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In this paper, we consider the Cauchy problem for an inviscid compressible
Oldroyd-B model in three dimensions. The global well posedness of strong solutions
and the associated time-decay estimates in Sobolev spaces are established near an
equilibrium state. The vanishing of viscosity is the main challenge compared with
[47] where the viscosity coefficients are included and the decay rates for the
highest-order derivatives of the solutions seem not optimal. One of the main
objectives of this paper is to develop some new dissipative estimates such that the
smallness of the initial data and decay rates are independent of the viscosity.
Moreover, we prove that the decay rates for the highest-order derivatives of the
solutions are optimal, which is of independent interest. Our proof relies on Fourier
theory and delicate energy method.
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1. Introduction

The Oldroyd-B model is a widely used constitutive model to describe the motion
of viscoelastic fluids. One of the known derivations is that it can be derived as
a macroscopic closure of Navier—Stokes—Fokker—Planck system which is a micro-
macro model describing dilute polymeric fluids in dumbbell Hookean setting, see
[3, 7] for the incompressible case and the compressible case, respectively. The com-
pressible Oldroyd-B model in the space-time cylinder Q7 = R3 x (0, T] is stated as
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follows:

pt + div(pu) = 0,
(pu)s + div(pu @ u) + VP(p) — pAu — (u + v)Vdivu
ne + div(nu) = eAn,
. T kAg Ag
T; + div(uT) — (VuT + TV u) = eAT + ——nl — —T,
2\ 2\
where the pressure P(p) and the density p(z,t) > 0 of the fluid are supposed to be
related by the typical power law relation for simplicity:

P(p) = ap”

for some known constants a > 0, v > 1; u(xz,t) € R? denotes the velocity field of the
fluid. p and v are viscosity coefficients satisfying p > 0, 2u + 3v > 0. The polymer
number density 7(z, t) > 0 represents the integral of the probability density function
1 which is a microscopic variable in the modelling of dilute polymer chains, i.e.,

wat) = [ wieta)da,

where 1 is governed by the Fokker—Planck equation. The extra stress tensor
T(z,t) = (T, ;)(z,t) € R¥3, 1< i,j <3 is a positive definite symmetric matrix
defined on @7, and the notation div(uT) is understood as

(div(uT)), ; = div(uT;;), 1<i,j<3.

The constant parameter e is the centre-of-mass diffusion coefficient and other
parameters k, L, 3, Ag, A are all positive and known numbers, whose meanings were
explained in [3]. (1.1) is known as diffusive Oldroyd-B model when the diffusion
coefficient € > 0. The corresponding micro-macro version of (1.1) can be referred
for instance to [2] and references therein.

Note that the centre-of-mass diffusion term is usually smaller than other effects
([5])- For such a reason, in early mathematical studies of macroscopic Oldroyd-B
model, the stress diffusion is omitted, see [44]. In this context, [46] established the
local existence theory for Dirichlet problem. Guillopé and Saut [23] obtained the
existence and uniqueness of global strong solution in the Sobolev space H*() for
bounded domains €2 € R? with a small initial data. Some other related results can
be referred to [21, 43]. In exterior domains, Hieber, Naito and Shibata [24] obtained
a global existence and uniqueness of the solution provided the initial data and the
coupling constant are sufficiently small. Fang, Hieber and Zi [18] extended the
work [24] to the case without any smallness assumption on the coupling constant.
The existence of a global-large-data weak solution was established by Lions and
Masmoudi [36] in the corotational derivative setting. For long-time behaviour of
the solution, please refer to [25, 31]. There are also some interesting results on
other macroscopic model of Oldroyd type concerning viscoelastic flow introduced
by Lin, Liu and Zhang [35], for example [26, 29, 33] and others.
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However, the centre-of-mass diffusion can be physically justified to model the
shear and vorticity banding phenomena [6, 9, 10, 13, 32, 37, 42|, although it
is small. In this case, some interesting works have been achieved. More specifi-
cally, the global-in-time existence of large-data solutions in two dimensional setting
was obtained by Barrett-Boyaval [1] for weak solutions and by Constantin and
Kliegl [11] for strong solutions. In three-dimensional setting, Bathory, Buli¢ek and
Malek [4] proved the global existence of weak solutions for a generalized rate-type
viscoelastic fluids in bounded domains. For the inviscid case, Elgindi and Rous-
set [17] obtained the global existence and uniqueness of regular solutions in two
dimensions with arbitrarily large initial data when Q = Q(Vu, T) is omitted and
with small initial data when @ # 0. We refer to [16] for the three-dimensional
case with small initial data. For the case of fractional Laplace, please refer to [12].
Very recently, the second author, the third author and their collaborators [31]
studied the long-time behaviour of the solutions and obtained some decay esti-
mates. These results are concerned with homogeneous fluids, i.e., the density is
constant.

For the compressible case, there are a lot of fundamental problems which are still
open. We recall some mathematical results for compressible viscoelastic models,
which have been the subject of related fields in recent years. The well posedness
in local time and global well posedness near an equilibrium for macroscopic mod-
els of three-dimensional compressible viscoelastic fluids were considered in [19, 27,
28, 34, 45] (see [8] for global existence of weak solutions). In particular, Fang
and Zi [19] proved the local well posedness of strong solutions to a compress-
ible Oldroyd-B model and established a blow-up criterion. Soon afterwards, the
authors [53] obtained the global well posedness in critical spaces. Lei [34], Fang
and Zi [20], and Guillopé, Salloum and Talhouk [22] investigated the incompress-
ible limit problem in torus, the whole space and bounded domain, respectively.
Very recently, Zhou, Zhu and Zi [51] obtained some time-decay estimates of strong
solutions. Zhu [52] obtained the global well posedness of small classical solutions
to a generalized inviscid compressible Oldroyd-B model in Sobolev space H?® for
s 2 5. In [3], Barrett, Lu and Siili not only showed the derivation of the com-
pressible viscous Oldroyd-B model with stress diffusion (1.1) via a macroscopic
closure of a micro-macro model, but also proved the existence of global-in-time
finite-energy weak solutions with arbitrarily large initial data in two dimensions.
The global-in-time existence of solutions strong or weak with arbitrarily large ini-
tial data is unknown in three dimensions either with stress diffusion or not. In two
and three dimensional setting, Lu and Zhang [40] obtained the local-in-time well
posedness of strong solutions together with a blow-up criterion and weak-strong
uniqueness. Very recently, the second author and the third author [47] showed the
global well posedness and optimal time-decay rates of strong solutions for Cauchy
problem in three dimensions. In critical Besov spaces, one can refer to [50]. Less
is known concerning the vanishing of centre-of-mass diffusion and the inviscid case
in (1.1) either for global well posedness or for long time behaviour, until very
recently the first author, the third author and their collaborator investigated the
first case (i.e., ¢ = 0) in [38]. This work is devoted to the latter one which is more
challenging.
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More precisely, we consider the case that p=vr =0 in (1.1), i.e.,

pe +div(pu) =0,

(pu); + div(pu @ u) + VP (p) = div(T — (kLn + 3n°)I),

N + div(nu) = eAn, (1.2)
kA A

. o T _ ~Ao -
Ty + div(uT) — (VuT + TV u) = eAT + 7 nl o\ L

1.1. Reformulation of the problem

In this section, we give a reformulation of (1.2) to make the analysis more con-
venient right behind. In fact, when £ = 0 and the viscosity coeflicients are fixed, a
similar reformulation was given in our previous work [38]. Thus this section is a
slight modification of the corresponding part in [38]. More specifically, multiplying
(12)3 by kﬂij, we have

(k’l]]lij)t + div(kn]Iiju) = EA(]CT]HZ‘J‘). (13)
Then subtracting (1.3) from (1.2)4 yields that
0¢(Ts; — knliy) + 00 ((Ts; — knliy)w) — (OrusTi; + TaOuy)

= eA(Ty; — knl;) — ?—;(Tij — knl;;). (1.4)
Further, denoting 7;; = T;; — knl;;, and conducting direct calculations, we can get
O Ty = Oyt + kOunlly; = Oty + kOjum, (1.5)
and
Tiy0iu; = 10w + knlyOiuy = 130w + knodsu;. (1.6)
Putting (1.5) and (1.6) into (1.4) yields

A
8t7'ij + 6l(rijul) — (6lui7'lj + m@luj) — kn(éjui + &uj) = EATij — 27)\07'1']',
which is
. T T AO
Ot +div(ut) — (Vur +7V*iu) —kn(Vu+ V7 u) = e At — TN (1.7)

Next, the term of the right-hand side in (1.2)2 can be transformed into the following
form

9; (Tij — (kL + 50 )Lij) = 05 (7ij + knllij — (kL + 51°)L;)
= 0;7;; — 0i (k(L — 1)n+37n°),
which together with (1.2)2 implies that

(pu)e + div(pu @ u) + V (P(p) + k(L — 1)y + 3n°) = divr. (1.8)
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Finally, combining (1.2)1, (1.8), (1.2)3 and (1.7) yields
pe +div(pu) =0,

(pu)s + div(pu @ u) + V (P(p) + k(L — 1)n + 37°) = divr,
n + div(nu) = eAn, (1.9)
ur)

A
7+ div(ur) = (Vur +7V7u) — kn(Vu+ V) = eAr - 23

T7
which is equipped with the following initial condition:

(P»UvﬁaT)(l"»t)\t:O = ([)0,U07170,7'0)(5L') - (5707"770)7 as ‘.’El — 0. (110)

Note that (1.9) is equivalent to the system (1.2) with the regularity of the solution in
the present paper and that it seems more convenient to consider (1.9) in the proof.
Therefore we will state the main results afterwards for the reformulated system
(1.9) only.

1.2. Main results

Our main results are stated as follows.

THEOREM 1.1. Let L > 1,3 > 0. Assume that (po — p,uo,no — 7, 70) € H>(R3) for
constants p,7 > 0. Then there exists a positive constant 0 sufficiently small such
that if

l(po — £, u0,m0 — 1, 70)|| 113 m3) < 0, (1.11)

the initial-value problem (1.9)—(1.10) admits a unique global strong solution
(p,u,n, ) which satisfies

(p—pyu) € C([O>OO)§H3(R3))> (peue) € C([O>OO)§H2(R3))> p>0,n>0,
(n =1, 7) € C([0, 00); H*(R?)) N L*(0, 00; H*(R?)),
(e, 7¢) € C([0,00); H' (R?)) N L2(0, 005 H*(R?)).

THEOREM 1.2. In addition to the conditions of theorem 1.1, we assume that
(po — p,ug, mo — 7, divrg) € L1 (R3). Then there erists a positive constant C inde-
pendent of t such that the solution (p,u,n,T) satisfies the following time-decay
estimates:

V™7 ()| p2esy < C(L+8)"1 %, m=0,1,2
IV™(p — pywsn — i) ()l 2@sy < CA+)7T7 %, m=0,1,23,
V37 (8)] L2 ey < C(1 1)1,

for any t > 0.

