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In this paper, we consider the Cauchy problem for an inviscid compressible
Oldroyd-B model in three dimensions. The global well posedness of strong solutions
and the associated time-decay estimates in Sobolev spaces are established near an
equilibrium state. The vanishing of viscosity is the main challenge compared with
[47] where the viscosity coefficients are included and the decay rates for the
highest-order derivatives of the solutions seem not optimal. One of the main
objectives of this paper is to develop some new dissipative estimates such that the
smallness of the initial data and decay rates are independent of the viscosity.
Moreover, we prove that the decay rates for the highest-order derivatives of the
solutions are optimal, which is of independent interest. Our proof relies on Fourier
theory and delicate energy method.
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1. Introduction

The Oldroyd-B model is a widely used constitutive model to describe the motion
of viscoelastic fluids. One of the known derivations is that it can be derived as
a macroscopic closure of Navier–Stokes–Fokker–Planck system which is a micro-
macro model describing dilute polymeric fluids in dumbbell Hookean setting, see
[3, 7] for the incompressible case and the compressible case, respectively. The com-
pressible Oldroyd-B model in the space-time cylinder QT = R3 × (0, T ] is stated as
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follows: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇P (ρ) − μΔu− (μ+ ν)∇divu

= div
(
T − (kLη + zη2)I

)
,

ηt + div(ηu) = εΔη,

Tt + div(uT) − (∇uT + T∇Tu) = εΔT +
kA0

2λ
ηI − A0

2λ
T,

(1.1)

where the pressure P (ρ) and the density ρ(x, t) � 0 of the fluid are supposed to be
related by the typical power law relation for simplicity:

P (ρ) = aργ

for some known constants a > 0, γ > 1; u(x, t) ∈ R3 denotes the velocity field of the
fluid. μ and ν are viscosity coefficients satisfying μ � 0, 2μ+ 3ν � 0. The polymer
number density η(x, t) � 0 represents the integral of the probability density function
ψ which is a microscopic variable in the modelling of dilute polymer chains, i.e.,

η(x, t) =
∫

R3
ψ(x, t, q) dq,

where ψ is governed by the Fokker–Planck equation. The extra stress tensor
T(x, t) = (Ti,j)(x, t) ∈ R3×3, 1 � i, j � 3 is a positive definite symmetric matrix
defined on QT , and the notation div(uT) is understood as

(div(uT))i,j = div(uTi,j), 1 � i, j � 3.

The constant parameter ε is the centre-of-mass diffusion coefficient and other
parameters k, L, z, A0, λ are all positive and known numbers, whose meanings were
explained in [3]. (1.1) is known as diffusive Oldroyd-B model when the diffusion
coefficient ε > 0. The corresponding micro-macro version of (1.1) can be referred
for instance to [2] and references therein.

Note that the centre-of-mass diffusion term is usually smaller than other effects
([5]). For such a reason, in early mathematical studies of macroscopic Oldroyd-B
model, the stress diffusion is omitted, see [44]. In this context, [46] established the
local existence theory for Dirichlet problem. Guillopé and Saut [23] obtained the
existence and uniqueness of global strong solution in the Sobolev space Hs(Ω) for
bounded domains Ω ∈ R3 with a small initial data. Some other related results can
be referred to [21, 43]. In exterior domains, Hieber, Naito and Shibata [24] obtained
a global existence and uniqueness of the solution provided the initial data and the
coupling constant are sufficiently small. Fang, Hieber and Zi [18] extended the
work [24] to the case without any smallness assumption on the coupling constant.
The existence of a global-large-data weak solution was established by Lions and
Masmoudi [36] in the corotational derivative setting. For long-time behaviour of
the solution, please refer to [25, 31]. There are also some interesting results on
other macroscopic model of Oldroyd type concerning viscoelastic flow introduced
by Lin, Liu and Zhang [35], for example [26, 29, 33] and others.
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However, the centre-of-mass diffusion can be physically justified to model the
shear and vorticity banding phenomena [6, 9, 10, 13, 32, 37, 42], although it
is small. In this case, some interesting works have been achieved. More specifi-
cally, the global-in-time existence of large-data solutions in two dimensional setting
was obtained by Barrett-Boyaval [1] for weak solutions and by Constantin and
Kliegl [11] for strong solutions. In three-dimensional setting, Bathory, Buĺıček and
Málek [4] proved the global existence of weak solutions for a generalized rate-type
viscoelastic fluids in bounded domains. For the inviscid case, Elgindi and Rous-
set [17] obtained the global existence and uniqueness of regular solutions in two
dimensions with arbitrarily large initial data when Q = Q(∇u,T) is omitted and
with small initial data when Q �= 0. We refer to [16] for the three-dimensional
case with small initial data. For the case of fractional Laplace, please refer to [12].
Very recently, the second author, the third author and their collaborators [31]
studied the long-time behaviour of the solutions and obtained some decay esti-
mates. These results are concerned with homogeneous fluids, i.e., the density is
constant.

For the compressible case, there are a lot of fundamental problems which are still
open. We recall some mathematical results for compressible viscoelastic models,
which have been the subject of related fields in recent years. The well posedness
in local time and global well posedness near an equilibrium for macroscopic mod-
els of three-dimensional compressible viscoelastic fluids were considered in [19, 27,
28, 34, 45] (see [8] for global existence of weak solutions). In particular, Fang
and Zi [19] proved the local well posedness of strong solutions to a compress-
ible Oldroyd-B model and established a blow-up criterion. Soon afterwards, the
authors [53] obtained the global well posedness in critical spaces. Lei [34], Fang
and Zi [20], and Guillopé, Salloum and Talhouk [22] investigated the incompress-
ible limit problem in torus, the whole space and bounded domain, respectively.
Very recently, Zhou, Zhu and Zi [51] obtained some time-decay estimates of strong
solutions. Zhu [52] obtained the global well posedness of small classical solutions
to a generalized inviscid compressible Oldroyd-B model in Sobolev space Hs for
s � 5. In [3], Barrett, Lu and Süli not only showed the derivation of the com-
pressible viscous Oldroyd-B model with stress diffusion (1.1) via a macroscopic
closure of a micro-macro model, but also proved the existence of global-in-time
finite-energy weak solutions with arbitrarily large initial data in two dimensions.
The global-in-time existence of solutions strong or weak with arbitrarily large ini-
tial data is unknown in three dimensions either with stress diffusion or not. In two
and three dimensional setting, Lu and Zhang [40] obtained the local-in-time well
posedness of strong solutions together with a blow-up criterion and weak-strong
uniqueness. Very recently, the second author and the third author [47] showed the
global well posedness and optimal time-decay rates of strong solutions for Cauchy
problem in three dimensions. In critical Besov spaces, one can refer to [50]. Less
is known concerning the vanishing of centre-of-mass diffusion and the inviscid case
in (1.1) either for global well posedness or for long time behaviour, until very
recently the first author, the third author and their collaborator investigated the
first case (i.e., ε = 0) in [38]. This work is devoted to the latter one which is more
challenging.

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.2


444 S. Liu, W. Wang and H. Wen

More precisely, we consider the case that μ = ν = 0 in (1.1), i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇P (ρ) = div(T − (kLη + zη2)I),
ηt + div(ηu) = εΔη,

Tt + div(uT) − (∇uT + T∇Tu) = εΔT +
kA0

2λ
ηI − A0

2λ
T.

(1.2)

1.1. Reformulation of the problem

In this section, we give a reformulation of (1.2) to make the analysis more con-
venient right behind. In fact, when ε = 0 and the viscosity coefficients are fixed, a
similar reformulation was given in our previous work [38]. Thus this section is a
slight modification of the corresponding part in [38]. More specifically, multiplying
(1.2)3 by kIij , we have

(kηIij)t + div(kηIiju) = εΔ(kηIij). (1.3)

Then subtracting (1.3) from (1.2)4 yields that

∂t(Tij − kηIij) + ∂l ((Tij − kηIij)ul) − (∂luiTlj + Til∂luj)

= εΔ(Tij − kηIij) − A0

2λ
(Tij − kηIij). (1.4)

Further, denoting τij = Tij − kηIij , and conducting direct calculations, we can get

∂luiTlj = ∂luiτlj + k∂luiηIlj = ∂luiτlj + k∂juiη, (1.5)

and

Til∂luj = τil∂luj + kηIil∂luj = τil∂luj + kη∂iuj . (1.6)

Putting (1.5) and (1.6) into (1.4) yields

∂tτij + ∂l(τijul) − (∂luiτlj + τil∂luj) − kη(∂jui + ∂iuj) = εΔτij − A0

2λ
τij ,

which is

∂tτ + div(u τ) − (∇uτ + τ∇Tu) − kη(∇u+ ∇Tu) = εΔτ − A0

2λ
τ. (1.7)

Next, the term of the right-hand side in (1.2)2 can be transformed into the following
form

∂j

(
Tij − (kLη + zη2)Iij

)
= ∂j

(
τij + kηIij − (kLη + zη2)Iij

)
= ∂jτij − ∂i

(
k(L− 1)η + zη2

)
,

which together with (1.2)2 implies that

(ρu)t + div(ρu⊗ u) + ∇ (P (ρ) + k(L− 1)η + zη2
)

= divτ. (1.8)
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Finally, combining (1.2)1, (1.8), (1.2)3 and (1.7) yields⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) + ∇ (P (ρ) + k(L− 1)η + zη2

)
= divτ,

ηt + div(ηu) = εΔη,

τt + div(uτ) − (∇uτ + τ∇Tu) − kη(∇u+ ∇Tu) = εΔτ − A0

2λ
τ,

(1.9)

which is equipped with the following initial condition:

(ρ, u, η, τ)(x, t)|t=0 = (ρ0, u0, η0, τ0)(x) → (ρ̃, 0, η̃, 0), as |x| → ∞. (1.10)

Note that (1.9) is equivalent to the system (1.2) with the regularity of the solution in
the present paper and that it seems more convenient to consider (1.9) in the proof.
Therefore we will state the main results afterwards for the reformulated system
(1.9) only.

