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Abstract If T £ L{X) is such that T" is a scalar-type prespectral operator, then ReT" and ImT'
are both dual operators. It is shown that that the possession of a functional calculus for the continuous
functions on the spectrum of T is equivalent to T" being scalar-type prespectral of class X, thus answering
a question of Berkson and Gillespie.

Keywords: hermitian; normal; scalar type; prespectral; operator; functional calculus

AMS 1991 Mathematics subject classification: Primary 47B15; 47B40

Introduction

The class of scalar-type spectral operators on a Banach space was introduced by Dun-
ford [8] as a natural analogue of the normal operators on Hilbert space. They can be
characterized by their possession of a weakly compact functional calculus for contin-
uous functions on the spectrum [9, Corollary 1] or [11, Theorem]. The more general
class of scalar-type prepectral operators of class F was introduced by Berkson and Dow-
son [2]. They proved that if T e L(X) admits a C(a(T)) functional calculus, then T is
scalar-type prespectral of class X. The converse implication is immediate if X is reflex-
ive [6, Theorem 6.17] or a(T) C R [6, Theorem 16.15 and the proof of Theorem 16.16].
The question raised by Berkson and Gillespie [3, Remark 1] has remained open for some
time. The problem amounts to finding a decomposition for T with commuting real and
imaginary parts, given that T" has such a decomposition. We show that this can always
be done, developing the properties of (strongly) normal (equivalent) operators for this
purpose.

1. Normal-equivalent operators

Throughout X will be a Banach space endowed with its norm || • ||. We write X' for its
norm dual and L(X), L(X') for the Banach algebra of all bounded linear operators on
X and X' respectively. When T 6 L(X) we denote its dual (or adjoint) by T'.
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Definition 1.1. An operator T £ L(X) is hermitian if

||exp(iiT)|| = l ( t eR) .

An operator T G L(X) is hermitian if and only if T" e L(X') is hermitian.

Definition 1.2. An operator T e £pO is normal if T = R + i J, where i? and J are
commuting hermitian operators.

We shall need the following Fuglede-type result [7, Lemma 3], and generalizations of
it.

Lemma 1.3. IfT = R+iJ, where RJ = JR and {R, J} is hermitian, and if A G L(X)
is such that AT = TA, then AR = RA, AJ = J A.

Remark 1.4. If T € L(X) is normal, then the operators R and J are determined
uniquely by T, and we write

T* = R- \J.

Uniqueness follows from Lemma 1.3.

If T £ L(X) is normal then T" 6 L(X') is normal. The converse of this was proved by
Behrends in [1].

Definition 1.5. An operator R e L(X) is hermitian-equivalent if and only if there
exists an equivalent norm on X with respect to which R is hermitian.

Equivalently, R is hermitian-equivalent if and only if there is an M(> 1) such that

||exp(iii?)|| ^ M (teR).

If this condition is satisfied, then

\x\ = sup{| |exp(itR)x\\ : t s M }

defines a norm on X, equivalent to || • ||, with respect to which R is hermitian.
More generally, a set A C L(X) is hermitian-equivalent if and only if there is an

equivalent norm on X with respect to which every operator in A is hermitian. It is
known [6, Theorem 4.17] that when A is a commutative subset of L(X), then A is
hermitian-equivalent if and only if each operator in the closed real linear span of A is
hermitian-equivalent; and, most importantly for our study, that any bounded Boolean
algebra of projections on X is hermitian-equivalent [6, Theorem 5.4].

Lemma 1.6. An operator R 6 L(X) is hermitian-equivalent if and only if R' € L(X')
is hermitian-equivalent.

Proof. supt6E || exp(iii?)|| = supteK || exp(itR')\\. D

The following result is an immediate consequence of Lemma 1.3.

Lemma 1.7. IfT = R + i J where RJ = JR and {R, J} is hermitian-equivalent, and
if A e L{X) is such that AT = TA, then AR = RA, AJ = J A.
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Definition 1.8. An operator T £ L(X) is normal-equivalent if T = R + i J, where
RJ = JR and {R, J} is hermitian-equivalent.

Remark 1.9. The operator T = R + U is normal-equivalent if and only if RJ = JR
and

||exp(isfl + i£J)|| s$ M

for some M and all real s, t.

Lemma 1.10. IfT e L(X) is normal-equivalent then T can be expressed uniquely in
the form R + iJ, where RJ = JR and {R, J} is hermitian-equivalent.

Proof. If T = R + U = Rx + Ui, where RJ = JR, RxJi = J\R\, {R,J} and {Ri, J J
are hermitian-equivalent, then by Lemma 1.7 {R, J, R\, J\} is a commuting hermitian-
equivalent set: by [6, Theorem 4.17] we can renorm X to make them simultaneously
hermitian. Since R — R\ = i(Ji — J) we have

<J(R-R1)=<T(J1-J) = {0}:

by Sinclair's theorem R = Ri, J = J\. •

If T € L(X) is normal-equivalent then T' £ L(X') is normal-equivalent. The converse
also holds. We model our proof on that of Behrends [1]. It depends on Lemma 1.11,
which is essentially due to Behrends [1]: for completeness we include a proof.

