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Abstract

Let X1 and X2 be two independent and nonnegative random variables with distributions F1 and F2,
respectively. This paper proves that if both F1 and F2 are of Weibull type and fulfill certain easily
verifiable conditions, then the distribution of the product X1 X2, called the product convolution of F1
and F2, belongs to the class S∗ and, hence, is subexponential.
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1. Introduction

Throughout this paper, all limit relations are for x→∞ unless otherwise stated and
the symbol ∼ means that the quotient of both sides tends to 1. Let X1 and X2 be
two independent and nonnegative random variables with distributions F1 and F2,
respectively. The distribution of the sum X1 + X2, written as F1 ∗ F2, is called the
sum convolution of F1 and F2; that is,

F1 ∗ F2(x)=
∫ x

0−
F1(x − y) d F2(y) ∀x ≥ 0. (1.1)

The distribution of the product X1 X2, written as F1 ⊗ F2, is called the product
convolution of F1 and F2; that is,

F1 ⊗ F2(x)=
∫
∞

0
F1(x/y) d F2(y) ∀x ≥ 0. (1.2)
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Comparing (1.1) and (1.2), our experience tells us that the product convolution is
usually much more intractable than the sum convolution.

A distribution F on [0,∞) is said to be subexponential, written as F ∈ S , if
F(x)= 1− F(x) > 0 for all x ≥ 0 and

F ∗ F(x)∼ 2F(x). (1.3)

A distribution F on [0,∞) is said to belong to the class S∗ if F(x) > 0 for all x ≥ 0,
µ=

∫
∞

0 F(y) dy <∞, and∫ x

0
F(x − y)F(y) dy ∼ 2µF(x).

The class S∗ forms an important subclass of the subexponential class S .
Klüppelberg [16] first introduced the class S∗ and pointed out that the class S∗

contains almost all cited subexponential distributions with finite means. In recent
studies in applied probability, researchers have discovered that the class S∗ enjoys a lot
of nicer properties than the class S . In studies concerning asymptotic tail probabilities
in many fields such as queueing theory and risk theory, it is often a standard assumption
that underlying distributions belong to the class S∗. Recent in-depth studies revealing
new properties and proposing important applications of the class S∗ can be found
in [3, 4, 8, 14, 15], among others. All these works look at the asymptotic tail
probabilities of sums and maxima of sums of random variables.

The study of subexponentiality of product convolutions was initiated by [7],
reactivated by [11, 13], and further extended by [12, 20–22]. This study is important
because, like sums, products of random variables are a basic element of modeling in
applied fields and because the study of the tail behavior of certain stochastic quantities
of complicated structure can usually be reduced to the study of the tail behavior of
sums and products. The reader is referred to [11] for further discussion. However,
the study of subexponentiality of products is often much more difficult than the
study of subexponentiality of sums. This is not surprising since, as shown in (1.3),
subexponentiality is defined in terms of sums and not products.

In this paper we prove that the product convolution of two Weibull-type
distributions fulfilling certain mild conditions belongs to the class S∗. Our work is
motivated by an interesting observation of [22] that the product convolution of two
exponential distributions is subexponential.

The rest of this paper consists of three sections. After showing a main result and
two related consequences in Section 2, we prepare two propositions in Section 3 and
prove the main result in Section 4.

2. Main result

A distribution F on [0,∞) is said to be of Weibull type if

F(x)= c(x) exp{−b(x)x p
} ∀x ≥ 0, (2.1)
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where p > 0 is a constant, called the shape parameter, and c(·) : [0,∞) 7→ (0,∞) and
b(·) : [0,∞) 7→ (−∞,∞) are two measurable functions such that the limits c(x)→ c
and b(x)→ b exist and are positive. If only for the purpose of definition, the function
c(·) in (2.1) can be eliminated by replacing b(x) by b̃(x)= b(x)− x−p log c(x).
Nevertheless, we still separate the two functions c(·) and b(·) as in (2.1) because
in (2.5) we make an assumption on the differentiability of the function b(·).

