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ORDER PRESERVING FUNCTIONS ON
ORDERED TOPOLOGICAL VECTOR SPACES

J.C. CANDEAL, E. INDURAIN AND G.B. MEHTA

In this paper we prove the existence of continuous order preserving functions on
ordered topological vector spaces in an infinite-dimensional setting. In a certain
class of topological vector spaces we prove the existence of topologies for which
every continuous total preorder has a continuous order preserving representation
and show that the Mackey topology is the finest topology with this property.
We also prove similar representation theorems for reflexive Banach spaces and for
Banach spaces that may not have a pre-dual.

1. INTRODUCTION

In this paper we prove the existence of continuous order preserving functions on
ordered topological vector spaces. The emphasis in the literature has been on proving
the existence of continuous order preserving functions on general preordered topological
spaces and on subsets of finite-dimensional Euclidean spaces. There are only a few well-
known results (see [19, 23]) on the existence of continuous order preserving functions
on infinite dimensional linear spaces. For some recent work in this field the reader is
referred to [8, 18]. The object of this paper is to partially fill this gap in the literature
by proving some new results on the existence of continuous order preserving functions
on totally preordered topological vector spaces.

We first prove in Theorem 1 that if E is a topological vector space and there is
a separable topological vector space F' such that E is the topological dual of F then
there exists a topology t on E such that every t-continuous total preorder on E has a
continuous order preserving representation. We also show that the Mackey topology of
the duality (E, F) is the finest compatible linear topology on E that has this property.
A similar result is shown to hold for norm-separable Banach spaces.

On the other hand, the norm topology of a Banach space E need not have the
property that every norm continuous total preorder has a continuous representation. To
show this we give an example of a norm-continuous total preorder on a Banach lattice
that is not representable. Furthermore, it should be noted that in [13] it is proved
that there is a continuous non-representable total preorder on any non-separable metric
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space. In view of these considerations, it follows that if we want a general result about
representability in an infinite-dimensional context we need to assume stronger properties
on both the Banach space and the preorder.

Accordingly, our first result in this direction involves a Banach space E that is
reflexive. We prove in Theorem 2 that in a reflexive Banach space with a countable
coinitial subset every continuous convex total preorder has a continuous quasi-concave
order preserving representation. The proof of this theorem is based on the Arrow—-Hahn
method {3, pp.82-87] which consists in defining an order preserving function in terms
of the given metric on the Banach space E. ‘

In each of the preceding two theorems the topological vector space E has a pre-
dual. Suppose now that E is a Banach space that may not have a pre-dual such as the
classical sequence space cg or the Lebesgue space L! ([0, 1],,u,R). Then the methods
used in Theorems 1 and 2 are not applicable because they depend upon properties of
the weak*-topology. Clearly, in order to get some results in this general context one
needs strong (and somewhat different) assumptions on the preorder. In Theorem 3 we
present a set of sufficient conditions for the existence of a continuous order preserving
function on a Banach space E that need not have a pre-dual. Specifically, we assume
that the preorder is convex and has locally compact upper sections. This theorem
partially answers a question raised in our earlier paper [8, p.245].

In conclusion, it may be noted that infinite-dimensional linear spaces of the type

studied in the paper are now commonly encountered in mathematical economics and
related fields. See (1, 2, 4, 6, 21].

2. PRELIMINARIES: DEFINITIONS AND NOTATIONS

Let E be a topological vector space and < a total preorder on a subset X of E.
The relation < on X may be interpreted as a weak preference relation on X so that
z < y means that y is at least as good as z. The relation < on X induces two new
relations on X as follows. If z, y € X then define ¢ < y, if and only if £ < y and
~(y < z). This relation on X is irreflexive and transitive and may be interpreted as a
strict preference relation on X. If z, y € X then define z ~ y, if and only if z < y
and y < z. This relation on X is an equivalence relation on X and may be interpreted
as an indifference relation. For each z € X, the ~-equivalence class of z is denoted by
I(z).

Let t be a topology on a topological vector space E and < a total preorder on a
subset X of E. Then < is saild to be a t-upper-continuous if for each y € X the set
{z € X :y Xz} is t-closed in X and t-lower-continuous if for each y € X the set
{zr € X : 2 <y} is t-closed in X. The relation < is said to be t-continuous if it is
both upper and lower continuous with respect to the topology ¢.
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Let < be a preorder on a set. The upper section {z € X : y Xz} of y is denoted
by Cly) and the lower section {z € X :z <y} of y is denoted by W(y).