REMARK 1.3. From (1.9)4 and the conclusion in theorem 1.2, one can observe that
the decay rate of || V'7||f2(rs) is the same as that of |[V'*1ul/p2(rs) where the
maximum of [ is 2 according to the regularity of the solutions. Therefore the decay
rate of || V?7(t)|| p2(rs) is not expected to be sharper.
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We would like to introduce the main novelty of this work. Compared with [47]
where the global well posedness of strong solution for (1.1) with positive shear
viscosity p is established subject to some smallness assumptions, the vanishing of
viscosity in the present paper will bring new challenges such as the loss of regular-
ity for the velocity. We introduce a good unknown 7;; = T;; — knl;; for 7,5 = 1,2,3
inspired by [38, 39] and derive some new dissipative estimates of velocity from the
equation of 7;; such that the smallness of the initial data does not depend on the
viscosity. This demonstrates that the coupling yields new dissipative effect of the
velocity satisfying the Euler equation only. Besides, the construction of the basic
energy estimates in H>-norm relies strongly on the dissipative estimate of V*u
due to the second term of the continuity equation and the pressure term of the
momentum equation. It seems impossible to get the dissipative estimate of V4 in
the non-viscous case. To handle the issue, inspired by [52], we use the variation
of the continuity equation divu = —%ﬁ:p and integration by parts to transfer
the derivative to other term. Concerning the optimal time-decay estimates, the loss
of dissipation of velocity due to the vanishing of viscosity is the main difficulty
compared with the viscous case in [47]. Delicate energy method and low-high-
frequency decomposition is the main tool in the proof. In this context, we observe
that the reformulated equation of 7;; can produce the dissipation mechanism of
velocity such that the decay estimates do not rely on the viscosity, which is the key
to obtain the optimal time-decay estimates of the solution except for its highest
order. It is unusual that the optimal decay rate for the highest-order derivatives of
the solution to some hyperbolic-parabolic systems even as (1.1) with viscosity (see
[47]) could be obtained. To get the dissipative estimate for the hyperbolic quan-
tities V¥p and V*7 where k = 3 is the maximal one, the usual energy method is
to construct the interaction energy functional between the second-order and the
third-order. Therefore it implies the decay rate for the third-order will be the same
as that for the second-order. Here we use the low-high-frequency decomposition
and employ the high-frequency part of velocity at 2t order as a test function of
the equation of V2divr;;. The high-frequency quantity will make the damping term
in the equation of V2divr;; keep the desired order, see §4.4 for more details. This
is different from our previous work [48] for compressible Navier—Stokes equations
with reaction diffusion where a new observation for cancellation of a low-medium-
frequency quantity was adopted to get the optimal time-decay estimate at the
highest order, see also [49] for a two-phase fluid model. In addition, to get the
decay estimates of the low-frequency part to the linearized system (A.1), we apply
the Hodge decomposition to u and 7, and transfer the linearized system into two
systems (A.2) and (A.3). We introduce some corrected modes different from [47]
to overcome the difficulties caused by the lack of dissipation of w. With the help
of these estimates, the decay properties for the low-frequency part of the solutions
to the nonlinear system are obtained by using the Duhamel principle. Combining
the delicate energy estimates with the decay estimates of low-frequency part, we
obtain the same decay rates of the solution to (1.9) up to the second-order as those
for viscous case, see [47]. Moreover the decay rate for the third-order in the present
paper is sharper.
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The rest of the paper is organized as follows. In § 2, we linearize the reformulated
system which will make the following analysis more convenient. In §3, the proof
of the global well posedness of the solutions will be given by using delicate energy
method combined with the continuity technique. In § 4, we establish some optimal
time-decay estimates and finish the proof of theorem 1.2.

2. Linearization of the reformulated system

To simplify the proof of the main theorems, we linearize the reformulated problem
(1.9)-(1.10) as follows. Taking change of variables by (p,u,n,7) — (o' + p, Bu', 7’ +
7,7) with 8 > 0 to be determined, the initial-value problem (1.9)—(1.10) is written

as below
pi + Bpdive’ = 54,
puy+ LDy MLV i g, IVT_ g
N, + 87 d/i)vu’ —eAn = S%, ’
T+ %7— — eAT — Bki(Vu' + VTu') = S,
where

S = —Bdiv(p'u'),

P/ / ~ P/ ~
Sh=—p% - Vu' — ( (/p +~p) - E )) 4
p+p p
N (k(L —1)+2%0 +7) k(L-1) +23ﬁ) vy
o+ p p

1 1\ ..
+| 5——=— = ) divr,
pPrt+p p

84 = ~pdiv(ofas),
Sy = —pdiv(u't) + B(Vu'T + V) + Bk (Vu' + VT'),

with initial data
(', 0", 7)(x,0) = (ph, ugs M9, T0) () — (0,0,0,0), as |z[ — oo.

Denote the scaled parameters and constants by

le\/lT(ﬁ)’ T2=—k(L_1)+25ﬁ, 7”3271 , B= P(0)

P'(p) P'(p) p
and define the nonlinear functions of p’ by
P'(p) P +p)) 1 1 1\ 1
o) = (P BV L= (3- ) 4
p P+p ) B pp+p)B
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Finally, (we remove all / in the following system for brevity) we rewrite the system
(1.9)—(1.10) with linearized part on the left as

pt + ridivue = S,
ur +1r1Vp+raVn — radive = S,

N + Biidivu — eAn = Ss, (2.1)
A
Tt+2—/(\)7'—6AT—ﬁkﬁ(Vu+VTu) = Sy,
and
Sy = —fdiv(pu),
- . 23

Sy = —Bu - Vu+ h(p)Vp + g(p) [(k(L — 1) + 257) Vi — divr] — ——>—nVn,
9 (P)Vp+g(p) [(k( ) +237) Vi ] 3o+

Sz = —pdiv(nu),
Sy = —pdiv(ur) + B(Vur + 7V7Tu) + Bkn(Vu + V7Tu),
(2.2)
with initial data

(p7 u,n,7’)($,t)|t:0 = (p07u0,n0, TO)(x) - (07 0,0, 0)7 as |5L“ — Q. (2'3>

It is worth noticing that the proof of theorems 1.1 and 1.2 can be translated into
that for the solution to (2.1)—(2.3).

3. Proof of theorem 1.1

In this section, we will prove theorem 1.1 via taking vanishing viscosity limit of
(1.1). In fact, the global existence and uniqueness of solutions to the corresponding
viscous case has been achieved by the second author and the third author in [47]
where the smallness of initial data depends on the viscosity coefficients. Therefore
the aim in this section is to derive some a priori estimates globally in time subject
to some smallness of data independent of the viscosity coefficients. We assume that
1, v < 1 in the section for simplicity.

After conducting a reformulation similar to (2.1), (1.1) can be converted to the
following form.

pt + ridivu = Sy,
ur + 11 Vp +raVn — radivre — pp Au — puaVdivu = Ss,

n + Bndivu — eAn = Ss, (3.1)
A
T+ 2737 — eAT — BEi(Vu + VTu) = Sy,
where
+v
M1 = HN; M2 = K ~
p p
and

Sy = —Bu-Vu+h(p)Vp+g(p) [(k(L — 1) + 237) Vi — div7]

- ﬁﬁvﬁ — pBg(p)Au — (u+ v)Bg(p)Vdivu, (3.2)

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.2

The Cauchy problem for an inviscid Oldroyd-B model in three dimensions 449
We begin with a local existence and uniqueness result of the initial-value problem
(3.1) and (2.3).
PrOPOSITION 3.1 Local existence and uniqueness. Assume that

(po om0, 0) € HP(R?),  inf {po(x) + p,mo(w) + 1} > 0.

Then, there exists a constant Ty > 0 depending on p, v and ||(po, uo, Mo, 7o) || i3 (r3)
such that the initial-value problem (3.1) and (2.3) has a unique strong solution
(pHv  utv mv V) over R x [0, Ty], which satisfies

pv € C([0,To); H*(R)), pi” € C([0, To]; H*(R?)), inf (o + p, ™" +17) > 0,
Ty
(™, 7)€ ([0, Tol; HP (R?)) N L2(0, To: H' (R?)),

214

(uf"" ™" 7)€ C([0, Tols HY(R?)) N L*(0, To: H*(R?)),
where Qr, = R? x (0,Tp).

Proof. The proof can be achieved by using some standard iteration arguments,
please refer for instance to [19, 30, 40]. We omit the details for brevity. O

PROPOSITION 3.2. (A priori estimate) Under the assumptions of theorem 1.1, there
exists a positive constant 0 independent of p and v and at least bigger than 32—9
[determined by (3.55) for some 0 given by (1.11)], such that if the strong solution
of the initial-value problem (3.1) and (2.3) satisfies

||(pu7y7uM7V777M7U7TM7U)(t)HH3 <9, (33)

for any t € [0,T], where 0 <T* < +oo is the mazimum existence time for the
solution and T € (0,T*), then the following estimates

t
I ) 0+ [ (DG g+ 9 7)) s

t
v . v 26
+/ (1 IVu |35 + pelldivur” ||3s) ds < C|l(po, w0, 105 7o) || Frs < 3 (3.4)
0

holds for any t € [0,T.

REMARK 3.3. A similar result has been obtained by the second author and the
third author in [47] (proposition 3.2) when ¢ depends on p and v. Proposition 3.2
removes the dependence between § and the viscosity coefficients, which gives the
possibilities to take the vanishing viscosity limit.

Based on the propositions 3.1 and 3.2, the global existence of solutions to the

initial-value problem (3.1) and (2.3) will be established with the help of the stan-
dard continuity arguments. Then, with the aid of the uniform estimates (3.4)
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and some compactness arguments, we conclude that a subsequence of solutions
(pH¥ utr v TH) converges to a limit (p,u,n, 7) (in some strong sense) which is
a strong solution to the original problem (2.1)—(2.3). Therefore to prove theorem 1.1,
it suffices to prove proposition 3.2 which will be achieved step by step in the
following lemmas.

Throughout the rest of the paper, we denote L? := LP(R?) and [ fdz:= fR3 fdz,
and let C' > 1 represent a generic positive constant that depends on some known
constants but is independent of 6, 0, p, v, t and T*.

Although the solutions usually depend on p and v, one can find that the following
results and procedures are applicable to the case y© = v = 0. For brevity, we omit
the superscripts throughout lemmas 3.4-3.6.

LEMMA 3.4. Under the same assumptions of theorem 1.1 and (3.3), the following

estimate
1d 9 9 ro 2 T3 2 /h(P) +0p o3 2
—— : — : - [ ———|V d
5 (I + Wl + S5l + 5l — [ AL s
1 0o .. ro& Agrs r3€
Il divul + 22190l + 5 e + o IV
< C8(IVpll: + [ VulFe) (3.5)

holds for any t € [0,T).

Proof. Applying derivatives V(¢ = 0, 1,2, 3) to the system (3.1), taking inner prod-
uct with V¢p, Vi, ;T%Vén and 25?677 V*r respectively, and then adding the results,
we can obtain

1d 2 2 T2 2 T3 2
550 (101 + Tl + 22l + 52l

Ao r
o Ao 13

T2

57!