Let X1 and X2 be two independent and nonnegative random variables with
distributions F1 and F2, and let G be the distribution of their product

Y = X1 X2. (2.2)

Thus, G = F1 ⊗ F2. Assume that both F1 and F2 are of Weibull type with tails

Fi (x)= ci (x) exp{−bi (x)x
pi } ∀x ≥ 0, i = 1, 2, (2.3)

for some constants pi > 0 and some measurable functions ci (·) : [0,∞) 7→ (0,∞)
and bi (·) : [0,∞) 7→ (−∞,∞) satisfying ci (x)→ ci > 0 and bi (x)→ bi > 0.
Further assume that

p−1
1 + p−1

2 > 1 (2.4)

and that, for i ∈ {1, 2} determined by pi =max{p1, p2}, the function bi (·) is eventu-
ally continuously differentiable with derivative b′i (·) satisfying

−bi pi < lim inf
x→∞

b′i (x)x ≤ lim sup
x→∞

b′i (x)x < bi pi (p
−1
1 + p−1

2 − 1). (2.5)

THEOREM 2.1. Consider the product in (2.2). Under conditions (2.3)–(2.5) we have
G = F1 ⊗ F2 ∈ S∗.

Note that condition (2.4) cannot be removed from Theorem 2.1. A simple
counterexample is that F1(x)= F2(x)=8(x ∨ 0) for x ≥ 0, where 8(·) is the
standard normal distribution. In this case, p1 = p2 = 2 and it is easy to verify that
F1 ⊗ F2 has certain finite exponential moments and, hence, it is even not heavy-tailed.

Professor Enkelejd Hashorva has kindly brought to our attention a closely related
but different result obtained by [2]. According to this reference, a distribution F on
[0,∞) is said to have a Weibullian tail if

F(x)∼ Cxγ exp{−βxα} where α, β, C > 0, γ ∈ (−∞,∞).

Lemma 2.1 of [2] shows that if both F1 and F2 have Weibullian tails then the product
convolution F1 ⊗ F2 also has a Weibullian tail with explicitly given parameters.

A distribution F on [0,∞) is said to belong to the class L(γ ) for γ ≥ 0 if the
relation

F(x − y)∼ eγ y F(x)

holds for all y. When γ > 0 the distribution F ∈ L(γ ) is usually said to have an
exponential tail, while when γ = 0 the class L(γ ) reduces to the well-known class of
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long-tailed distributions. Studies on this and related distribution classes can be found
in [1, 9, 10, 18, 19, 24], among others. Applying Karamata’s representation theorem
for regularly varying functions (see [5, 17]), we know that F ∈ L(γ ) if and only if
F(·) can be expressed as

F(x)= c(x) exp
{
−

∫ x

0
γ (y) dy

}
∀x ≥ 0, (2.6)

where c(·) : [0,∞) 7→ (0,∞) and γ (·) : [0,∞) 7→ (−∞,∞) are measurable
functions such that the limits c(x)→ c > 0 and γ (x)→ γ exist. As can be seen from
the proof of Corollary 2.1 below, the class L(γ ) for γ > 0 forms a subclass of Weibull-
type distributions with shape parameter 1.

COROLLARY 2.1. If F1 ∈ L(γ1) for some γ1 > 0 and F2 is of Weibull type with shape
parameter 0< p2 ≤ 1, then G = F1 ⊗ F2 ∈ S∗. In particular, if Fi ∈ L(γi ) for some
γi > 0 for i = 1, 2, then G = F1 ⊗ F2 ∈ S∗.

PROOF. According to (2.6), F1(·) can be expressed as

F1(x)= c1(x) exp
{
−

∫ x

0
γ1(y) dy

}
∀x ≥ 0,

for measurable functions c1(·) : [0,∞) 7→ (0,∞) and γ1(·) : [0,∞) 7→ (−∞,∞)

satisfying c1(x)→ c1 > 0 and γ1(x)→ γ1. We can always construct a distribution
F0 with

F0(x)= exp
{
−

∫ x

0
γ0(y) dy

}
∀x ≥ 0, (2.7)

for some continuous function γ0(·) : [0,∞) 7→ (0,∞) such that∫
∞

0
|γ1(y)− γ0(y)| dy <∞.

Clearly, there exists some positive constant c∗ such that F1(x)∼ c∗F0(x). By [23,
Lemma A.5], we obtain

G(x)∼ c∗F0 ⊗ F2(x).