Let < be a total preorder on a set E. A subset Z of E is said to be Debreu order-
dense if for every pair (z,y) € E with z < y there exist z € Z such that z <z < y.
Then (E, <) is said to be Debreu order separable if there is a countable subset Z that
is Debreu order-dense in E.

Let < be a total preorder on a subset X of a topological vector space E. Then
< is said to be convez if for each z € X the upper section C(z) is a convex set.

Let K be a subset of a normed linear space E. Then K is said to be proziminal
in E if for each ¢ € E there exists y € K such that |jt —y|| S ||z ~ 2] forall z€ K.

Let (E, X) be a preordered topological vector space. The preorder < has a count-
able co-initial subset Z if Z is countable and for each y € E there exists z € Z such
that z <y.

If E is a normed linear space, the closed ball of radius r > 0 around a subset K
of E will be denoted by B(K,r).

Let (E, F) be a dual pair. Then the polar topology on E determined by the class
of finite subsets of F' is called the weak topology on E and is denoted by w(E,F) or
w. If E has a pre-dual F, the w(E, F) topology on E is also called the weak-star
(weak*) topology. The polar topology on E determined by the class of absolutely convex
w(F, E)-compact subsets of F is called the Mackey topology on E and is denoted by
m(E,F).

Let < be a total preorder on a topological space E. Then a real-valued function
f on E is said to be order-preserving if z < y implies that f(z) £ f(y) and z < y
implies that f(z) < f(y). A wutility function on (E, <) is a real-valued order preserving
function.

Following [15], we now define the concept of a useful topology on a set.

Let E be a set. Then a topology ¢ on FE is said to be useful if every t-continuous
total preorder < on E can be represented by a ¢-continuous order preserving real-

valued function.

3. EXISTENCE OF ORDER PRESERVING FUNCTIONS

We now prove the following theorem.

THEOREM 1. Let E be the dual of a separable locally convex topological vector
space F' and assume that E is o-compact in the weak* topology. Let X be a weak*-
closed convex subset of E and suppose that t is a topology on E that is coarser than or
equal to the Mackey topology m(E, F). Then every t-continuous total preorder admits

a t-continuous real-valued order preserving representation.
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PROOF: Recall that, by the Mackey-Arens Theorem [20, p.205], the finest linear
topology on E compatible with the dual pair (E,F) is the Mackey topology. The
strategy of the proof is to show that X is a separable topological space with respect to
the induced Mackey topology on X. Then X, being a convex subset, is a connected
and separable topological space. Therefore Eilenberg’s Theorem [12] applies. In order
to see this let us first prove that X is w*-separable.

Let E = 8 K, whereforeachn =1, 2, ... | K, is compact in the weak* topology

n=1

of E. Since F is the dual of the separable topological vector space F, the set K, is
metrisable in the weak* topology {22, p.70]. Since any compact metric space is separable
(11, p.233], we may conclude that for each n, K, is a separable topological space in the
weak* topology. So E is separable in this topology and therefore, X, being w* -closed,
is also a w*-separable topological space.

Denote by D = (dn)ae, a w*-dense subset of X. Let us now prove that X is
also m(E, F)-separable. Consider the Mackey-closed linear subspaces \/ D™, \/ X~

generated by D and X respectively, that is, \/ D = {Z Mdi 0 M €eR, d; e D}
=1

=1

and \/ X = {Z aizico; €ER, z; € X}, the bar denoting the closure in the Mackey

topology.

Two cases may occur: either \/ D~ is a proper linear subspaceof \/ X~ or \/ D™ =
\/ X ~. Let us see that the first situation leads to a contradiction. Indeed, by the Hahn-
Banach Theorem [22, p.60] there is a Mackey-continuous linear function ¢ : £ — R
such that ¢g|yp- = 0 and g|yx- # 0. But this is impossible because g is also w*-
continuous, and hence, so is its restriction to \/ X ~, and because D C X is w*-dense
in X, sothat \/ D™ is w*-dense in \/ X ™.