Bk
20kn

+ | VullFs + palldival 7 + 17117 + V7

3

4 w4
Zﬁk’f]v S4V7')d$

3
-y /(vfs1 V4 VIS, Vi + %vesg . Vi +
=0

(3.6)

Before we estimate each term on the right-hand side of (3.6), it is worth noticing
that the disappearance of the viscous terms in the momentum equation (3.1)2 leads
to partial loss of regularity of velocity u. Hence, to derive some uniform estimates
independent of p and v, those terms containing the fourth derivative of density
p or velocity u can not be directly controlled. In the following proof, we will list
them separately and deal with them in detail.
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Firstly, for the first term on the right-hand side of (3.6), by noticing the definition
of Sy, we have

3 3
Z/stl :Vipde = —5Z/Vediv(pu) :Vipdz
=0 =0
3
= —ﬂ/div(pu)pdx - ﬁ/Vdiv(pu) -Vpdx — ﬂZ/Vediv(pu) :Vipda
=2

3
= Zlu. (37)

The reason why we discuss ¢ separately here is to make the proof more concise when
proving decay estimates later in this article. We first deal with the lower derivative
terms, I and I12, using Holder inequality, Sobolev inequality, Cauchy inequality
and lemma A.5, it holds that

11| < C(IVpllzzllulles + lpllzs I Vullz2) lplls < C8(IVpll72 + [Vulliz), (3.8)
and

o] < C (19201l 2 lull s + lpllzs 1V2ull22) [Wpllze < CO(IVpl3 + |v2u||%2>.)
3.9

Then, for I3, which can be divided into the following five terms.
Iz = fﬂ/VZdiv(pu) :V2pda — B/VBdiv(pu) :Vipda
= —ﬂ/VQdiV(pu) : Vipde — ﬂ/VB(u -Vp): Vipda
—ﬁ/Vg(pdivu) :Vipda
= —B/ngiv(pu) :V2pdr — ﬁ/u V3 pVipda
3
—BZ/Cgvzu-VVS’ZpVSpdx
=1

2
—ﬁZ/Cgvfdivw?’—fp :V3pda —5/pv3divu :V3pda
£=0

5
= 2113,, (3.10)
i=1

Next, we turn to deal with the terms. In the same way, we first deal with the lower
derivative terms, Iy3,, I13, and I;3,, using Holder inequality, Sobolev inequality,
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Cauchy inequality and lemma A.5, it holds that

113, + Tizy + iz, | < C (V202 llullzs + (o]l sl [VPull22) V2 pl| o
+ C(IVull= 1V pllz + 1V2ull 2 V2l o
+ IVl 2o )1V pl 22
< CO(IV*pll3z + [ V%ul22). (3.11)

Then, for the terms containing the fourth derivative, I3, and I;3,. On one hand,
for I;3,, by virtue of integration by parts, Holder inequality and Sobolev inequality,
we can directly deduce

I3, = ﬂ/dlvu|v3p|2dx C||VullL=|V3pl32 < CS||V3p||32. (3.12)

On the other hand, for I;5_, by using (3.1);: divu = —28%V2 we can get

r1+08p
+ fu-Vp
Tia — 3 (Pt .3
135 ﬂ/V(r+5 )Vpdx

S V3pdx

_ Ry ) 3—4 1
—B;/Cgpv (pi + Bu-Vp)V (Mﬁp)

14 3 3
\Y% :Vopd
“3/r1+6 prevpes
+ 2 V3(u-Vp): V3pd
B /r1+ﬁp (u-Vp): Vpda
2 1
Z/ oV (p + Pu - Vp)V3~E <) :Vipda
= r1+ Gp

14 3 3
+ \% : Vopdx
ﬁ/r1+ﬁp Pt 14

3
2 P Ot 3—¢ 3
. : d
+4 ;_1/7“1+50C3VU VV> = V’pdx

+52/ f:ﬁ w-VV3p: V3pdz. (3.13)
T1

Further, the second term and the last term on the right-hand side of (3.13) equal

ﬁd/ 3,124 5/( p ) 3 12
—— \Y% = A\ d
2dt | m +ﬂp| pl*d 2 r1+ Bp tl plda

- 7/ (T +Bp> |V3p|? da, (3.14)

where we use integration by parts.
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(3.13), combined with (3.14), Holder inequality, Sobolev inequality and Cauchy
inequality, yields

d P
Iis. < C8(|V2p||%1 3ul?, g—/ 3512 da. 1
135 < CO([|[Vopllzn + [Vl )+2dt T1+ﬁp|V pl* dz (3.15)

Putting (3.11), (3.12) and (3.15) into (3.10) yields

d P
I < 2 21 3 22 gi/ 3 12 . 1
0 < OBVl + IVl + 55 [ Lo WpPan (210)

Now, substituting (3.8), (3.9) and (3.16) into (3.7), it holds that

3

d
S [ 950 9pde < COITPIE + [Vulle) + 5 5 [ L 1Vl da
£=0

2dt )] rm+pBp
(3.17)
Secondly, the second term on the right-hand side of (3.6) equals
3
Z/VZS'Q Vi de
=0
3
:/SQ udx—l—/VSg:Vudm—i—Z/VeSg Viudz
=2
3

From (3.2), we first estimate 21 and Ioo. Using Hélder inequality, Sobolev inequality
and Cauchy inequality, it holds that

b= [ { — Bu- Vu+ h(p)Vp + g(p) [(K(L — 1) + 257) Ty — divr]

- ﬁ(;iﬁ)”v”} cudz — / (1Bg(p)Au + (1 +v)Bg(p)Vdivu) - udz

<C (IIUIImIVUIILz + 1h () Izs IV ellze + g ()l a1V (n, )l L2

n R
n H i IIanle) llzs + Cllg(o) = (Il + G+ v) divul2)
pPtpls
+ CIVg(p) s (I Vull s + (s + v)lldiveal ) s
< O5(|Vpl% + [VullZe + V]2 + [V7]2), (3.19)
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and

b= [ {Bu Vu— h(p)Vp — g(p) [((L — 1) + 25i]) Vi — divr]

+ ﬁ(;j_ﬁ)nVn} -Audx + / (uBg(p)Au+ (1 +v)Bg(p)Vdivu) - Audx

<C <||U|L3|VULG + 1) LslIVplls + lg() L3IV (0, 7)ll s

a

s | e ) 19l

+Cllg(p)llz (ullV2ullr2 + (n+ v)IVdival r2) [|V?u] 2
< Co(IIV2pllZ + IV2ulfz + IV2l1Z + [IV27]I72). (3.20)

I3 can be divided into the following five terms:

= [ V2 { — Bu-Vu+ h(p)Vp+ g(p) [(K(L — 1) + 257) Vi — divr]

23 } 2
— = < V Vudx
Blp+p) "

3
=3 [ 9 gl + (u+v)Bg(p) Vdiva) : Vs
(=2

23 } 3
Blo+p) "

+ /Vg(—ﬁu -Vu) : Viudz + /V3 (h(p)Vp) : Viudx

+ [ 9ot L - 1)+ 230 Vi - aive] -

5
i=1

Then, we turn to deal with the terms I3, —I23,. For the terms Is3, —Ia3,, using
Holder inequality, Sobolev inequality, Cauchy inequality and lemma A.5, we have

T3, | < ClIV*ullo[Vull o + [lull L [VPul 2 + V2 h(p)l| 6|V s
+ ()l V2 pll 2] V2 2
+C IV eIV (0, D) e + (Pl IV2 (0, T 2] V2] e

n n 3 2
+ C |: Y72 ( ~) L6 V?] L3 + ~ || oo V nlr2 V< u L2

< CO(IV2ullip + V%0l + V2012 + IVP7I1Z2) (3.22)
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[I23,| < C/ (IV2g(0)IV2ul* + [V g(p)||V?ul[V?ul) da
+C [ gl (192 8al + () Vdival) [Vu] do

+€ [I19%(0)] (] + -+ )] Taival) [7°d
+|V29(p)| (1IVAU| + (1 + v)|V2divu|) [V3ul] dz
+ [ CIVao) (V] + -+ )] Fdival) [Vl

— Bg(p) (,uV?’Au + (p+ V)V4dlvu) Viudx
< OIVg(p)llm=lIVul 7
+Cllgp)ms (Ll Viull + (1 + v) | VAdivul| ) [|VPul| 2
+Cllg(p) e (I VHulZ + (1 + )V divulZ:)
< G (IV2ullfp + ulViullZe + (u+ v)IVPdivul7.) (3.23)

and
L, | < C[IV?9(0) 122V (0, )l Lo + g (0) 1[IV (0, 7) [ 2] 19720 2

+C VS( 77~> 2 ||V oo + 1
19 (22 el Vil + 12

< oIVl + IVPullZz + V20l + IV 7I1Z2)- (3.24)

ﬁ||L°°||V477||L2 IVEull 2

For I»3,, using integration by parts, we can easily get
Iz, = /V3(—ﬁu -Vu) : Viudz
S g
= —ﬂZ/Cgv‘u UVt Voude + /divu|V3u|2 da

< OVl = [VPul[22 + CV2ul s | V2ul 1o | V]| 2
< C§||V3ul)3z, (3.25)

where we have used Holder inequality, Sobolev inequality and Cauchy inequality.
Then, we are going to deal with I»3, which can be split into the following two terms.

1235 / VS Vgu dz

:Z/cgvfh(p)vv?’—fp;v3udx+/h(p)vv3p;V?’udx. (3.26)
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For the last term in (3.26), using integration by parts and (3.1); again, we have

/h(p)VV3p :V3udz
—/Vh(p)V3p :V3udx — /h(p)V3p . V3divu dz

—/Vh(p) E V3udx+/h V3 (W) dz, (3.27)

where the observation that divu = m:ijaﬁ-jp is crucial due to the loss of regularity
of velocity, which can be seen for instance in [52].
Further, processing method similar to I;3,, the last term on the right-hand side

of (3.27) can be dealt with like

3 Pt+5U'VP> o3
/h(p)V <r1—|—ﬁp 1 Vopda

2
—zjbmwvmﬁﬂwvmw (45

+BZ/ Cfvf SV Vi pda — ﬁ/ ((p)) |V3p|? da

1+ Bp

) :Vipda

LLd [ k)

1 h(p)
V3p|% dx /( >v3 2dx. 3.28
5 r1+5p| pl~d —3 T1+ﬂﬂt| pl* dz (3.28)

Together with (3.26), (3.27) and (3.28), using Holder inequality, Sobolev inequality
and Cauchy inequality, we get

1d [ hip)
2 3 14 3,124
oo < COIT0lf + IVPulte) + 5 [ VP de (329)

Hence, substituting (3.22), (3.23), (3.24), (3.25) and (3.29) into (3.21), it holds that
s < CO (IV%ullfp + IV2pllZn + IVnll3n + IV37]130)

Ld [ h(p)
2dt ) i+ Bp

+ C§ (]| V|72 + (o +v)||VPdivul72) . (3.30)

V2p|* da

Now, putting (3.19), (3.20) and (3.30) into (3.18), we have
3 ~
Z/VES2 s Viude < C8 (I[Vulle + [IVollze + 1Vallis + 1V7]7s)

1d hp) o3 2
+2dt/'r +ﬁp|v ol da

+C8 (ul| V)2 + (1 + )| V3divul|22) . (3.31)

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.2

The Cauchy problem for an inviscid Oldroyd-B model in three dimensions 457
Next, for the third term on the right-hand side of (3.6), using (2.2)3, we have

3 3
Z/VES;), (Vinde = —ﬂZ/Vzdiv(nu) - Vinde
=0 £=0
3
= —6/div(77u)ndx — 6/Vdiv(nu) s Vnda — ﬁZ/Vediv(nu) . Vinda
=2

3
= ZISZ
i=1
For I3y and I35, similar to I1; and I;o, it is not hard to get
1| < C([Vallzlullzs + 9]l s Vel 2) [0l e < CO([IVnll72 + IVul72), (3.32)
and

12| < C (IVnllz2 ull s + [0l s [V2ullz2) [ Valle < CO(IVnII72 + IIVQU(I%z)-)
3.33

Thanks to Holder inequality, Sobolev inequality, Cauchy inequality and lemma A.5,
133 can be controlled like

3
I3z = 5Z/Vz_1diV(77U) VI de < OO(IVPnllEn + [VPulZ2). (3.34)
(=2

Note that we have used integration by parts in (3.34) to reduce the order of spatial
derivative of velocity u. Hence, combining with (3.32), (3.33) and (3.34) yields

