Imaging and spectroscopy of the LMC He II nebula N 44C and its ionizing star

Vanessa C. Galarza

New Mexico State University, Las Cruces, NM 88003, USA

Donald R. Garnett

University of Arizona, Tucson, AZ 85721, USA

You-Hua Chu

University of Illinois, Urbana, IL 61801, USA

Abstract. We present results from new HST imaging and spectroscopy of the peculiar Large Magellanic Cloud H II region N 44C and its ionizing star. While this nebula exhibits strong He II recombination emission, the source of the He⁺ ionizing photons has not been found. The UV spectrum of the ionizing star suggests an approximate spectral class of O7–O8; the UV Si IV, He II, and N IV features do not show P-Cygni profiles, indicating that the ionizing star is not a supergiant. No companion star has yet been detected. Ground-based and HST optical spectroscopy of the ionized gas shows that the nebular abundances of C, N, O and He are not anomalous relative to other LMC H II regions, suggesting that no previous WR/SN companion has disappeared. Echelle spectroscopy has also ruled out the presence of high velocity shocked gas. Deep ROSAT imaging shows no X-ray point source in this location. The "fossil X-ray binary" hypothesis of Pakull & Motch (1989) remains the best explanation for the ionization of this nebula; however, convincing evidence for this hypothesis remains elusive.

1. Introduction

A handful of H II regions with strong He II recombination emission have been discovered over the past decade (Garnett et al. 1991). The He II emission is peculiar because of the high photon energies ($h\nu \geq 54\,\mathrm{eV}$) required to further ionize He⁺. NLTE stellar atmosphere models predict that a star capable of ionizing helium to this state must have $T_{\rm eff} \gtrsim 60\,000\,\mathrm{K}$. Most of these H II regions discovered to have their own "He II regions" appear to be associated with Wolf-Rayet stars or massive X-ray binary systems. However, Stasińska et al. (1986) found that the central engine ionizing N 44C in the LMC appears to be a normal O star.

A number of theories have been proposed to solve the problem of N 44C. The He II observed in the optical spectrum of the nebula may be accounted for by a $T_{\rm eff} \simeq 50\,000{\rm K}$ O-type supergiant near the Eddington-limit. Radiative shocks have also been proposed as the source of the high ionization. Pakull & Motch (1989) have suggested that the high degree of ionization found in this

nebula could be caused by a fossil X-ray binary which has turned off within the last century.

2. Observational data

Narrow-band (44Å) images of N 44C in H β , [OIII], He II and continuum were obtained with the CTIO 0.9m in 1991. We also obtained HST-WFPC2 images in F502N, F656N and F547N. Optical long-slit spectra of the N 44C nebula were taken using the RC spectrograph on the CTIO 4.0m telescope and with the HST-Fos. A UV spectrum of "Star 2", the only apparent ionizing source in N 44C, was obtained with HST-GHRS. An echellogram and ROSAT X-ray image were provided by Magnier et al. (1996).

3. Results

- N 44C is an LMC H II region with its own 3 pc diameter He II region; the source of the He⁺² ionizing photons is unknown.
- The central star within N44C is classified as an O7-O8 main sequence star based on the absence of SiIV and CIV P-Cygni features in its UV spectrum.
- Analysis of CTIO and HST-FOS spectra reveal a chemical composition similar to that typically found in the LMC; this rules out the hypothesis that a previous WR/SN has produced the high level of ionization.
- Echelle spectroscopy rules out the existence of high velocity gas, excluding shock ionization as the source for the He II emission.
- ROSAT X-ray imaging shows no point source in this region; no X-ray binary system is detected to low limits. This does not exclude the possibility that a "fossil" X-ray binary system is responsible for the high ionization level.
- Analysis of the ionic ratios found in the gas and further analysis of the stellar spectrum, will aid in the modelling of the central ionizing source.

References

Garnett, D.R., Kennicutt, R.C. Jr., Chu, Y.-H., Skillman, E.D. 1991, ApJ 373, 458 Magnier, E.A., Chu, Y.-H., Points, S.D., Hwang, U., Smith, R.C. 1996, ApJ 464, 829 Pakull, M.W., Motch, C. 1989, Nature 337, 337 Stasińska, G., Testor, J.G., Heydari-Malayeri, M. 1986, A&A 170, L4