, P(
⋂
α∈D �0(α)) = 1.

We claim that, on this event, every branch of the competition interface is a θ -path for some
θ ∈ [0, 2π). To see this, note that if eiα ∈ S0 then, for some j1 	= j2, L0(α) intersects the
region Bxj1

(∞) and the region Bxj2
infinitely many times. Thus,

lim inf
s→∞ (T (xj1 , se

iα)− T (xj2 , se
iα)) ≤ 0 ≤ lim sup

s→∞
(T (xj1 , se

iα)− T (xj2 , se
iα)),

which implies that D ∩ S0 = ∅. Let Cn
k be the cone consisting of the points reiβ such that

r > 0 and β ∈ (2πk/2n, 2π(k + 1)/2n). Now, if D ∩ S0 = ∅ and eiβ ∈ D, then no branch of
the competition interface can intersect the line L0(β) infinitely many times. Hence, for each
branch ϕ of the competition interface we can find a sequence of cones (Cn

kn
)n≥1, with n → ∞

and Cn+1
kn+1

⊆ Cn
kn

, such that ϕ is eventually contained in Cn
kn

. Note that the angle of the cone Cn
kn

is 2n and that the sequence (Cn
kn
) thus converges to a semi-infinite line starting at the origin, 0.

This implies that ϕ must be a θ -path for some θ ∈ [0, 2π).

Proof of Theorem 1.2. Since

P(Sj (ε) ⊆ Srj ) = P(S1(ε) ⊆ Sr1)

for all j = 1, . . . , k, we need only prove that

lim
r→∞ P(S1(ε) ⊆ Sr1) = 1. (2.1)

To do so, for each j = 1, . . . , k let αkj := π(j −1)/k, 
ekj := e2iαkj , andAr := ⋂k
j=1A

j
r , where

A
j
r :=

⋂
l 	=j

{Hαkj (r
ekl , r
ekj ) > 0}.

Let α+ε
k := π/k − ε and α−ε

k := (2π − π/k)+ ε, and set

Br(ε) :=
⋂

j=2,...,k

{Hα+ε
k (r
ekj , r
ek1) > 0 and Hα−ε

k (r
ekj , r
ek1) > 0}.

By Theorem 1.4,
lim
r→∞ P(Ar ∩ Br(ε)) = 1. (2.2)

The connectivity of the regions Br
j yields S1(ε) ⊆ Sr1 on Ar ∩ Br(ε). Together with (2.2) this

yields (2.1), and the proof of Theorem 1.2 is complete.
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3. Auxiliary results

3.1. The probability space

During the subsequent proofs we will consider the following construction of (�,F ,P), the
underlying probability space of our first passage percolation model. Let u0 = (0, 0),u2, . . .

be an ordering of Z2, and for each k ≥ 1 let

Bk := uk + [− 1
2 ,

1
2 ]2,

that is, a closed box of unit side length centered at uk . Consider

N = {Nk : k ≥ 1},
a collection of independent, identically distributed Poisson random variables with intensity 1;

Uk = {Uk,l : l ≥ 1},
a collection of independent random points in the plane such thatUk,l has a uniform distribution
in the square box Bk; and

Tk = {τm,nk,l : l ≥ 1,m ≥ k, n ≥ 1, and n > l for k = m},
a collection of independent, identically distributed, nonnegative random variables with common
distribution F (the passage time distribution). We require that these collections be independent
of each other.

To determine the vertex set Dv = P , in each square box Bk we put Nk points given by
Uk,1, . . . , Uk,Nk . This procedure determines a Poisson point process P from the collections N
and Uk with k ≥ 1. Given that e ∈ De, we know that there exists a unique pair (Uk,l, Um,n),
with either m > k or m = k and n > l, such that e = (Uk,l, Um,n). Set τe = τ

m,n
k,l .

For each k ≥ 1, denote by (�k,F k,Pk) the probability space induced by the random variable
Nk and the collections Uk and Tk . The probability space (�,F ,P) is defined to be the product
space of the (�k,F k,Pk), k ≥ 1.

An important step in the construction of the Busemann function is the proof of the coalescence
behavior of semi-infinite geodesics with the same asymptotic orientation. In this proof, we will
use the following modification lemma. Let K be the collection of all finite sequences

I = ((kj , lj , mj , nj ))j=1,...,q ∈ (N4)q, (3.1)

where q ≥ 1, (kj , lj , mj , nj ) 	= (ki, li , mi, ni) for j 	= i, k1 ≤ · · · ≤ kq , and either kj <
mj or lj < nj . To each I ∈ K corresponds a random vector (τ

mj ,nj
kj ,lj

)j=1,...,q . We denote
by (�I ,FI ,PI ) the probability space induced by this random vector. Let

�̂I := {ω̂I : there exists an ωI ∈ �I with (ω̂I , ωI ) ∈ �},
and denote by P̂I the probability law P restricted to this subset. For each I ∈ K , A ⊆ �, and
ω1 ∈ �̂I , define

AI,ω1 := {ω2 ∈ �I : ω = (ω1, ω2) ∈ A}.
Let {RI : I ∈ K} be a family of events RI ∈ FI such that PI (RI ) > 0 for all I . Then define
the map

�I (A) := {ω1 ∈ �̂I : PI (AI,ω1) > 0} × RI
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on F . Suppose that W(ω) is a random element of K , which may be interpreted as the set of
indices (edges) whose passage time value will be modified. For A ⊆ �, let

�̃(A) :=
⋃
I∈K

({ω1 ∈ �̂I : A(I)I,ω1 	= ∅} × RI ),

where A(I) := A ∩ {W = I }.
Lemma 3.1. For each A ∈ F , �̃(A) contains the union �(A) ∈ F defined as

�(A) :=
⋃
I∈K

�I (A(I)).

Furthermore, if P(A) > 0 then P(�(A)) > 0.

Proof. If PI (A(I)I,ω1) > 0 then A(I)I,ω1 	= ∅ and, so, �(A) ⊆ �̃(A). Since K is
countable andA = ⋃

I∈K A(I), if P(A) > 0 then there exists an I ∈ K such that P(A(I)) > 0.
For this I , by Fubini’s theorem,

0 < P(A(I)) =
∫
�̂I

PI (A(I)I,ω1) P̂I (dω1). (3.2)

Let ÂI := {ω1 : PI (A(I)I,ω1) > 0}. By (3.2), P̂I (ÂI ) > 0. According to the definition of �I ,

P(�I (A(I))) = P̂I (ÂI )PI (RI ) > 0.