1.2. Main results

Our main results are stated as follows.

Theorem 1.1. Let L � 1, z � 0. Assume that (ρ0 − ρ̃, u0, η0 − η̃, τ0) ∈ H3(R3) for
constants ρ̃, η̃ > 0. Then there exists a positive constant θ sufficiently small such
that if

‖(ρ0 − ρ̃, u0, η0 − η̃, τ0)‖H3(R3) � θ, (1.11)

the initial-value problem (1.9)–(1.10) admits a unique global strong solution
(ρ, u, η, τ) which satisfies

(ρ− ρ̃, u) ∈ C([0,∞);H3(R3)), (ρt, ut) ∈ C([0,∞);H2(R3)), ρ > 0, η > 0,

(η − η̃, τ) ∈ C([0,∞);H3(R3)) ∩ L2(0,∞;H4(R3)),

(ηt, τt) ∈ C([0,∞);H1(R3)) ∩ L2(0,∞;H2(R3)).

Theorem 1.2. In addition to the conditions of theorem 1.1, we assume that
(ρ0 − ρ̃, u0, η0 − η̃,divτ0) ∈ L1(R3). Then there exists a positive constant C inde-
pendent of t such that the solution (ρ, u, η, τ) satisfies the following time-decay
estimates:

‖∇mτ(t)‖L2(R3) � C(1 + t)−
5
4−m

2 , m = 0, 1, 2,

‖∇m(ρ− ρ̃, u, η − η̃)(t)‖L2(R3) � C(1 + t)−
3
4−m

2 , m = 0, 1, 2, 3,

‖∇3τ(t)‖L2(R3) � C(1 + t)−
9
4 ,

for any t � 0.

Remark 1.3. From (1.9)4 and the conclusion in theorem 1.2, one can observe that
the decay rate of ‖∇lτ‖L2(R3) is the same as that of ‖∇l+1u‖L2(R3) where the
maximum of l is 2 according to the regularity of the solutions. Therefore the decay
rate of ‖∇3τ(t)‖L2(R3) is not expected to be sharper.
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We would like to introduce the main novelty of this work. Compared with [47]
where the global well posedness of strong solution for (1.1) with positive shear
viscosity μ is established subject to some smallness assumptions, the vanishing of
viscosity in the present paper will bring new challenges such as the loss of regular-
ity for the velocity. We introduce a good unknown τij = Tij − kηIij for i, j = 1, 2, 3
inspired by [38, 39] and derive some new dissipative estimates of velocity from the
equation of τij such that the smallness of the initial data does not depend on the
viscosity. This demonstrates that the coupling yields new dissipative effect of the
velocity satisfying the Euler equation only. Besides, the construction of the basic
energy estimates in H3-norm relies strongly on the dissipative estimate of ∇4u
due to the second term of the continuity equation and the pressure term of the
momentum equation. It seems impossible to get the dissipative estimate of ∇4u in
the non-viscous case. To handle the issue, inspired by [52], we use the variation
of the continuity equation divu = −ρt+βu·∇ρ

r1+βρ and integration by parts to transfer
the derivative to other term. Concerning the optimal time-decay estimates, the loss
of dissipation of velocity due to the vanishing of viscosity is the main difficulty
compared with the viscous case in [47]. Delicate energy method and low-high-
frequency decomposition is the main tool in the proof. In this context, we observe
that the reformulated equation of τij can produce the dissipation mechanism of
velocity such that the decay estimates do not rely on the viscosity, which is the key
to obtain the optimal time-decay estimates of the solution except for its highest
order. It is unusual that the optimal decay rate for the highest-order derivatives of
the solution to some hyperbolic-parabolic systems even as (1.1) with viscosity (see
[47]) could be obtained. To get the dissipative estimate for the hyperbolic quan-
tities ∇kρ and ∇kτ where k = 3 is the maximal one, the usual energy method is
to construct the interaction energy functional between the second-order and the
third-order. Therefore it implies the decay rate for the third-order will be the same
as that for the second-order. Here we use the low-high-frequency decomposition
and employ the high-frequency part of velocity at 2th order as a test function of
the equation of ∇2divτij . The high-frequency quantity will make the damping term
in the equation of ∇2divτij keep the desired order, see § 4.4 for more details. This
is different from our previous work [48] for compressible Navier–Stokes equations
with reaction diffusion where a new observation for cancellation of a low-medium-
frequency quantity was adopted to get the optimal time-decay estimate at the
highest order, see also [49] for a two-phase fluid model. In addition, to get the
decay estimates of the low-frequency part to the linearized system (A.1), we apply
the Hodge decomposition to u and τ , and transfer the linearized system into two
systems (A.2) and (A.3). We introduce some corrected modes different from [47]
to overcome the difficulties caused by the lack of dissipation of u. With the help
of these estimates, the decay properties for the low-frequency part of the solutions
to the nonlinear system are obtained by using the Duhamel principle. Combining
the delicate energy estimates with the decay estimates of low-frequency part, we
obtain the same decay rates of the solution to (1.9) up to the second-order as those
for viscous case, see [47]. Moreover the decay rate for the third-order in the present
paper is sharper.
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The rest of the paper is organized as follows. In § 2, we linearize the reformulated
system which will make the following analysis more convenient. In § 3, the proof
of the global well posedness of the solutions will be given by using delicate energy
method combined with the continuity technique. In § 4, we establish some optimal
time-decay estimates and finish the proof of theorem 1.2.

2. Linearization of the reformulated system

To simplify the proof of the main theorems, we linearize the reformulated problem
(1.9)–(1.10) as follows. Taking change of variables by (ρ, u, η, τ) → (ρ′ + ρ̃, βu′, η′ +
η̃, τ) with β > 0 to be determined, the initial-value problem (1.9)–(1.10) is written
as below ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ′t + βρ̃ divu′ = S′
1,

βu′t +
P ′(ρ̃)
ρ̃

∇ρ′ +
k(L− 1) + 2zη̃

ρ̃
∇η′ − divτ

ρ̃
= S′

2,

η′t + βη̃ divu′ − εΔη′ = S′
3,

τt +
A0

2λ
τ − εΔτ − βkη̃(∇u′ + ∇Tu′) = S′

4,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
1 = −βdiv(ρ′u′),

S′
2 = −β2u′ · ∇u′ −

(
P ′(ρ′ + ρ̃)
ρ′ + ρ̃

− P ′(ρ̃)
ρ̃

)
∇ρ′

−
(
k(L− 1) + 2z(η′ + η̃)

ρ′ + ρ̃
− k(L− 1) + 2zη̃

ρ̃

)
∇η′

+
(

1
ρ′ + ρ̃

− 1
ρ̃

)
divτ,

S′
3 = −βdiv(η′u′),
S′

4 = −βdiv(u′τ) + β(∇u′τ + τ∇Tu′) + βkη′(∇u′ + ∇Tu′),

with initial data

(ρ′, u′, η′, τ)(x, 0) = (ρ′0, u
′
0, η

′
0, τ0)(x) → (0, 0, 0, 0), as |x| → ∞.

Denote the scaled parameters and constants by

r1 =
√
P ′(ρ̃), r2 =

k(L− 1) + 2zη̃√
P ′(ρ̃)

, r3 =
1√
P ′(ρ̃)

, β =

√
P ′(ρ̃)
ρ̃

and define the nonlinear functions of ρ′ by

h(ρ′) =
(
P ′(ρ̃)
ρ̃

− P ′(ρ′ + ρ̃)
ρ′ + ρ̃

)
1
β
, g(ρ′) =

(
1
ρ̃
− 1
ρ′ + ρ̃

)
1
β
.
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Finally, (we remove all ′ in the following system for brevity) we rewrite the system
(1.9)–(1.10) with linearized part on the left as⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρt + r1divu = S1,
ut + r1∇ρ+ r2∇η − r3divτ = S2,
ηt + βη̃ divu− εΔη = S3,

τt +
A0

2λ
τ − εΔτ − βkη̃(∇u+ ∇Tu) = S4,

(2.1)

and⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1 = −βdiv(ρu),

S2 = −βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ] − 2z

β(ρ+ ρ̃)
η∇η,

S3 = −βdiv(ηu),
S4 = −βdiv(uτ) + β(∇uτ + τ∇Tu) + βkη(∇u+ ∇Tu),

(2.2)
with initial data

(ρ, u, η, τ)(x, t)|t=0 = (ρ0, u0, η0, τ0)(x) → (0, 0, 0, 0), as |x| → ∞. (2.3)

It is worth noticing that the proof of theorems 1.1 and 1.2 can be translated into
that for the solution to (2.1)–(2.3).

