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Abstract. In this paper, we will introduce the ‘grid method’ to prove that the extreme case
of oscillation occurs for the averages obtained by sampling a flow along the sequence of
times of the form {nα : n ∈ N}, where α is a positive non-integer rational number. Such
behavior of a sequence is known as the strong sweeping-out property. By using the same
method, we will give an example of a general class of sequences which satisfy the strong
sweeping-out property. This class of sequences may be useful to solve a long-standing
open problem: for a given irrational α, whether the sequence (nα) is bad for pointwise
ergodic theorem in L2 or not. In the process of proving this result, we will also prove a
continuous version of the Conze principle.
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1. Introduction and main results
Let (T t )t∈R be a measure-preserving flow on a Lebesgue probability space (X, �, μ).
Birkhoff’s pointwise ergodic theorem asserts that for any function f ∈ L1(X), the Cesàro
averages (1/N)

∑
n∈[N] f (T nx) converge for almost every x, where [N] = {1, 2, . . . , N}.

This classical result motivated others to study the ergodic averages along a sequence
of positive real numbers (sn), that is, (1/N)

∑
n∈[N] f (T snx). In this paper, we will

be concerned with the behavior of ergodic averages along (nα) where α is a positive
non-integer rational number. It was proved by Bergelson, Boshernitzan and Bourgain
[BBB94, Theorem B] that for any fixed positive non-integer rational α, in every aperiodic
system (X, �, μ, T t ), there exists f ∈ L∞ such that the ergodic averages along (nα),
that is, (1/N)

∑
n∈[N] f (T nα

x) fail to converge almost everywhere (a.e.). Their proof is
based on Bourgain’s entropy method. Later, the result was improved and the proof was
simplified in [JW94, Example 2.8]: it was proved that if the averages are taken along
(na/b), where a, b ∈ N and b ≥ 2, then for any given ε > 0, there exists a set E ∈ � such
that μ(E) < ε and, for almost every x, lim supN→∞(1/N)

∑
n∈[N] 1E(T snx) ≥ δ. The

constant δ depends on b and is explicitly given by 1/ζ(b), where ζ(.) is the Riemann
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zeta function. For all b ≥ 2, δ lies in (0, 1). In this paper, we will prove a general result,
Proposition 3.8, as a consequence of which we will prove the following theorem.

THEOREM 1.1. Let α be a fixed non-integer rational number. Then for every
aperiodic dynamical system (X, �, μ, T t ) and every ε > 0, there exists a set E ∈ �

such that μ(E) < ε, and lim supN→∞(1/N)
∑

n∈[N] 1E(T nα
x) = 1 a.e. and

lim infN→∞(1/N)
∑

n∈[N] 1E(T nα
x) = 0 a.e.

This result tells us that the extreme case of oscillation occurs for the averages along the
sequence (nα), when α is a non-integer rational number.

Definition 1.2. Let 1 ≤ p ≤ ∞. A sequence (sn) of positive real numbers is said to
be pointwise good for Lp if for every system (X, �, μ, T t ) and every f ∈ Lp(X),
limN→∞(1/N)

∑
n∈[N] f (T snx) exists for almost every x ∈ X.

Definition 1.3. A sequence (sn) of positive real numbers is said to be pointwise bad in
Lp if for every aperiodic system (X, �, μ, T t ), there is an element f ∈ Lp(X) such that
limN→∞(1/N)

∑
n∈[N] f (T snx) does not exist for almost every x ∈ X.

The behavior of ergodic averages along a subsequence of (n) has a rich history. First
breakthrough result in this direction was due to Krengel [Kre71] who showed that there
exists a sequence of positive integers which is pointwise bad for L∞. A few years later,
Bellow proved in [Bel83] that any lacunary sequence, for example (sn) = (2n), is pointwise
bad for Lp when p ∈ [1, ∞). At the other extreme, if a sequence grows slower than any
positive power of n, for example (sn) = ((log n)c), c > 0, then it is also pointwise bad
for L∞ [JW94, Theorem 2.16]. Bellow and Reinhold-Larsson proved in [Bel89, Rei94]
that whether a sequence will be pointwise good for Lp or not depends on the value of p.
More precisely, they showed that for any given 1 ≤ p < q ≤ ∞, there are sequences (sn)

which are pointwise good for Lq but pointwise bad for Lp (see also [Par11] for finer
results in terms of Orlicz spaces). There are many instances where the behavior of the
averages cannot be determined by either the growth rate of the sequence (sn) or the value
of p; instead one has to analyze the intrinsic arithmetic properties of the sequence (sn).
One such curious example is (nα). A celebrated result of Bourgain [Bou88, Theorem 2]
says that the sequence (nα) is pointwise good for L2 when α is a positive integer. This
result is in a strong contrast to [BBB94, Theorem B]. On the other hand, �(nα + log n)�
is known to be pointwise bad for L2 when α is a positive integer [Bos05, Theorem C]. It
is interesting to compare Theorem 1.1 with [Bos05, Theorem B] which says that �n3/2� is
pointwise good for L2. In the same paper, one can find various interesting results about
the behavior of averages along sequences which are modeled on functions from the Hardy
field. After Bourgain’s result [Bou88, Theorem 2] was published, in a series of papers
it was established that for any polynomial P(x), the sequence P(n) and the sequence
of primes are pointwise good for Lp, when p > 1 [Bou89, Wie88]. However, they are
pointwise bad for L1 [BM10, LaV11]. Thus, the L1 case turned out to be more subtle than
the others. It was largely believed that there cannot be any sequence (sn) which is pointwise
good for L1 and satisfies (sn+1 − sn) → ∞ as n → ∞. Buczolich [Buc07] inductively
constructed a sophisticated example to disprove this conjecture. Later, it was shown in
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[UZ07] that �nc�, c ∈ (1, 1.001), is pointwise good for L1. The current best result is due
to Mirek [Mir15] who showed that �nc�, c ∈ (1, 30/29), is pointwise good for L1; see also
[Tro21]. It would be interesting to know if the above result can be extended to all positive
non-integers c. For further exposition in this area, the reader is referred to the survey article
[RW95].