3
Z/vfsg :Vinda < C5(|Vnll%s + || Vull%e). (3.35)
=0

Finally, for the last term on the right-hand side of (3.6), we have

3 3
Z/Ve&l cVirde = /54 : de+/VS4 : VTd$+Z/V€S4 cVirde
£=0 =2
3
= 2141
i=1

Thanks to (2.2)4, and using Hoélder inequality, Sobolev inequality and Cauchy
inequality again, I4; and I45 can be controlled like

Iy = ﬁ/ (=div(ur) + (Vur + 7V7u) + kn(Vu + V7w)) : 7da

< C(IVullgzll(m, m)llis + VT llz2llullzs) 7]l e
< Co(IVTlZe + 1Vullza), (3.36)
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and
Iip=p / V (=div(ur) + (Vur + 7V7u) + kn(Vu + Vi) : Vrdz

= ﬁ/ (div(ur) — (Vur + 7V7Tu) — kn(Vu + VTu)) s Ardx
< C(IVullzsll(n,m)[ps + V7| zslullzs) V27 2
< C(IV37|32 + [IVull32). (3.37)

For I3, we will take advantage of the higher integrability of 7 to deal with each
term on the right-hand side through integration by parts. In other words, thanks
to (2.2)4 again, I3 can be estimated as

3 3
Iz = Z/vf& Virde = —Z/v‘-ls4 VAT da
=2 £=2

3
= ﬁZ/Vé_l (div(ur) — (Vur + 7V7u) — kn(Vu+ V7)) : VI Ar da
=2

< C(IV%ullzsll(m, )llze + IV 7 e llull 2 + 1Vl o[V (0, 7)) V37 22
+C (IV?ull 2|, 7)o + VP72 fullzoe + [Vull 26l V2 (0, 7)] 2a) V27 22
< Co(IIV2ullz + 1937 50), (3.38)

where we have used Holder inequality, Sobolev inequality, Cauchy inequality and
lemma A.5.

Owing to (3.36), (3.37) and (3.38), we get
3
Z/vf& Vi de < O5(| Va2 + V7| %) (3.39)
=0

Finally, plugging (3.17), (3.31), (3.35) and (3.39) into (3.6), we then obtain the
following inequality:

1d 2 2 T2 2 T3 2 h(p) +Bp o3 2
—— — — | |V d
57 (1ol + Tl + 22l + 2l = [ 222221092 0
. rof Ay 73 r3e
+ [ Vull3s + polldivul|zs + ﬁ*ﬁIIVﬁH?{S + ﬁzﬂkﬁ”ﬂ@ﬁ + erﬁIIVTIFHs

< Co(IVollzz + I Vullze + [V0lEs + V711
+ CulVHullFz + (1 + )| V3dival32) .

Choosing ¢ sufficiently small in the above inequality, (3.5) will be established. Thus,
we complete the proof of this lemma. O

In the following lemmas, we obtain some dissipation estimates of velocity u and
density p which are independent of the viscosity coefficients.
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LEMMA 3.5. Under the same assumptions of theorem 1.1 and (3.3), we then have
the following estimate:

d ki
T Z/Vedivr :Viudr + %(HVUH%I2 + [|divee|32)
=0

A
< Ce+0)|Vollz + Cle+8)|Vallze + Cel VI + TQCIITII%» (3.40)

Proof. Let £ =0,1,2. Applying operator V*div to the equation of (3.1); and V*
to the equation of (3.1)y, multiplying the results by V‘u and V*divr, respectively,
summing them up and then integrating it over R, we get the equality:

2
SO0 [V Vude + haI9ulf + ldivaly)
=0
: A
=Y / (VidivS, — 2—;vfdiw + eV Adivr) : Viude
(=0

2
+ Z /(ve§2 — iV — V5 4 1y Vidivr + 1 VAU
£=0
+ o Vi diva) - Vidivr da. (3.41)

First, by the definition of .S, and S, integration by parts, Holder inequality, Sobolev
inequality, Cauchy inequality and lemma A.5, it holds that

2 2
Z/Vfdivs4 . Veudg: — *Z/VESZ . vf+1udx
=0 =0

2
= BZ / vV (div(ur) — (Vur +7V7u) — kn(Vu + V7)) : VT ude
=0

< C(IVullzzl(m )l + 1VTl L2 l[ullze) [Vl 22
+C (IV?ull2 |, 7)o + 1V 72 Jull e + [Vulle [V (. 7)llz2) V20l 22
+C (IV%ull 2l (0, Pl + IVl 2 llull e + [Vl e V20, 7) [ 2s) VPl 2
< Co(|IVullzy + V7(132) (3.42)

and
2 ~ ~ ~
Z/VZSQ - Vidivr dz = /5’2 -divrdo — /SQ - Adivr dz
£=0

+ /VQSQ - V2divr dz,
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where the terms on the right-hand side of the above equality can be controlled as
/5’2 -divr dx
_ : 2%
= —Bu-Vu+h(p)Vp+g(p) [(K(L—1) 4+ 237 Vn—d1v7—~77V77>
/( (¥ -+ gl0) [(K(E 1) + 233) - 52—

~divr dz — / (uBg(p)Au+ (1 + v)Bg(p)Vdivu) - divr dz

Clllullze=IVullL2 + [[R(p) | L=V ol 2

+ lg(o)ll= IV (n, )l +

p+p
+ C (ul|[Vullrz + (p + v)|divul[z2)
x (lg(p)[| o< IVAivT|[ 2 + [[Vg(p)||Ls||divT]|Ls)

Co([Volze + Vulla + [ Vall7e + V772 + [IV?7]172), (3.43)

||Vn|L2} 197l

Lo

<
/S’ Adivr dx

= [ (50 = hoIVo ~ 9(0) (L = 1)+ 230) Vi - dive] 4 5 2w
x -Adivr dz + / (uBg(p)Au + (1 + v)Bg(p)Vdivu) - Adivr dx

c [mumnwnm 1A [V llzs

¥l 19°

n
—+ 3||V s 6 + -
oo ¥ e + |2 |

+ Cllg(p)llzee (pllAullzz + (p +v)[[Vdivul|L2) [[Adivr| L2
< Co(IIV2pllZ + IV2ullfe + 1V2n0l1Z: + IV27]130), (3.44)

and
/ V28, : V3divr dz
= /V2 ( = Bu-NVu+h(p)Vp+ g(p) [(k(L = 1) + 237) Vn — div7]

— Wj_y]Vn) : V2divr dz

- / V2 (uBg(p)Au + (p + v)Bg(p)Vdivu) - VAdivr dz

Clllull = Vullz2 + [ V2ull Lo [ Vull s + [2(p) || VZ ol 2
+IV2R() e [V pll 2 ][IV 7| 2
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+C [Hg(p)”LOO”Vg(naT)L? + V29 (0) sV (0, 7)| 2

|V377|L2] V712 + €9 ( ) oo [ Vnllos [ V372

P+l p+p
+Cllg(p)ll= (Va2 + (1 + v)[[V2diva| £2) V7| 22
+CIVa(p)lles (1l VPul s + (1 + )| Vdival o) V47 12

< CO([V2pllin + (IV2ullZe + IV°0)1 72 + V27 30). (3.45)

For the remaining two terms on the second line of (3.41), by using integration by
parts, Hoder inequality and Cauchy inequality, it is straightforward to show that

2
Z / <‘;1)\0Vfdiv7+5V£Adiv7) - Viudz
=0
2 A
= Z/ <2§va - gv%7> VA uda
=0

Ap
< CIulr (197l + 520l
Bkn
IVl + € (1971 + 20713 ) (3.46)

Finally, the remaining terms in (3.41) can be estimated by using integration by
parts, Holder inequality and Cauchy inequality as follows

2
Z /(—ﬁVHlp — oV 4 3 Vidivy + 1 VAU + pp Vi diva) : Vidivr da

<OVl + 1Vallaz + VT a2) V7l a2 + e[|Vl e
+ epia||diva| F + Ce|[ Vdivr[7
< Ce||Vpl|32 + Cel| V|32 + Ce||Vul|32 + Cel|divul|3r2 + Cel| VT35, (3.47)

Plugging (3.42)—(3.47) into (3.41), then choosing J sufficiently small yields

ﬂ 1
dtz/vfdm Viudz + == (|| Vu| % + [|divul /%)

Ay
< C(e+0) Vol + Cle+ O VnllFz + CllVT(|7s + ﬁCHTH%pa

which is (3.40). Thus, the proof of lemma 3.5 is complete. O
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LEMMA 3.6. Under the same assumptions of theorem 1.1 and (3.3), we then have
the following estimate:

2
d 1
= Z/Veu VP pda + EHVPH%P
=0
< O(IVulfz + [IVnllfe + V752 + mllViulFe + pol|[VidivaZ:).  (3.48)
Proof. Let £ =0,1,2. Applying operator V* to the equation of (3.1); and (3.1)y,

multiplying the results by V/*!p and —V*divu respectively, then summing them
up and integrating it over R?, we get the equality:

43
aZ/V% VS pda 4 11 || V|3
=0
2
= VESy — 1oV + s VEdIvT + 1 VEAU 4 oV N diva) - VT pde
P n I I P
=0

2
+ Z /(*stl + Tlvedivu) : Vidivude. (3.49)
£=0

Likewise for (3.43)—(3.45), from (3.2), Hoder inequality, Sobolev inequality, Cauchy
inequality and lemma A.5, the first line on the right-hand side of (3.49) can be
controlled like

2
Z/VES*2 VT pda

£=0

=§:/V€(—&rVu+MmVp+mmKML—U+%mVn—&W}
=0

23 > 04+1
- —nV VvV dz
Bo+p " P

2
- / YV (uBg(p)Au+ (u+v)Bg(p)Vdivu) : VH pda
£=0

< C8(|IVullFe + IVollze + 1IVnllie + IV e
+ | VHul 22 4 (p+ )| V3dival|7.), (3.50)

2
Z/(_T2V€+1n + TgvgdiVT + ,ulveAu + M2V€+1divu) . VHlpdx

< C(IVallaz + 11V7llzz + pa [ V2ullrz + p2l| Vdivel g2) [V oll g2
Y
4

< Vol + € (IVallie + 11Vl + pal[ V2l + pe| VdivelZ.) . (3.51)
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Similarly, for the last line in (3.49), recalling the definition of Sj, using Hoder
inequality, Sobolev inequality, Cauchy inequality and lemma A.5 again, we have

2
Z /(*Vle + Tlvedivu) - Vidivu da

2
= Z / (BVdiv(pu) + 1 Vidivu) : Vidivu dz

C(IVullzzllpllz~ + Vol lullz) [Vull a2 + ClIVull3

<
< CO|| V|32 + Cl|Vul32. (3.52)

Now, plugging (3.50)—(3.52) into (3.49), then choosing § sufficiently small yields
4 22: / Vou: Vi pda + LVl
dt & 2 "
< C(IVullig + IVallze + V7l + mlViulge + pe2lVidivel72),
which is (3.48). Thus, we finish the proof of lemma 3.6. O

In what follows, based on lemmas 3.4-3.6, we are ready to prove proposition 3.2.

Proof of proposition 3.2. Combined with (3.5), €3 (3.40) and €; (3.48), it holds that
1d T9 T3
g5t (101 + Tulls + 22 s + anzz)

d ¢ 041 ¢ ¢ Lh(p) +Bp o3 2
+dt (elz:Vu \v p+egezgv divr : V'u Y [VZp|* | da

||VU||H3+ Hdlvu||m+61 -V ollZ:

Agrs r3€
ANBk) 48k
< C(8 + €26)|| V%2 + 0(5 + €1)||Vul| %2 + Ceze + €1 + 0) ||Vl %

T9€
+ 27||VUHH2 :

I7lEs + 5572

IV l1Zs

A .
+ Cclea + )| VT3 + 622—)\OC’||TH%[2 + 161 C|| V4|22 + poer C|| V3 diva||22.