Since �I (A(I)) ⊆ �(A), we conclude that P(�(A)) > 0.

3.2. Some geometrical aspects of Delaunay triangulations

In this subsection we study some geometrical aspects of Delaunay triangulations. Let
x, y ∈ R2. We denote by [x, y] the line segment connecting x and y. We construct a
path γ (x, y) := (v1, . . . , vk) in D connecting v(x) and v(y), as follows. Set v1 := v(x).
If v1 	= v(y) then let v2 be the (almost surely) unique nearest neighbor of v1 such that the
edge of Cv1 that is perpendicular to the line segment [v1, v2] crosses [x, y]. Given vl , l ≥ 1, if
vl 	= v(y) then let vl+1 be the (almost surely) unique nearest neighbor of vl , different from vl−1,
such that the edge of Cvl that is perpendicular to [vl , vl+1] crosses [x, y]; otherwise, we set
k := l and the construction is finished. We denote by |γ (0, n
e1)| the number of edges in
γ (0, n
e1).

For z ∈ R2 and L > 0, let

BL
z := Lz + [−L/2, L/2].

For n > 0, consider the set En composed of edges (v, v̄) ∈ De with Cv ∩ B1
z 	= ∅ or

Cv̄ ∩ B1
z 	= ∅ for some z ∈ [0, n
e1]. We denote by |En| the number of edges in En.

Lemma 3.2. There exist constants zj , cj > 0, j = 1, 2, such that, for all n ≥ 1,

P(|γ (0, n
e1)| ≥ zn) ≤ e−c1zn for z ≥ z1 (3.3)

and
P(|En| ≥ zn) ≤ e−c2zn for z ≥ z2.
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Figure 3: Renormalization: a full box.

The proof of this lemma is performed using renormalization ideas developed in [17]. To
avoid unnecessary repetition, we give a sketch of the proof and leave the details, which can be
filled in by following the arguments in the proof of Proposition 2.2 of [17] (which is exactly
the proof of (3.3)), to the reader.

Proof of Lemma 3.2. For z ∈ Z2 and L > 0, divide a square box BL
z into thirty-six sub-

boxes, say B1, . . . ,B36, of the same side length. We describe B as a full box if all thirty-six
sub-boxes contain at least one Poisson point (see Figure 3).

We say that� := (BL
z1
, . . . ,BL

zk
) is a circuit of boxes if (z1, . . . , zk) is a circuit in Z2 (in the

usual sense). Let λ be the closed polygonal path composed of the line segments connectingLzj
andLzj+1, j = 1, . . . , k−1, together with [zk, z1]. To each circuit�we associate two subsets
of the plane: �in denotes the interior of the bounded component of R2 \ ⋃k

j=1 BL
zj

, while λin

denotes the interior of the bounded component of R2 \ λ. Now, assume that � := (BL
zj
)kj=1 is

a circuit composed of full boxes. From Lemma 2.1 of [17], we have the following geometrical
property: if Cv ∩ �in 	= ∅ then Cv ⊆ λin. One important consequence of this is that the
set of vertices connected by γ (0, n
e1) and the set of vertices used by En are both contained in
the region, Rn, delineated by the smallest circuit of full boxes surrounding the line segment
[0, n
e1]. Therefore, to prove Lemma 3.2 it is enough to prove the analogous decay of the
number of Poisson points in Rn. (Recall that, according to the Euler formula, the number of
edges and vertices in a triangulation are of the same order.)

Notice that, since each box is full independently of the others and the probability that a box
is full goes to 1 as L goes to ∞, for a fixed, large L0 > 0 the probability that Rn contains more
than zn boxes decays as e−czn.

Now, the number of points in Rn, sayRn, is the sum of independent Poisson random variables
and is less than or equal to Mm, the maximum of the number of points in R over all connected
regions R intersecting at most m boxes and containing the origin, 0. Thus, on the event that
Rn contains fewer than zn boxes, we have Rn ≤ Mzn. On the other hand, Mm can be viewed
as a greedy lattice animal model, and for such a model we can also show that, for large c̄ > 0,
the probability that Mm ≥ c̄m decays as e−cm (see Lemma 2.3 of [17]).

By combining the arguments in the two last paragraphs we find that the probability that the
number of points in Rn is greater than zn also decays as e−czn, for some constant c > 0 and
sufficiently large z.

Let TD denote the graph metric on D , i.e. for v, v̄ ∈ Dv, TD (v, v̄) is the minimum number of
edges that one path can cross in going from v to v̄. Notice that TD (v, v̄) is the first passage time
between v and v̄ if we associate to each edge e the passage time value 1. For each A,B ⊆ R2,
we set TD (A,B) to be the minimum of TD (v, ṽ) over all pairs v and ṽ such that Cv ∩ A 	= ∅

and Cṽ ∩ B 	= ∅. From the shape theorem, we have the following result.
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Lemma 3.3. There exists a ν ∈ (0,∞) such that, almost surely,

lim
n→∞

TD (A, neiα + B)

n
= ν.

We note that ν does not depend either on A and B or on α ∈ [0, 2π). We also see that, with
λ ≡ λ(F) denoting the supremum of the support of F, we have

µ(F) ≤ E(τe)ν < λν

(we must assume that F is not concentrated at one point, which is the case here since F is
continuous).

We shall also use the following lemma, which is Equation (5.2) of Lemma 5.2 of [12].

Lemma 3.4. For ξ ∈ (0, 1) and r > 0, let Aξ,r be the event that there exists an x ∈ R2 with
|x| ≤ 2r and |x − v(x)| ≥ rξ . Then, for some constant c1 > 0,

P(Aξ,r ) ≤ c1 exp(−r2ξ ).