In our next theorem, we will give an example of a more general class of sequences which
exhibit similar behavior.

THEOREM 1.4. Fix a positive integer l. Let αi = ai/bi , for i ∈ [l], be non-integer rational
numbers with gcd(bi , bj ) = 1 for i 	= j . Let S = (sn) be the sequence obtained by rear-
ranging the elements of the set {nα1

1 n
α2
2 . . . n

αl

l : ni ∈ N for all i ∈ [l]} in an increasing
order. Then for every aperiodic dynamical system (X, �, μ, T t ) and every ε > 0, there
exists a set E ∈ � such that μ(E) < ε and lim supN→∞(1/N)

∑
n∈[N] 1E(T snx) = 1

a.e. and lim infN→∞(1/N)
∑

n∈[N] 1E(T snx) = 0 a.e.

Theorem 1.1 is a special case of Theorem 1.4. The sequences considered in Theorem 1.4
indeed form a much larger class than the ones considered in Theorem 1.1. For example,
Theorem 1.1 does not apply to the sequence (m1/3n2/5 : m, n ∈ N), but Theorem 1.4 does.

In Theorem 3.5 we will prove the Conze principle for flows.
The paper is organized as follows. In §2 we give some definitions. In §3 we prove the

main results. In §4 we discuss some open problems.

2. Preliminaries
Let (X, �, μ) be a Lebesgue probability space. That means μ is a countably additive
complete positive measure on � with μ(X) = 1, with the further property that the measure
space is measure-theoretically isomorphic to a measurable subset of the unit interval with
Lebesgue measure. By a flow {T t : t ∈ R} we mean a group of measurable transformations
T t : X → X with T 0(x) = x, T t+s = T t ◦ T s , s, t ∈ R. The flow is called measurable if
the map (x, t) → T t (x) from X × R into X is measurable with respect to the completion
of the product of μ, the measure on X, and the Lebesgue measure on R. The flow will be
called measure-preserving if it is measurable and each T t satisfies μ(T t−1

A) = μ(A) for
all A ∈ �. The quadruple (X, �, μ, T t ) will be called a dynamical system. A measurable
flow will be called aperiodic (free) if μ{x | T t (x) = T s(x) for some t 	= s} = 0. If the
flow is aperiodic, then the quadruple will be called an aperiodic system.

We will use the following notation to denote the averages:

An∈[N]f (T snx) = 1
N

∑
n∈[N]

f (T snx).

More generally, for a subset J ⊂ N,

An∈J f (T snx) := 1
#J

∑
n∈J

f (T snx).

Before we go to the proof of our main results, let us give the following definitions.
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Definition 2.1. Let 0 < δ ≤ 1. We say that a sequence (sn) is δ-sweeping out if in every
aperiodic system (X, �, μ, T t ), for a given ε > 0, there is a set E ∈ � with μ(E) < ε

such that lim supN→∞ An∈[N]1E(T snx) ≥ δ for almost every x ∈ X. If δ = 1, then (sn)

is said to be strong sweeping out.

• The relative upper density of a subsequence B = (bn) in A = (an) is defined by

dA(B) := lim sup
N→∞

#{an ∈ B : n ∈ [N]}
N

.

• Similarly, the relative lower density of a subsequence B = (bn) in A = (an) is
defined by

dA(B) := lim inf
N→∞

#{an ∈ B : n ∈ [N]}
N

.

If both the limits are equal, we just say relative density and denote it by dA(B).

Remark
(a) If a sequence (sn) is δ-sweeping out, then by Fatou’s lemma, it is pointwise bad for

Lp, p ∈ [1, ∞]. If a sequence (sn) contains a subsequence (bn) of relative density
δ > 0 which is strong sweeping out, then (sn) is δ-sweeping out, and hence pointwise
bad for Lp, p ∈ [1, ∞].

(b) If (sn) is strong sweeping out, then by [JR79, Theorem 1.3], there exists a residual
subset �1 of � in the symmetric pseudo-metric with the property that for all E ∈ �1,

lim sup
N→∞

An∈[N]1E(T snx) = 1 a.e. and lim inf
N→∞ An∈[N]1E(T snx) = 0 a.e. (2.1)

This, in particular, implies that for every ε > 0, there exists a set E ∈ � such that
μ(E) < ε and E satisfies (2.1).

3. Proof of the main results
The proof of Theorems 1.1 and 1.4 has two main ideas, one is what we call here the grid
method, which has its origins in [Jon04], and the other is partitioning a given sequence
of real numbers into linearly independent pieces. Our plan is to prove the theorems as an
application of Proposition 3.8. One of the main ingredients for the proof of Proposition 3.8
is the following theorem.

THEOREM 3.1. Let (sn) be a sequence of positive real numbers. Suppose that for any given
ε ∈ (0, 1), P0 > 0 and a finite constant C, there exist P > P0 and a dynamical system
(X̃, β, m, Ut) with a set Ẽ ∈ β such that

m
(
x | max

P0≤N≤P
An∈[N]1Ẽ

(Usnx) ≥ 1 − ε
)

> Cm(Ẽ). (3.1)

Then (sn) is strong sweeping out.

Proof. This will follow from [Akc96, Theorem 2.2] and Proposition 3.2 below.

Let λ denote the Lebesgue measure on R.
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• For a Lebesgue measurable subset B of R, we define the upper density of B by

d(B) = lim sup
J→∞

1
J

λ(B ∩ [0, J ]). (3.2)

• Similarly, for a locally integrable function φ on R, we define the upper density of the
function by

d(φ) = lim sup
J→∞

1
J

∫
[0,J ]

φ(t) dt . (3.3)

PROPOSITION 3.2. Let (sn) be a sequence of positive real numbers. Suppose there exist
ε ∈ (0, 1), P0 > 0 and a finite constant C such that for all P and Lebesgue measurable set
E ⊂ R,

d
(
t ∈ R | max

P0≤N≤P
An∈[N]1E(sn + t) ≥ 1 − ε

)
≤ Cd(E). (3.4)

Then for any dynamical system (X̃, β, m, Ut) and for any Ẽ ∈ β we have

m
(
x | max

P0≤N≤P
An∈[N]1Ẽ

(Usnx) ≥ 1 − ε
)

≤ Cm(Ẽ). (3.5)

We will use here an argument similar to Calderón’s transference principle [Cal68].

