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Abstract If T € L(X) is such that T’ is a scalar-type prespectral operator, then ReT’ and ImT"
are both dual operators. It is shown that that the possession of a functional calculus for the continuous
functions on the spectrum of T is equivalent to T’ being scalar-type prespectral of class X, thus answering
a question of Berkson and Gillespie.
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Introduction

The class of scalar-type spectral operators on a Banach space was introduced by Dun-
ford (8] as a natural analogue of the normal operators on Hilbert space. They can be
characterized by their possession of a weakly compact functional calculus for contin-
uous functions on the spectrum [9, Corollary 1] or [11, Theorem]. The more general
class of scalar-type prepectral operators of class I" was introduced by Berkson and Dow-
son [2]. They proved that if T € L(X) admits a C(o(T)) functional calculus, then T is
scalar-type prespectral of class X. The converse implication is immediate if X is reflex-
ive [6, Theorem 6.17] or ¢(T) C R [6, Theorem 16.15 and the proof of Theorem 16.16].
The question raised by Berkson and Gillespie [3, Remark 1] has remained open for some
time. The problem amounts to finding a décomposition for T' with commuting real and
imaginary parts, given that T’ has such a decomposition. We show that this can always
be done, developing the properties of (strongly) normal (equivalent) operators for this
purpose.

1. Normal-equivalent operators

Throughout X will be a Banach space endowed with its norm || - ||. We write X’ for its
norm dual and L(X), L(X') for the Banach algebra of all bounded linear operators on
X and X' respectively. When T € L(X) we denote its dual (or adjoint) by T”.
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Definition 1.1. An operator T € L(X) is hermitian if
| exp(itT)|| =1 (t € R).

An operator T' € L(X) is hermitian if and only if 77 € L(X’) is hermitian.

Definition 1.2. An operator T' € L(X) is normal if T = R + iJ, where R and J are
commuting hermitian operators.

We shall need the following Fuglede-type result [7, Lemma 3|, and generalizations of
it.

Lemma 1.3. IfT = R+iJ, where RJ = JR and {R, J} is hermitian, and if A € L(X)
is such that AT =TA, then AR = RA, AJ = JA.

Remark 1.4. If T € L(X) is normal, then the operators R and J are determined
uniquely by T, and we write
T*=R-1iJ.
Uniqueness follows from Lemma 1.3.

If T e L(X) is normal then 77 € L(X’) is normal. The converse of this was proved by
Behrends in [1].

Definition 1.5. An operator R € L(X) is hermitian-equivalent if and only if there
exists an equivalent norm on X with respect to which R is hermitian.

Equivalently, R is hermitian-equivalent if and only if there is an M (> 1) such that
|lexp(itR)|| < M (t e R).
If this condition is satisfied, then
2] = sup{]| exp(itR)z] : ¢ € R}

defines a norm on X, equivalent to || - ||, with respect to which R is hermitian.

More generally, a set A C L(X) is hermitian-equivalent if and only if there is an
equivalent norm on X with respect to which every operator in A is hermitian. It is
known [6, Theorem 4.17] that when A is a commutative subset of L(X), then A is
hermitian-equivalent if and only if each operator in the closed real linear span of A is
hermitian-equivalent; and, most importantly for our study, that any bounded Boolean
algebra of projections on X is hermitian-equivalent [6, Theorem 5.4].

Lemma 1.6. An operator R € L(X) is hermitian-equivalent if and only if R’ € L(X')
is hermitian-equivalent.

Proof. sup;cg || exp(itR)|| = supycg | exp(itR)]- O

The following result is an immediate consequence of Lemma 1.3.

Lemma 1.7. If T = R+ iJ where RJ = JR and {R, J} is hermitian-equivalent, and
if A € L(X) is such that AT = TA, then AR = RA, AJ = JA.
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Definition 1.8. An operator T € L(X) is normal-equivalent if T = R + iJ, where
RJ = JR and {R, J} is hermitian-equivalent.

Remark 1.9. The operator T = R + iJ is normal-equivalent if and only if RJ = JR
and
| exp(isR +itJ)|| < M

for some M and all real s,t.

Lemma 1.10. If T € L(X) is normal-equivalent then T can be expressed uniquely in
the form R + iJ, where RJ = JR and {R, J} is hermitian-equivalent.

Proof. f T = R+iJ = Ry +iJ;, where RJ = JR, RyJ; = J1 Ry, {R,J} and {R;, J1}
are hermitian-equivalent, then by Lemma 1.7 {R, J, Ry, 1} is a commuting hermitian-
equivalent set: by [6, Theorem 4.17] we can renorm X to make them simultaneously
hermitian. Since R — Ry = i(J; — J) we have

O'(R— Rl) = O'(Jl - J) = {0} :
by Sinclair’s theorem R = Ry, J = J;. 0

If T € L(X) is normal-equivalent then T” € L(X’) is normal-equivalent. The converse
also holds. We model our proof on that of Behrends [1]. It depends on Lemma 1.11,
which is essentially due to Behrends [1]: for completeness we include a proof.