3.3. δ-straightness of semi-infinite paths

Recall that for α ∈ [0, 2π) we have defined a self-avoiding path (xn)n≥1, with vertices in
R2 and such that |xn| → ∞ as n → ∞, to be an α-path if

lim
n→∞

xn

|xn| = eiα := (cosα, sin α),

and that a sufficient condition for a path (xn)n≥1 to be an α-path for some α ∈ [0, 2π) is that,
for some fixed δ ∈ (0, 1) and c > 0, and for large enough n,

ang(xn, xm) ≤ |xn|−δ for m > n

(δ-straightness). A sufficient condition for δ-straightness is given by the next lemma, which
is exactly Lemma 2.7 of [12]. We denote by d(x, A) the Euclidean distance between x and
A ⊆ R2.

Lemma 3.5. If (xn)n≥1 is a sequence of points in R2 such that |xn| → ∞ as n → ∞ and such
that, for all large n,

|xn+1 − xn| ≤ |xn|1−δ and d(xn, [x1, xm]) ≤ |xm|1−δ for m > n,

then there exists a constant c > 0 such that, for all sufficiently large n,

ang(xn, xm) ≤ c|xn|−δ for m > n.

We also consider the δ-straightness property for trees (we have the tree of infection in mind),
as follows. For ε ∈ [0, π), let

C(x, ε) := {y ∈ R2 \ {0} : ang(y, x) ≤ ε}.
If T is a tree embedded in R2 then, for each pair v, ṽ ∈ T , let Rout(v, ṽ) be the set of all v̂ ∈ T
such that the unique path in T connecting v and v̂ touches ṽ. For δ ∈ (0, 1), we define T to be
δ-straight at v if, for all but finitely many ṽ ∈ T ,

Rout(v, ṽ) ⊆ v + C(ṽ − v, c|ṽ − v|−δ).
We say that a subsetP of R2 is omnidirectional if, for allM > 0, the set composed of unit vectors
v/|v| with v ∈ P and |v| > M is dense in S1. The following lemma, which is Proposition 2.8
of [12], states that δ-straightness implies the existence of an asymptotic orientation.
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Lemma 3.6. Assume that T is a tree embedded in R2 whose vertex set is locally finite but
omnidirectional and such that every vertex has finite degree. Assume further that, for some
vertex v, T is δ-straight at v. Then the following statements hold.

1. Every semi-infinite path in T starting at v has an asymptotic orientation.

2. For every α ∈ [0, 2π), there exists at least one semi-infinite path in T that starts at v

and has asymptotic orientation eiα .

3. Every semi-infinite path (vn)n≥1 in T starting at v is δ-straight about its asymptotic
orientation, eiα , i.e. ang(vn, eiα) < c|vn|−δ eventually.

4. Semi-infinite geodesics and the Busemann function

4.1. Semi-infinite geodesics: existence

Recall that a path ρ = (v1, v2, . . . ) in D is a semi-infinite geodesic if, for all vj , vk ∈ ρ, the
path (vj , vj+1, . . . , vk) is the unique geodesic connecting vj and vk . Semi-infinite geodesics
that start at v ∈ Dv and have asymptotic orientation eiα are denoted by ρv(α).

Proposition 4.1. Let �2 be the event that for all semi-infinite geodesics ρ there exists an
α ≡ α(ρ) ∈ [0, 2π) such that ρ is an α-path, and that for all α ∈ [0, 2π) and for all v ∈ Dv
there exists at least one geodesic that starts at v and has asymptotic orientation eiα . Under
(1.1), P(�2) = 1.

The first step in showing the existence of semi-infinite geodesics is the following result on
the fluctuations of T , which is exactly Corollary 1.1 of [17].

Lemma 4.1. Under (1.1), for all κ ∈ ( 1
2 , 1) there exist constants δ, cj > 0 such that, for all

r ≥ 1 and s ∈ [c1(log r)1/δ, c2r
κ ],

P(|T (0, r
e1)− µr| ≥ srκ) ≤ exp(−c3s
δ).

The second step is to parallel the analysis in [15] to prove that control of the fluctuations
of T can give control of the fluctuations about the line segment [0, r
e1] of a minimizing path
connecting 0 and r
e1. More precisely, for ξ ∈ (0, 1) let

Cξ
r := {x ∈ R2 : d(x, [0, r
e1]) ≤ rξ }.

Lemma 4.2. For all ξ ∈ ( 3
4 , 1), there exist constants c, δ > 0 such that, for all r ≥ 1,

P(ρ(0, r
e1) 	⊆ Cξ
r ) ≤ exp(−crδ).

Proof. Let κ ∈ ( 1
2 , 1) and κ̃ ∈ (κ, 1) and set ξ = (κ̃ + 1)/2. Let

C1,ξ
r := {x ∈ R2 \ Cξ

r : d(x,Cξ
r ) < rξ }.

Denote by Fr the event defined by the following properties:

• v0, vr
e1 ∈ C
ξ
r and

• for all edges e = (v, ṽ) with |v| ≤ 2r or |ṽ| ≤ 2r , we have |v − ṽ| ≤ rξ .
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Note that F c
r ⊆ Aξ,r/3 (the latter as defined in Lemma 3.4) and, thus,

P(F c
r ) ≤ c1 exp

(
−

(
r

3

)2ξ)
. (4.1)

For each z ∈ Z2, consider the random variable

Tz := max|v−z|≤1
{T (z, v)}.

We claim that, under (1.1), for some constants c2, c3 > 0,

P(Tz ≥ rκ) = P(T0 ≥ rκ) ≤ c2 exp(−c3r
κ). (4.2)

To see this, notice that T0 ≤ ∑
e∈E1

τe, where E1 is the set of edges e = (v, v̄) in De with
Cv ∩ B1

0 	= ∅ or Cv̄ ∩ B1
0 	= ∅. By Lemma 3.2, E(exp(a|E1|)) < ∞ for some a > 0.

Combining this with assumption (1.1) and the independence between the Poisson point process
and the passage time distribution, we obtain (4.2).

Now,

{ρ(0, r
e1) 	⊆ Cξ
r } ∩ Fr

⊆ {there exists a v ∈ Dv ∩ C1,ξ
r such that T (0, v)+ T (v, r
e1) = T (0, r
e1)}

⊆ Aξ(r), (4.3)

where

Aξ(r) := {there exists a z ∈ Z2 ∩ C1,ξ
r such that T (0, z)+ T (z, r
e1) ≤ T (0, r
e1)+ 2Tz}.