3. Proof of theorem 1.1

In this section, we will prove theorem 1.1 via taking vanishing viscosity limit of
(1.1). In fact, the global existence and uniqueness of solutions to the corresponding
viscous case has been achieved by the second author and the third author in [47]
where the smallness of initial data depends on the viscosity coefficients. Therefore
the aim in this section is to derive some a priori estimates globally in time subject
to some smallness of data independent of the viscosity coefficients. We assume that
μ, ν � 1 in the section for simplicity.

After conducting a reformulation similar to (2.1), (1.1) can be converted to the
following form.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρt + r1divu = S1,

ut + r1∇ρ+ r2∇η − r3divτ − μ1Δu− μ2∇divu = S̃2,
ηt + βη̃ divu− εΔη = S3,

τt +
A0

2λ
τ − εΔτ − βkη̃(∇u+ ∇Tu) = S4,

(3.1)

where

μ1 =
μ

ρ̃
, μ2 =

μ+ ν

ρ̃
,

and

S̃2 = −βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

− 2z

β(ρ+ ρ̃)
η∇η − μβg(ρ)Δu− (μ+ ν)βg(ρ)∇divu, (3.2)
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We begin with a local existence and uniqueness result of the initial-value problem
(3.1) and (2.3).

Proposition 3.1 Local existence and uniqueness. Assume that

(ρ0, u0, η0, τ0) ∈ H3(R3), inf
x∈R3

{ρ0(x) + ρ̃, η0(x) + η̃} > 0.

Then, there exists a constant T0 > 0 depending on μ, ν and ‖(ρ0, u0, η0, τ0)‖H3(R3),
such that the initial-value problem (3.1) and (2.3) has a unique strong solution
(ρμ,ν , uμ,ν , ημ,ν , τμ,ν) over R3 × [0, T0], which satisfies

ρμ,ν ∈ C([0, T0];H3(R3)), ρμ,ν
t ∈ C([0, T0];H2(R3)), inf

QT0

(ρμ,ν + ρ̃, ημ,ν + η̃) > 0,

(uμ,ν , ημ,ν , τμ,ν) ∈ C([0, T0];H3(R3)) ∩ L2(0, T0;H4(R3)),

(uμ,ν
t , ημ,ν

t , τμ,ν
t ) ∈ C([0, T0];H1(R3)) ∩ L2(0, T0;H2(R3)),

where QT0 = R3 × (0, T0).

Proof. The proof can be achieved by using some standard iteration arguments,
please refer for instance to [19, 30, 40]. We omit the details for brevity. �

Proposition 3.2. (A priori estimate) Under the assumptions of theorem 1.1, there
exists a positive constant δ independent of μ and ν and at least bigger than 3θ

2
[determined by (3.55) for some θ given by (1.11)], such that if the strong solution
of the initial-value problem (3.1) and (2.3) satisfies

‖(ρμ,ν , uμ,ν , ημ,ν , τμ,ν)(t)‖H3 � δ, (3.3)

for any t ∈ [0, T ], where 0 < T ∗ � +∞ is the maximum existence time for the
solution and T ∈ (0, T ∗), then the following estimates

‖(ρμ,ν , uμ,ν , ημ,ν , τμ,ν)(t)‖2
H3 +

∫ t

0

(‖∇(ρμ,ν , uμ,ν)‖2
H2 + ‖∇(ημ,ν , τμ,ν)‖2

H3

)
ds

+
∫ t

0

(
μ1‖∇uμ,ν‖2

H3 + μ2‖divuμ,ν‖2
H3

)
ds � C‖(ρ0, u0, η0, τ0)‖2

H3 � 2δ
3
, (3.4)

holds for any t ∈ [0, T ].

Remark 3.3. A similar result has been obtained by the second author and the
third author in [47] (proposition 3.2) when δ depends on μ and ν. Proposition 3.2
removes the dependence between δ and the viscosity coefficients, which gives the
possibilities to take the vanishing viscosity limit.

Based on the propositions 3.1 and 3.2, the global existence of solutions to the
initial-value problem (3.1) and (2.3) will be established with the help of the stan-
dard continuity arguments. Then, with the aid of the uniform estimates (3.4)
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and some compactness arguments, we conclude that a subsequence of solutions
(ρμ,ν , uμ,ν , ημ,ν , τμ,ν) converges to a limit (ρ, u, η, τ) (in some strong sense) which is
a strong solution to the original problem (2.1)–(2.3). Therefore to prove theorem 1.1,
it suffices to prove proposition 3.2 which will be achieved step by step in the
following lemmas.

Throughout the rest of the paper, we denote Lp := Lp(R3) and
∫
f dx :=

∫
R3 f dx,

and let C � 1 represent a generic positive constant that depends on some known
constants but is independent of θ, δ, μ, ν, t and T ∗.

Although the solutions usually depend on μ and ν, one can find that the following
results and procedures are applicable to the case μ = ν = 0. For brevity, we omit
the superscripts throughout lemmas 3.4–3.6.

Lemma 3.4. Under the same assumptions of theorem 1.1 and (3.3), the following
estimate

1
2

d
dt

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3 −

∫
h(ρ) + βρ

r1 + βρ
|∇3ρ|2 dx

)

+
μ1

2
‖∇u‖2

H3 +
μ2

2
‖divu‖2

H3 +
r2ε

2βη̃
‖∇η‖2

H3 +
A0r3

4λβkη̃
‖τ‖2

H3 +
r3ε

4βkη̃
‖∇τ‖2

H3

� Cδ(‖∇ρ‖2
H2 + ‖∇u‖2

H2) (3.5)

holds for any t ∈ [0, T ].

Proof. Applying derivatives ∇�(� = 0, 1, 2, 3) to the system (3.1), taking inner prod-
uct with ∇�ρ, ∇�u, r2

βη̃∇�η and r3
2βkη̃∇�τ respectively, and then adding the results,

we can obtain

1
2

d
dt

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3

)

+ μ1‖∇u‖2
H3 + μ2‖divu‖2

H3 +
r2ε

βη̃
‖∇η‖2

H3 +
A0

2λ
r3

2βkη̃
‖τ‖2

H3 +
r3ε

2βkη̃
‖∇τ‖2

H3

=
3∑

�=0

∫
(∇�S1 : ∇�ρ+ ∇�S̃2 : ∇�u+

r2
βη̃

∇�S3 : ∇�η +
r3

2βkη̃
∇�S4 : ∇�τ) dx.

(3.6)

Before we estimate each term on the right-hand side of (3.6), it is worth noticing
that the disappearance of the viscous terms in the momentum equation (3.1)2 leads
to partial loss of regularity of velocity u. Hence, to derive some uniform estimates
independent of μ and ν, those terms containing the fourth derivative of density
ρ or velocity u can not be directly controlled. In the following proof, we will list
them separately and deal with them in detail.
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Firstly, for the first term on the right-hand side of (3.6), by noticing the definition
of S1, we have

3∑
�=0

∫
∇�S1 : ∇�ρdx = −β

3∑
�=0

∫
∇�div(ρu) : ∇�ρdx

= −β
∫

div(ρu)ρdx− β

∫
∇div(ρu) · ∇ρdx− β

3∑
�=2

∫
∇�div(ρu) : ∇�ρdx

:=
3∑

i=1

I1i. (3.7)

The reason why we discuss � separately here is to make the proof more concise when
proving decay estimates later in this article. We first deal with the lower derivative
terms, I11 and I12, using Hölder inequality, Sobolev inequality, Cauchy inequality
and lemma A.5, it holds that

|I11| � C (‖∇ρ‖L2‖u‖L3 + ‖ρ‖L3‖∇u‖L2) ‖ρ‖L6 � Cδ(‖∇ρ‖2
L2 + ‖∇u‖2

L2), (3.8)

and

|I12| � C
(‖∇2ρ‖L2‖u‖L3 + ‖ρ‖L3‖∇2u‖L2

) ‖∇ρ‖L6 � Cδ(‖∇2ρ‖2
L2 + ‖∇2u‖2

L2).
(3.9)

Then, for I13, which can be divided into the following five terms.

I13 = −β
∫

∇2div(ρu) : ∇2ρdx− β

∫
∇3div(ρu) : ∇3ρdx

= −β
∫

∇2div(ρu) : ∇2ρdx− β

∫
∇3(u · ∇ρ) : ∇3ρdx

− β

∫
∇3(ρdivu) : ∇3ρdx

= −β
∫

∇2div(ρu) : ∇2ρdx− β

∫
u · ∇∇3ρ∇3ρdx

− β
3∑

�=1

∫
C�

3∇�u · ∇∇3−�ρ∇3ρdx

− β
2∑

�=0

∫
C�

3∇�divu∇3−�ρ : ∇3ρdx− β

∫
ρ∇3divu : ∇3ρdx

:=
5∑

i=1

I13i
. (3.10)

Next, we turn to deal with the terms. In the same way, we first deal with the lower
derivative terms, I131 , I133 and I134 , using Hölder inequality, Sobolev inequality,
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Cauchy inequality and lemma A.5, it holds that

|I131 + I133 + I134 | � C
(‖∇3ρ‖L2‖u‖L3 + ‖ρ‖L3‖∇3u‖L2

) ‖∇2ρ‖L6

+ C
(
‖∇u‖L∞‖∇3ρ‖L2 + ‖∇2u‖L3‖∇2ρ‖L6

+ ‖∇3u‖L2‖∇ρ‖L∞
)
‖∇3ρ‖L2

� Cδ(‖∇3ρ‖2
L2 + ‖∇3u‖2

L2). (3.11)