Rewrite (2.7) in the style of (2.3) so that

F0(x)= exp{−b0(x)x} ∀x ≥ 0,

with b0(x)= x−1
∫ x

0 γ0(y) dy. Note that (b0(x))′x→ 0. Hence, by Theorem 2.1,
F0 ⊗ F2 ∈ S∗. By [22, Corollary 1.1(C1)], G ∈ L(0). Therefore, by the closure of S∗
under tail equivalence as shown in [16, Theorem 2.1(b)], we know that G ∈ S∗. 2

Let {B(t), t ≥ 0} be a standard Brownian motion and let τ be a nonnegative random
variable independent of {B(t), t ≥ 0}. Denote by

B∗(τ )= sup
0≤t≤τ

B(t)
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the maximum of the Brownian motion over a random time interval [0, τ ]. It is well
known that if τ is exponentially distributed, so is B∗(τ ); see, for example, [6, (1.1.2)].
The following example catches a subexponential tail of B∗(τ )when τ follows a heavy-
tailed Weibull-type distribution.

EXAMPLE 2.1. If τ follows a Weibull-type distribution with shape parameter p, such
that 0< p < 1, then the distribution of B∗(τ ) belongs to the class S∗.

PROOF. By conditioning on τ ,

Pr(B∗(τ ) > x)= 2Pr(B(τ ) > x) ∀x ≥ 0.

Thus, we only need to prove that the distribution of B+(τ )= B(τ ) ∨ 0 belongs to the
class S∗. Clearly,

B+(τ )
D
= X
√
τ , (2.8)

where X and τ are independent, X follows the distribution 8(x ∨ 0) for x ≥ 0 where

8(·) denotes the standard normal distribution, and
D
= means equality in distribution.

Elementary calculation gives

Pr(X > x)∼
1
√

2π
exp

{
−

1
2

(
1+

2 log x

x2

)
x2
}
,

which shows that the distribution of X is of Weibull type with shape parameter 2. By
the assumption on τ , it is easy to see that

√
τ follows a Weibull-type distribution too

with shape parameter 2p. Therefore by Theorem 2.1, the distribution of X
√
τ in (2.8)

belongs to the class S∗. 2

3. Preliminaries

In the rest of this paper, for two positive functions a(·) and b(·), we write a(x)�
b(x) if 0< lim inf a(x)/b(x)≤ lim sup a(x)/b(x) <∞ and write a(x). b(x) or
b(x)& a(x) if lim sup a(x)/b(x)≤ 1. Let C denote an absolute positive constant
whose value may vary from line to line.

PROPOSITION 3.1. Let F1 and F2 be as given in (2.3). Assume that b1 = b2 = 1 and
0< p2 ≤ p1 <∞, and write a = (p1/p2)

1/(p1+p2). If b1(·) is differentiable and its
derivative satisfies

−p1 < lim inf
x→∞

b′1(x)x ≤ lim sup
x→∞

b′1(x)x <∞, (3.1)

then, for all ε > 0,

G(x)�
∫ (1+ε)

1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}y p2−1 dy. (3.2)
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PROOF. For any fixed ε > 0, we choose δ > 0 such that (2+ ε)(1− δ) > 2(1+ δ).
Since

G(x) ≥ Pr(X1 > x p2/(p1+p2))Pr(X2 > x p1/(p1+p2))

� exp{−b1(x
p2/(p1+p2))x p1 p2/(p1+p2) − b2(x

p1/(p1+p2))x p1 p2/(p1+p2)}

& exp{−2(1+ δ)x p1 p2/(p1+p2)},

then

F1((2+ ε)1/p2ax p2/(p1+p2))

� exp{−b1((2+ ε)1/p2ax p2/(p1+p2))(2+ ε)p1/p2a p1 x p1 p2/(p1+p2)}

. exp{−(2+ ε)(1− δ)x p1 p2/(p1+p2)}

= o(G(x)).

(3.3)

Likewise,
F2((2+ ε)1/p2ax p1/(p1+p2))= o(G(x)). (3.4)

Therefore,

G(x)=
∫
∞

0
F1(x/y) d F2(y)∼

∫ (2+ε)1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
F1(x/y) d F2(y). (3.5)

Using integration by parts and substituting (3.3) and (3.4), we obtain that

G(x) �
∫ (2+ε)1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
exp{−b1(x/y)(x/y)p1} d F2(y)

= o(G(x))+
∫ (2+ε)1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
F2(y) d exp{−b1(x/y)(x/y)p1}.