Let
�(z, r
e1) := µ|z − r
e1| + µ|z| − µ|r
e1|.

Then
T (0, z)+ T (z, r
e1) ≤ T (0, r
e1)+ 2Tz

if and only if

�(z, r
e1) ≤ T (0, r
e1)− µr + µ|z| − T (0, z)+ µ|z − r
e1| − T (z, r
e1)+ 2Tz.

This implies that Aξ(r) ⊆ ⋃3
j=0 Aj(r), where

A0(r) := {there exists a z ∈ Z2 ∩ C1,ξ
r such that Tz ≥ �(z, r
e1)/8},

A1(r) := {there exists a z ∈ Z2 ∩ C1,ξ
r such that |T (z, r
e1)− µ|z − r
e1|| ≥ �(z, r
e1)/4},

A2(r) := {there exists a z ∈ Z2 ∩ C1,ξ
r such that |T (0, z)− µ|z|| ≥ �(z, r
e1)/4},

A3(r) := {there exists a z ∈ Z2 ∩ C1,ξ
r such that |T (0, r
e1)− µ|r
e1|| ≥ �(z, r
e1)/4}.

Combining this with (4.3), we find that

P(ρ(0, r
e1) 	⊆ Cξ
r ) ≤ P(F c

r )+
3∑
j=0

P(Aj (r)). (4.4)
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Note that there exist constants b1, b2 > 0 such that, for sufficiently large r > 0 and
z ∈ Z2 ∩ C

1,ξ
r , we have

b1r
κ̃ = b1r

2ξ−1 ≤ �(z, r
e1) ≤ b2r
ξ = b2r

(κ̃+1)/2 (4.5)

and
rξ ≤ |z|, |z − r
e1| ≤ 2r. (4.6)

Together with Lemma (4.1), for some constant c1 > 0, (4.5) and (4.6) yield

P(Aj (r)) ≤ exp(−c1r
δ). (4.7)

Combining (4.4) with (4.1), (4.2), and (4.7) completes the proof of the lemma.

For v ∈ Dv, let Tv be the union over all ṽ ∈ Dv of the unique geodesic between v and ṽ

(the tree of infection at v). Then Tv is a tree spanning all Dv. Thus, the third step in showing
the existence and convergence of semi-infinite geodesics is to use Lemma 4.2 and the concept
of δ-straightness for trees discussed above.

Proof of Proposition 4.1. Combining Lemma 4.2 and Lemma 3.4 with the Borel–Cantelli
lemma, we find that, for all δ = 1 − ξ ∈ (0, 1

4 ), the assumptions of Lemma 3.5 almost surely
hold for all semi-infinite paths (geodesics) (vn)n≥1 in Tv . Thus, Tv is δ-straight at v. Since,
with probability 1, a realization of the Poisson point process is omnidirectional, together with
Lemma 3.6 this yields Proposition 4.1.

Remark 4.1. Let ξ ∈ ( 3
4 , 1). The almost-sure (1 − ξ)-straightness of the tree of infection also

implies that, for all α ∈ [0, 2π), if (v1, v2, . . . ) is a semi-infinite geodesic with asymptotic
orientation eiα , then

ang(vn, eiα) ≤ c|vn|ξ−1

for sufficiently large n.

4.2. Semi-infinite geodesics: uniqueness and coalescence

Concerning uniqueness of semi-infinite geodesics, we have the following result.

Proposition 4.2. For α ∈ [0, 2π), let �3(α) be the event that for all v ∈ Dv there exists at
most one geodesic that starts at v and has asymptotic orientation eiα . Assuming only that F is
continuous, we then have P(�3(α)) = 1.

Proof. For (k, l) ∈ N2, let Aα(k, l) be the event that both Uk,l ∈ Dv (or, equivalently,
Nk ≥ l) and there exist two semi-infinite geodesics that start at v = Uk,l , have common
asymptotic orientation eiα , and, apart from at v, do not intersect each other. Then

�3(α)
c ⊆

⋃
(k,l)∈N2

Aα(k, l).

Now, semi-infinite geodesics starting at the same vertex are not allowed to cross each other, and
if a semi-infinite geodesic is confined between two others with common asymptotic orientation
eiα , then it must also have asymptotic orientation eiα (by planarity). Therefore, denoting by dv

the degree of the vertex v = Uk,l , we have

|{α ∈ [0, 2π) : 1Aα(k,l)(ω) = 1}| ≤ dv(ω)
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(where |A| is the cardinality of the set A and 1{·}(·) is the indicator function). In particular,

∫
[0,2π)

1Aα(k,l) dα = 0 almost surely

and, so, by Fubini’s theorem,

0 ≤
∫

[0,2π)
P(�3(α)

c) dα =
∫
�

(∫
[0,2π)

1�3(α)c dα

)
dP

≤
∫
�

(∫
[0,2π)

∑
(k,l)∈N2

1Aα(k,l) dα

)
dP =

∫
�

( ∑
(k,l)∈N2

∫
[0,2π)

1Aα(k,l) dα

)
dP

= 0.

Consequently, there exists an I ⊆ [0, 2π) that has total Lebesgue measure and is such that, for
all α ∈ I , P(�3(α)) = 1. Since P(�3(α)) does not depend on α, this yields Proposition 4.2.

The last result we require to construct the Busemann function is the coalescence behavior
of semi-infinite geodesics with the same asymptotic orientation.

Proposition 4.3. For α ∈ [0, 2π), let �4(α) ⊆ �3(α) be the event that, for all v, v̄ ∈ Dv,
if ρv(α) and ρv̄(α) exist (and are unique), then they must coalesce, i.e. there exists a
c ≡ c(v, v̄, α) ∈ Dv such that

ρv(α) = ρ(v, c) ∪ ρc(α) and ρv̄(α) = ρ(v̄, c) ∪ ρc(α).

Assuming only that F is continuous, we then have P(�4(α)) = 1.

Note that the almost-sure statement in Proposition 4.3 holds for fixed α ∈ [0, 2π). As we
will see later, there almost surely exists a random direction θ such that neither uniqueness nor
coalescence hold. Indeed, we will show (in Subsection 4.4) that every branch of the competition
interface follows one of the random directions for which coalescence does not hold. (For more
on the noncoalescence of semi-infinite geodesics, see Section 1.3 of [12].)