Proof. Let P > P0 be an arbitrary integer. Choose η > 0 small. It will be sufficient to
show that for any Ẽ ∈ β we have

m
(
x | max

P0≤N≤P
An∈[N]1Ẽ

(Usnx) ≥ 1 − ε
)

≤ (C + η)m(Ẽ). (3.6)

To prove (3.6), we need the following lemma.

LEMMA 3.3. Under the hypothesis of Proposition 3.2, there exists J0 = J0(η) ∈ N such
that for every Lebesgue measurable set E ⊂ R the following holds:

λ
(
t ≤ J0 | max

P0≤N≤P
An∈[N]1E(sn + t) ≥ 1 − ε

)
≤ (C + η)λ(E ∩ [0, J0]). (3.7)

Proof. Let us assume that the conclusion is not true. Then for every integer Jk , there exists
a Lebesgue measurable set Ek ⊂ R such that

λ
(
t ≤ Jk | max

P0≤N≤P
An∈[N]1Ek

(sn + t) ≥ 1 − ε
)

> (C + η)λ(Ek ∩ [0, Jk]). (3.8)

Fix such a Jk and Ek . Observe that the set E′
k := Ek ∩ [0, Jk + sP ] also satisfies (3.8).

Then for any J > Jk + sP , we have

λ
(
t ≤ J | max

P0≤N≤P
An∈[N]1E′

k
(sn + t) ≥ 1 − ε

)
> (C + η)λ(E′

k ∩ [0, J ]). (3.9)

Letting J → ∞, we get

d
(
t ∈ R : max

P0≤N≤P
An∈[N]1E′

k
(sn + t) ≥ 1 − ε

)
> (C + η)d(E′

k). (3.10)

But this contradicts our hypothesis (3.4). This finishes the proof of our lemma.
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We now establish (3.6). Let Ẽ be an arbitrary element of β. For a fixed element x ∈ X̃,
define 1Ex by

1Ex (t) := 1
Ẽ
(U tx). (3.11)

Applying (3.7) on the set Ex , we get

λ
(
t ≤ J0 | max

P0≤N≤P
An∈[N]1Ex (sn + t) ≥ 1 − ε

)
≤ (C + η)λ(Ex ∩ [0, J0]). (3.12)

By definition of the sets Ex and Ẽ, we get

max
P0≤N≤P

An∈[N]1Ẽ
(Usn+t x) = max

P0≤N≤P
An∈[N]1Ex (sn + t), for all t .

Substituting the above equality in (3.12), we get

λ
(
t |t ≤ J0, max

P0≤N≤P
An∈[N]1Ẽ

(Usn+t x) ≥ 1 − ε
)

≤ (C + η)λ(Ex ∩ [0, J0]). (3.13)

Introducing the set

B :=
{
y : max

P0≤N≤P
An∈[N]1Ẽ

(Usny) ≥ 1 − ε
}

, (3.14)

we can rewrite equation (3.13) as

λ(t : t ≤ J0 and 1B(Utx) = 1) ≤ (C + η)λ(Ex ∩ [0, J0])

which implies ∫
R

1{t≤J0}(t)1B(Utx)dt ≤ (C + η)

∫
[0,J0]

1Ex (t) dt .

Integrating the above equation with respect to the x variable, using (3.11) in the
right-hand side and applying Fubini’s theorem, we get∫

R

∫
X̃

1B(Utx) dm(x)1{t≤J0}(t) dt ≤ (C + η)

∫
[0,J0]

∫
X̃

1
Ẽ
(U tx) dm(x) dt . (3.15)

By using the fact that Ut is measure-preserving we get

m(B)J0 ≤ (C + η)m(Ẽ)J0. (3.16)

This gives us that

m(B) ≤ (C + η)m(Ẽ), (3.17)

finishing the proof of the desired maximal inequality (3.6). This completes the proof.

One can generalize the above proposition as follows.

PROPOSITION 3.4. Let (sn) be a sequence of positive real numbers. Suppose there exists
a finite constant C such that for all locally integrable functions φ and γ > 0 we have

d
(
t | sup

N

An∈[N]φ(sn + t) ≥ γ
)

≤ C

γ
d(|φ|). (3.18)
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Then for any dynamical system (X̃, β, m, Ut) and for any f̃ ∈ L1 we have

m(x| sup
N

An∈[N]f̃ (Usnx) ≥ γ ) ≤ C

γ

∫
X̃

|f̃ | dm. (3.19)

The proof of this proposition is very similar to the proof of Proposition 3.2, hence we
omit it.

The underlying principle of Theorem 3.1 is the Conze principle which has been widely
used to prove many results related to the Birkhoff’s pointwise ergodic theorem. Originally,
the theorem was proved for a single transformation system by Conze [Con73]. Here we
will prove a version of the theorem for flows. The theorem is not required for proving
Proposition 3.8, but it is of independent interest.

THEOREM 3.5. (Conze principle for flows) Let S = (sn) be a sequence of positive real
numbers and (X, �, μ, T t ) be an aperiodic flow which satisfies the following maximal
inequality: there exists a finite constant C such that for all f ∈ L1(X) and γ > 0 we have

μ(x| sup
N

An∈[N]f (T snx) ≥ γ ) ≤ C

γ

∫
X

|f | dμ. (3.20)

Then the above maximal inequality holds in every dynamical system with the same
constant C.

For a Lebesgue measurable subset A of R, and F ∈ �, we will use the notation T A(F )

to denote the set
⋃

t∈A T t (F ). We will say that T A(F ) is disjoint if we have T t (F ) ∩
T s(F ) = ∅ for all t 	= s.