In the second case, consider the set B = (\/ DN X)™ (closure in the Mackey
topology). Note that, since D C X and X is a convex w*-closed (hence Mackey-
closed) subset, B is a nonempty convex and Mackey-closed subset of E contained in
X. Let us see that B = X. Indeed, otherwise B would be a proper subset of X.
So there would exist @ € X\B. Than again by the Hahn-Banach Theorem there
is a Mackey-continuous linear function f : E — R and v € R in such a way that
f(b) <, Vb€ B and f(a) > . But this is not possible since f is also w*-continuous,
hence its restriction to X, and D C B is w*-dense in X. Therefore B = X. So B
being the Mackey closure of \/ D N X is Mackey separable. Notice on this point that

m
{Zqid,— :d; € D and q; is a rational number for I =1, ..., m} N X is dense in X.

i=1

O
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REMARKS.

1. If F is metrisable, in particular a normed space, then the condition of E
being o-compact in the weak* topology is always satisfied.

2. For a topology t coarser than or equal to the weak* topology the sep-
arability of F can be dispensed with. In this case, every t-continuous
total preorder is countably bounded and, therefore, has a t-continuous
order preserving representation by a result of Monteiro (19, Example 4
and Theorem 3.

CoROLLARY 1. Let E be a Banach space with a separable pre-dual and O C
E a Mackey-open and convex subset. Then the finest locally convex topology on E
compatible with the dual pair (E, F) that induces on Q a useful topology is the Mackey
topology.

ProoOF: By taking X = E in the statement of Theorem 1 and following its proof
we see that E is a Mackey-separable topological space. Now since O is a Mackey-open
subet of E it follows that the separability property is inherited by O [11, p.175]. Since
O is connected (it is a convex set) and separable the conclusion follows again from
Eilenberg's Theorem. 0

Since the Mackey topology and the norm topology, which is finer, may not coincide
it is clear that, in general, the norm topology on a Banach space cannot be expected
to be useful. Actually, even with the additional requirement of being convex, a norm-
continuous total preorder could still fail to be representable as the next example shows.
This example is based on Monteiro [19] and is esentially an extension of an example of
Fishburn [14].

EXAMPLE 1. Let Y = [0,Q), Q being the first uncountable ordinal. For a given a € Y’
we will denote by d, the caracteristic function of a. We consider the space [}(Y)
defined as follows:

1Y) = {Z Maba: Aa € Rl and |3 Aol < oo}.
a€Y a
It is clear that {'(Y’) is a dual Banach lattice. Let £} (Y') be the positive cone of 1!(Y),

that is £4(Y) = { Y Aaba: Ag20and YA < oo} and consider X = £} (Y')—{0}.
a€cY a

CLAaIM. There is a norm-continuous and convex total preorder defined on X which is

not representable by a utility function.

PROOF: Let Z be the positive unit sphere of [}(Y), thatis Z = { Y Aaba i Aa 2
a€Y

0and ) Ay = 1} . By [19, Theorem 6] there exists a norm-continuous, convex and non-
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representable total preorder defined on Z. Denote this preorder by <. Then we define
on X the following total preorder <*: z <* y ifand only if =/ ||zl} X y/lly]l (z, y € X).

Clearly <* is well defined and it is norm-continuous. In order to see the convexity
notice that the norm is additive on X . 0

Observe also that the preorder =<* is homothetic, that i1s z <* y if and only if
Az <* Ay, VA > 0. Thus we obtain an infinite-dimensional example of a continuous
and homothetic preorder which is non-representable (see [7]).

The previous example shows that in convex cones of abstract Banach spaces (even
dual spaces) there are continuous, convex and homothetic total preorders which are
non-representable. Moreover, in a recent paper Estévez and Hervés [13] have proved
that in every non-separable metric space there exists a continuous and total preorder
which is not representable by an order preserving function. Thus if we want to obtain a
general result of representability in an infinite-dimensional context we need to assume
nicer properties for both the Banach space and the preorder.

The next theorem states that over the class of convex preorders defined on norm-
closed and convex subsets of reflexive Banach spaces with a countable co-initial subset
the norm topology is useful. The proof given below consists in showing that there exists
a countable order-dense subset and then applying [10, Lemma 2]. It should be noted
that our next theorm is not a corollary of Theorem 1 because if a Banach space E with
a separable pre-dual is reflexive then it is separable and we do not demand this at all.

THEOREM 2. Let E be a reflexive Banach space and X C E a norm-closed
convex subset. Suppose that < is a convex and norm-continuous total preorder on X ,
having a countable co-initial subset. Then < is representable by a continuous (and

quasi-concave) order preserving function.