Let S(α) denote the union over all v ∈ Dv of ρv(α). Then S(α) is a forest with, say,
N(α) disjoint trees. Notice that on {N(α) ≤ 1} ∩ �3(α) there are no site-disjoint semi-
infinite geodesics with asymptotic orientations eiα . Proposition 4.3 will thus follow if we
prove that P(N(α) ≤ 1) = 1. As noted by Licea and Newman [13], in this setup we can
apply the Burton–Keane [1] method. This method requires several steps which we will be
organized as independent assertions. To state the first, let δ ∈ Q (the latter being the set of
rational numbers) and for i = 1, . . . , j let xi = (xi(1), xi(2)), x̃i = (x̃i(1), x̃i(2)) ∈ Q2

with x1(2) ≤ · · · ≤ xj (2) and x̃1(2) ≤ · · · ≤ x̃j (2). Assume further that xi(1) ≤ −δ and
x̃i (1) ≥ δ. Let Dδ(x) denote the Euclidean ball of radius δ centered at x, and denote by
Aδ(x1, . . . , xj , x̃1, . . . , x̃j ) the event defined by the following properties:

• at each Dδ(xi ) and Dδ(x̃i ) there is a unique vertex vi and, respectively, ṽi ;

• each ei = (vi , ṽi ) is an edge in De, and ei ∈ ρvi (0);

• apart from vi , ρvi (0) only has vertices with strictly positive coordinates; and

• the ρvi (0) are disjoint.
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Assertion 4.1. If P(N(0) ≥ 2) > 0 then

P(Aδ(x1, x2, x3, x̃1, x̃2, x̃3)) > 0

for some δ ∈ Q and xi , x̃i ∈ Q2, i = 1, 2, 3.

Proof. Since Q is enumerable, if 0 < P(N(0) ≥ 2) then there exist δ ∈ Q and x1, x2,

x̃1, x̃2 ∈ Q2 such that
0 < P(Aδ(x1, x2, x̃1, x̃2)).

Let cn be the maximum of the second coordinates of x2 and x̃2 and let cs be the minimum of
the second coordinates of x1 and x̃1. Consider the rectangle

R0 := [−δ, δ] × (cs − δ, cn + δ).

Let z0 be the circumcenter of the rectangle R0 and letM0 be the vertical length of R0. For each
l ∈ Z, let zl := z0 + lM0(0, 1), Rl := zl + R0, and

Al := Aδ(x
l
1, x

l
2, x̃

l
1, x̃

l
2),

where xlj := xj + zl ∈ Rl and x̃lj := x̃j + zl . Thus, P(Al) = P(A0). By Fatou’s lemma,

0 < P(A0) ≤ P(lim supl A
l) ≤ P

( ⋃
l1 	=l2

Al1 ∩ Al2
)
.

Therefore, there exist l1 and l2 such that 0 < P(Al1 ∩ Al2).
Without lost of generality, assume that l1 < l2. We claim that, in this case, the geodesic

starting at v
l1
1 cannot intersect either the geodesic starting at v

l2
1 or the geodesic starting at

v
l2
2 . This is so because otherwise (by planarity) the geodesic starting at v

l1
1 would intersect the

geodesic starting at v
l1
2 , which contradicts the definition of Al1 . Thus,

Al1 ∩ Al2 ⊆ Aδ(x
l1
1 , x

l2
1 , x

l2
2 , x̃

l1
1 , x̃

l2
1 , x̃

l2
2 ),

which yields Assertion 4.1.

For m, k ≥ 0, let Fm,k be the event that some tree in S(0) touches a vertex in the rectangle

Rm,k := {(x(1), x(2)) : 0 ≤ x(1) ≤ m and |x(2)| ≤ k},
but no vertex in

Qm := {(x(1), x(2)) : x(1) ≤ m} \ Rm,k.

The second step is given by the following assertion.

Assertion 4.2. If, for some δ ∈ Q and xi , x̃i ∈ Q2, i = 1, 2, 3, we have

P(Aδ(x1, x2, x3, x̃1, x̃2, x̃3)) > 0,

then
P(Fm,k) > 0

for some m, k ≥ 0.
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Proof. To prove this we shall use a local modification argument based on Lemma 3.1, and
divide the proof into two parts: in the first one we will assume that F has unbounded support
while in the second one we will assume that F has bounded support.

Part 1: F has unbounded support. Let δ ∈ Q and x1, x2, x3, x̃1, x̃2, x̃3 ∈ Q2 be the variables
in the statement of Assertion 4.1. Let R0 := [−δ, δ]×[cs −δ, cn +δ], where cn is the maximum
of the second coordinates of x3 and x̃3 and cs is the minimum of the second coordinates of
x1 and x̃1. Denote by � the set of edges which cross both the rectangle R0 and the vertical
coordinate axis. Then ei := (vi , ṽi ) ∈ � for all configurations in Aδ(x1, x2, x3, x̃1, x̃2, x̃3)

(recall that xi ∈ Cvi and x̃i ∈ Cṽi ).
Define the event Bλ as comprising those configurations such that, for all e = (v1, v2) ∈ �,

there exists a γ that connects v1 and v2 without using edges in � and has t (γ ) < λ. Since

lim
λ→∞ P(Bλ) = 1,

we can choose a λ > 0 sufficiently large that

P(Aδ(x1, x2, x3, x̃1, x̃2, x̃3) ∩ Bλ) > 0. (4.8)

Now we apply Lemma 3.1. To do so, we define W(ω), a random element of K , using the
following procedure: given ω ∈ �, set

W(ω) := ((kj , lj , nj ,mj ))j=1,...,q

by ordering all (k, l, m, n) (according to (3.1)) so that e(ω) = (Uk,l(ω), Um,n(ω)) ∈ �(ω) and
τe ≤ λ. Thus, W is an ordered representation of the indices of the edges e ∈ � with τe ≤ λ.