By (3.1), for all large x , the exponential function behind the differential operator is
strictly increasing in y in the indicated interval. It follows from (2.3) and (3.1) that

G(x)�
∫ (2+ε)1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}y p2−1 dy.

Split the integral on the right-hand side above into three parts as

I1(x)+ I2(x)+ I3(x) =
∫ (1+ε)−1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
+

∫ (1+ε)1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)

+

∫ (2+ε)1/p2 ax p1/(p1+p2)

(1+ε)1/p2 ax p1/(p1+p2)
.

To obtain (3.2), it suffices to prove that

I1(x)+ I3(x)= o(I2(x)). (3.6)
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Note that (x/y)p1 + y p2 , as a function of y, decreases when 0< y ≤ ax p1/(p1+p2) and
increases when y ≥ ax p1/(p1+p2). On the one hand,

I1(x) .
∫ (1+ε)−1/p2 ax p1/(p1+p2)

(2+ε)−1/p2 a−1x p1/(p1+p2)
exp{−(1− ε3)((x/y)p1 + y p2)}y p2−1 dy

≤ Cx p1 p2/(p1+p2)

× exp{−(1− ε3)((1+ ε)p1/p2a−p1 + (1+ ε)−1a p2)x p1 p2/(p1+p2)}

and

I3(x) .
∫ (2+ε)1/p2 ax p1/(p1+p2)

(1+ε)1/p2 ax p1/(p1+p2)
exp{−(1− ε3)((x/y)p1 + y p2)}y p2−1 dy

≤ Cx p1 p2/(p1+p2)

× exp{−(1− ε3)((1+ ε)−p1/p2a−p1 + (1+ ε)a p2)x p1 p2/(p1+p2)}.

On the other hand, it is easy to see that

I2(x) &
∫ ax p1/(p1+p2)

(1+ε/2)−1/p2 ax p1/(p1+p2)
exp{−(1+ ε3)((x/y)p1 + y p2)}y p2−1 dy

+

∫ (1+ε/2)1/p2 ax p1/(p1+p2)

ax p1/(p1+p2)
exp{−(1+ ε3)((x/y)p1 + y p2)}y p2−1 dy

& Cx p1 p2/(p1+p2)

× exp{−(1+ ε3)((1+ ε/2)p1/p2a−p1 + (1+ ε/2)−1a p2)x p1 p2/(p1+p2)}

+ Cx p1 p2/(p1+p2)

× exp{−(1+ ε3)((1+ ε/2)−p1/p2a−p1 + (1+ ε/2)a p2)x p1 p2/(p1+p2)}.

To prove (3.6), use Taylor’s expansion to expand both

(1+ ε/2)p1/p2a−p1 + (1+ ε/2)−1a p2 and (1+ ε)p1/p2a−p1 + (1+ ε)−1a p2

in ε up to the ε2 term. Then we find that the coefficients of the constant terms and
the ε terms are equal, but the coefficient of the ε2 term of the first is smaller than the
corresponding coefficient of the second. Therefore, for all small ε > 0,

(1+ ε3)((1+ ε/2)p1/p2a−p1 + (1+ ε/2)−1a p2)

< (1− ε3)((1+ ε)p1/p2a−p1 + (1+ ε)−1a p2),
(3.7)

which implies that I1(x)= o(I2(x)). Similarly as above, for all small ε > 0,

(1+ ε3)((1+ ε/2)−p1/p2a−p1 + (1+ ε/2)a p2)

< (1− ε3)((1+ ε)−p1/p2a−p1 + (1+ ε)a p2),
(3.8)

which implies that I3(x)= o(I2(x)). Hence, relation (3.6) holds. This proves that
relation (3.2) holds for all small ε > 0, hence, for all ε > 0. 2
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PROPOSITION 3.2. Let F1 and F2 be as given in (2.3) with 0< p2 ≤ p1 <∞ satis-
fying (2.4). Further assume that b1(·) is differentiable with |b′1(x)| = O(x−1). Then
G = F1 ⊗ F2 ∈ L(0).