Proof. We want to show that the maximal inequality (3.20) transfers to R. If we can show
that, then Proposition 3.4 will finish the proof.

Let φ be a measurable function. After a standard reduction, we can assume that γ = 1
and φ is positive. It will be sufficient to show that for any fixed P we have

d
(
t | max

N≤P
An∈[N]φ(sn + t) ≥ 1

)
≤ Cd(φ). (3.21)

Define

G :=
{
t : max

N≤P
An∈[N]φ(sn + t) > 1

}
. (3.22)

Let (Ln) be a sequence such that

d(G) = lim
n→∞

1
Ln − sP

λ([0, Ln − sP ] ∩ G). (3.23)

Fix Ln large enough so that it is bigger than sP . Then by applying the R-action version
of the Rohlin tower [Lin75, Theorem 1], we can find a set F ⊂ X, such that T [0,Ln](F )

is disjoint, measurable and μ(T [0,Ln]F) > 1 − η, where η > 0 is small. It also has the
additional property that if we define the map ν by ν(A) := μ(T A(F )) for any Lebesgue
measurable subset A of [0, Ln], then ν becomes a constant multiple of the Lebesgue
measure.
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Define f : X → R as follows:

f (x) =
{

φ(t) when x ∈ T t (F ),

0 when x 	∈ T [0,Ln](F ).

Now we observe that for each x ∈ T t (F ) with t ∈ [0, Ln − sP ] and N ≤ P we have

max
N≤P

1
N

∑
n≤N

φ(sn + t) = max
N≤P

1
N

∑
n≤N

f (T snx)

Substituting this into (3.20), we get

μ(x|x ∈ T t (F ) for some t ∈ [0, Ln − sP ] ∩ G) ≤ C

∫
X

f dμ. (3.24)

Then (3.24) can be rewritten as

μ(T [0,Ln−sP ]∩G(F)) ≤ C

∫
X

f dμ. (3.25)

Applying the change-of-variable formula, we can rewrite (3.25) as

ν([0, Ln − sP ] ∩ G) ≤ C

∫
[0,Ln]

φ(t) dν(t).

Since ν is a constant multiple of the Lebesgue measure, we get

λ([0, Ln − sP ] ∩ G) ≤ C

∫
[0,Ln]

φ(t) dt .

Dividing both sides by (Ln − sP ) and taking limits inferior and superior, we have

lim inf
n→∞

1
Ln − sP

λ([0, Ln − sP ] ∩ G) ≤ C, lim sup
n→∞

Ln

Ln − sP

1
Ln

∫
[0,Ln]

φ(t) dt .

This implies, by (3.23), that

d(G) ≤ Cd(φ).

This is the desired maximal inequality on R. We now invoke Proposition 3.4 to finish the
proof.

We need the following two lemmas to prove Proposition 3.8.

LEMMA 3.6. Let S be a finite subset of R such that S is linearly independent over Q.
Suppose S = ·⋃q≤Q Sq is a partition of S into Q sets. Then there is a positive integer r
such that for every q ∈ [Q],

rs ∈ Iq (mod 1) whenever s ∈ Sq , (3.26)

where

Iq :=
(

q − 1
Q

,
q

Q

)
. (3.27)

Proof. The above lemma is a consequence of the well-known Kronecker diophantine
theorem.
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Let us introduce the following notation for stating our next lemma. Let P denote the
set of prime numbers. For a fixed positive integer m, we want to consider the linear
independence of the set consisting of products of the form

∏
p∈P pvp/m over Q, where

only finitely many of the exponents vp are non-zero. Let S be a possibly infinite collection
of such products, that is, S = {∏p∈P pvj ,p/m : j ∈ J }, where J is a (countable) index set.
We call S a good set if it satisfies the following two conditions.
(i) For any j ∈ J and p ∈ P , if vj ,p 	= 0, then vj ,p 	≡ 0 (mod m).

(ii) The vectors vj = (vj ,p)p∈P , j ∈ J , of exponents are different (mod m). This just
means that if i 	= j , then there is a p ∈ P such that vj ,p 	≡ vi,p(mod m).

LEMMA 3.7. (Besicovitch reformulation) Let m be a positive integer, and let the set S be
good. Then S is a linearly independent set over the rationals.

Proof. Suppose, if possible, that there exist λi ∈ Q, for i ∈ [N], such that∑
i≤N λisi = 0 is a non-trivial relation in S. We can express this relation as

P(p
1/m

1 , p
1/m

2 , . . . , p
1/m
r ) = 0, where P is a polynomial, and for all i ∈ [r], pi is a

prime divisor of sj
m for some j ∈ [N]. Since S is a good set, we can reduce this relation

to a relation P ′(p1/m

1 , p
1/m

2 , . . . , p
1/m
r ) = 0 such that each coefficient of P ′ is a non-zero

constant multiple of the corresponding coefficient of P, and the degree of P ′ with respect to
p

1/m
i is < m for all i ∈ [r]. But this implies, by [Bes40, Corollary 1], that all coefficients

of P ′ vanish. Hence, all the coefficients of P will also vanish. But this contradicts the
non-triviality of the relation that we started with. This completes the proof.

PROPOSITION 3.8. Let S = (sn) be an increasing sequence of positive real numbers.
Suppose S can be written as a disjoint union of (Sk)

∞
k=1, that is, S = ·⋃k∈N Sk such that

the following two conditions hold.
(a) (Density condition). The relative upper density of RK := ⋃

k∈[K] Sk goes to 1 as
K → ∞.

(b) (Linearly independence condition). Each subsequence Sk of S is linearly independent
over Q.

Then S is strong sweeping out.

Proof of Proposition 3.8. We will apply Theorem 3.1 to prove this result. So, let ε ∈
(0, 1), P0 and C > 0 be arbitrary. Choose ρ > 1 such that δ := ρ(1 − ε) < 1. By using
condition (a), we can choose K large enough so that d(RK) > δ.