PROOF: For each 9 € X by using the Arrow-Hahn approach (3, pp.82-87], we
are going to construct an order preserving function over the upper section C(zg) of
zo. For every z € C(zo), we define U(z) to be the distance from C(z) to zo. Let us
see that this function is well-defined. Indeed, since < is convex and continuous and E
is reflexive it follows that each upper section C(z) is a w*-closed convex subset of E.
Now each w*-closed subset of a Banach space with a predual is proximinal [16, p.116).
Therefore the function U is well-defined.

Arguing as in Arrow-Hahn {3, pp.83-84] one can see, since < is continuous, that
U(z) is an order-preserving function on C(zg). Therefore, there is a countable subset
that is Debreu order-dense in C(zq) [5, Theorem 1.4.8].

Let now be {z1, z2, ..., zn, ... } & countable co-initial subset. Then by the first
part of the proof for every n € N there is a countable subset Z, which is Debreu
order-dense in C(z,). Clearly, since X = JC(zn) we conclude that the set Z ={J Z,
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is a countable dense subset of E whence E is Debreu order-separable. Now since the
preorder is continuous we see that Lemma 2 of Debreu [10] implies that there is a
continuous order-preserving function f on E. Finally, the function f is quasi-concave

because the preorder is convex. 0

REMARK 3. This last result generalises one due to Shafer [23] for normed linear spaces
with a < - first element. Notice also that Monteiro’s example {19, Example 4, p.151] is
not complete because it is not clear that the preorder is continuous in the weak topology

as the next example shows.

EXAMPLE 2. We now give an example of a norm-continuous real-valued concave func-
tion U : [3(N) —» R defined on the Hilbert space !*(N) in such a way that u is not
weakly lower-continuous. Thus the preorder induced by this order preserving function is
a convex and continuous preorder, defined on a reflexive Banach space, having a count-
able co-initial subset. This shows that Theorem 2 is not a consequence of Monteiro’s
result [19, p.150].

In order to construct such an example, let (fn)oe

; be a family of real-valued
functions f, : R — R, satisfying the following conditions:

(i) For each n € N, f, is an increasing and concave function such that
£(0) = 0.
(i) Thereis c € R, 0 < ¢ < 1 such that (fs)oe, is uniformly bounded on
(—c,¢).
(ii1)  fay1(—1) < 2fn(—1), for every n € N.
Now define the function u : {?(N) — R by:

o0
if z = (z4)2%, € [*(N) then u(z) = Z Lf,,(:l:,,)
n=1 2n

Notice that u is well-defined. Also it is easy to see that u is norm-continuous and
concave. Let us see that it is not lower-continuous in the weak topology.

In order to do that, let (z™)pe_; C [?(N) be the sequence defined by z™ = (z7)72
where z' = —1 if n = m and z]' = 0 otherwise.

Since for every m € N, u(z™) = (fm(~1))/2™, it follows by (iii) that u(z™*!) <
u(z™). That is, (u(x"‘)):___l
u(z') < u(0)=0.

Now take a = u(z') and consider the set F = u~™!(—0c0, a]. By the remarks
above it follows that ™ € F for all m € N. Further it is obvious that the sequence
(z™)qn_, converges to 0 in the weak topology. But 0 ¢ F. Thus F is not a weakly
closed subset of {?(N) and therefore u is not lower-continuous in the weak topology.

is a decreasing sequence of reals. Also, by (i), notice that
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A family of real-valued functions satisfying conditions (i), (ii) and (iii) is given
below. Define f,(z) by:

1
nt z if z)—l
n
fa(z) =

32" — L)z + %(3(2’1 —1)-

[\

n+1
n

) otherwise.

We now turn to the problem of proving the eixstence of a continuous order pre-
serving function on a Banach space E that may not have a pre-dual. As an example
of such a space, we may mention the classical sequence space ¢g which is the space of
all sequences of reals that converge to zero. The Banach-Alaoglu and Krein—-Milman
Theorems imply that the space ¢o does not have a pre-dual because its closed unit ball
has no extreme points (see [25, p.184 and p.204]). As another example of such a space
we mention the Lebesgue space L!([0, 1], 4, R) where p denotes Lebesgue measure. This
space does not have a pre-dual by Gelfand’s Theorem [16, p.218]. It is clear, therefore,
that one will need strong assumptions on the preorder to get a positive result for such

spaces.