For each I ∈ K , let RI := (λ,∞)q ⊆ �I = Rq , and let

A := Aδ(x1, x2, x3, x̃1, x̃2, x̃3) ∩ Bλ
(given by (4.8)). Since F has unbounded support, PI (RI ) > 0 for all I ∈ K . By Lemma 3.1,
there exists a measurable set �(A) ⊆ �̃(A).

Now consider a configuration ω̃ ∈ �(A) ⊆ �̃(A). By definition, there exist I ∈ K ,
ω1 ∈ �̂I , ω2 ∈ �I , and ω̃2 ∈ RI such that ω̃ = (ω1, ω̃2) and (ω1, ω2) ∈ A. Since ω2 and
ω̃2 concern only travel times which are associated with I and ω2 ≤ ω̃2 (in the canonical
order in Rq ), the semi-infinite geodesics ρṽi (0)(ω1, ω2), i = 1, 2, 3 (with respect to the
configuration (ω1, ω2)), remain disjoint geodesics, with common asymptotic orientation 
e1,
for the configuration ω̃ = (ω1, ω̃2). For the same reason, ω̃ ∈ Bλ. On the other hand, since
ω̃2 ∈ RI , we have τe(ω̃) > λ for all e ∈ � and, thus, no geodesic could have an edge in �.
Therefore, �(A) ⊆ Fm,k , where k := max{cs, cn} and m := δ + max{x̃1(1), x̃2(1), x̃3(1)}.
Since P(A) > 0, we also have 0 < P(�(A)) ≤ P(Fm,k), which yields Assertion 4.2 when F

has unbounded support.
Part 2: F has bounded support. Again let δ ∈ Q and x1, x2, x3, x̃1, x̃2, x̃3 ∈ Q2 be as in

Assertion 4.1. Let 
e2 := (0, 1), cn := (0, cn), and cs := (0, cs). For ε, ε̃ > 0 and m > 0, let

Qm,ε̃ := m
e1 + [−ε̃m
e2, ε̃
e2]

and let Bε,ε̃m be the event that, for every z ∈ [cs, cn] and every u ∈ Qm,ε̃,

T (z,u) < (µ+ ε)m.
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By the shape theorem, for any ε > 0 and for sufficiently small ε̃ we have

lim
m→∞ P(Bε,ε̃m ) = 1. (4.9)

Denote by Cε̃m the event that, for each i = 1, 2, 3, ρvi (0) touches the hyperplane that has
direction 
e2 and contains (0,m) for the first time (coming from vi) within the vertical segment
Qm,ε̃. Since all those geodesics are 0-paths,

lim
m→∞ P(Cε̃m) = 1 (4.10)

for all ε̃ > 0.
For m, k > 0, let Cm,k denote the event that, for each i = 1, 2, 3, ρvi (0) does not intersect

the region consisting of the points (x(1), x(2)) ∈ R2 with x(1) ∈ [0,m] and |x(2)| > k. Thus,
for any fixed m > 0,

lim
k→∞ P(Cm,k) = 1 (4.11)

(for the same reason (4.10) holds).
Let x, y ∈ R2 and recall the definition of the path γ (x, y) given in Subsection 3.2. By

Lemma 3.2,
lim
n→∞ P(|γ (0, n
e1)| ≥ c1n) = 0 (4.12)

for some constant c1 > 0. We also introduced the graph metric TD ; by Lemma 3.3, we have

lim
n→∞

TD ([cs, cn],Qm,ε̃)

m
= ν. (4.13)

For each i = 1, 2, 3, let ρi denote the piece of ρvi (0) between ṽi and the first point,
say ui , at which it intersects [m
e1 − ε̃m
e2,m
e1 + ε̃m
e2]. For z ∈ [cs, cn] and u ∈ Qm,ε̃,
let φ(z,u) be the path connecting z and u which first moves vertically along γ (z, v1), then
follows ρ1, and then moves vertically again along γ (u1,u). Thus, on the intersection between
Aδ(x1, x2, x3, x̃1, x̃2, x̃3), Cε̃m, Cm,k , and Bε,ε̃m , we have

t (φ(z,u)) = t (γ (z, v1))+ t (ρ1)+ t (γ (u1,u))

≤ λ|γ (cs, cn)| + (µ+ ε)m+ λ|γ (m
e1 − ε̃m
e2,m
e1 + ε̃m
e2)|.
Also, by (4.12) and (4.13), since µ(F) < λ(F)ν it follows that there exist ε0, ε̃0 > 0 such

that
lim
m→∞ P(D(λ, ε, ε̃)) = 1 (4.14)

for all ε < ε0 and ε̃ < ε̃0, where D(λ, ε, ε̃) is the event that

λ|γ (cs, cn)| + (µ+ ε)m+ λ|γ (m
e1 − ε̃m
e2,m
e1 + ε̃m
e2)| ≤ (λ− ε)TD ([cs, cn],Qm,ε̃).

Let
A := Aδ(x1, x2, x3, x̃1, x̃2, x̃3) ∩ Cε̃m ∩ Cm,k ∩ Bε,ε̃m ∩D(λ, ε, ε̃).

Combining (4.9) with (4.10), (4.11), and (4.14), we find that P(A) > 0 for sufficiently small
ε > 0 and ε̃ > 0 and for sufficiently large m > 0 and k > 0. Note that, for all configurations
in A and every z ∈ [cs, cn] and u ∈ Qm,ε̃, we must have

T (z,u) ≤ t (φ(z,u)) ≤ (λ− ε)TD ([cs, cn],Qm,ε̃). (4.15)
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We can now use Lemma 3.1 again. Let � be the set of edges in the interior of the region
bounded by ρ1, ρ3, [cs, cn], and Qm,ε̃. Define W(ω) as follows: given ω ∈ �, set

W(ω) := ((kj , lj , mj , nj ))j=1,...,q

by ordering all (k, l, m, n) (according to (3.1)) so that e(ω) = (Uk,l(ω), Um,n(ω)) ∈ �(ω)

with τe ≤ λ− ε. Thus,W represents the indices of the edges e ∈ � with τe ≤ λ− ε. For each
I ∈ K , let RI := (λ − ε, λ)q ⊆ �I and take A to be defined as above. Since F(λ − ε) < 1,
we have PI (RI ) > 0. Thus, by Lemma (3.1) there exists a measurable set �(A) ⊆ �̃(A).