Then, for the terms containing the fourth derivative, I132 and I135 . On one hand,
for I132 , by virtue of integration by parts, Hölder inequality and Sobolev inequality,
we can directly deduce

I132 =
β

2

∫
divu |∇3ρ|2 dx � C‖∇u‖L∞‖∇3ρ‖2

L2 � Cδ‖∇3ρ‖2
L2 . (3.12)

On the other hand, for I135 , by using (3.1)1: divu = −ρt+βu·∇ρ
r1+βρ , we can get

I135 = β

∫
ρ∇3

(
ρt + βu · ∇ρ
r1 + βρ

)
: ∇3ρdx

= β

2∑
�=0

∫
C�

3ρ∇�(ρt + βu · ∇ρ)∇3−�

(
1

r1 + βρ

)
: ∇3ρdx

+ β

∫
ρ

r1 + βρ
∇3ρt : ∇3ρdx

+ β2

∫
ρ

r1 + βρ
∇3(u · ∇ρ) : ∇3ρdx

= β

2∑
�=0

∫
C�

3ρ∇�(ρt + βu · ∇ρ)∇3−�

(
1

r1 + βρ

)
: ∇3ρdx

+ β

∫
ρ

r1 + βρ
∇3ρt : ∇3ρdx

+ β2
3∑

�=1

∫
ρ

r1 + βρ
C�

3∇�u · ∇∇3−�ρ : ∇3ρdx

+ β2

∫
ρ

r1 + βρ
u · ∇∇3ρ : ∇3ρdx. (3.13)

Further, the second term and the last term on the right-hand side of (3.13) equal

β

2
d
dt

∫
ρ

r1 + βρ
|∇3ρ|2 dx− β

2

∫ (
ρ

r1 + βρ

)
t

|∇3ρ|2 dx

− β2

2

∫
div
(

ρu

r1 + βρ

)
|∇3ρ|2 dx, (3.14)

where we use integration by parts.
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(3.13), combined with (3.14), Hölder inequality, Sobolev inequality and Cauchy
inequality, yields

I135 � Cδ(‖∇2ρ‖2
H1 + ‖∇3u‖2

L2) +
β

2
d
dt

∫
ρ

r1 + βρ
|∇3ρ|2 dx. (3.15)

Putting (3.11), (3.12) and (3.15) into (3.10) yields

I13 � Cδ(‖∇2ρ‖2
H1 + ‖∇3u‖2

L2) +
β

2
d
dt

∫
ρ

r1 + βρ
|∇3ρ|2 dx. (3.16)

Now, substituting (3.8), (3.9) and (3.16) into (3.7), it holds that

3∑
�=0

∫
∇�S1 : ∇�ρdx � Cδ(‖∇ρ‖2

H2 + ‖∇u‖2
H2) +

β

2
d

dt

∫
ρ

r1 + βρ
|∇3ρ|2 dx.

(3.17)
Secondly, the second term on the right-hand side of (3.6) equals

3∑
�=0

∫
∇�S̃2 : ∇�u dx

=
∫
S̃2 · u dx+

∫
∇S̃2 : ∇u dx+

3∑
�=2

∫
∇�S̃2 : ∇�u dx

:=
3∑

i=1

I2i. (3.18)

From (3.2), we first estimate I21 and I22. Using Hölder inequality, Sobolev inequality
and Cauchy inequality, it holds that

I21 =
∫ {

− βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

− 2z

β(ρ+ ρ̃)
η∇η

}
· u dx−

∫
(μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) · u dx

� C

(
‖u‖L3‖∇u‖L2 + ‖h(ρ)‖L3‖∇ρ‖L2 + ‖g(ρ)‖L3‖∇(η, τ)‖L2

+
∥∥∥∥ η

ρ+ ρ̃

∥∥∥∥
L3

‖∇η‖L2

)
‖u‖L6 + C‖g(ρ)‖L∞

(
μ‖∇u‖2

L2 + (μ+ ν)‖divu‖2
L2

)
+ C‖∇g(ρ)‖L3 (μ‖∇u‖L2 + (μ+ ν)‖divu‖L2) ‖u‖L6

� Cδ(‖∇ρ‖2
L2 + ‖∇u‖2

L2 + ‖∇η‖2
L2 + ‖∇τ‖2

L2), (3.19)
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and

I22 =
∫ {

βu · ∇u− h(ρ)∇ρ− g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

+
2z

β(ρ+ ρ̃)
η∇η

}
· Δu dx+

∫
(μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) · Δu dx

� C

(
‖u‖L3‖∇u‖L6 + ‖h(ρ)‖L3‖∇ρ‖L6 + ‖g(ρ)‖L3‖∇(η, τ)‖L6

+
∥∥∥∥ η

ρ+ ρ̃
‖L3

∥∥∥∥∇η‖L6

)
‖∇2u‖L2

+ C‖g(ρ)‖L∞
(
μ‖∇2u‖L2 + (μ+ ν)‖∇divu‖L2

) ‖∇2u‖L2

� Cδ(‖∇2ρ‖2
L2 + ‖∇2u‖2

L2 + ‖∇2η‖2
L2 + ‖∇2τ‖2

L2). (3.20)

I23 can be divided into the following five terms:

I23 =
∫

∇2

{
− βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

− 2z

β(ρ+ ρ̃)
η∇η

}
: ∇2u dx

−
3∑

�=2

∫
∇� (μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) : ∇�u dx

+
∫

∇3

{
g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ] − 2z

β(ρ+ ρ̃)
η∇η

}
: ∇3u dx

+
∫

∇3(−βu · ∇u) : ∇3u dx+
∫

∇3 (h(ρ)∇ρ) : ∇3u dx

:=
5∑

i=1

I23i
. (3.21)

Then, we turn to deal with the terms I231–I235 . For the terms I231–I233 , using
Hölder inequality, Sobolev inequality, Cauchy inequality and lemma A.5, we have

|I231 | � C[‖∇2u‖L6‖∇u‖L3 + ‖u‖L∞‖∇3u‖L2 + ‖∇2h(ρ)‖L6‖∇ρ‖L3

+ ‖h(ρ)‖L∞‖∇3ρ‖L2 ]‖∇2u‖L2

+ C
[‖∇2g(ρ)‖L6‖∇(η, τ)‖L3 + ‖g(ρ)‖L∞‖∇3(η, τ)‖L2

] ‖∇2u‖L2

+ C

[
‖∇2

(
η

ρ+ ρ̃

)
‖L6‖∇η‖L3 + ‖ η

ρ+ ρ̃
‖L∞‖∇3η‖L2

]
‖∇2u‖L2

� Cδ
(‖∇2u‖2

H1 + ‖∇2ρ‖2
H1 + ‖∇3η‖2

L2 + ‖∇3τ‖2
L2

)
, (3.22)
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|I232 | � C

∫ (|∇2g(ρ)||∇2u|2 + |∇g(ρ)||∇3u||∇2u|) dx

+ C

∫
|g(ρ)| (μ|∇2Δu| + (μ+ ν)|∇3divu|) |∇2u|dx

+ C

∫
[|∇3g(ρ)| (μ|Δu| + (μ+ ν)|∇divu|) |∇3u|

+ |∇2g(ρ)| (μ|∇Δu| + (μ+ ν)|∇2divu|) |∇3u|] dx

+
∫
C|∇g(ρ)| (μ|∇2Δu| + (μ+ ν)|∇3divu|) |∇3u|

− βg(ρ)
(
μ∇3Δu+ (μ+ ν)∇4divu

)
: ∇3u dx

� C‖∇g(ρ)‖H2‖∇2u‖2
H1

+ C‖g(ρ)‖H3

(
μ‖∇3u‖H1 + (μ+ ν)‖∇2divu‖H1

) ‖∇3u‖L2

+ C‖g(ρ)‖L∞
(
μ‖∇4u‖2

L2 + (μ+ ν)‖∇3divu‖2
L2

)
� Cδ

(‖∇2u‖2
H1 + μ‖∇4u‖2

L2 + (μ+ ν)‖∇3divu‖2
L2

)
, (3.23)

and

|I233 | � C
[‖∇3g(ρ)‖L2‖∇(η, τ)‖L∞ + ‖g(ρ)‖L∞‖∇4(η, τ)‖L2

] ‖∇3u‖L2

+ C

[
‖∇3

(
η

ρ+ ρ̃

)
‖L2‖∇η‖L∞ + ‖ η

ρ+ ρ̃
‖L∞‖∇4η‖L2

]
‖∇3u‖L2

� Cδ(‖∇2ρ‖2
H1 + ‖∇3u‖2

L2 + ‖∇3η‖2
H1 + ‖∇4τ‖2

L2). (3.24)

For I234 , using integration by parts, we can easily get

I234 =
∫

∇3(−βu · ∇u) : ∇3u dx

= −β
3∑

�=1

∫
C�

3∇�u · ∇∇3−�u : ∇3u dx+
β

2

∫
divu|∇3u|2 dx

� C‖∇u‖L∞‖∇3u‖2
L2 + C‖∇2u‖L3‖∇2u‖L6‖∇3u‖L2

� Cδ‖∇3u‖2
L2 , (3.25)

where we have used Hölder inequality, Sobolev inequality and Cauchy inequality.
Then, we are going to deal with I235 which can be split into the following two terms.