This implies that we can find a subsequence (snj
) of (sn) and N0 ∈ N such that

#{sn ∈ RK : n ≤ nj }
nj

> δ for all j ≥ N0. (3.28)

Define CK := S \ RK = ⋃
j>K Sj .

Let P be a large number which will be determined later. For an interval J ⊂ [P ] of
indices, we consider the average An∈J f (Usnx), where Ut is a measure-preserving flow on
a space which will be a torus with high enough dimensions for our purposes.
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We let S̃ be the truncation of the given sequence S up to the Pth term. Define S̃k and
C̃K as the corresponding sections of Sk and CK in S̃ respectively, that is,

S̃ := (sn)n∈[P ], S̃k := S̃ ∩ Sk for k ∈ [K],

C̃K := S̃ ∩ CK .

The partition S̃1, S̃2, . . . , S̃K , C̃K of S̃ naturally induces a partition of the index set
[P ] into K + 1 sets Nk , k ≤ K + 1, where S̃k corresponds to Nk for k ∈ [K] and C̃K

corresponds to NK+1. The averages An∈J f (Usnx) can be written as

An∈J f (Usnx) = 1
#J

∑
k≤K+1

∑
n∈J∩Nk

f (Usnx). (3.29)

By hypothesis (b) and Lemma 3.6, it follows that each S̃k has the property that if it is
partitioned into Q sets, so that S̃k = ⋃

q≤Q S̃k,q , then there is an integer r such that

rs ∈ Iq mod 1 for s ∈ S̃k,q and q ≤ Q. (3.30)

where

Iq :=
(

q − 1
Q

,
q

Q

)
. (3.31)

The space of action is K-dimensional torus TK , subdivided into little K-dimensional cubes
C of the form

C = Iq(1) × Iq(2) × · · · × Iq(k) for some q(k) ≤ Q for k ≤ K . (3.32)

At this point, it is useful to introduce the following vectorial notation to describe these
cubes C. For a vector q = (q(1), q(2), . . . , q(K)), with q(k) ≤ Q, define

Iq := Iq(1) × Iq(2) × · · · × Iq(K). (3.33)

Since each component q(k) can take the values 1, 2, . . . , Q, we divide TK into QK cubes.
We also consider the ‘bad’ set E defined by

E :=
⋃
k≤K

(0, 1) × (0, 1) × · · · × (I1 ∪ I2)︸ ︷︷ ︸
kth coordinate

× · · · × (0, 1). (3.34)

Defining the set Ek by

Ek := (0, 1) × (0, 1) × · · · × (I1 ∪ I2)︸ ︷︷ ︸
kth coordinate

× · · · × (0, 1), (3.35)

we have

E =
⋃
k≤K

Ek and λ(K)(Ek) ≤ 2
Q

for every k ≤ K (3.36)

where λ(K) is the Haar-Lebesgue measure on TK.
By (3.36), we have

λK(E) ≤ 2K

Q
. (3.37)
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FIGURE 1. Illustration of the two-dimensional case. Here the ‘bad set’ E is the orange-colored region. Let (x1, x2)

be an arbitrary point (which belongs to B6,3 in this case). We need to look at an average where r1sn ∈ (4/10, 5/10)

for all n ∈ S̃1 and r2sn ∈ (7/10, 8/10) for all n ∈ S̃2. Then it would give us (x1, x2) + (r1sn, r2sn) ∈ E for all
n ∈ S̃1 ∪ S̃2. The picture suggests the name ‘grid method’.

Observe that by taking Q very large, one can make sure that the measure of the bad set is

λ(K)(E) <
1
C

. (3.38)

Now the idea is to have averages that move each of these little cubes into the supports of
the set E. The two-dimensional version of the process is illustrated in Figure 1.

Since we have QK little cubes, we need to have QK averages AJ . This means we
need to have QK disjoint intervals Ji of indices. The length of these intervals Ji needs
to be ‘significant’. More precisely, we will choose Ji so that it satisfies the following two
conditions.
(i)

J0 = [1, P0],
#Ji∑

0≤j≤i

#Jj

>
1
ρ

for all i ∈ [QK ]. (3.39)

(ii) If Ji = [Ni , Ni+1], then (Ni+1 − Ni) is an element of the subsequence (nj ) and

(Ni+1 − Ni) > N0 for all i ∈ [QK ]. (3.40)

So we have QK little cubes Ci , i ≤ QK , and QK intervals Ji , i ≤ QK . We match Ci with
Ji . The large number P can be taken to be the end-point of the last intervals JQK . We know
that each Ci is of the form

Ci = Iqi
, (3.41)
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for some K-dimensional vector qi = (qi(1), qi(2), . . . qi(K)) with qi(k) ≤ Q for every
k ≤ K . The interval Ji is partitioned as

Ji =
⋃

k≤K+1

(Ji ∩ Nk). (3.42)

For a given k ≤ K , let us define the set of indices Nk,q , for q ≤ Q, by

Nk,q :=
⋃

i≤QK ,qi (k)=q

(Ji ∩ Nk). (3.43)

Since the sets S̃k,q := {sn|n ∈ Nk,q} form a partition of S̃k , by the argument of (3.30), we
can find rk so that

rksn ∈ IQ−q (mod 1) for n ∈ Nk,q and q ≤ Q. (3.44)

Define the flow Ut on the K-dimensional torus TK by

Ut(x1, x2, . . . , xK) := (x1 + r1t , x2 + r2t , . . . , xK + rKt). (3.45)

We claim that{
x| max

i≤QK
An∈Ji

1E(Usnx) ≥ δ
}

= TK where x = (x1, x2, . . . , xK). (3.46)

This will imply that {
x| max

P0≤N≤P
An∈[N]1E(Usnx) ≥ 1 − ε

}
= TK . (3.47)

To see this implication, let x ∈ TK and An∈Ji
1E(Usnx) ≥ δ.