PROOF. It suffices to prove that G(x + 1)& G(x). For any fixed small ε > 0, write

1(ε, x)= ((2+ ε)−1/p2a−1x p1/(p1+p2), (2+ ε)1/p2ax p1/(p1+p2)],

where a = (p1/p2)
1/(p1+p2) as before. By (3.3)–(3.5),

G(x + 1)∼
∫

y∈1(ε,x)

F1((x + 1)/y)

F1(x/y)
F1(x/y) d F2(y)& L(x)G(x),

where

L(x) = inf
y∈1(ε,x)

F1((x + 1)/y)

F1(x/y)

= inf
y∈1(ε,x)

c1((x + 1)/y) exp{−b1((x + 1)/y)((x + 1)/y)p1}

c1(x/y) exp{−b1(x/y)(x/y)p1}
.

We need to prove that, uniformly for all y ∈1(ε, x),

I (x, y)= b1((x + 1)/y)((x + 1)/y)p1 − b1(x/y)(x/y)p1 → 0. (3.9)

Since b1(x) is differentiable with |b′1(x)| = O(x−1) we have,

|I (x, y)| =

∣∣∣∣(b1((x + 1)/y)− b1(x/y))((x + 1)/y)p1 + b1(x/y)
(x + 1)p1 − x p1

y p1

∣∣∣∣
≤ ((x + 1)/y)p1

∫ (x+1)/y

x/y
|b
′

1(z)| dz + b1(x/y)
(x + 1)p1 − x p1

y p1

≤ Cx p1 p2/(p1+p2)

∫ (x+1)/y

x/y
z−1 dz + Cx p1 p2/(p1+p2)−1

≤ Cx p1 p2/(p1+p2)−1

uniformly for all y ∈1(ε, x). Hence, by (2.4), relation (3.9) holds. 2

4. Proof of Theorem 2.1

If we have proven Theorem 2.1 for b1 = b2 = 1, then using the identity

Y =
1

b1/p1
1 b1/p2

2

(b1/p1
1 X1)(b

1/p2
2 X2),
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the extension to the general case is straightforward because b1/p1
1 X1 and b1/p2

2 X2 still
have Weibull-type distributions and, by the definition of the class S∗, the distribution of
Y belonging to S∗ is equivalent to the distribution of the product (b1/p1

1 X1)(b
1/p2
2 X2)

belonging to S∗. Therefore, we may assume without loss of generality that
b1 = b2 = 1. We may also assume without loss of generality that 0< p2 ≤ p1 <∞.
Hence, relation (2.5) holds with i = 1. Recall that a = (p1/p2)

1/(p1+p2).

In the proof below ε denotes a positive constant which can be arbitrarily small.
Denote by w(·) the function on the right-hand side of (3.2); that is,

w(x)=
∫ (1+ε)1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}y p2−1 dy ∀x ≥ 0.

We need to verify thatw(x) is eventually nonincreasing. By direct computation, shows
that

w′(x)= J1(x)− J2(x)− J3(x), (4.1)

where

J1(x) =
p1

p1 + p2
(1+ ε)a p2 x p1 p2/(p1+p2)−1

× exp{−b1((1+ ε)−1/p2a−1x p2/(p1+p2))(1+ ε)−p1/p2a−p1 x p1 p2/(p1+p2)}

× exp{−b2((1+ ε)1/p2ax p1/(p1+p2))(1+ ε)a p2 x p1 p2/(p1+p2)},

J2(x) =
p1

p1 + p2
(1+ ε)−1a p2 x p1 p2/(p1+p2)−1

× exp{−b1((1+ ε)1/p2a−1x p2/(p1+p2))(1+ ε)p1/p2a−p1 x p1 p2/(p1+p2)}

× exp{−b2((1+ ε)−1/p2ax p1/(p1+p2))(1+ ε)−1a p2 x p1 p2/(p1+p2)},

and

J3(x) =
∫ (1+ε)1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}

×

(
b
′

1(x/y)(x/y)p1
1
y
+ b1(x/y)p1

x p1−1

y p1

)
y p2−1 dy.

It is easy to see that

J1(x) . Cx p1 p2/(p1+p2)−1

× exp{−(1− ε3)((1+ ε)−p1/p2a−p1 + (1+ ε)a p2)x p1 p2/(p1+p2)}.
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By (2.5) and the monotonicity of the function (x/y)p1 + y p2 in y,

J3(x) & C
∫ (1+ε)1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}
x p1−1

y p1
y p2−1 dy

& Cx2p1 p2/(p1+p2)−1

×

∫ (1+ε/2)1/p2 ax p1/(p1+p2)

ax p1/(p1+p2)
exp{−b1(x/y)(x/y)p1 − b2(y)y

p2}y−1 dy

& Cx2p1 p2/(p1+p2)−1

× exp{−(1+ ε3)((1+ ε/2)−p1/p2a−p1 + (1+ ε/2)a p2)x p1 p2/(p1+p2)}.