I235 =
∫

∇3 (h(ρ)∇ρ) : ∇3u dx

=
3∑

�=1

∫
C�

3∇�h(ρ)∇∇3−�ρ : ∇3u dx+
∫
h(ρ)∇∇3ρ : ∇3u dx. (3.26)
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For the last term in (3.26), using integration by parts and (3.1)1 again, we have∫
h(ρ)∇∇3ρ : ∇3u dx

= −
∫

∇h(ρ)∇3ρ : ∇3u dx−
∫
h(ρ)∇3ρ : ∇3divu dx

= −
∫

∇h(ρ)∇3ρ : ∇3u dx+
∫
h(ρ)∇3ρ : ∇3

(
ρt + βu · ∇ρ
r1 + βρ

)
dx, (3.27)

where the observation that divu = ρt+βu·∇ρ
r1+βρ is crucial due to the loss of regularity

of velocity, which can be seen for instance in [52].
Further, processing method similar to I135 , the last term on the right-hand side

of (3.27) can be dealt with like∫
h(ρ)∇3

(
ρt + βu · ∇ρ
r1 + βρ

)
: ∇3ρdx

=
2∑

�=0

∫
C�

3h(ρ)∇�(ρt + βu · ∇ρ)∇3−�

(
1

r1 + βρ

)
: ∇3ρdx

+ β
3∑

�=1

∫
h(ρ)

r1 + βρ
C�

3∇�u · ∇∇3−�ρ : ∇3ρdx− β

2

∫
div
(
h(ρ)u
r1 + βρ

)
|∇3ρ|2 dx

+
1
2

d
dt

∫
h(ρ)

r1 + βρ
|∇3ρ|2 dx− 1

2

∫ (
h(ρ)

r1 + βρ

)
t

|∇3ρ|2 dx. (3.28)

Together with (3.26), (3.27) and (3.28), using Hölder inequality, Sobolev inequality
and Cauchy inequality, we get

|I235 | � Cδ(‖∇2ρ‖2
H1 + ‖∇3u‖2

L2) +
1
2

d
dt

∫
h(ρ)

r1 + βρ
|∇3ρ|2 dx. (3.29)

Hence, substituting (3.22), (3.23), (3.24), (3.25) and (3.29) into (3.21), it holds that

I23 � Cδ
(‖∇2u‖2

H1 + ‖∇2ρ‖2
H1 + ‖∇3η‖2

H1 + ‖∇3τ‖2
H1

)
+

1
2

d
dt

∫
h(ρ)

r1 + βρ
|∇3ρ|2 dx

+ Cδ
(
μ‖∇4u‖2

L2 + (μ+ ν)‖∇3divu‖2
L2

)
. (3.30)

Now, putting (3.19), (3.20) and (3.30) into (3.18), we have

3∑
�=0

∫
∇�S̃2 : ∇�u dx � Cδ

(‖∇u‖2
H2 + ‖∇ρ‖2

H2 + ‖∇η‖2
H3 + ‖∇τ‖2

H3

)
+

1
2

d
dt

∫
h(ρ)

r1 + βρ
|∇3ρ|2 dx

+ Cδ
(
μ‖∇4u‖2

L2 + (μ+ ν)‖∇3divu‖2
L2

)
. (3.31)
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Next, for the third term on the right-hand side of (3.6), using (2.2)3, we have

3∑
�=0

∫
∇�S3 : ∇�η dx = −β

3∑
�=0

∫
∇�div(ηu) : ∇�η dx

= −β
∫

div(ηu) η dx− β

∫
∇div(ηu) : ∇η dx− β

3∑
�=2

∫
∇�div(ηu) : ∇�η dx

:=
3∑

i=1

I3i.

For I31 and I32, similar to I11 and I12, it is not hard to get

|I31| � C (‖∇η‖L2‖u‖L3 + ‖η‖L3‖∇u‖L2) ‖η‖L6 � Cδ(‖∇η‖2
L2 + ‖∇u‖2

L2), (3.32)

and

|I32| � C
(‖∇2η‖L2‖u‖L3 + ‖η‖L3‖∇2u‖L2

) ‖∇η‖L6 � Cδ(‖∇2η‖2
L2 + ‖∇2u‖2

L2).
(3.33)

Thanks to Hölder inequality, Sobolev inequality, Cauchy inequality and lemma A.5,
I33 can be controlled like

I33 = β
3∑

�=2

∫
∇�−1div(ηu) : ∇�+1η dx � Cδ(‖∇3η‖2

H1 + ‖∇3u‖2
L2). (3.34)

Note that we have used integration by parts in (3.34) to reduce the order of spatial
derivative of velocity u. Hence, combining with (3.32), (3.33) and (3.34) yields

3∑
�=0

∫
∇�S3 : ∇�η dx � Cδ(‖∇η‖2

H3 + ‖∇u‖2
H2). (3.35)

Finally, for the last term on the right-hand side of (3.6), we have

3∑
�=0

∫
∇�S4 : ∇�τ dx =

∫
S4 : τ dx+

∫
∇S4 : ∇τ dx+

3∑
�=2

∫
∇�S4 : ∇�τ dx

:=
3∑

i=1

I4i.

Thanks to (2.2)4, and using Hölder inequality, Sobolev inequality and Cauchy
inequality again, I41 and I42 can be controlled like

I41 = β

∫ (−div(uτ) + (∇uτ + τ∇Tu) + kη(∇u+ ∇Tu)
)

: τ dx

� C (‖∇u‖L2‖(η, τ)‖L3 + ‖∇τ‖L2‖u‖L3) ‖τ‖L6

� Cδ(‖∇τ‖2
L2 + ‖∇u‖2

L2), (3.36)
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and

I42 = β

∫
∇ (−div(uτ) + (∇uτ + τ∇Tu) + kη(∇u+ ∇Tu)

)
: ∇τ dx

= β

∫ (
div(uτ) − (∇uτ + τ∇Tu) − kη(∇u+ ∇Tu)

)
: Δτ dx

� C (‖∇u‖L6‖(η, τ)‖L3 + ‖∇τ‖L6‖u‖L3) ‖∇2τ‖L2

� Cδ(‖∇2τ‖2
L2 + ‖∇2u‖2

L2). (3.37)

For I43, we will take advantage of the higher integrability of τ to deal with each
term on the right-hand side through integration by parts. In other words, thanks
to (2.2)4 again, I43 can be estimated as

I43 =
3∑

�=2

∫
∇�S4 : ∇�τ dx = −

3∑
�=2

∫
∇�−1S4 : ∇�−1Δτ dx

= β
3∑

�=2

∫
∇�−1

(
div(uτ) − (∇uτ + τ∇Tu) − kη(∇u+ ∇Tu)

)
: ∇�−1Δτ dx

� C
(‖∇2u‖L6‖(η, τ)‖L3 + ‖∇2τ‖L6‖u‖L3 + ‖∇u‖L6‖∇(η, τ)‖L3

) ‖∇3τ‖L2

+ C
(‖∇3u‖L2‖(η, τ)‖L∞ + ‖∇3τ‖L2‖u‖L∞ + ‖∇u‖L6‖∇2(η, τ)‖L3

) ‖∇4τ‖L2

� Cδ(‖∇2u‖2
H1 + ‖∇3τ‖2

H1), (3.38)

where we have used Hölder inequality, Sobolev inequality, Cauchy inequality and
lemma A.5.

Owing to (3.36), (3.37) and (3.38), we get

3∑
�=0

∫
∇�S4 : ∇�τ dx � Cδ(‖∇u‖2

H2 + ‖∇τ‖2
H3). (3.39)

Finally, plugging (3.17), (3.31), (3.35) and (3.39) into (3.6), we then obtain the
following inequality:

1
2

d
dt

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3 −

∫
h(ρ) + βρ

r1 + βρ
|∇3ρ|2 dx

)
+ μ1‖∇u‖2

H3 + μ2‖divu‖2
H3 +

r2ε

βη̃
‖∇η‖2

H3 +
A0

2λ
r3

2βkη̃
‖τ‖2

H3 +
r3ε

2βkη̃
‖∇τ‖2

H3

� Cδ
(‖∇ρ‖2

H2 + ‖∇u‖2
H2 + ‖∇η‖2

H3 + ‖∇τ‖2
H3

+ Cμ‖∇4u‖2
L2 + (μ+ ν)‖∇3divu‖2

L2

)
.