Assume that Ji = [Ni , Ni+1]. Then

An∈[Ni+1]1E(Usnx) = Ni

Ni+1

1
Ni

∑
n≤Ni

1E(Usnx)+Ni+1 − Ni

Ni+1

1
Ni+1 − Ni

∑
n∈(Ni ,Ni+1]

1E(Usnx)

≥ Ni+1 − Ni

Ni+1
δ

≥ δ

ρ

= 1 − ε,

where the second line holds since An∈Ji
1E(Usnx) ≥ δ, and the third holds by (3.39). This

proves (3.47).
Now let us prove our claim (3.46).
Let x ∈ Ci and consider the average An∈Ji

1E(Usnx). We have

An∈Ji
1E(Usnx) = 1

#Ji

∑
k≤K+1

∑
n∈Ji∩Nk

1E(Usnx)

= 1
#Ji

∑
k≤K+1

∑
n∈Ji∩Nk

1E(x1 + r1sn, x2 + r2sn, . . . , xK + rKsn)
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by (3.45). If we can prove that for each k ∈ [K],

(x1 + r1sn, x2 + r2sn, . . . , xk + rksn, . . . , xK + rKsn) ∈ Ek if n ∈ Ji ∩ Nk , (3.48)

then we will have

An∈Ji
1E(Usnx) ≥ 1

#Ji

∑
k≤K

#(Ji ∩ Nk)

Using the notation Ji = [Ni , Ni+1],

An∈Ji
1E(Usnx) = #{sn ∈ RK : Ni ≤ n ≤ Ni+1}

Ni+1 − Ni

≥ δ,

using (3.28) and (3.40) for the last inequality. We have proved (3.46).
We are yet to prove (3.48).
Since x ∈ Ci = Iq we have xk ∈ Iqi(k) for every k. By the definition of rk in (3.44) we

have rksn ∈ IQ−qi (k) if n ∈ Ji ∩ Nk . It follows that

xk + rksn ∈ Iqi(k)
+ IQ−qi (k) if n ∈ Ji ∩ Nk . (3.49)

Since Iqi(k)
+ IQ−qi(k)

⊂ I1 ∪ I2, we get

xk + rksn ∈ I1 ∪ I2 if n ∈ Ji ∩ Nk . (3.50)

By the definition of Ek in (3.35), this implies that

(x1 + r1sn, x2 + r2sn, . . . xk + rksn, . . . , xK + rKsn) ∈ Ek (3.51)

as claimed.
Thus, what we have so far is the following: for every C > 0, ε ∈ (0, 1) and P0 ∈ N,

there exist an integer P > P0 and a set E in the dynamical system (TK , �(K), λ(K), Ut)

such that

λ(K)
(

max
P0≥N≥P

An∈[N]1E(Usnx) ≥ 1 − ε
)

= 1 ≥ Cλ(K)(E).

The right-hand side of this inequality is true by (3.38).
Now Theorem 3.1 finishes the proof.

We need the following definition to prove Theorem 1.1.

Definition 3.9. Let b be a fixed integer ≥ 2. A positive integer n is said to be b-free if n is
not divisible by the bth power of any integer greater than 1.

Proof of Theorem 1.1. If we can prove that the sequence (nα) is strong sweeping out, then
part (b) of remark (at the end of §2) will give us the desired result.

To prove that the sequence (nα) is strong sweeping out, we want to apply Proposition 3.8
with S = (nα).

Observe that the set S0 := {s ∈ S : s is an integer} has relative density 0 in the set S.
Hence, we can safely delete S0 from S and rename the modified set as S. Let α = a/b

with gcd(a, b) = 1 and b ≥ 2.
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By applying the fundamental theorem of arithmetic, one can easily prove that every
positive integer n can be uniquely written as n = jbñ, where j , ñ ∈ N, ñ is b-free. This
observation suggests us that we can partition the set S as follows.

LEMMA 3.10. S = ·⋃k∈N Sk , where we define

S1 := {na/b : n is b-free} and Sk := kaS1 = {kana/b : n is b-free}. (3.52)

Proof. It can be easily seen that S = ⋃
k∈N Sk .

To check the disjointness let, if possible, there exist s ∈ Sk1 ∩ Sk2 , k1 	= k2. Then there
exist b-free integers n1, n2 such that

s = ka
i n

a/b
i , i = 1, 2. (3.53)

Without loss of any generality, we can assume gcd(k1, k2) = 1.
Equation (3.53) implies that

kb
1n1 = kb

2n2. (3.54)

Observe that gcd(k1, k2) = 1 �⇒ gcd(kb
1 , kb

2) = 1. Hence, (3.54) can hold only if kb
1 | n2

and kb
2 | n1. Since n2 is b-free, kb

1 can divide n2 only when k1 = 1. Similarly, kb
2 can divide

n1 only when k2 = 1. But this contradicts our hypothesis k1 	= k2.

We will be done if we can show that each Sk satisfies the hypothesis of Proposition 3.8.
We need to show that the upper density of RK := ⋃

k∈[K] Sk goes to 1 as K → ∞.
In fact, we will show that the lower density of RK := ⋃

k∈[K] Sk goes to 1 as K → ∞.
Let us look at the complement CK := S \ RK . It will be enough to show that the upper
density of CK goes to 0 as K → ∞.

An element nα of S belongs to CK only when nα ∈ kaS for some k > K . This means
that there is k > K so that kb | n. Hence, we have

CK ⊂
⋃
k>K

kaS =
⋃
k>K

kaS1 =
⋃
k>K

Sk . (3.55)

To see that the first equality of (3.55) is true, let x ∈ ⋃
k>K kaS. Then we must have

that x = ka
1nα for some k1 > K . Write n = jbñ where ñ is b-free. Then x = (jk1)

añα .
Since jk1 > K , x ∈ ⋃

k>K kaS1. The reverse inclusion is obvious. We want to show that
the upper density of AK := ⋃

k>K Sk goes to 0 as K → ∞. This would imply that the
upper density of CK also goes to 0, implying that the lower density of its complement RK

goes to 1. We will see that we even have a rate of convergence of these lower and upper
densities in terms of K.