Firstly, choosing a fixed positive constant € < %’ZZT; , and then taking

€1 < min 626]677 rot r3€ L
bs 8C ' 16C37’ 16C. Bk’ 4C

and

. €171 o r3€ T3
€2 < min

8Ce’ 16CeBi’ 16C. Bki’ ACBkn
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and finally choosing ¢ sufficiently small, we obtain

1 d 2 2 ] 2 T3 2
33 (ol + e + s + 52l

d : ¢ e+1 : 07 ¢ Lh(p) +Bp s 2
+& <€1ZZ_;VU;V p‘i‘EQZ;leVTVU—im‘Vpl d.l?

. r k)
+ LTl + 2 divuls + e 190l + e 22 Tl

o€ A()Tg r3€
487 8A\Bkn 8Bk
Next, integrating (3.53) over (0,t), we get

+

IVnll7s + 17117 + IV7I1Zs <. (3.53)

t ~
1 Bkn ro€
70+ [ (a1l + 209l + PVl
Ao?”g 2 rs€ 2
\Y% d
x5 17l + e 197 ) ds
! H1 H2
+/ (Z||Vu||%13+z||divu||qu) ds < J(0), (3.54)
0
where
1 T2 T3
== 2 2 22 T8 2
7 = 5 (1ol + ulls + Z ol + 51

2 2 1h(p) + Bp
§ V@ . V€+1 § Vé : . V@ v3 2
+/ (61 =0 v 8 ’ “ /=0 leT . v 5 1 =+ ,3,0 ‘ p| ) dx

Since (3.3) and the smallness of J, ¢; and €, it is easy to check that J(t) is
equivalent to

lplFzs + lullZrs + lnllzs + 71
Moreover, by the virtue of (1.11) and (3.54), there exists a constant C independent
of u,v,0,6,¢,¢1,€ea,t and T, such that

(o, w,m, 7)(0) || 13 < Ch6.
Letting
2
Ci0 < 557 (3.55)
and then we can get (3.4) and complete the proof of proposition 3.2.
Due to the prior: estimate stated in proposition 3.2 and the standard continuity
arguments, the following estimate

oy w,m, ) ()| grs < 6, V£ €[0,T7), (3.56)

holds. Next, we only need to show T = co. In fact, owing to proposition 3.1 and
the time-uniform estimates stated in (3.56), it concludes that T* = co. Thus, we
get the global existence of solutions to the initial-value problem (3.1) and (2.3).
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Thanks to (3.4), we deduce that (p*",uw” nv V), (pi"", ul"") and
(", 71*") are uniformly bounded in L*([0,00); H?), L*([0,00); H?) and
L°°( ,00); HY), respectively. Moreover, (n* 7#") is uniformly bounded in
L?([0,00); H*). Hence, there exists a subsequence (pH, utv n" 7#") such that

(Pt 7o) 5 (p o, 7) i L([0,00): HY),
(", ) 25 (n,7) in L2([0, 00); H),
( u/‘ V /1« V,TM’V) — (P,UvﬂaT) in ClOC([O?OO);leoc)'

The regularity of the limit is good enough to ensure that (p,u,n,7) is a strong
solution to the original problem (2.1)—(2.3). Therefore the proof for the first part of
theorem 1.1, i.e., global existence, is complete. By the standard energy method, we
can prove that the solution in theorem 1.1 is unique, provided that ||(p, u,n, 7)(t)| g3
is sufficiently small. Therefore, we finish the proof of theorem 1.1. O

4. Proof of theorem 1.2

In this part, we are going to obtain the decay estimates of (p,u, 7, 7) to the original
problem (2.1)—(2.3). To do this, the strategy is to combine the energy method with
the spectral analysis of the corresponding linear system. The connection between
the two aspects is the Duhamel’s principle.

PrROPOSITION 4.1. Under the assumptions of theorem 1.2, there is a constant C
independent of t such that the solution (p,u,n, ) of initial-value problem (2.1)—(2.3)
satisfies the following estimates:

IV T @Ollz2ee < CA+)7F7F, m=0,12,
IV (0w ) (D)l 22y < CAL+DTHF, m=0,1,23,
IV3r(#)l|2eey < C(L+1)75,

for any t > 0.

Proof. The proof of proposition 4.1 consists of propositions 4.10—4.13. (]

4.1. Energy estimates

First of all, we are going to get the optimal time-decay estimate of
IV (p, u,m)(8)] L2

LEMMA 4.2. Under the same assumptions of theorem 1.2 and (3.3), there exist two
small positive constants €3 and €4 which will be determined in the proof of the lemma
and lemma 4.3, such that

1d T1, o 12 Bkn
2dtH1( ) +e3 1 Vool + € 1 |

’/‘26

77||H2

T3AO
8Bk

V77 <0, (4.1)
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where
Hi(t) = IVpl3a + I VullZe + 2 V0l + 5o V7] 3
B 20k
2 2
. h(p) + Bp o
+ 2€ Vi : Vi p 4 2¢ Vidivr : Viu — == 2013 ,12 ) da.
/( 3; P 4; rl—i—ﬂp' Pl

Proof. Following arguments similar to the proof of lemma 3.4 for the case £ =1,2,3
and g = v = 0, one has,

1d o T3 h(p) + Bp

—— [ |IVp|? Vul|%: + —=||Vnl2 v2—/7v32d

= (n ol + IV ullie + G IVl + 5|97l = [ S BV da
T2€ 2 112 Agrs 2 3€ 2112

< C(IV2llF + I1V?ulF).- (4.2)

In addition, for the case £ = 1,2 and g = v = 0 in (3.40) and (3.48), we can get
2 N
d k
3 }H: / Vidivr : Viuda + Q(Hv%uzl + || Vdiva|3)

A
< Cle+0)IV2pllzn + Cle + )Vl + Cell V2l + 7§C||W||§J1, (4.3)

and

2

d 1

3 / Viu: Y pde + 2Vl < CIVRuld + IVl + IV,
=1

(4.4)
Hence, €3(4.4) together with (4.2) and €4(4.3) yields
1d

T1 ﬂkﬁ
§aH1(t) + 63§||V20H%11 + €4T||V2U||?{1

roc A()Tg r3€
231 4ANBER 48k
< Cleae +0)| V2031 + Clez + 0)||[V2ul|31 + Cles + eae + 0) || V23

_|_

V20l + V7% + V27|

A
+ Celea + ea)|[ V2732 + eagy CIIV Tl

Firstly, choosing a fixed positive constant € < %ng; , and taking

¢ < min { esfkn  rae rae }
8C ' 16CBi’ 16C.5ki
and
e, < min {63’/‘1 roE r3e T3 }
8Ce’ 16067’ 16C.Bki’ 4CHk7 |
and finally choosing J sufficiently small, we get (4.1). O
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Moreover, with lemmas 4.2 and A.3, the following result holds.

LEMMA 4.3. Under the same assumptions of theorem 1.2 and (3.3), we have

t
Ha(t) < e”"H1(0) + C/ o” U (| Vot 12 + VUl (|22 + [V0F]1Z2) (5)ds,
0

(4.5)
for some positive constant Cs independent of 6.

Proof. By lemma A.3, we have
ol Vo' lle < IV2pllzz,  col Va"|lre < [VPullz,  colVa"llze < IIVnll L2

Thus, (4.1) leads to

\ Bkict
5&7_[1( )+637||VP} 172 +63*||V2P||H1 + €4 O||v "7
7’250 ro€
+ e IVl + RV I+ o [Vl + g <0

(4.6)

2
By adding 63”C°||Vp 12, +64ﬁk"c°||VuL||L2 + 55 [Vn*|l7. to both sides of
inequality (4.6), we have

1d ricé
50 + e S Tplls + e

roecd

IVl + o

IVnllZ +

Bkiict
% V7 e

8)\514; n
7’2660

801

ricd krjc?
< 9o 3 + 6 20Dy

ub[|Es + V"2,

where we let ¢ € (0, 1].
Note that, by virtue of (3.3) and the smallness of §, €3 and €4, it is easy to check
that H;(t) is equivalent to

IVl + 1Vullze + 1Vl + V713

Then there exists a positive constant Cs > 0 such that
d
(1) + CHa() < CIIVp™ (72 + CIIVuX||Z: + C[ V" |7

By using Gronwall’s inequality, we get (4.5). O

In the same way, we show the following estimates of ||V2(p,u,n,7)(t)|| g1 which
are the basis for getting the optimal decay estimate of ||V?(p,u,n)(t)||zz-

LEMMA 4.4. Under the same assumptions of theorem 1.2 and (3.3), there exist two
small positive constants €5 and eg which will be determined in the proof of the lemma
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and lemma 4.5, such that

o€ rs3Ao

3 3 3 2 2 2
< C(5|\V2u||Lz +C§|\V2p||L2, (4.7)
where
Ha(t) = [V20ll% + IV2ullin + = IV20]3 + 5o V273
. g T kgt M

—|—/ (265V2u S V3 + 266 VAdivr : Vi — W|V3p|2> dx
r1+ Bp

Proof. Following arguments similar to the proof of lemma 3.4 for the case £ = 2,3
and p = v = 0, one has,

1d

5t (17200 + 1920l + 2219701

p) + Bp
Qﬁzﬁnv%n%{l -/ ww%ﬁdx)
7“25 3 AOrS 212 3¢ 312
<Cd (”VQUH%U +1V%ll3) - (4.8)

In addition, for the case ¢ =2 and p = v = 0 in (3.40) and (3.48), we can deduce
%/VQdiVT : Viudr + &(||V3 172 + || VAdivul|32)
< Cle+0)[VPplli2 + ColIV2plLa + Col|Vullf2 + Cle+ 8)[V2nll7
OV + 22O, (49)

and

d

T V2u V?’pdﬂch ||V3p||Lz

< 8| V2pll7- + C||V3U||L2 +CIVin|Z: + CIVPr| .. (4.10)
Together with €5 (4.10), (4.8) and eg (4.9) yields

s
Dttty + s IV2ll3 + o ”||v3u\|%z

7"25 3 Ao r3 r3€

< Ceaenvspniz + COlIV Pl + COIVullys + Ces|V3ul 3

2dt

V277 + Vo7 Zs

Ap
+ Cles + ese + O)|[VPnll7 + Cees[| VP77 + Ces VP71 72 + o 5y CHv2 172
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Bknry
64C2

e~ < min 66ﬁk‘ﬁ T2 r3€
o 8C ' 16CBi’ 16CBkij

Firstly, choosing a fixed positive constant € < and taking

and
e < min €571 ro& r3€ T3
6= 8Ce’ 16CeB7’ 16C.Bkn’ AC Bk
and finally choosing § sufficiently small, we get (4.7). O

Based on lemmas 4.4 and A.3, the following result holds.
LEMMA 4.5. Under the same assumptions of theorem 1.2 and (3.3), we have
Ha(t) < e H(0) + O / om0 (12, + VR s + [V ) (),
’ (4.11)
for some positive constant Co independent of 6.
Proof. By lemma A.3, we have
ol V2o lz <IVP0le,  colVPu |2 <IIVPullz2,  col V20"l < V20 L2

Thus, (4.7) leads to

1d ricd \ r Bkicd
5 e + eIV [Fe + e V2070 + 66 =g [V 7
2 dt 8 8
4 e L, + I 2, 4 T g, T e
L2 8 et 8ﬁ~ LAY m
< CO||V2ull32 + C6|| V3|32 (4.12)
By adding e Tlco V20122 + €6 ﬁknco [V2uk |2, 782;%3 [VZn%||2. to both sides of
inequality (4.12), and choosing ¢ suﬂi(:lently small, we have
1d ric Bk n
5 Ha(t) + €5 O”v2p”H1 + €6 OHV2 72
2 dt
7"2600 2 T3 0 2
\Y
Dl + IV
"1 o2 L2 BEACE | o Ly T2EC | o Ly
< e LIV R+ eV s + TR VR e,

where we let ¢ € (0, 1].
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Moreover, by virtue of (3.3) and the smallness of ¢, €5 and €g, it is easy to check
that Ha(t) is equivalent to

IV2pll7 + IVl + V20l 7 + 1V 7] 7

Then there exists a positive constant Cy > 0 such that
d ~
12 (t) + CoHa(t) < CIIV2p" (172 + ClIV*u ([ + CIVn"|IZe.
By using Gronwall’s inequality again, we get (4.11) directly. O

4.2. Decay estimates of the low-frequency parts

Next, with the help of lemmas 4.3 and 4.5, we will study the decay rates of
solution (p,u,n, 7). As it can be seen from (4.5) and (4.11), we only need to analyse
the low-frequency part (|¢] < ¢o) of (p,u,n).