Choosing δ sufficiently small in the above inequality, (3.5) will be established. Thus,
we complete the proof of this lemma. �

In the following lemmas, we obtain some dissipation estimates of velocity u and
density ρ which are independent of the viscosity coefficients.
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Lemma 3.5. Under the same assumptions of theorem 1.1 and (3.3), we then have
the following estimate:

d
dt

2∑
�=0

∫
∇�divτ : ∇�u dx+

βkη̃

2
(‖∇u‖2

H2 + ‖divu‖2
H2)

� C(ε+ δ)‖∇ρ‖2
H2 + C(ε+ δ)‖∇η‖2

H2 + Cε‖∇τ‖2
H3 +

A0

2λ
C‖τ‖2

H2 . (3.40)

Proof. Let � = 0, 1, 2. Applying operator ∇�div to the equation of (3.1)4 and ∇�

to the equation of (3.1)2, multiplying the results by ∇�u and ∇�divτ , respectively,
summing them up and then integrating it over R3, we get the equality:

d
dt

2∑
�=0

∫
∇�divτ : ∇�u dx+ βkη̃(‖∇u‖2

H2 + ‖divu‖2
H2)

=
2∑

�=0

∫
(∇�divS4 − A0

2λ
∇�divτ + ε∇�Δdivτ) : ∇�u dx

+
2∑

�=0

∫
(∇�S̃2 − r1∇�+1ρ− r2∇�+1η + r3∇�divτ + μ1∇�Δu

+ μ2∇�+1divu) : ∇�divτ dx. (3.41)

First, by the definition of S4 and S̃2, integration by parts, Hölder inequality, Sobolev
inequality, Cauchy inequality and lemma A.5, it holds that

2∑
�=0

∫
∇�divS4 : ∇�u dx = −

2∑
�=0

∫
∇�S4 : ∇�+1u dx

= β

2∑
�=0

∫
∇�
(
div(uτ) − (∇uτ + τ∇Tu) − kη(∇u+ ∇Tu)

)
: ∇�+1u dx

� C (‖∇u‖L2‖(η, τ)‖L∞ + ‖∇τ‖L2‖u‖L∞) ‖∇u‖L2

+ C
(‖∇2u‖L2‖(η, τ)‖L∞ + ‖∇2τ‖L2‖u‖L∞ + ‖∇u‖L6‖∇(η, τ)‖L3

) ‖∇2u‖L2

+ C
(‖∇3u‖L2‖(η, τ)‖L∞ + ‖∇3τ‖L2‖u‖L∞ + ‖∇u‖L6‖∇2(η, τ)‖L3

) ‖∇3u‖L2

� Cδ(‖∇u‖2
H2 + ‖∇τ‖2

H2) (3.42)

and

2∑
�=0

∫
∇�S̃2 : ∇�divτ dx =

∫
S̃2 · divτ dx−

∫
S̃2 · Δdivτ dx

+
∫

∇2S̃2 : ∇2divτ dx,
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where the terms on the right-hand side of the above equality can be controlled as∫
S̃2 · divτ dx

=
∫ (

−βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ] − 2z

β(ρ+ ρ̃)
η∇η

)
· divτ dx−

∫
(μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) · divτ dx

� C [‖u‖L∞‖∇u‖L2 + ‖h(ρ)‖L∞‖∇ρ‖L2

+ ‖g(ρ)‖L∞‖∇(η, τ)‖L2 +
∥∥∥∥ η

ρ+ ρ̃

∥∥∥∥
L∞

‖∇η‖L2

]
‖∇τ‖L2

+ C (μ‖∇u‖L2 + (μ+ ν)‖divu‖L2)

× (‖g(ρ)‖L∞‖∇divτ‖L2 + ‖∇g(ρ)‖L3‖divτ‖L6)

� Cδ(‖∇ρ‖2
L2 + ‖∇u‖2

L2 + ‖∇η‖2
L2 + ‖∇τ‖2

L2 + ‖∇2τ‖2
L2), (3.43)

−
∫
S̃2 · Δdivτ dx

=
∫ (

βu · ∇u− h(ρ)∇ρ− g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ] +
2z

β(ρ+ ρ̃)
η∇η

)
× ·Δdivτ dx+

∫
(μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) · Δdivτ dx

� C

[
‖u‖L3‖∇u‖L6 + ‖h(ρ)‖L3‖∇ρ‖L6

+ ‖g(ρ)‖L3‖∇(η, τ)‖L6 +
∥∥∥∥ η

ρ+ ρ̃

∥∥∥∥
L3

‖∇η‖L6

]
‖∇3τ‖L2

+ C‖g(ρ)‖L∞ (μ‖Δu‖L2 + (μ+ ν)‖∇divu‖L2) ‖Δdivτ‖L2

� Cδ(‖∇2ρ‖2
L2 + ‖∇2u‖2

L2 + ‖∇2η‖2
L2 + ‖∇2τ‖2

H1), (3.44)

and∫
∇2S̃2 : ∇2divτ dx

=
∫

∇2

(
− βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

− 2z

β(ρ+ ρ̃)
η∇η

)
: ∇2divτ dx

−
∫

∇2 (μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) · ∇2divτ dx

� C[‖u‖L∞‖∇3u‖L2 + ‖∇2u‖L6‖∇u‖L3 + ‖h(ρ)‖L∞‖∇3ρ‖L2

+ ‖∇2h(ρ)‖L6‖∇ρ‖L3 ]‖∇3τ‖L2
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+ C

[
‖g(ρ)‖L∞‖∇3(η, τ)‖L2 + ‖∇2g(ρ)‖L6‖∇(η, τ)‖L3

+
∥∥∥∥ η

ρ+ ρ̃

∥∥∥∥
L∞

‖∇3η‖L2

]
‖∇3τ‖L2 + C‖∇2

(
η

ρ+ ρ̃

)
‖L6‖∇η‖L3‖∇3τ‖L2

+ C‖g(ρ)‖L∞
(
μ‖∇3u‖L2 + (μ+ ν)‖∇2divu‖L2

) ‖∇4τ‖L2

+ C‖∇g(ρ)‖L3

(
μ‖∇2u‖L6 + (μ+ ν)‖∇divu‖L6

) ‖∇4τ‖L2

� Cδ(‖∇2ρ‖2
H1 + ‖∇3u‖2

L2 + ‖∇3η‖2
L2 + ‖∇3τ‖2

H1). (3.45)

For the remaining two terms on the second line of (3.41), by using integration by
parts, Höder inequality and Cauchy inequality, it is straightforward to show that

2∑
�=0

∫ (
−A0

2λ
∇�divτ + ε∇�Δdivτ

)
: ∇�u dx

=
2∑

�=0

∫ (
A0

2λ
∇�τ − ε∇�Δτ

)
: ∇�+1u dx

� C‖∇u‖H2

(
‖∇2τ‖H2 +

A0

2λ
‖τ‖H2

)
� βkη̃

4
‖∇u‖2

H2 + C

(
‖∇2τ‖2

H2 +
A0

2λ
‖τ‖2

H2

)
. (3.46)

Finally, the remaining terms in (3.41) can be estimated by using integration by
parts, Hölder inequality and Cauchy inequality as follows

2∑
�=0

∫
(−r1∇�+1ρ− r2∇�+1η + r3∇�divτ + μ1∇�Δu+ μ2∇�+1divu) : ∇�divτ dx

� C(‖∇ρ‖H2 + ‖∇η‖H2 + ‖∇τ‖H2)‖∇τ‖H2 + εμ1‖∇u‖2
H2

+ εμ2‖divu‖2
H2 + Cε‖∇divτ‖2

H2

� Cε‖∇ρ‖2
H2 + Cε‖∇η‖2

H2 + Cε‖∇u‖2
H2 + Cε‖divu‖2

H2 + Cε‖∇τ‖2
H3 . (3.47)

Plugging (3.42)–(3.47) into (3.41), then choosing δ sufficiently small yields

d
dt

2∑
�=0

∫
∇�divτ : ∇�u dx+

βkη̃

2
(‖∇u‖2

H2 + ‖divu‖2
H2)

� C(ε+ δ)‖∇ρ‖2
H2 + C(ε+ δ)‖∇η‖2

H2 + Cε‖∇τ‖2
H3 +

A0

2λ
C‖τ‖2

H2 ,

which is (3.40). Thus, the proof of lemma 3.5 is complete. �
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Lemma 3.6. Under the same assumptions of theorem 1.1 and (3.3), we then have
the following estimate:

d
dt

2∑
�=0

∫
∇�u : ∇�+1ρdx+

r1
2
‖∇ρ‖2

H2

� C(‖∇u‖2
H2 + ‖∇η‖2

H2 + ‖∇τ‖2
H2 + μ1‖∇4u‖2

L2 + μ2‖∇3divu‖2
L2). (3.48)

Proof. Let � = 0, 1, 2. Applying operator ∇� to the equation of (3.1)2 and (3.1)1,
multiplying the results by ∇�+1ρ and −∇�divu respectively, then summing them
up and integrating it over R3, we get the equality:

d
dt

2∑
�=0

∫
∇�u : ∇�+1ρdx+ r1‖∇ρ‖2

H2

=
2∑

�=0

∫
(∇�S̃2 − r2∇�+1η + r3∇�divτ + μ1∇�Δu+ μ2∇�+1divu) : ∇�+1ρdx

+
2∑

�=0

∫
(−∇�S1 + r1∇�divu) : ∇�divu dx. (3.49)

Likewise for (3.43)–(3.45), from (3.2), Höder inequality, Sobolev inequality, Cauchy
inequality and lemma A.5, the first line on the right-hand side of (3.49) can be
controlled like

2∑
�=0

∫
∇�S̃2 : ∇�+1ρdx

=
2∑

�=0

∫
∇�

(
− βu · ∇u+ h(ρ)∇ρ+ g(ρ) [(k(L− 1) + 2zη̃)∇η − divτ ]