In the following lemma we shall make use of the canonical projection on the third dual
of X. If ix : X — X" is the canonical injection, then P = ix/(ix)’ is a projection on
X" whose range is ix/(X’) and whose kernel is (ix(X))*. We have the following facts
about ix, ix/, (ix) and P:

1. (ix)'ixs = (identity)x,
Piy =ix,

(ix)'P = (ix)',

1Pl =1,

AN

(ixz, Py""y = (z, (ix) Py"") = (z,(ix)'y") = (ixz,y") for each z in X and y" in
XI/I‘

Lemma 1.11. An operator T € L(X') is of the form S’ (for some S € L(X)) if and
only if T" commutes with the projection P =ix.(ix) : X" — X".

Proof. First note that if S € L(X) then
S"ix =ix8S.
If now T = S’ for some S € L(X) then

Tix =ix8S
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so
(ix)T" =S(ix) =T(ix)

and
PT" =ix/(ix)T" =ix/S'(ix) =ixT(ix)'

Next note that
T”’I:XI = iXIT

from which
T”P = T”’ix/(ix)’ = 'ixlT(ix)l .

S0
PT" =T"P.

Conversely, suppose TP = PT". If 4" L ix(X), that is, Py = 0, then
<T"wa, y/1/> — (’Lxx, T//y///)
= (ixz, PT"y"") (by 5 above)
— <'LX$, TI/PyI/I)
= 0,

ie. ¥ L T'ix(X). It follows that T"ix (X) C ix(X) so that
S= (’ix)_lT/ix X2 X
is well-defined: and then T'= §’. O

We can now prove the following theorem, which generalizes that of Behrends [1, The-
orem 1].

Theorem 1.12. If T’ € L(X') is normal-equivalent then T € L(X) is normal-equiva-
lent.

Proof. If T € L(X') is normal-equivalent then T/ = R + iJ where R, J commute
and || exp(isR + itJ)|| < M for some M and all real s,¢. Also 7"’ = R +iJ” is normal-
equivalent. By Lemma 1.11 we have T"'P = PT""; by Lemma 1.7 we get R”P = PR" and
J"P = PJ": hence, by Lemma 1.11, there are H, K € L(X) such that H' = R, K’ = J.
SoT = H +iK; now

||exp(isH + itK)| = || exp(isR + itJ)|| € M
for all real s,t, so T is normal-equivalent (Remark 1.9). O

Definition 1.13. An operator T € L(X) is strongly normal if T = R + iJ where
RJ = JR and the set {R™J™ : m,n =0,1,2,...} is hermitian.
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Remark 1.14. If T € L(X) is strongly normal, T = R + iJ as above, then the set
{91(R,J)+1g2(R, J) : 91,92 € Cz{0(T))} is a commutative C*-algebra under the opera-
tor norm and the natural involution (g1 (R, J) +ig2(R, J))* = ¢1(R, J) —ig2(R, J), where
Cz(c(T))) is the Banach algebra of continuous real-valued functions in two variables on
a(T) (4, §38].

Definition 1.15. An operator T € L(X) is strongly normal-equivalent if T = R +iJ
where RJ = JR and the set {R™J" : m,n=0,1,2,...} is hermitian-equivalent.

Remark 1.16. If T € L(X) is strongly normal-equivalent then 7V € L{X") is strongly
normal-equivalent.

The next result is a refinement of Theorem 1.12.

Theorem 1.17. If T € L(X') is strongly normal-equivalent then T € L(X) is
strongly normal-equivalent.

Proof. Suppose that there exist operators R and J such that 7' = R + iJ and there
is an equivalent norm | - | on X’ with respect to which the set

{R™J" :m,n=0,1,2,...}

is hermitian. Since T” is normal-equivalent, by Theorem 1.12 there exist H, K and such
that T = H +iK where HK = KH and H, K are hermitian-equivalent. The set {R™J" :
m,n=0,1,2,...} is hermitian-equivalent. So there is an M (> 1) such that

|exp(itR™J™)|| < M (teR, mn=0,1,2...)
and we have
|lexp(itH™K™)|| = || exp(itR™J?)|| < M (teR, myn=0,1,2,...).
If we define
llz]|| = sup{|| exp(itH™K™)z|| : t € R, m,n=0,1,2,...}
then ||| - ||| is a norm on X, equivalent to the original norm, and for each ¢ € R we have
[||exp(itH™ K™)||| = 1 (m,n=0,1,2,...).