Let us see why the upper density of AK goes to 0 as K → ∞.
We have

#S(N) := {nα ≤ N : n ∈ N}
= �Na/b�,

#Sk(N) := {(kbn)α ≤ N : n ∈ N}

=
⌊

Na/b

kb

⌋
.
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Hence, #Sk(N)/#S(N) ≤ 1/kb.
We now have

#AK(N)

#S(N)
= #

(⋃
k>K Sk(N)

)
#S(N)

≤
∑

k>K #Sk(N)

#SN

≤
∑
k>K

1
kb

Since
∑

k≥K 1/kb → 0 as K → ∞, we must have that the upper density of AK goes to 0
as K → ∞. This proves that Sk satisfies the density condition.

To satisfy condition (b), first observe that every element sj of S1 can be thought of as a
product of the form p

c1a/b

1 p
c2a/b

2 . . . p
cka/b
k where the ci depend on pi and sj for i ∈ [k].

We will apply Lemma 3.7 on the set S1 with m = b.
To check (i), note that since S1 consists of b-free elements, we have 0 ≤ ci < b. Assume

ci > 0. By assumption we have gcd(a, b) = 1. This implies that aci 	= 0 (mod b) for i ∈
[k].

For (ii), let, if possible, s1 = p
c1a/b

1 p
c2a/b

2 . . . p
cka/b
k and s2 = p

d1a/b

1 p
d2a/b

2 . . . p
dka/b
k

be two distinct elements of S1 satisfying aci = adi (mod b) for all i ∈ [k]. This implies
a(ci − di) = 0 (mod b) for all i ∈ [k] �⇒ (ci − di) = 0 (mod b) for all i ∈ [k]. But this
is not possible, since elements of S1 are b-free, and we must have ci , di < b for all i ∈ [k].

Hence, we conclude that S1 is a good set. Since Sk is an integer multiple of S1, it follows
that Sk is also linearly independent over Q. Thus condition (b) is also satisfied. This finishes
the proof.

We now prove Theorem 1.4 with the help of Proposition 3.8. As before, it will be
sufficient to show that the sequence S = (sn) obtained by rearranging the elements of
the set {nα1

1 n
α2
2 . . . n

αl

l : ni ∈ N for all i ∈ [l]} in an increasing order is strong sweeping
out.

Proof of Theorem 1.4. Define

S1 := {nα1
1 n

α2
2 . . . n

αl

l : ni ∈ N such that ni is bi -free for all i ∈ [l]}.
First, let us see that the elements of S1 can be written uniquely. Suppose not. Then there

are two different representation of an element:

n
α1
1 n

α2
2 . . . n

αl

l = m
α1
1 m

α2
2 . . . m

αl

l . (3.56)

Let us introduce the notation

bi = b1b2 . . . bi−1bi+1bl . (3.57)

Equation (3.56) implies that

n
a1b1
1 n

a2b2
2 . . . n

albl

l = m
a1b1
1 m

b2b2
2 . . . m

albl

l . (3.58)
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After some cancellation if needed, we can assume that gcd(ni , mi) = 1. There exists
i for which ni > 1, otherwise there is nothing to prove. Without loss of generality, let us
assume that n1 > 1 and p is a prime factor of n1. Let pci be the highest power of p that
divides mi or ni for i ∈ [l]. Let us focus on the power of p in equation (3.58). We have

c1a1b1 = ±c2a2b2 ± c3a3b3 ± · · · ± clalbl .

This implies that

c1a1b1 = 0 (mod b1).

Since (a1b1, b1) = 1, and c1 < b1, we have c1 = 0. This is a contradiction! This proves
that ni = 1 = mi for all i ∈ [l]. This finishes the proof that every element of S1 has a
unique representation. Now let (ek) be the sequence obtained by arranging the elements of
the set {∏i≤l n

bi

i , ni ∈ N} in an increasing order. Define Sk := ekS1 = {ekn
α1
1 n

α2
2 . . . n

αl

l :
ni ∈ N and ni is bi -free for all i ∈ [l]}. Next we will prove that S = ·⋃k∈N Sk . One can
easily check that S = ⋃

k∈N Sk . To check the disjointness, we will use an argument similar
to above. Suppose to the contrary that there exists k1 	= k2 such that Sk1 = Sk2 . So we have

ek1n
α1
1 n

α2
2 . . . n

αl

l = ek2m
α1
1 m

α2
2 . . . m

αl

l . (3.59)

This implies, using the same notation as before, that

e
b1b2...bl

k1
n

a1b1
1 n

a2b2
2 . . . n

albl

l = e
b1b2...bl

k2
m

a1b1
1 m

b2b2
2 . . . m

albl

l . (3.60)

Assume without loss of generality that ek1 > 1, gcd(ek1 , ek2) = 1 and gcd(ni , nj ) = 1 for
i 	= j . Let p be a prime which divides ek1 . Assume pci is the highest power of p that
divides mi or ni , for i = 1, 2, . . . l, and pr is the highest power of p that divides ek1 . We
now focus on the power of p in (3.60). We have

rb1b2 . . . bl = ±c1a1b1 ± c2a2b2 ± c3a3b3 ± · · · ± clalbl .

This implies that for all i ∈ [l] we have

ciaibi = 0 (mod bi).

Since (aibi , bi) = 1, and ci < bi , we get ci = 0 for all i ∈ [l]. This contradicts the
assumption that p | ek1 . Hence, we conclude that ek1 = 1. Similarly, ek2 = 1. This finishes
the proof of disjointness of the Sk .

We now check the density condition. For any sequence A, denote by A(N) the set {a ∈
A : a ≤ N}. As before, we will show that the lower density of BK := ⋃

k∈[K] Sk goes to 1
as K → ∞. Let us look at the complement CK := S \ BK . We want to show that the upper
density of CK goes to 0 as K → ∞. Since the sets CK are decreasing, it will be sufficient
to show that the upper density of the subsequence CM converges to 0 as M → ∞, where
M = eK

a1+a2+···+al . But this is equivalent to saying that upper density of CM converges
to 0 as K → ∞. This will follow from the following two lemmas.