− 2z

β(ρ+ ρ̃)
η∇η

)
: ∇�+1ρdx

−
2∑

�=0

∫
∇� (μβg(ρ)Δu+ (μ+ ν)βg(ρ)∇divu) : ∇�+1ρdx

� Cδ(‖∇u‖2
H2 + ‖∇ρ‖2

H2 + ‖∇η‖2
H2 + ‖∇τ‖2

H2

+ μ‖∇4u‖2
L2 + (μ+ ν)‖∇3divu‖2

L2), (3.50)

and
2∑

�=0

∫
(−r2∇�+1η + r3∇�divτ + μ1∇�Δu+ μ2∇�+1divu) : ∇�+1ρdx

� C
(‖∇η‖H2 + ‖∇τ‖H2 + μ1‖∇2u‖H2 + μ2‖∇divu‖H2

) ‖∇ρ‖H2

� r1
4
‖∇ρ‖2

H2 + C
(‖∇η‖2

H2 + ‖∇τ‖2
H2 + μ1‖∇2u‖2

H2 + μ2‖∇divu‖2
H2

)
. (3.51)
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Similarly, for the last line in (3.49), recalling the definition of S1, using Höder
inequality, Sobolev inequality, Cauchy inequality and lemma A.5 again, we have

2∑
�=0

∫
(−∇�S1 + r1∇�divu) : ∇�divu dx

=
2∑

�=0

∫
(β∇�div(ρu) + r1∇�divu) : ∇�divu dx

� C(‖∇u‖H2‖ρ‖L∞ + ‖∇ρ‖H2‖u‖L∞)‖∇u‖H2 + C‖∇u‖2
H2

� Cδ‖∇ρ‖2
H2 + C‖∇u‖2

H2 . (3.52)

Now, plugging (3.50)–(3.52) into (3.49), then choosing δ sufficiently small yields

d
dt

2∑
�=0

∫
∇�u : ∇�+1ρdx+

r1
2
‖∇ρ‖2

H2

� C(‖∇u‖2
H2 + ‖∇η‖2

H2 + ‖∇τ‖2
H2 + μ1‖∇4u‖2

L2 + μ2‖∇3divu‖2
L2),

which is (3.48). Thus, we finish the proof of lemma 3.6. �

In what follows, based on lemmas 3.4–3.6, we are ready to prove proposition 3.2.

Proof of proposition 3.2. Combined with (3.5), ε2 (3.40) and ε1 (3.48), it holds that

1
2

d
dt

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3

)

+
d

dt

∫ (
ε1

2∑
�=0

∇�u : ∇�+1ρ+ ε2

2∑
�=0

∇�divτ : ∇�u− 1
2
h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx

+
μ1

2
‖∇u‖2

H3 +
μ2

2
‖divu‖2

H3 + ε1
r1
2
‖∇ρ‖2

H2

+ ε2
βkη̃

2
‖∇u‖2

H2 +
r2ε

2βη̃
‖∇η‖2

H3 +
A0r3

4λβkη̃
‖τ‖2

H3 +
r3ε

4βkη̃
‖∇τ‖2

H3

� C(δ + ε2ε)‖∇ρ‖2
H2 + C(δ + ε1)‖∇u‖2

H2 + C(ε2ε+ ε1 + δ)‖∇η‖2
H2

+ Cε(ε2 + ε1)‖∇τ‖2
H3 + ε2

A0

2λ
C‖τ‖2

H2 + μ1ε1C‖∇4u‖2
L2 + μ2ε1C‖∇3divu‖2

L2 .

Firstly, choosing a fixed positive constant ε � βkη̃r1
64C2 , and then taking

ε1 � min
{
ε2βkη̃

8C
,

r2ε

16Cβη̃
,

r3ε

16Cεβkη̃
,

1
4C

}
and

ε2 � min
{
ε1r1
8Cε

,
r2ε

16Cεβη̃
,

r3ε

16Cεβkη̃
,

r3
4Cβkη̃

}
,
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and finally choosing δ sufficiently small, we obtain

1
2

d
dt

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3

)

+
d
dt

∫ (
ε1

2∑
�=0

∇�u : ∇�+1ρ+ ε2

2∑
�=0

∇�divτ : ∇�u− 1
2
h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx

+
μ1

4
‖∇u‖2

H3 +
μ2

4
‖divu‖2

H3 + ε1
r1
4
‖∇ρ‖2

H2 + ε2
βkη̃

4
‖∇u‖2

H2

+
r2ε

4βη̃
‖∇η‖2

H3 +
A0r3

8λβkη̃
‖τ‖2

H3 +
r3ε

8βkη̃
‖∇τ‖2

H3 � 0. (3.53)

Next, integrating (3.53) over (0, t), we get

J (t) +
∫ t

0

(
ε1
r1
4
‖∇ρ‖2

H2 + ε2
βkη̃

4
‖∇u‖2

H2 +
r2ε

4βη̃
‖∇η‖2

H3

+
A0r3

8λβkη̃
‖τ‖2

H3 +
r3ε

8βkη̃
‖∇τ‖2

H3

)
ds

+
∫ t

0

(μ1

4
‖∇u‖2

H3 +
μ2

4
‖divu‖2

H3

)
ds � J (0), (3.54)

where

J (t) =
1
2

(
‖ρ‖2

H3 + ‖u‖2
H3 +

r2
βη̃

‖η‖2
H3 +

r3
2βkη̃

‖τ‖2
H3

)

+
∫ (

ε1

2∑
�=0

∇�u : ∇�+1ρ+ ε2

2∑
�=0

∇�divτ : ∇�u− 1
2
h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx.

Since (3.3) and the smallness of δ, ε1 and ε2, it is easy to check that J (t) is
equivalent to

‖ρ‖2
H3 + ‖u‖2

H3 + ‖η‖2
H3 + ‖τ‖2

H3 .

Moreover, by the virtue of (1.11) and (3.54), there exists a constant C1 independent
of μ, ν, θ, δ, ε, ε1, ε2, t and T ∗, such that

‖(ρ, u, η, τ)(t)‖H3 � C1θ.

Letting

C1θ � 2
3
δ, (3.55)

and then we can get (3.4) and complete the proof of proposition 3.2.
Due to the priori estimate stated in proposition 3.2 and the standard continuity

arguments, the following estimate

‖(ρ, u, η, τ)(t)‖H3 � δ, ∀ t ∈ [0, T ∗), (3.56)

holds. Next, we only need to show T ∗ = ∞. In fact, owing to proposition 3.1 and
the time-uniform estimates stated in (3.56), it concludes that T ∗ = ∞. Thus, we
get the global existence of solutions to the initial-value problem (3.1) and (2.3).
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Thanks to (3.4), we deduce that (ρμ,ν , uμ,ν , ημ,ν , τμ,ν), (ρμ,ν
t , uμ,ν

t ) and
(ημ,ν

t , τμ,ν
t ) are uniformly bounded in L∞([0,∞);H3), L∞([0,∞);H2) and

L∞([0,∞);H1), respectively. Moreover, (ημ,ν , τμ,ν) is uniformly bounded in
L2([0,∞);H4). Hence, there exists a subsequence (ρμ,ν , uμ,ν , ημ,ν , τμ,ν) such that

(ρμ,ν , uμ,ν , ημ,ν , τμ,ν) ∗−→ (ρ, u, η, τ) in L∞([0,∞);H3),

(ημ,ν , τμ,ν) w−→ (η, τ) in L2([0,∞);H4),

(ρμ,ν , uμ,ν , ημ,ν , τμ,ν) → (ρ, u, η, τ) in Cloc([0,∞);H2
loc).

The regularity of the limit is good enough to ensure that (ρ, u, η, τ) is a strong
solution to the original problem (2.1)–(2.3). Therefore the proof for the first part of
theorem 1.1, i.e., global existence, is complete. By the standard energy method, we
can prove that the solution in theorem 1.1 is unique, provided that ‖(ρ, u, η, τ)(t)‖H3

is sufficiently small. Therefore, we finish the proof of theorem 1.1. �

4. Proof of theorem 1.2

In this part, we are going to obtain the decay estimates of (ρ, u, η, τ) to the original
problem (2.1)–(2.3). To do this, the strategy is to combine the energy method with
the spectral analysis of the corresponding linear system. The connection between
the two aspects is the Duhamel’s principle.

Proposition 4.1. Under the assumptions of theorem 1.2, there is a constant C
independent of t such that the solution (ρ, u, η, τ) of initial-value problem (2.1)–(2.3)
satisfies the following estimates:

‖∇mτ(t)‖L2(R3) � C(1 + t)−
5
4−m

2 , m = 0, 1, 2,

‖∇m(ρ, u, η)(t)‖L2(R3) � C(1 + t)−
3
4−m

2 , m = 0, 1, 2, 3,

‖∇3τ(t)‖L2(R3) � C(1 + t)−
9
4 ,

for any t � 0.

Proof. The proof of proposition 4.1 consists of propositions 4.10–4.13. �

4.1. Energy estimates

First of all, we are going to get the optimal time-decay estimate of
‖∇(ρ, u, η)(t)‖L2 .

Lemma 4.2. Under the same assumptions of theorem 1.2 and (3.3), there exist two
small positive constants ε3 and ε4 which will be determined in the proof of the lemma
and lemma 4.3, such that

1
2

d
dt

H1(t) + ε3
r1
4
‖∇2ρ‖2

H1 + ε4
βkη̃

4
‖∇2u‖2

H1 +
r2ε

4βη̃
‖∇2η‖2

H2

+
r3A0

8λβkη̃
‖∇τ‖2

H2 � 0, (4.1)

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.2


466 S. Liu, W. Wang and H. Wen

where

H1(t) = ‖∇ρ‖2
H2 + ‖∇u‖2

H2 +
r2
βη̃

‖∇η‖2
H2 +

r3
2βkη̃

‖∇τ‖2
H2

+
∫ (

2ε3
2∑

�=1

∇�u : ∇�+1ρ+ 2ε4
2∑

�=1

∇�divτ : ∇�u− h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx.