Letting A be the following matrix of differential operators of the form

0 ridiv 0 0
r1V 0 TQV —T3
A= 0 prdiv —eA 0 )
A
0 —Bki(A+Vdiv) 0 7; —eA

and setting
O(t) := (p(t), u(t), 7(t), divr(t))"  and  U(0) := (po, uo, 0, divro),
we obtain from the linearized problem of (A.1) as below:

{atU—l—AU:O, for t > 0, (4.13)

U],_, = U(0).

Applying the Fourier transform to (4.13) with respect to the xz-variable and solving
the ordinary differential equation with respect to ¢, we have

U(t) = A@®)U(0),

where A( ) = e (¢t > 0) is the semigroup generated by the linear operator A and
A(t)f == F~ (e f(€)) with

0 V—=1r €T 0 0
V—=1r& 0 V—1rs¢ -3
Ac=1 ¢ V-1p0e" eléf? 0

A
0 philsa teg) 0 (Geele?) s

Then, from proposition A.2, we have the following result.
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LEMMA 4.6. For any integer m > 0, the following time-decay estimates for the low-
frequency part, i.e.,

IV (ABUH(0))]|2 < C(1+ 1)~ 3 F[UO)] 1, (4.14)
and

V™ (AU (0))ll 22 < C(L+ )~ % [U(0)]| 2 (4.15)

hold for any t € (0, 00).
REMARK 4.7. (4.14) and (4.15) are used to obtain the optimal time-decay estimates
of [[(p, s, 7)(®)llz2 and [V3(p, u,m,7)()]] 2, respectively.

In what follows, based on the estimates in lemma 4.6, we establish time-decay esti-
mates for the low-frequency part of solutions to the nonlinear problem (2.1)—(2.3).
Denoting

U(t) = (p(t), ult), n(t), divr (1),
then from (2.2), we have

{&U + AU = S(U), for ¢t >0, (4.16)

Ule=o = U(0) ,
where

S(U) = (S1, 92, S3,divSy)".
Using the Duhamel’s principle, the solution of (4.16) can be stated as follows:

t
Ut) = A(t)U(0) + / At — $)S(U)(s) ds. (4.17)

0
LEMMA 4.8. Under the assumptions of theorem 1.2 and (3.3), for any integerm > 1,

there exists a positive constant C such that

m
2

t
IV UH )22 < OO+ )4 F [U(O0)]|11 + €5 / (14153
0

x (IIV(p,m) ()l Lz + IV (u, 7)(8) || 1) ds (4.18)
and

_3_

VUL (1)l < €O+ 1)~ %\|U<o>||L1+c/ (1+t—s)3-
0

m
2

< (G0, w, Ml z2 1V (oy s, Tl L2 + 1V (0, 7) | 2] Vil £2) () ds

m
2

+C/2(1+t—s)—%—
0

< (I 2Vl g2 + IV27|| 22 ul =) (5) ds

t
e / A+t — )% (10w ) a2 V2 (0w, 122 (5)ds.

t
2

(4.19)
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REMARK 4.9. With the aid of (4.18) and (4.19), the optimal time-decay estimates
of [[(p,u,n, 7)(t)||gr= and ||V3(p,u,n, 7)(t)|| 2 will be obtained, respectively.

Proof. From (4.17), using lemma 4.6, we have

IV U ()]l 2

< C||V™ (AOUE0)]|,. + C va/o At — 5)SE(U)(s)ds

L2

_3_

<O+~ F[UO)| +C / (1+1 - 5)~ 1% S(U)(s)|| 1 ds

<C(l+t)"i7%

U(0)[

t
+ 05/ (1+t—5)737% (|V(p,m)(s)|[ 2 + [IV(u,7)(s) | 1) ds,  (4.20)
0
where we have used the fact that
[S(U)[zr < C(S1, 52, S3,divSs)(U)]| 21
< C([[(pyus L=V (o wsns Tz + IV (0, T)l| 22|Vl 2
+ 1 D)2 V2l L2 + V27| 22 lull £2) - (4.21)

Hence, (4.18) is obtained.
Moreover, for (4.19), using (4.17) and lemma 4.6 again, we have

IV"UE (0]l < OV (ABUHO)] 1 + C [V /0 T A(t = 5)SH(U)(5)ds

L2

+C

v [ A(t — 5)ST(U)(s)ds

L2
< C(L+6)" 172 (|U(0)] s

+ C/:(l +t—8) i FS(U)(s)] 1 ds

4 cL (14— 5)=F[SU)(s)| z=ds, (4.22)

where

[|(S1, S2, S5, divSy)(U)|| L2
(Cos s M) 231V (s s s 7)o 4 [V (0 7)o [ Ve o
+ 1, Dl V20l L2 + IVl 2l 2 )
< Oll(p,w,n, )2 lIV2 (s ey, 7). (4.23)
Thus, together with (4.21), (4.22) and (4.23), (4.19) can be obtained. O

[SU)llz> < C
<C
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4.3. Optimal decay rates of ||(p, u,n)(t)||g=z and ||7(¢)|| g

In this subsection, we will obtain the time-decay estimates of (p,u,n,7) with
the aid of lemmas 4.3, 4.5 and 4.8. Firstly, we consider the decay estimate of
1(Vp, Vu, V1, V) ()| 2.

PROPOSITION 4.10. Under the same assumptions of theorem 1.2 and (3.3), we have

IVo®) 2 + [Vu@®) a2 + [Vn®)llaz + [Vr@)llae < CL+8) 75 (4.24)

Proof. Owing to (4.5) and (4.18), we can obtain

t
Ha(t) < e” " H1(0) + C/ o” I (|| Vph 2o + [Vul(|Z: + V07 ]122) (s)ds

_C'gtHl +C/ —C’g(t s)(1+8) %d

+5/ —Ca(t—s) (/ (1+8—8/)_3H1(8/)d8/> ds
5 t S i
0 0
t
<C(1+t)‘%+caz(t)/ ~Co=5)(1 1 o)~ds
0

SCA+1)"% +COT(t)(1+1)2,

where Z(t) = sup (1+ s)2H(s).

0<s<t
Further, by virtue of the definition of Z(¢) and the smallness of §, we can obtain

I(t) < C,
which is (4.24). We complete the proof of the proposition. d
Then, based on proposition 4.10, we can obtain the next proposition.

PROPOSITION 4.11. Under the same assumptions of theorem 1.2 and (3.3), we have

7 (®)l> < C(1+1)7F, (4.25)

3

(o, u,m) ()] L2 < C(L+18)7 3, (4.26)
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Proof. Firstly, for ||7(¢)|z2, we multiply (2.1)4 by 27 and then integrate the
resulting equation over R? to obtain

d A
&/|T|2dx+70/|T|2dx+26/\VT|2dx

:2/S4zrd1:+2ﬂkﬁ/(Vu+VTu) crde

A
< (4;’ + 5) 17132 + ClIVul3, (4.27)

where we have used Cauchy inequality and the fact that
1allz> < llullzs[[VTllLs + IVullp2 (7l + llnl[z=).-

Choosing ¢ sufficiently small in (4.27), it holds that

d Ag
&/|T|2dx+ﬁ/|T|2dx§C||Vu||%2.

Further, using Gronwall’s inequality, the above inequality gives

t
Ir(@®)][22 < Cem 2|r(0)]|22 + C / ¢ 2R 79| Vu(s)|22ds
0

t
< Co 3 7(0)]132 + c/ e (1 4 5)"3ds
0

<C+1)73,

where we have used (4.24). Then we obtain (4.25).
Next, for [[(p,u,n)(t)| r2, thanks to (4.18), let m = 0, we find that

t
||(p,u,’r],diVT)L(t)HL2 <CA+t)74|(p,u,n,divr)(0) || + 0(5/ (I+t—s)"1
0
x (IV(p,m)()llLz + IV (u,7)(s)[ 1) ds
& t 3 5
<c+nt +05/ (1+¢—s)" (1 +5) ids
0

<C(l+t)71, (4.28)

where we have used (4.24).
In addition, by using lemma A.3 and (4.24) again, we have

1
||(p,u,n,div7’)h(t)\|,;2 < C—HV(p,u,n,diVT)(t)HLz <C(1+ t)fg. (4.29)
0

Combining with (4.28) and (4.29), and owing to (A.32), we can get (4.26) directly.
U

Further, the optimal decay estimates of second order for (p,u,n) and first order
for 7 in the sense of L? norm are obtained as below.
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PROPOSITION 4.12. Under the same assumptions of theorem 1.2 and (3.3), we have

IV?o()ll + IVt + (V0@ + V27O < C(L+8)7F,  (4.30)

IV ()|l < C(1+1)7%. (4.31)

Proof. Owing to (4.11), (4.20), (4.21) and propositions 4.10 and 4.11, we can obtain
- t -
Ha(t) < e”“"Hz(0) + C/ e” U (V20122 + V2|72 + V207 (122) (s)ds
0

- t -
< e 2MH,(0) + C/ e~ C2lt=9) (1 4 s)fgds
0

t N s
+C/ e~ Ca(t=9) </ (1—1—3—5’)_;(1+5)_g(s')ds') ds
0 0

t -
<c+-} +c/ o=Calt=9)(1 4 5)~Fds
0
<O +1)3,
which is (4.30).
Finally, for (4.31), multiplying V(2.1)4 by 2V7 and then integrating the result
equation over R?, similar to (4.25), we get

d Ag
% / V7% da + BTy / V72 dz < C||Vul3..
Further, using Gronwall’s inequality, the above inequality gives

Ag ! _ Ao g
IVr(®)]1Z: SCe_“tHVT(O)H%erC/O e B 7|V 2u(s) | 72ds

t
< Ce B Vr0)|2. + c/ e~ 32(=9(1 4 5)~1ds
0
<O +1)3,
where we have used (4.30). Hence, we complete the proof of the proposition. O

4.4. Optimal decay rates of | V3(p,u,n)(t)||r2 and ||V27(¢)]| L2

Inspired by [48, 49], we are going to study the optimal decay estimates of
IV3(p,u,n)(t)||L> and |[|[V27(t)||z2. In the process, we have made full use of the
benefit of frequency decomposition.