Therefore with this norm the set {H™K"™ : m,n = 0,1,2,...} is hermitian: hence T is
strongly normal-equivalent. O

Note that if T is strongly normal-equivalent then the closed linear span of {R™J™ :
m,n =0,1,2,...} is an hermitian-equivalent set [6, Theorem 4.17]: equivalently,

{F(R,J): f € Cale(T))}

is hermitian-equivalent. We may therefore introduce yet another norm, v, on X, with
respect to which T will be strongly normal:

v(z) = sup{||exp(if (R, J))zl| : f € Cz(o(T))}-
Then v(z) 2 |ljz|||: so |||z’||| € v(z’) for 2’ € X".
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Questions 1.18.
(a) Do v and ||| - ||| coincide?
(b) Does the norm |-| (on X’) coincide with either the dual of of v or the dual of ||| |||?
(c) Is | - | (on X’) automatically a dual norm? That is, does there exist an equivalent
norm 7 on X such that |2’| = sup{|[(z,z)| : n(z) = 1}?
2. Scalar-type operators

A family I' C X’ is called total if and only if z € X and {z,y’) = 0, for all ¥’ € I,
together imply that £ = 0. Let X be a o-algebra of subsets of an arbitrary set (2. and
let I" be a total subset of X’. A spectral measure of class (3, I') on X is a uniformly
bounded Boolean algebra homomorphism from X into the Boolean algebra of projections
on X such that for all z € X and ¢’ € I', (E(-)z,y’) is countably additive on X. See [6]
for a fuller account.

In the following definition X, denotes the g-algebra of Borel subsets of the complex
plane.

Definition 2.1. An operator S in L(X) is called a prespectral operator of class I" if
there is a spectral measure E(-) of class (X£,,I") on X such that for all § € &,

1. SE(6) = E(6)S (€ Z,)
2. (S| E()X)C3 (b€,

The spectral measure E(-) is called a resolution of the identity of class I" for S. If in
addition, S = fa( s) AE(dA), then S is said to be a scalar-type operator of class I.

Definition 2.2. An operator § € L(X) is a spectral operator if there is a spectral
measure E(-) defined on X, with values in L(X) such that

1. E(-) is countably additive on X, in the strong operator topology,
2. SE(r)=E(1)S (1€ Xp),
3. o(S|E(MNX)CT (1eXy).

Remark 2.3. The operator S € L(X) is spectral if and only if it is prespectral of
class X’ [6, Theorem 6.5].

The next result extends that of Berkson and Gillespie [3, Theorem 8] and answers the
question of [3, Remark 1 on Theorem 9] affirmatively.

Theorem 2.4. Let S € L(X). Then the following conditions are equivalent:
(1) S’ € L(X’) is a scalar-type of class X,

(2) S € L(X) is strongly normal-equivalent,
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(3) there exist a compact subset 2 of C and a norm continuous representation © :
C(2) — X such that O(z— 2)=S,0(z— 1) =1I.

Proof. 1 = 2. Suppose that S’ € L(X’) is scalar-type of class X with spectral
measure F(-). There is a norm |- | on X', equivalent to the original norm || - ||, for
which the values of E(-) are simultaneously hermitian [6, Theorem 5.4]. Then, putting
R = fa(S) ReAE(d)) and J = fa(s) Im AF(dA), we see that " = R+ 1iJ, RJ = JR
and {R™J" : m,n =0,1,2,3,...} is | - |-hermitian [6, proof of Theorem 5.40): so S’ is
strongly normal-equivalent. Hence, by Theorem 1.17, S is strongly normal-equivalent.

2 = 3. If | - | is a norm equivalent to the original norm on X such that S = H + iK,
where HK = KH and

{H™K" :m,n=0,1,2,3,...}

is | - |-hermitian, then, using Sinclair’s theorem as in the proof of {6, Theorem 5.41], we
have
Ip(H, K)| < 2sup{[p(Re A, Im A)| : A € o(S)}

for all polynomials p(z,y) with complex coefficients. The Stone—Weierstrass theorem
ensures the existence of the functional calculus © as claimed.
3 = 1. This is immediate from [6, Theorem 5.21]. a

The following results are immediate corollaries of Theorem 2.4, and Theorems 3.1 and
3.2 of [5]; see also [10].

Corollary 2.5. Let X be a Banach space which does not contain a subspace isomor-
phic to cg. Then S € L(X) is scalar-type spectral if and only if S satisfies any (and hence
all) of the condition in Theorem 2.4.

The converse of Corollary 2.5 is true in any Banach space (see [6, Theorem 5.22]).

Corollary 2.6. Let X be a Banach space which contains a subspace isomorphic to
¢o- Then there exists an operator which satisfies the three condition of Theorem 2.5, but
which is not scalar-type spectral.
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