In the following lemma we shall make use of the canonical projection on the third dual
of X. If ix : X ->• X" is the canonical injection, then P = ix'{ix)' is a projection on
X'" whose range is ix'(X') and whose kernel is (ixiX))-1. We have the following facts
about ix, ix1, (ix)' and P:

1- (ix)'ix' = (identity)x',

2. Pix, =ix>,

3. (ix)'P = (ix)',

4- ||P|| = 1,

5. (ixx,Py'") = (x, (ix)'Py'") = (x, (ix)'y'") = (iXx,y"') for each x in X and y'" in
X'".

Lemma 1.11. An operator T S L(X') is of the form S' (for some S 6 L(X)) if and
only ifT" commutes with the projection P = ix'(ix)' • X'" ->• X'".

Proof. First note that if 5 € L(X) then

S"ix = ixS.

If now T = S' for some S € L(X) then

T'ix =ixS
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so
(ix)'T" = S'{ixY = T(ix)'

and
PT" = ix,{ix)'T" = iX'S'(ixy = ix,T(ixy.

Next note that
T"ix, = ix,T

from which

so

r>^T>'/ rpll p

Conversely, suppose T"P = PT". If y'" 1 ix(X), that is, Py'" = 0, then

(T'ixx,y'") = (ixx,T"y'")
= {ixx,PT"y'") (by 5 above)
= {ixX,r'Py"')

= 0,

i.e. y'" ± T'ix{X). It follows that T'ix{X) C ix(X) so that

is well-defined: and then T = S'. •

We can now prove the following theorem, which generalizes that of Behrends [1, The-
orem 1].

Theorem 1.12. IfT' 6 L(X') is normal-equivalent then T € L(X) is normal-equiva-
lent.

Proof. If T" e L(X') is normal-equivalent then T" = R + iJ where R, J commute
and || exp(isi? + it J)\\ ^ M for some M and all real s, t. Also T"" = R" + iJ" is normal-
equivalent. By Lemma 1.11 we have T'"P = PT'"; by Lemma 1.7 we get R"P = PR" and
J"P = PJ"; hence, by Lemma 1.11, there are H, K e L(X) such that H' = R,K' = J.
So T = H + \K; now

|| exp(isH + itK)\\ = \\ exp(isE + itJ)|| ^ M

for all real s,t, so T is normal-equivalent (Remark 1.9). D

Definition 1.13. An operator T 6 L(X) is strongly normal if T = R + iJ where
RJ = JR and the set {RmJn : ra, n = 0,1,2,... } is hermitian.
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Remark 1.14. If T 6 L(X) is strongly normal. T = R + i J as above, then the set
{gi (R, J) + ig2{R, J) '• 9\, <72 € Cs(<r(T))} is a commutative C*-algebra under the opera-
tor norm and the natural involution (gi(R, J) + ig2{R, J))* = 9i(R, J) -ig2{R,J), where
C%(o-(T))) is the Banach algebra of continuous real-valued functions in two variables on
a(r)[4,§38].

Definition 1.15. An operator T e L(X) is strongly normal-equivalent if T = R + i J
where RJ = JR and the set {RmJn : TO, n = 0,1,2,... } is hermitian-equivalent.

Remark 1.16. If T e L(X) is strongly normal-equivalent then T" £ L(X') is strongly
normal-equivalent.

The next result is a refinement of Theorem 1.12.

Theorem 1.17. If T" e L(X') is strongly normal-equivalent then T G L(X) is
strongly normal-equivalent.

Proof. Suppose that there exist operators R and J such that T" = R + U and there
is an equivalent norm | • | on X' with respect to which the set

{RmJn :m,n = 0,1,2,...}

is hermitian. Since T" is normal-equivalent, by Theorem 1.12 there exist H, K and such
that T = H + iK where HK = KH and H, K are hermitian-equivalent. The set {RmJn :
TO, n = 0,1,2,... } is hermitian-equivalent. So there is an M(^ 1) such that

||exp(i£.R"V™)|| ^ M (teR, TO,n = 0 ,1 ,2 . . . )

and we have

| |exp(ii i?m/rn) | | = | | exp(WrV") | | < M (t e R, m,n = 0 ,1 ,2 , . . . ) .

If we define

|||x|| | =sup{| |exp(i t / /mi i ' n )x | | :teR, m,n = 0,1,2,...}

then HI • HI is a norm on X, equivalent to the original norm, and for each t S M we have

^ " ) | | | = l (TO,TI = 0 ,1 ,2 , . . . ) .