Choose a configuration ω̃ = (ω1, ω̃2) ∈ �̃(A). By the same argument used in part 1, we
see that the paths ρṽi (0)(ω1, ω2), i = 1, 2, and ρũ2(0)(ω1, ω2) remain disjoint geodesics,
with common asymptotic orientation 
e1, for the configuration ω̃, and that (4.15) still holds for
the configuration ω̃. On the other hand, by (4.15), no path ρ that connects z ∈ [cs, cn] and
u ∈ Qm,ε̃ and is entirely contained in the region � can be a geodesic for the configuration ω̃
because, otherwise,

T (z,u) = t (ρ) > (λ− ε)TD ([cs, cn],Qm,ε̃).

This allows us to conclude that

�(A) ⊆ �̃(A) ⊆ Fm,k

(with m, k > 0 given by the definition of A). Since P(A) > 0, we have 0 < P(�(A)) <
P(Fm,k), which yields Assertion 4.2 when F has bounded support.

The third and last step in proving that P(N(α) ≤ 1) = 1 is as follows.

Assertion 4.3. P(Fm,k) = 0 for all m, k ≥ 0.

Proof. Consider a rectangular array of nonintersecting translates Rz
m,k of the basic rectangle

Rm,k ≡ R0
m,k and an array of translates Qz

m of Qm ≡ Q0
m, indexed by z ∈ Z2. We denote by

F z
m,k the corresponding events, with F 0

m,k ≡ Fm,k . Note that if F z
m,k and F z̃

m,k , z 	= z̃, occur,
then the corresponding trees in S(0) must be disjoint. Thus, if NL is the number of points
z ∈ [0, L]2 for which F z

m,k occurs, then

NL ≤ |{edges crossing the boundary of [0, L]2}|.
However, by Lemma 3.2, the expected value of the number of edges crossing the boundary of
[0, L]2 is of order L. By translation invariance,

E(NL) = nL P(Fm,k),

where nL is the number of rectangles Rz
m,k intersecting [0, L]2. Since nL is of order L2, the

assumption P(Fm,k) > 0 leads to a contradiction.

Now we are able to prove Proposition 4.3.

Proof of Proposition 4.3. Combining Assertions 4.1–4.3 yields

P(N(α) ≤ 1) = P(N(0) ≤ 1) = 1. (4.16)

By noticing that �3 ∩ {N(α) ≤ 1} ⊆ �4(α), we see that Proposition 4.3 follows from
Proposition 4.2 together with (4.16).
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4.3. Existence and asymptotics of the Busemann function

The idea of the proof of Theorem 1.3 is to combine the properties of existence, uniqueness,
and coalescence of semi-infinite geodesics in a fixed direction eiα to show that if zn → ∞
along this direction, then, for sufficiently large n,

T (x, zn)− T (y, zn) = T (x, c)− T (y, c),

where c is the coalescence point in the direction eiα (see Proposition 4.3). We begin by
introducing what we mean by convergence of paths. Assume that (γn)n≥0 is a sequence of
finite paths with vertices in R2, and for each n ≥ 0 let γn = (zn0, z

n
1, . . . , z

n
ln
). We say that

γn converges to a semi-infinite path γ = (x0, x1, . . . ), and write γ = limn→∞ γn, if for each
k ≥ 1 there exists an nk ≥ 1 such that

γn = (x0, x1, . . . , xk, z
n
k+1, . . . , z

n
ln
) for all n ≥ nk .

For each sequence (zn)n≥0 of vertices in R2 with |zn| → ∞ and z ∈ R2, we denote by
�(z, (zn)n≥0) the set of all semi-infinite paths ρ for which there exists a subsequence (nj )j≥0
with limj→∞ ρ(z, znj ) = ρ.

Lemma 4.3. Let�1 be the event that, for all α ∈ [0, 2π), if (zn)n≥1 has asymptotic orientation
eiα then (i) �(z, (zn)n≥1) 	= ∅ and (ii) every ρ ∈ �(z, (zn)n≥1) is a semi-infinite geodesic
with asymptotic orientation eiα . Under (1.1), we then have P(�1) = 1.

Proof. Let T be the tree with vertex set
⋃
n≥1 ρ(z, zn) and oriented edges (u, v) ∈ De

(in the Delaunay triangulation) such that ρ(z,u) ⊆ ρ(z, v). Note that T is an infinite tree.
Since every vertex in the Delaunay triangulation has finite degree, the same is true of the vertices
of T . Therefore, by a standard compactness argument,�(z, (zn)n≥1) 	= ∅. To show that every
ρ ∈ �((zn)n≥1) has the asymptotic orientation eiα , consider the set D ⊆ S1 defined in the
proof of Theorem 1.1. By Proposition 4.1 and Proposition 4.2, for all β ∈ [0, 2π) such that
eiβ ∈ D there almost surely exists a unique semi-infinite geodesic that starts at v(z) and has
asymptotic orientation eiβ , which we denote by ρz(β). Now, let β1, β2 ∈ [0, 2π) be such that
eiβ1 , eiβ2 ∈ D. Assume further that, by following the counterclockwise orientation of S1, the
unit vector eiα lies between the unit vectors eiβ1 and eiβ2 . Note that the paths ρz(β1) and ρz(β2)

bifurcate at some point v and have no further points in common. On the other hand, (zn)n≥0
has the asymptotic orientation eiα . Therefore, for large enough k, ρ(z, zk) should lie between
ρz(β1) and ρz(β2), and, thus, the same is true for any limit ρ. Since D is dense in S1, it follows
that ρ has the asymptotic orientation eiα .