PROPOSITION 4.13. Under the same assumptions of theorem 1.2 and (3.3), we have

IV3p(t) g2 + IV3u(®) | 2 + IV30 () L2 + IV 7 (D)2 < CL+ )7, (4.32)
V27 (t)]|2 < C(1+ )%, (4.33)
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REMARK 4.14. The proof of proposition 4.13 consists of lemmas 4.15-4.16 below.

LEMMA 4.15. Under the same assumptions of theorem 1.2 and (3.3), there ewist
two small positive constants e; and eg which will be determined in the proof of the
lemma and lemma 4.16, such that

55713( )+€7*|\V3phI|Lz e ||V3 "7

r25 Agrs r3e
26~ 8ABkT 8Bkn
<O+ ) IVP0E 22 + O + er + eo)IVPub |2 + Cler + ese + 8)[F2n|22,
(4.34)

IV nl1Z + HV3T||2L2 + V47172

where

Hs(t) = [IV2pllZ: + [Vull72 + HV?’nllm + IV37IIZe

25k~

+/ <267V2u s V3" + 265 V2divT 1 VU — M|V3p2> dz
ri+ Bp

Proof. Following some arguments similar to the proof of lemma 3.4 for the case
¢ =3 and p=v =0, one has

1d

2
35t (19013 + I9°ulls + Z 19013

h(p) + Bp

3 _ 3 12

+ gVl — [ ST da
AOT?)

ro€ 2 3 12 r3€ 4 12
\Y \%
+ 557 IV Al + B IVerlEe + 2 IVl
< C6 ([V3ull3z + 1V20l132) (4.35)

where we have used the following inequality:

1
I (7”1 +ﬂp) Iz < ClIVpVpVpll2 + ClIV2pVp| L2 + CV7p| 2

ClIVollzs +CIV2pllLs [V pllzs + CIV3pl 12
Clloll<IVopllzz + ClIVopll2(IVpl Lo + 1)

NN

which is established by Holder inequality, sobolev inequality and Gagliardo-
Nirenberg inequality.

In addition, applying operator V2div to the equation of (2.1); and V? to the
equation of (2.1)4, multiplying the results by V2u" and V2divr respectively, then
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summing them up and integrating it over R?, we can get

d

% Vidivr : V2l dx—,@kn/V2 (u" 4+ u®) + Vdiv(u" 4+ u*)) : V2u" dz

A
= /(VQdiVS4 - 2—)\0V2div7' + eV2Adivr) : V2" dz
+ / (V2Sy — V3" — V30" + r3V2dive™) : V3divr da, (4.36)

where we have used the frequency decomposition (A.32). Then, similar to the case
¢=2and p=v=01in (3.40), we have

/(V2divS4 + €V2Adiv7') V2l de

Bkn
\< S +C3 ) || V3|22

+C8||VPull72 + C8|[ V3 (0, 7)|72 + C|[ V7|, (4.37)
and
/(VQSSL — T1V3ph — 7”2v3'f7h + 7"3V2diVTh) - V2divr dz
< el V2p" |72 + COlIVE 2 + CO|IV2ul
+C(e+0)IV3nll7s + Cel| V37|72 (4.38)

Finally, combined with lemma A.3, the rest term of (4.36) can be deal with like

Ao
/—ﬁv2leT VAl de < €| V2|2, + C.|| V37|12,

< Ce||V3ul|72 + C|| V37|52 (4.39)

Together with (4.37), (4.38) and (4.39), using Holder inequality and Cauchy
inequality, and choosing § and e small enough, we can deduce from (4.36)

/V2d1VT Vil da + bk n(||V3 M2, 4 || VAdive”|2.)
< Ce+0)|V2p" 172 + C8|IV2p" ([T + C|IVPu"| 72
+ Cle+0)| V30|32 + C|| V37|31, (4.40)
where we have used the fact that

IFllzz < N5 Npe + 1 2, ¥ f € L2(R?).

Similarly, applying operator V? to the equation of (2.1), and (2.1)%, multiplying the
results by V3p" and —V?2divu respectively, then summing them up and integrating
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it over R3, we have
d 2 3 h 3(. L, h 3 h
% Vou: Veptde +r | V2(p" +p") : V°p'da
= / (V2Sy — V3 4+ r3V2divr) : V3" da
+ / (=V28 + 1 V23diva") : V2divu da. (4.41)

Further, from (4.41) and referring to the case { = 2 and p = v = 0 in (3.48), we can
deduce the following inequality:

d r
5 | Vur V3l dax + Elnv?’phn‘iz

< CIVEpH Lz + ClIVPullZ: + CIVEE: + ClIIVE 7. (4.42)

Hence, €7 (4.42) together with (4.35) and eg (4.40) yields

1d r1 Bkn r2€
33700 + e E IV + DT IV + 22 Vs
Ang 3 12 Tr3€ 4 12

< Clese +08) V2" (|72 + C (6 + er) IV p" [ 72 + C(0 + €r) [ Vul 2
+ CGgHVSUL”QLQ + 0(67 + ege + 5)||V3’f]||%2 + 0568Hv37'||?q1 + C€7Hv37'||%2.

Firstly, choosing a fixed positive constant € < %’Z’Zf; , and taking

o < min esPBkn  Aors
s 8C " 16C\Bkii

and

. €771 Agrs r3€
€g < min§ ——, =, ~ (s
8Ce’” 16C A\Bkn’ 8C.Lkn

and finally choosing ¢ sufficiently small, we get (4.34).

Moreover, with lemmas 4.15 and A.3, the following result holds.

LEMMA 4.16. Under the same assumptions of theorem 1.2 and (3.3), we have
- t -
Hs(t) < e”H3(0) + C/ e~ U= (V25| + VP22 + [IVP0)122) (s)ds,
0

(4.43)

for some positive constant Cs independent of 6.
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Proof. By lemma A.3, we have

col[ V20" |l r2 < V0]l e

Thus, (4.34) leads to

**Hs()+€7 \|V3ph\|m+68 ||V3 "7

2dt
r2500 3 h Agrs 3 112
+ 26~ Hv ||L2 + 8)\ﬁkﬁ||v 7—||Lz
SO0+ e) || V30|22 + C(6 + 7 + €3) || V3ul 2,
+ Cler + ese + ) (V30|72 + V20" II72), (4.44)

By adding e7%(|V3p" |12, + es 20| V3ub||2, + ng%gHV?’nLH%Q to both sides of
inequality (4.44), taking

2
7‘2500 T2€CO
< d < —,
TS 5o MY PS80
and choosing § sufficiently small, we have
"1 o3 2 L —— T2ECH | s 12 Aors 3112
\Y — |V
3370 + IVl + e LIVl + ZER IVl + S Vs

< CIVEpHILe + CIIVAUE (2 + ClIVE0 (122

Moreover, it follows from integration by parts, the Young inequality and lemma A.3
that

/ (Vzu V3 + VAdivr V2uh) der = / (—V2divu V2" + VAdivr V2uh) dx
1 2 1. 1 2 h 1 21 1 2 h
< §||V divu||zz + §||V P2 + QHV divr]|zz + §||V u|| 2
Lo L o3 L o3
< IV ulee + 19 plza + 5193 7.

Hence, by virtue of (3.3) and the smallness of J, €7 and ¢g, it is easy to check that
Hs(t) is equivalent to

IV2pll72 + IV2ull 7z + [Vonl7e + IV27 |72
Then there exists a positive constant Cs > 0 such that
d -
3 (8 + CsMs(t) < CIVep" |22 + CIVPu |72 + CI V0" 2.
By using Gronwall’s inequality, we get (4.43). O

With the help of lemmas 4.15-4.16, we are ready to prove proposition 4.13.
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Proof of proposition 4.13. Thanks to the case m = 3 in (4.19), (4.43), propositions
4.10, 4.11 and 4.12, we can obtain

- t -
Hs(t) < e” 'H3(0) + 0/ e” B (V2P 122 + VPP |72 + VP07 (122) (s)ds
0

(s')ds’) ds

(s’)ds’) ds

_ ¢ )
< e OtH5(0) + C/ el (1 4 S)_%ds
0

t N 5 o
0 0

t N s .
+C/ e—Cs(t—s) (/ (1 +s5— S/)—3(1 +S)_
0 3

t ~
< C(l +t)_% +C/ e—C:;(t—s)(l + S)_%ds
0

[N

ol

<C(+1)2,

which is (4.32).
Then, for (4.33), multiplying V(2.1); by 2V27 and then integrating the result
equation over R3, similar to (4.25) and (4.31), we get

d Ag
T / |V27 |2 da + B3N / (V27r|2 dz < O|V3ul|2..
Using Gronwall’s inequality, the above inequality yields

t
IV27()3: < Cem 3 V2r(0)|32 + C/ e B 1| Vru(s) 3 ods
0

Ag
—£0¢
g Ce 2

t
V27 (0)[3: + C / o~ B0-9(1 4 9-1ds
0

9
2

<C(L+1)73,

where we have used (4.32). Hence, we complete the proof of the proposition.
Finally, based on propositions 4.10-4.13, the decay rates of the solution stated
in proposition 4.1 are obtained. Thus, we finish the proof of theorem 1.2. g
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Appendix A.1. Estimates on the linearized system

Let us consider the following linear system for (p, @, 7, divT):

ﬁt -+ TldiV’l_L = 0,
U +r1Vp+roVn —radivy =0,
M + B diva — A = 0, (A.1)

A
divr, + z—j\)div% — eAdivr — Bkij(At + Vdiva) = 0.
As it can be seen from (4.5), (4.11) and (4.43), to study the decay estimates of
(p,u,n,7), we only need to analyse the low frequency part (|¢| < ¢o) of (p, @, 7, 7).
If we adopt A®:=(—A)2 as the notation for the pseudo-differential opera-
tor defined by A®f:=F1(|¢°f(€)), we only need to study p, d:= A~tdiva

and Pu := A~ curla, where curl!u = oju’ — oyl 7, q == A~ ldivdivF and PdivT :=
A~ tcurldivr. Indeed, by the definition of P, we have

a=—A"1Vd - A" tdivPg,

divi = —A7'Vq — A1 divPdivT.

We see that (p,d, 7, q) and (Pu,PdivT) satisfy

ﬁt + TlAd = 0,

dy — T Ap — oA —1r3¢ =0,

7t + BnAd — eAf = 0, (A.2)
A

q + Qj(\)q —eAq - 2BknAd =0,

and

P, — r3Pdivy = 0,
(A.3)

A
Pdiv7, + 2—A0Pdiv7" — eAPdivr — BkiAPE = 0.