Therefore with this norm the set {HmKn : TO, n = 0,1,2,... } is hermitian: hence T is
strongly normal-equivalent. •

Note that if T is strongly normal-equivalent then the closed linear span of {RmJn :
m, n = 0,1,2,... } is an hermitian-equivalent set [6, Theorem 4.17]: equivalently,

{f(R,J):feC?MT))}

is hermitian-equivalent. We may therefore introduce yet another norm, 7, on X, with
respect to which T will be strongly normal:

7(x) = sup{|| exp(i/(fl, J))x\\ : / e Cr,

Then j(x) > |||z|||: so |||z'||| < 7(1') for x' 6 X'.
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Questions 1.18.

(a) Do 7 and ||| • ||| coincide?

(b) Does the norm | • | (on X') coincide with either the dual of of 7 or the dual of 111 • 111?

(c) Is I • I (on X') automatically a dual norm? That is, does there exist an equivalent
norm r] on X such that \x'\ = sup{|(a:,x')| : r){x) = 1}?

2. Scalar-type operators

A family F C X' is called total if and only if x € X and (x, y') = 0, for all y' 6 F,
together imply that x = 0. Let E be a cr-algebra of subsets of an arbitrary set fi. and
let F be a total subset of X'. A spectral measure of class (E, F) on X is a uniformly
bounded Boolean algebra homomorphism from E into the Boolean algebra of projections
on X such that for all x 6 X and y' e F, (E(-)x,y') is countably additive on E. See [6]
for a fuller account.

In the following definition Ep denotes the cr-algebra of Borel subsets of the complex
plane.

Definition 2.1. An operator S in L(X) is called a prespectral operator of class F if
there is a spectral measure E(-) of class (Ep, F) on X such that for all 8 € Ep

1. SE{6) = E(S)S (S e Ep)

2. a(S\E(5)X)C8 {5 € Ep).

The spectral measure E(-) is called a resolution of the identity of class F for 5. If in
addition, S = Ja/^ XE(d\), then S is said to be a scalar-type operator of class F.

Definition 2.2. An operator S e L(X) is a spectral operator if there is a spectral
measure E(-) denned on Ep with values in L(X) such that

1. E(-) is countably additive on Ep in the strong operator topology,

2. SE(T)=E(T)S (T€EP),

3. a(S I E{T)X) CT ( r G Ep).

Remark 2.3. The operator 5 S L(X) is spectral if and only if it is prespectral of
class X' [6, Theorem 6.5].

The next result extends that of Berkson and Gillespie [3, Theorem 8] and answers the
question of [3, Remark 1 on Theorem 9] affirmatively.

Theorem 2.4. Let S S L(X). Then the following conditions are equivalent:

(1) S" G L(X') is a scalar-type of class X,

(2) S G L(X) is strongly normal-equivalent,
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(3) there exist a compact subset Q of C and a norm continuous representation O :
C{fi) M- X such that 0(z >-> z) = S, 9{z t-> 1) = / .

Proof. 1 => 2. Suppose that S' € L(X') is scalar-type of class X with spectral
measure E(-). There is a norm | • | on X', equivalent to the original norm || • ||, for
which the values of E(-) are simultaneously hermitian [6, Theorem 5.4]. Then, putting
R = / a ( s ) Re \E(d\) and J = /C T ( 5 ) ImAS(dA), we see that S" = R + iJ, RJ = Ji?
and {RmJn : m, n = 0,1,2,3,... } is | • |-hermitian [6, proof of Theorem 5.40]: so 5 ' is
strongly normal-equivalent. Hence, by Theorem 1.17, S is strongly normal-equivalent.

2 =$• 3. If | • | is a norm equivalent to the original norm on X such that 5 = H -+- \K,
where HK = KH and

{HmKn :m,n = 0,1,2,3,...}

is | • |-hermitian, then, using Sinclair's theorem as in the proof of [6, Theorem 5.41], we
have

\p(H,K)\ ^2sup{|p(ReA,ImA)| : A G cr(S)}

for all polynomials p(x, y) with complex coefficients. The Stone-Weierstrass theorem
ensures the existence of the functional calculus 0 as claimed.

3 =$• 1. This is immediate from [6, Theorem 5.21]. D

The following results are immediate corollaries of Theorem 2.4, and Theorems 3.1 and
3.2 of [5]; see also [10].

Corollary 2.5. Let X be a Banach space which does not contain a subspace isomor-
phic to Co. Then S € L(X) is scalar-type spectral if and only ifS satisfies any (and hence
all) of the condition in Theorem 2.4.

The converse of Corollary 2.5 is true in any Banach space (see [6, Theorem 5.22]).

Corollary 2.6. Let X be a Banach space which contains a subspace isomorphic to
CQ. Then there exists an operator which satisfies the three condition of Theorem 2.5, but
which is not scalar-type spectral.
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