THEOREM 3. Let E be a Banach space and X a norm-closed convex subset of
E. Suppose that < is a norm-continuous total preorder on X such that the following

conditions are satisfied:

(1) = is convex:
(2) =< has a countable co-initial subset Z ;
(3) For each z € X, the upper section C(z) is locally compact.

Then there exists a continuous order preserving function on X .

PROOF: Let zg be an arbitrary but fixed point of X. We claim that for each
z € C(zo) the set C(z) is proximinal with respect to {zo}. Indeed, for each real
number s, consider the set Ky = (zo + sB(0,1)) N C(z). For large s this set is
nonempty. Now K is a closed convex set because it is the intersection of two closed
convex sets. In particular, K is a closed subspace of the locally compact space C(z).
Hence, K, is locally compact. Since K, is a subset of a translate of a ball of radius
s around the origin it follows that K, does not contain any half-line. Now a closed,
convex and locally compact subset of a Banach space is compact if and only if it contains
no half-line [17, p.340]. Therefore, K, is compact. Let so be a fixed number such that
Ky, is nonempty. Then the family {K, : s < so and K, # 0} of closed sets has a
nonempty intersection. This implies that there exists a smallest number s* < 5o such
that K« is nonempty. It follows that any point in K+ is a nearest point in C(z) to
zo. Define U(z) to be the distance from one of these points to zo. Then the function
U is well-defined.
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For each z € C(z0), let M(z) = {¢' € C(z) : ||zo — 2|| = U(z)}. By the above
argument, M(z) is nonempty for all z € C(zo). By using the lower continuity of <
and convexity of X it is easily verified that z ~ z'. This implies that U is order
preserving on C(zo).

By condition (2) there exists a countable co-initial subset Z. Let Z = {z1, 23, ... }.
For each z, € Z we have an order preserving function U, on C (zs) by the first part
of the proof. The Debreu Open Gap Lemma (see [10] or [5, p.44]) implies that there is
a continuous order preserving function U, on C(z,). Since R is order-homeomorphic
to (0,1) we may assume that each U, is bounded. Now define a function V, on X for
eachn =1, 2, ... asfollows. Let V,.(y) = Un(y) for y € C(2) and Va(y) = U(z,) for
y € X\C(2,). Then V, is an extension of U, to X which is continuous by the Glueing

o0

Lemma [9, p.151]. Finally, we define a function V on X by V(z) = ) 27"V, (X).
n=1

The function V is clearly isotone and continuous. To prove that V is strictly isotone

suppose that £ < y. There exists z, € Z such that z, <X z. It follows that for this n
we have V,(z) < Vo(y) whence we get V(z) < V(y) and the theorem is proved. 0

EXAMPLE 3. We now give an example of a total preorder that satisfies the conditions
of Theorem 3. To that end, we need the following lemma whose proof is omitted for
the sake of brevity.

LEMMA. Let E be a Banach space and A C E a convex and compact subset.
Then X = {t.a:t € Ry, a € A} is a closed convex and locally compact subset of E.

Now consider the Banach space E = ¢y and define the map:
n A (o]
Ae(L,2) = o(\) = (i)

n

€ ¢p.
n=1

Notice that ¢ is injective and continuous. Define A = E[Lp([l,Z])) (where To(B)

stands for the closed convex hull of B). Since ¢([1,2]) is a compact subset of cq, it
follows from [19, p.61], that A is convex and compact as well. Finally take X as in the
above lemma. Then X C ¢g is closed and convex. On X consider the following total

preorder <:
(@n)uzy X (yn)nz, fandonlyif o1 <yt ((wn)nlys ()7l € X).

Then < satisfies all the conditions of Theorem 3.

Local compactness is a very stringent assumption in Banach spaces. However, it
should be noted that our approach is based on the existence of elements with the best
approximation property. In connection with this point it should be ntoed that this last
property forces the space to have a special linear structure. Indeed, it is well-known
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that a Banach space is reflexive if and only if each closed hyperplane is proximal [24,
p-99]. This does not mean that the Banach space in Theorem 3 is reflexive. Rather if
E is a Banach space such that each closed hyperplane is proximal then E is reflexive.

As an illustration of the previous paragraph one can easily prove that the hyper-

plane H = {(z4)7, € co: Y, (zn/2") =0} is not proximinal in co.

n=1
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