Proof of Theorem 1.3. Consider the intersection between�1 (the event of path convergence
(see Lemma 4.3)) and�4(α) (the event of coalescence and uniqueness of semi-infinite geodesics
(see Proposition 4.3)). On this event, if (zn)n≥1 has the asymptotic orientation eiα , then
limn→∞ ρ(x, zn) = ρx(α). Together with coalescence, this implies that for x, y ∈ R2 there
exist c ≡ c(x, y, α) ∈ Dv and n0 > 0 such that

ρ(x, zn) = ρ(x, c) ∪ ρ(c, zn) and ρ(y, zn) = ρ(y, c) ∪ ρ(c, zn)
for all n ≥ n0, which implies that

T (x, zn)− T (y, zn) = T (x, c)− T (y, c)

for all n ≥ n0.
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Proof of Theorem 1.4. Let Hα
r be the hyperplane that passes through ar := areiα and r
e1,

where ar = r/ cosα. Let xr be the crossing point of the linear interpolation of ρ0(α) and Hα
r

of maximal distance from ar . We claim that

−T (r
e1, 0) ≤ Hα(r
e1, 0) ≤ T (r
e1, xr )− T (xr , 0). (4.17)

The first inequality in (4.17) follows directly from the triangle inequality for T , since
Hα(r
e1, 0) = T (r
e1, cr ) − T (0, cr ) (as in the proof of Theorem 1.3). To prove the second
inequality, notice that if xr 	∈ ρ(0, cr ) then cr ∈ ρ(0, xr ), which implies that cr ∈ ρ(r
e1, xr ).
Thus,

Hα(r
e1, 0) = T (r
e1, cr )− T (0, cr ) = T (r
e1, xr )− T (xr , 0).

If xr ∈ ρ(0, cr ) then
T (0, cr ) = T (0, xr )+ T (xr , cr ).

Consequently,

Hα(r
e1, 0) = T (r
e1, cr )− T (0, cr ) = T (r
e1, cr )− T (cr , xr )− T (0, xr ). (4.18)

Since (again from the triangle inequality)

T (r
e1, cr )− T (cr , xr ) ≤ T (r
e1, xr ),

(4.18) yields (4.17).
Now,

T (r
e1, xr )− T (xr , 0) = (T (r
e1, xr )− µ|r
e1 − ar |)+ (µ|ar | − T (xr , 0))

+ (µ|r
e1 − ar | − µ|ar |)
=: (I1(r))+ (I2(r))+ (I3(r)).

According to Remark 4.1, if we choose ξ ∈ ( 3
4 , 1) then, for some constant c > 0, |xr−ar | ≤ crξ

almost surely for sufficiently large r . On the other hand, by the triangle inequality,

|T (xr , r
e1)− T (ar , r
e1)| ≤ T (xr , ar ),

|T (xr , 0)− T (ar , 0)| ≤ T (xr , ar ).

Thus,

lim sup
r→∞

|I1(r)|
r

≤ lim sup
r→∞

|T (r
e1, ar )− µ|r
e1 − ar ||
r

+ lim sup
r→∞

max|z−ar |≤crξ {T (ar , z)}
r

and

lim sup
r→∞

|I2(r)|
r

≤ lim sup
r→∞

|T (0, ar )− µ|ar ||
r

+ lim sup
r→∞

max|z−ar |≤crξ {T (ar , z)}
r

.
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Combining Lemma 4.1 with translation invariance, we find that, for all ε > 0,
∑
r≥1

P(|T (r
e1, ar )− µ|r
e1 − ar || ≥ εr) < ∞,

∑
r≥1

P(|T (0, ar )− µ|ar || ≥ εr) < ∞.

Therefore, by the Borel–Cantelli lemma,

lim sup
r→∞

|T (r
e1, ar )− µ|r
e1 − ar ||
r

= 0,

lim sup
r→∞

|T (0, ar )− µ|ar ||
r

= 0.

In Lemma 4.3 of [17] it was proved that, for some constants c0, x0 > 0, if x > x0 then

P(T (0, z) > x|z|) ≤ e−c0x|z|.

By noting that, with high probability, the number of vertices belonging to a ball of radius crξ

is of order r2ξ , we find that, for all ε > 0,
∑
r≥1

P
(

max
|z|≤crξ

{T (0, z)} > εr
)
< ∞.

Thus, together with the Borel–Cantelli lemma (and translation invariance), this yields

lim sup
r→∞

max|z−ar |≤crξ {T (ar , z)}
r

= 0.

Consequently,

lim sup
r→∞

|I1(r)|
r

= lim sup
r

|I2(r)|
r

= 0.

Since

lim
r→∞

I3(r)

r
= µ

sin α − 1

cosα
= −µ cosα

1 + sin α
,

we finally obtain

lim
r→∞

T (r
e1, xr )− T (xr , 0)
r

= −µ cosα

1 + sin α
.

Together with (4.17), this yields Theorem 1.4.

4.4. Competition versus coalescence

In this section we give a sketch of the proof of the statements in Remark 1.1. Let ϕ :=
(z1, z2, . . . ) be a branch of the competition interface. This branch thus marks the bound-
ary between two different species, say j1 and j2. Assume further that if one moves along
zn, zn+1, . . . , then on the right-hand side we always see species j1, while on the left-hand side
we see species j2. By Theorem 1.1, this branch has the direction eiθ for some θ ≡ θ(ϕ).
For l = 1, 2, let (vln)n≥1 be the sequence of vertices in Dv ∩ Bxjl

such that the tile Cvln
has

an edge boundary that belongs to ϕ. Thus, vln has the asymptotic orientation eiθ(ϕ) (since, by
Lemma 3.4, the distance between vln and the corresponding branch of the competition interface
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is small in comparison with |vn|). Together with Lemma 4.3, this implies that there exist a
subsequence (nm)m≥1 and a semi-infinite geodesic ρl , with asymptotic orientation θ(ϕ), such
that ρ(xl , vlnm) → ρl . Since ρ(xl , vln) is a geodesic connecting two points in Bxjl

(∞), it
follows that ρ(xl , vln) ⊆ Bxjl

(∞) and, thus, that ρl ⊆ Bxjl
(∞).

Consequently, we have two geodesics, ρ1 and ρ2, that have the same orientation, eiθ(ϕ), but
do not coalesce (because ρi ⊆ Bxjl

for l = 1, 2). By Proposition 4.3, this occurs with zero
probability, which proves the first statement of Remark 1.1.

By Remark 4.1, for all ξ ∈ ( 3
4 , 1), ρ1 and ρ2 are (1 − ξ)-straight about their common

asymptotic orientation, eiθ(ϕ). Since ϕ is confined between ρ1 and ρ2, this also implies that ϕ
is (1 − ξ)-straight about the asymptotic orientation eiθ(ϕ), which proves the second statement
of Remark 1.1.
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