Therefore for all small ε > 0 such that (3.7)–(3.8) hold,

J1(x)

J3(x)
.

C

x p1 p2/(p1+p2)

×
exp{−(1− ε3)((1+ ε)−p1/p2a−p1 + (1+ ε)a p2)x p1 p2/(p1+p2)}

exp{−(1+ ε3)((1+ ε/2)−p1/p2a−p1 + (1+ ε/2)a p2)x p1 p2/(p1+p2)}
,

so J1(x)/J3(x)→ 0. Likewise, J2(x)/J3(x)→ 0. It follows from (4.1) that

w′(x)∼−J3(x). (4.2)

Hence, w′(x) is negative for all large x and w(x) is eventually monotone.
Introduce a distribution W on [0,∞) with tail

W (x)=

{
1 if x ≤ x0,

w(x) if x > x0,

where x0 > 0 is some large number such that w(x) is nonincreasing for x ≥ x0 and
w(x0)≤ 1. By Propositions 3.1–3.2 above and [16, Theorem 2.1(b)], it suffices to
verify that W ∈ S∗, which amounts to

lim
x→∞

∫ x

0

W (x − y)W (y)

W (x)
dy = 2

∫
∞

0
W (y) dy. (4.3)

By the definition of W , following the proof of Proposition 3.2, we can obtain that
W ∈ L(0). Write R(x)=−log W (x) and r(x)= R

′

(x). Recall that (x/y)p1 + y p2 , as
a function of y, attains its minimum at y = ax p1/(p1+p2),

W (x) .
∫ (1+ε)1/p2 ax p1/(p1+p2)

(1+ε)−1/p2 ax p1/(p1+p2)
exp{−(1− ε)((x/y)p1 + y p2)}y p2−1 dy

≤ Cx p1 p2/(p1+p2) exp{−(1− ε)(a−p1 + a p2)x p1 p2/(p1+p2)},

which implies that

R(x)& (1− ε)(a−p1 + a p2)x p1 p2/(p1+p2). (4.4)
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Write l1 = lim sup b
′

1(x)x . It follows from (4.2) and (2.5) that, for all x > x0,

r(x)=−
(W (x))′

W (x)
∼
−w′(x)

w(x)
∼

J3(x)

w(x)

. (1+ ε)p1/p2a−p1(l1 + p1)x
p1 p2/(p1+p2)−1.

(4.5)

Furthermore, by (2.4), uniformly for all 0≤ y ≤ x/2,∫ x

x−y
v p1 p2/(p1+p2)−1 dv ≤ y(x − y)p1 p2/(p1+p2)−1

≤ y p1 p2/(p1+p2). (4.6)

Using (4.4)–(4.6) we obtain that, for all 0≤ y ≤ x/2 and all large x > 0,

W (x − y)W (y)

W (x)
= exp

{∫ x

x−y
r(v) dv − R(y)

}
≤ exp

{
(1+ 2ε)p1/p2a−p1(l1 + p1)

∫ x

x−y
v p1 p2/(p1+p2)−1 dv

− (1− 2ε)(a−p1 + a p2)y p1 p2/(p1+p2)

}
≤ exp{((1+ 2ε)p1/p2a−p1(l1 + p1)

− (1− 2ε)(a−p1 + a p2))y p1 p2/(p1+p2)}.

(4.7)

By (2.5) and the definition of a, we obtain

a−p1(l1 + p1) < a−p1
p1 + p2

p2
= a−p1 + a p2 .

Consequently, for all small ε > 0,

(1+ 2ε)p1/p2a−p1(l1 + p1) < (1− 2ε)(a−p1 + a p2).

Therefore, the right-hand side of (4.7) as a function of y is integrable over [0,∞).
Applying the dominated convergence theorem, we obtain (4.3), as

lim
x→∞

∫ x

0

W (x − y)W (y)

W (x)
dy = 2 lim

x→∞

∫ x/2

0

W (x − y)W (y)

W (x)
dy = 2

∫
∞

0
W (y) dy.
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[2] M. Arendarczyk and K. Dębicki, ‘Asymptotics of supremum distribution of a Gaussian process
over a Weibullian time’, Bernoulli 16 (2010), to appear.