LEMMA 3.11. CM(N) ⊂ ⋃
i∈[l]

⋃
L≥eK

DL
i (N) where

DL
i (N) := {nα1

1 n
α2
2 . . . n

αi−1
i−1 (Lbi ni)

αi n
αi+1
i+1 . . . n

αl

l ≤ N : nj ∈ N for j ∈ [l]}.
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Proof. Let s = n
α1
1 n

α2
2 . . . n

αl

l belong to CM(N). Write ni = j
bi

i ñi where ñi is bi-free for
i ∈ [l]. Then we must have ji ≥ eK for some i ∈ [l].

To the contrary, suppose we have ji < eK for all i. Then j
b1
1 j

b2
2 . . . j

bl

l <

eK
b1+b2+···+bl = M . But this contradicts our hypothesis that s ∈ CM(N).

LEMMA 3.12. For every fixed L and i,

#DL
i (N)

#S(N)
≤ 1

Lbi
. (3.61)

Proof. Fix nj = rj for j = 1, 2, . . . , i − 1, i + 1, . . . , l. Then

#{rα1
1 r

α2
2 . . . r

αi−1
i−1 (Lbi ni)

αi r
αi+1
i+1 . . . r

αl

l ≤ N : ni ∈ N} =
⌊

N1/αi

κLbi

⌋
,

where κ = (r
α1
1 r

α2
2 . . . r

αi−1
i−1 r

αi+1
i+1 . . . r

αl

l )1/αi , and

#{rα1
1 r

α2
2 . . . r

αi−1
i−1 (ni)

αi r
αi+1
i+1 . . . r

αl

l ≤ N : ni ∈ N} =
⌊

N1/αi

κ

⌋
.

The proof follows by observing the following two equalities:

#S(N) = #{nα1
1 n

α2
2 . . . n

αl

l ≤ N : nj ∈ N for j ∈ [l]}
=

∑
#{rα1

1 r
α2
2 . . . r

αi−1
i−1 (ni)

αi r
αi+1
i+1 . . . r

αl

l ≤ N : ni ∈ N}
and

#DL
i (N) = #{nα1

1 n
α2
2 . . . n

αi−1
i−1 (Lbi ni)

αi n
αi+1
i+1 . . . n

αl

l ≤ N : nj ∈ N for j ∈ [l]}
=

∑
#{rα1

1 r
α2
2 . . . r

αi−1
i−1 (Lbi ni)

αi r
αi+1
i+1 . . . r

αl

l ≤ N : ni ∈ N},
where the summations are taken over all the (l − 1)-tuple (r1, r2, . . . , ri−1, ri+1, . . . , rl)

such that their products r
α1
1 r

α2
2 . . . r

αi−1
i−1 r

αi+1
i+1 are distinct.

Hence, the relative upper density of the set CM in S is less than or equal to∑
i∈[l]

∑
L≥eK

1/Lbi , which goes to 0 as K → ∞.
We now show that each Sk is linearly independent. It will be sufficient to show that S1

is linearly independent. After realizing every element sj of S1 as
∏

p∈P pvj ,p/b1b2...bl , we
apply Lemma 3.7 on S1 with m = b1b2 . . . bl .

(i) First let us show that for any given j0 ∈ J , and prime p0 ∈ P , if vj0,p0 	= 0, then
vj0,p0 	≡ 0 (mod m). By definition of the set S1, vj0,p0 can be written as vj0,p0 = c1a1b2 +
c2a2b2 + · · · + clalbl , where 0 ≤ ci < bi , and ci depends on sj0,p0 for i ∈ [l]. Here bi is
same as in (3.57).

To the contrary, suppose vj0,p0 ≡ 0 (mod m). Hence, we have

c1a1b1 + c2a2b2 + · · · + clalbl ≡ 0 (mod m).

This means that

c1a1b1 + c2a2b2 + · · · + clalbl ≡ 0 (mod bi) for all i ∈ [l].
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But this implies that

ciaibi ≡ 0 (mod bi) for all i ∈ [l],

implying that

ci = 0 for all i ∈ [l].

So, we get

vj0,p0 = 0.

This is a contradiction! Hence, we conclude that if vj0,p0 	= 0, then vj0,p0 	≡ 0 (mod m).
(ii) Now let us assume that vj ,p ≡ vk,p (mod m), for all p ∈ P .
Write vj ,p = c1a1b2 + c2a2b2 + · · · + clalbl and vk,p = d1a1b2 + d2a2b2 + · · · +

dlalbl , where 0 ≤ ci , di < b, and ci depends on p, sj and di depends on p, sk for all
i ∈ [l]. By assumption, we have

c1a1b2 + c2a2b2 + · · · + clalbl ≡ d1a1b2 + d2a2b2 + · · · + dlalbl (mod m).

This implies that

(ci − di)aibi ≡ 0 (mod bi) for all i ∈ [l].

Hence, we get

(ci − di) = 0 for all i ∈ [l].

So, we conclude that

vj ,p = vk,p for all p ∈ P .

But we know that every element of S1 has a unique representation. Hence, we get j = k.
Thus we conclude that S is a good set and hence linearly independent over the rational.

This completes the proof.

4. The case when α is irrational: two open problems
We have proved that the sequence (nα) is strong sweeping out when α is a non-integer
rational number. For the case of irrational α, it is known from [BBB94, JW94] that (nα)

is strong sweeping out for all but countably many α. However, the following questions are
still open along these lines.

Problem 4.1. Find an explicit irrational α, for which (nα) is strong sweeping out.

Problem 4.2. Is it true that for all irrational α, (nα) is pointwise bad for L2? If so, then is
it true that (nα) is strong sweeping out?

If one can find an explicit α for which (nα) is linearly independent over the rational, then
obviously it will answer Problem 4.1. In fact, if we can find a suitable subsequence which
is linearly independent over Q, then we can apply Proposition 3.8 to answer Problem 4.1.

It might be possible to apply Theorem 1.4 and some density argument to handle
Problem 4.2.
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