Applying Fourier transform to the linearized system (A.2) and (A.3), we arrive at

/?t +T1|f‘d= 0,

dy —r1[€|p — 7ol —r3q =0,

e+ Bl + <€ = (A4)
Qo+ 5y d+ el€ + 20k7l€[*d = 0,

and
]I/D.’L\_l,t - Tgp/d-iV\’I_' = 07

Ay — e A5
PdivT; + 2—/‘\)Pdivf + |¢|?PdivT + Bkn|¢|*Pu = 0. (A.5)
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A.1.1. Estimates on (j,d, 7, §)

We introduce the following corrected modes different from those in [47]:

—1

. 2) A IS NN
A= Spranle] |50 + (- 20k gl g (A6
A2

S 2 A
6= d+ (A7)
o2 o TA -

Z=1+ IOTBBU|§| |:2>(\J (5 - 2ﬂk/’7]77"3 |§2] q, (A,8)
a=4g (A.9)

Then the system (A.4) can be rewritten as

N R 4\ N .
a; +r1/€l6 = —IOT3T15kUA1|§|30,

R 4\ N . . .
o, + Iorzﬁkn|€|20 —riléla —ralé|z

2\ 4\ N
=y ( r3fkij — e — (ro37 + 1) A 1) €1%q, (A.10)
Ao " Ao 2\ AN
Z + 577|§‘0 + 5|§|22 = 5*07’357]141|f|3q - 707“3ﬁ2k772A1|§|3 s
Ag - N
q: + {2/\ + (e - 25k777“3)§|2} = —2p3kn|¢|o,

where the coefficient A; is defined by

Ao 2 -
A== — 20k~ 2
1 {2/\—1—(5 B ?7A07”3)|f| ]
From the corrected modes, it is not hard to find that the estimates of (a,0,z, q)
can be easily translated into the estimates of (p,d,1,q) for small |£|. Next, let us
turn to study the estimates of (a,0,%,q). From (A.10), we easily obtain

d ~12 ~ 12 TQ ~12 4)\ -~ 21412
o8 ol + 22 [af”) + + Soradbilello

DO =

4\ N .=
= —IrngﬂknAl |§|3Re(o a)
0

L2 (“mﬂkn e (raBii D) A 1> €[?Re(q6)

Ao
ot QA N Eﬂ 25 ~2 3 N~
+ 22 AP Re@E) - 2 D S e PRe0B). (A1)

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2022.2

The Cauchy problem for an inviscid Oldroyd-B model in three dimensions 483

Multiplying (A.10); and (A.10), by 6 and &, respectively, yields

*Re(éﬁ) +rifel[of* — rifglal® — ral¢|Re(za)

dt
4\ 2\ 4\ .=
— S BA PO + Fra (ki — e (07 ) ) [€PRe(ad)
4\ 5 -
— A—Orgﬁkmf\zRe(o a). (A.12)

Combined with (A.11) and —€|¢|x (A.12), it holds that

1d

2 2 i 2 _ = A
3ap (18P + 0P + 2212 - 2lclre@o)
16121412 4 728 f121512 4A . 2[4 12
12e A e Bk —
rdlgPlaf + 2 lePlap + (radii i ) 6o

= Sora (v — & = (raBi 4 1)) ) ISP Re(@) ~ el PRo(2)

44X - A
+ EITBTlﬁknA1|£|4|O|2
0

2\ [4) o
= s (Gprati = (i + )1 ) [€PRe(ad)
9 ~1¢13 AR 4N ~ 3 ~A X
+ e—rgﬁkn|§| Re(0a) — A—OrgrlﬂknAﬂﬂ Re(0a)
rog 2\ = ro 4\ - .=
+ G Ao TeB1 A R(a) — o ZEra ki Arl|"Re(62)
oA [4) e e
= A—Org 7?"3/81{'7’]*67 (ro87 + 12) A1 ) |€]°Re(§6) — éra|¢*Re(za) + I1;.

(A.13)

It is natural to derive the estimates for those terms on the right-hand side of (A.13).
First, the first two terms can be controlled by

A A er ér
A BEFIE2 1612 0 A2¢12)1¢(2 o+ <2 24 T2 2 A14
raBRAIERIO + s AR + A + P, (Aa)
where
2\ 4\
Ay = Afo“ ( rsfkn —e — (ro07 + 7“1)141)

Similarly, we can drive the bound of the last term.

11| < CleP|(a, 2)[[(q, 0)| + Cle[*|of*. (A.15)
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Substituting (A.14) and (A.15) into (A.13) yields

1d 2 2 2 412 ~ = A
-2
357 (18P +10P + 22 af? - 22lce(ao)
ri€ roe  Ers . 3\ o A
PP+ (72 - 52 ) el o+ (raski - en ) ePlof
A . . )
< T IRl + Clel(a.2) (@ 0)] + Clel* ol (A.16)

Now, we move on and derive the estimates of q as follows. Multiplying (A.10)4 by
q and using Cauchy inequality, we then obtain the following inequality:

1d,. ., [Ao 2\ 1
aplal + |5+ (e 28w152ra ) 16 la
= —208kij|¢|*Re(6 q)
A a2z 2A0 o i o0iae
mrsﬁkmfl |o] +/\736k77|£| lal®,

which implies

1d, o, [ 024 J1 A s
20 4 (o —opkilp, — 220 k .
paplal+ |50+ (e - 2o - 220007 ) 62| 1a* < 3 rashileo
(A.17)
Finally, combining with (A.16) and (A.17) yields
1d _
357 (1874102 + 221l + a? - 2iRe(@o)
r1€ roe  érd . 2\ . .
+ DElePlaP + (T2 - 572 lePlal + (rashi - en ) lPlof
2r AO
Ao A 240 Ao 21612 1412
— 20k k ——A
+ [0 (e - 2omn s — 2200 - 120 agi] la
< ClEP|(a,2)[(a.0)| + Cle|*[o]*. (A.18)
Taking € := min { 2:21;77, /\230’2 ’fﬁ }, and introducing the Lyapunov functional
Ll = 4 + [0 + ZZ |2 + |4 — 26le[Re(a0).
B
It is clear that, for |¢] < I, we have £2,,, is equivalent to |a|? + |6]? + g—’%\iP + g2

Hence, from (A.18), usmg Cauchy inequality, there exists a small positive constant
c < % depending only on the parameters ¢, k, Ao, 5,7, A\, € and r; (i = 1,2,3) such
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that

1d 1€ 2,
=2 e
Lo + Il +

/\
512 2 O 21412
—|— <

Namely, we have

2
7‘Ccom

+ Cyle2 L2 (A.19)

com\ 7

for some positive constant Cs independent of [¢]. Then it follows form (A.19) that
for £ <

(8,6,2,d) (1) < Ce €1 (46,2, ) (0). (A.20)

Recalling the relation between (&, 6,2, q) with (5, d, 77, ) in (A.6)—(A.9), and thanks
o (A.20), we can easily deduce the following inequality holds.

(7,73, )(D)]* < Ce™ @ (5,d,7,q) (), for [¢] < e (A.21)

A.1.2. Estimates on (ﬁi,m)

We introduce the following corrected modes:

v = P + 22 r BT, (A.22)
Ao
W = Pdiv, (A.23)

Then the system (A.5) can be rewritten as

2\ 2\ ™ N
R o ) L
’ ’ (A.24)

Ao 2A =\ o124 o120
S ( Aorsﬁkn) (€129 + Bl = 0.

Multiplying (A.24) with v and W respectively and use Cauchy inequality, we have

| 1+ *Mﬁknlfl [v[?

2dt
2\ 2\ =
= —Z2rs (e — Z2ryBki ) |€)*Re(W v
A, 3( A, 30 77) \§| ( )
A 2\ 2\ 2
< ——r3Bkn|E2 V]2 + -7 (6—7‘ /<;~) 2|wl?, A.25
T ORTIE LIV + o (e = Sporadhi ) J6P (4.25)

and

s (G (e = Soraski)le?) i
O
= —ﬁkﬁ|§|QRe(‘7 W)

A
ﬁk €[ [w |2+ Tsﬂknlfl v (A.26)
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Together with (A.25) and (A.26), it holds that

1d, ., A )
53 (VP + W] )+I0r36kn|§| V]
Ao 2\ ) 22 N\ .,
+ BN + ( a4 ——r3Bkn — N 3575 Aoﬁkﬁm (E— Aorsﬁk’n) ) €] ]
x |w|* <0. (A.27)

By choosing [£] < ¢z, which makes % + (6 — i—)‘orgﬁkﬁ — ;—ggﬁkﬁ — #ﬁ‘kﬁ
ra(e — %rgﬁkn) ) €% > AO > ‘2—/‘\)|§|2 true. Then, from (A.27), we have

1d

A A
2 2 BEAIEI2 52 A0 41214,12
5 e 917+ PWI2) o orsBal€ P91 + € Iw)

Hence, there exists a positive constant Cy independent of |£| such that
S0P + W) + CaleP (P + ) < 0. (A.28)
Thanks to (A.28), we can deduce
(V. WD) < Cem @l @ W) (O, for [¢] < ez (A.29)
Further, from the definitions (A.22) and (A.23), (A.29) implies that, for |¢]| < cq,
(P, Bdive) (D] < C e (P, Fdivi) (0)[. (A.30)
A.1.3. Decay estimates of the low frequency part

Taking c¢op = min{cy, c2}, and combining with (A.21) and (A.30), we have the
following proposition.

PROPOSITION A.1. It holds that, for €| < co,

(5, d, 7, ) (&, 8)]* < C 2P (5, d, 4, 4)(€,0)[
and
(P, Pdivr) (&, 1)[2 < C e 20167 (Py, Bdivr) (€, 0|2,

for some positive constant Cs independent of .

For the low frequency part, we have the following decay estimates for solutions
to the linearized problem (A.1), (2.3).

PROPOSITION A.2. [t holds that
|07 (5., 7, dive) (D)l 22 < O+ 6) =3 (5, 7, dive) (0) 1,
and
107 (5,7, dive) = (1) 2 < COL+ )™ F (5,1, 7, divT)(0)] 22
for any |m| > 0.
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Proof. By using Plancherel’s theorem and proposition A.1, we have

10" (p, d. 7, @) " (2)]] 2
= [126)™(

P11, 0) L2 1gl <o)

N

< 2l (5, d, 7 d
<<<AK%E (5, d, 7, xeo|f>

<C </ 6205\5\2‘§|2Im\ e*205‘5‘2(1+t>|(,3 d, 7,4)(€,0)]? dg)
[€]<eo

2

S

<C / B2l (1 + 1)l =% ¢=2C518P (5 d 5. 4)(€,0)[2 dB
|B|<covV/I+E

3_ 1

<O+ (5,d. 7, 4)(0) | o~
< C(+ 07 (5, w0, dive) (0|1 (A31)
Moreover, we can also deduce
o

105 (ps 71, @) ()| 2 < C(L+0)" = |[(5, @, 77, dive) (0)]| -
By similar calculations, we can get

|0 (Pa, Pdive )= (£)]| 2 < C(1+ 1)~ 5~ 5" || (@, divF)(0)] 1.
and

|0 (Pa, Pdiv) L () 2 < C(1+1) =3 H(u div7)(0)]| 2.

Then, we finish the proof of proposition A.2. O

Appendix A.2. Some useful inequalities

Let 0 < ¢o(€) < 1 be a function in C§°(R?) such that

where c¢g is a positive constant. Based on the Fourier transform, we can define a
low and high frequency decomposition (f¥(z), f(z)) for a function f(z) as follows

FE () = F Y (po(€)f(8)), and fM(zx) = f(z) — fE (). (A.32)

The following lemma can be obtained directly from the definition (A.32) and
Plancherel’s theorem.
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LEMMA Appendix A.2.1 [38]. If f € H™(R3?)(m >2) is divided into two parts
(fE, ) by the low and high frequency decomposition (A.32). It holds that

g TRV P ey < IV fll L2 (re),s

for any integers my and ms with mo < my < m.

Finally, the following elementary inequality will also be used.

LEMMA Appendix A.2.2 [15]. Ifa > 1 and b € [0,a], then it holds that

/t(l +t—5)"%1+5)""ds < Cla,b)(1+1)~".
0

LEMMA Appendix A.2.3 [14, 41]. Let m > 1 be an integer, then we have

IV (F Do @ny < Cllf Lo @y IV gl oz @y + ClIVT Fll s @y 9] oa @y

where 1 < p,p; < +oo, (i =1,2,3,4) and

1 1 1 1 1

p p1 b2 P3 P4
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