[3] S. Asmussen, ‘Subexponential asymptotics for stochastic processes: extremal behavior,
stationary distributions and first passage probabilities’, Ann. Appl. Probab. 8(2) (1998),
354–374.

[4] S. Asmussen, S. Foss and D. Korshunov, ‘Asymptotics for sums of random variables with local
subexponential behaviour’, J. Theoret. Probab. 16(2) (2003), 489–518.

[5] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation (Cambridge University
Press, Cambridge, 1987).

[6] A. N. Borodin and P. Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd edn
(Birkhäuser, Basel, 2002).

[7] L. Breiman, ‘On some limit theorems similar to the arc-sin law’, Theory Probab. Appl. 10(2)
(1965), 323–331.

[8] G. Chen, Y. Wang and F. Cheng, ‘The uniform local asymptotics of the overshoot of a random
walk with heavy-tailed increments’, Stoch. Models 25(3) (2009), 508–521.

[9] D. B. H. Cline, ‘Convolution tails, product tails and domains of attraction’, Probab. Theory
Related Fields 72(4) (1986), 529–557.

[10] D. B. H. Cline, ‘Convolutions of distributions with exponential and subexponential tails’,
J. Aust. Math. Soc. Ser. A 43(3) (1987), 347–365.

[11] D. B. H. Cline and G. Samorodnitsky, ‘Subexponentiality of the product of independent random
variables’, Stochastic Process. Appl. 49(1) (1994), 75–98.

[12] D. Denisov and B. Zwart, ‘On a theorem of Breiman and a class of random difference
equations’, J. Appl. Probab. 44(4) (2007), 1031–1046.

[13] P. Embrechts and C. M. Goldie, ‘On closure and factorization properties of subexponential and
related distributions’, J. Aust. Math. Soc. Ser. A 29(2) (1980), 243–256.

[14] S. Foss, Z. Palmowski and S. Zachary, ‘The probability of exceeding a high boundary on
a random time interval for a heavy-tailed random walk’, Ann. Appl. Probab. 15(3) (2005),
1936–1957.

[15] S. Foss and S. Zachary, ‘The maximum on a random time interval of a random walk with
long-tailed increments and negative drift’, Ann. Appl. Probab. 13(1) (2003), 37–53.

[16] C. Klüppelberg, ‘Subexponential distributions and integrated tails’, J. Appl. Probab. 25(1)
(1988), 132–141.

[17] C. Klüppelberg, ‘Subexponential distributions and characterizations of related classes’,
Probab. Theory Related Fields 82(2) (1989), 259–269.

[18] A. G. Pakes, ‘Convolution equivalence and infinite divisibility’, J. Appl. Probab. 41(2) (2004),
407–424.

[19] A. G. Pakes, ‘Convolution equivalence and infinite divisibility: corrections and corollaries’,
J. Appl. Probab. 44(2) (2007), 295–305.

[20] Q. Tang, ‘On convolution equivalence with applications’, Bernoulli 12(3) (2006), 535–549.
[21] Q. Tang, ‘The subexponentiality of products revisited’, Extremes 9(3–4) (2006), 231–241.
[22] Q. Tang, ‘From light tails to heavy tails through multiplier’, Extremes 11(4) (2008), 379–391.
[23] Q. Tang and G. Tsitsiashvili, ‘Finite- and infinite-time ruin probabilities in the presence of

stochastic returns on investments’, Adv. in Appl. Probab. 36(4) (2004), 1278–1299.
[24] T. Watanabe, ‘Convolution equivalence and distributions of random sums’, Probab. Theory

Related Fields 142(3–4) (2008), 367–397.

YAN LIU, School of Mathematics and Statistics, Wuhan University, Wuhan,
Hubei 430072, PR China
e-mail: yanliu@whu.edu.cn

QIHE TANG, Department of Statistics and Actuarial Science, University of Iowa,
241 Schaeffer Hall, Iowa City, IA 52242, USA
e-mail: qtang@stat.uiowa.edu

https://doi.org/10.1017/S1446788710000182 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000182