Proof. Following arguments similar to the proof of lemma 3.4 for the case � = 1, 2, 3
and μ = ν = 0, one has,

1
2

d
dt

(
‖∇ρ‖2

H2 + ‖∇u‖2
H2 +

r2
βη̃

‖∇η‖2
H2 +

r3
2βkη̃

‖∇τ‖2
H2 −

∫
h(ρ) + βρ

r1 + βρ
|∇3ρ|2 dx

)
+
r2ε

2βη̃
‖∇2η‖2

H2 +
A0r3

4λβkη̃
‖∇τ‖2

H2 +
r3ε

4βkη̃
‖∇2τ‖2

H2

� Cδ(‖∇2ρ‖2
H1 + ‖∇2u‖2

H1). (4.2)

In addition, for the case � = 1, 2 and μ = ν = 0 in (3.40) and (3.48), we can get

d
dt

2∑
�=1

∫
∇�divτ : ∇�u dx+

βkη̃

2
(‖∇2u‖2

H1 + ‖∇divu‖2
H1)

� C(ε+ δ)‖∇2ρ‖2
H1 + C(ε+ δ)‖∇2η‖2

H1 + Cε‖∇2τ‖2
H2 +

A0

2λ
C‖∇τ‖2

H1 , (4.3)

and

d
dt

2∑
�=1

∫
∇�u : ∇�+1ρdx+

r1
2
‖∇2ρ‖2

H1 � C‖∇2u‖2
H1 + C‖∇2η‖2

H1 + C‖∇2τ‖2
H1 .

(4.4)

Hence, ε3(4.4) together with (4.2) and ε4(4.3) yields

1
2

d
dt

H1(t) + ε3
r1
2
‖∇2ρ‖2

H1 + ε4
βkη̃

2
‖∇2u‖2

H1

+
r2ε

2βη̃
‖∇2η‖2

H2 +
A0r3

4λβkη̃
‖∇τ‖2

H2 +
r3ε

4βkη̃
‖∇2τ‖2

H2

� C(ε4ε+ δ)‖∇2ρ‖2
H1 + C(ε3 + δ)‖∇2u‖2

H1 + C(ε3 + ε4ε+ δ)‖∇2η‖2
H1

+ Cε(ε4 + ε3)‖∇2τ‖2
H2 + ε4

A0

2λ
C‖∇τ‖2

H1 .

Firstly, choosing a fixed positive constant ε � βkη̃r1
64C2 , and taking

ε3 � min
{
ε4βkη̃

8C
,

r2ε

16Cβη̃
,

r3ε

16Cεβkη̃

}
and

ε4 � min
{
ε3r1
8Cε

,
r2ε

16Cεβη̃
,

r3ε

16Cεβkη̃
,

r3
4Cβkη̃

}
,

and finally choosing δ sufficiently small, we get (4.1). �
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Moreover, with lemmas 4.2 and A.3, the following result holds.

Lemma 4.3. Under the same assumptions of theorem 1.2 and (3.3), we have

H1(t) � e−C2tH1(0) + C

∫ t

0

e−C2(t−s)
(‖∇ρL‖2

L2 + ‖∇uL‖2
L2 + ‖∇ηL‖2

L2

)
(s)ds,

(4.5)
for some positive constant C2 independent of δ.

Proof. By lemma A.3, we have

c0‖∇ρh‖L2 � ‖∇2ρ‖L2 , c0‖∇uh‖L2 � ‖∇2u‖L2 , c0‖∇ηh‖L2 � ‖∇2η‖L2 .

Thus, (4.1) leads to

1
2

d
dt

H1(t) + ε3
r1c

2
0

8
‖∇ρh‖2

L2 + ε3
r1
8
‖∇2ρ‖2

H1 + ε4
βkη̃c20

8
‖∇uh‖2

L2

+ ε4
βkη̃

8
‖∇2u‖2

H1 +
r2εc

2
0

8βη̃
‖∇ηh‖2

L2 +
r2ε

8βη̃
‖∇2η‖2

H2 +
r3A0

8λβkη̃
‖∇τ‖2

H2 � 0.

(4.6)

By adding ε3
r1c2

0
8 ‖∇ρL‖2

L2 + ε4
βkη̃c2

0
8 ‖∇uL‖2

L2 + r2εc2
0

8βη̃ ‖∇ηL‖2
L2 to both sides of

inequality (4.6), we have

1
2

d
dt

H1(t) + ε3
r1c

2
0

8
‖∇ρ‖2

H2 + ε4
βkη̃c20

8
‖∇u‖2

H2 +
r2εc

2
0

8βη̃
‖∇η‖2

H2 +
r3A0

8λβkη̃
‖∇τ‖2

H2

� ε3
r1c

2
0

8
‖∇ρL‖2

L2 + ε4
βkη̃c20

8
‖∇uL‖2

L2 +
r2εc

2
0

8βη̃
‖∇ηL‖2

L2 ,

where we let c0 ∈ (0, 1].
Note that, by virtue of (3.3) and the smallness of δ, ε3 and ε4, it is easy to check

that H1(t) is equivalent to

‖∇ρ‖2
H2 + ‖∇u‖2

H2 + ‖∇η‖2
H2 + ‖∇τ‖2

H2 .

Then there exists a positive constant C2 > 0 such that

d
dt

H1(t) + C2 H1(t) � C‖∇ρL‖2
L2 + C‖∇uL‖2

L2 + C‖∇ηL‖2
L2 .

By using Gronwall’s inequality, we get (4.5). �

In the same way, we show the following estimates of ‖∇2(ρ, u, η, τ)(t)‖H1 which
are the basis for getting the optimal decay estimate of ‖∇2(ρ, u, η)(t)‖L2 .

Lemma 4.4. Under the same assumptions of theorem 1.2 and (3.3), there exist two
small positive constants ε5 and ε6 which will be determined in the proof of the lemma
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and lemma 4.5, such that

1
2

d
dt

H2(t) + ε5
r1
4
‖∇3ρ‖2

L2 + ε6
βkη̃

4
‖∇3u‖2

L2 +
r2ε

4βη̃
‖∇3η‖2

H1 +
r3A0

8λβkη̃
‖∇2τ‖2

H1

� Cδ‖∇2u‖2
L2 + Cδ‖∇2ρ‖2

L2 , (4.7)

where

H2(t) = ‖∇2ρ‖2
H1 + ‖∇2u‖2

H1 +
r2
βη̃

‖∇2η‖2
H1 +

r3
2βkη̃

‖∇2τ‖2
H1

+
∫ (

2ε5∇2u : ∇3ρ+ 2ε6∇2divτ : ∇2u− h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx.

Proof. Following arguments similar to the proof of lemma 3.4 for the case � = 2, 3
and μ = ν = 0, one has,

1
2

d
dt

(
‖∇2ρ‖2

H1 + ‖∇2u‖2
H1 +

r2
βη̃

‖∇2η‖2
H1

+
r3

2βkη̃
‖∇2τ‖2

H1 −
∫
h(ρ) + βρ

r1 + βρ
|∇3ρ|2 dx

)
+
r2ε

2βη̃
‖∇3η‖2

H1 +
A0r3

4λβkη̃
‖∇2τ‖2

H1 +
r3ε

4βkη̃
‖∇3τ‖2

H1

� Cδ
(‖∇2u‖2

H1 + ‖∇2ρ‖2
H1

)
. (4.8)

In addition, for the case � = 2 and μ = ν = 0 in (3.40) and (3.48), we can deduce

d
dt

∫
∇2divτ : ∇2u dx+

βkη̃

2
(‖∇3u‖2

L2 + ‖∇2divu‖2
L2)

� C(ε+ δ)‖∇3ρ‖2
L2 + Cδ‖∇2ρ‖2

L2 + Cδ‖∇2u‖2
L2 + C(ε+ δ)‖∇3η‖2

L2

+ Cε‖∇3τ‖2
H1 +

A0

2λ
C‖∇2τ‖2

L2 , (4.9)

and

d
dt

∫
∇2u : ∇3ρdx+

r1
2
‖∇3ρ‖2

L2

� Cδ‖∇2ρ‖2
L2 + C‖∇3u‖2

L2 + C‖∇3η‖2
L2 + C‖∇3τ‖2

L2 . (4.10)

Together with ε5 (4.10), (4.8) and ε6 (4.9) yields

1
2

d
dt

H2(t) + ε5
r1
2
‖∇3ρ‖2

L2 + ε6
βkη̃

2
‖∇3u‖2

L2

+
r2ε

2βη̃
‖∇3η‖2

H1 +
A0r3

4λβkη̃
‖∇2τ‖2

H1 +
r3ε

4βkη̃
‖∇3τ‖2

H1

� Cε6ε‖∇3ρ‖2
L2 + Cδ‖∇2ρ‖2

H1 + Cδ‖∇2u‖2
H1 + Cε5‖∇3u‖2

L2

+ C(ε5 + ε6ε+ δ)‖∇3η‖2
L2 + Cεε6‖∇3τ‖2

H1 + Cε5‖∇3τ‖2
L2 + ε6

A0

2λ
C‖∇2τ‖2

L2 .
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Firstly, choosing a fixed positive constant ε � βkη̃r1
64C2 , and taking

ε5 � min
{
ε6βkη̃

8C
,

r2ε

16Cβη̃
,

r3ε

16Cβkη̃

}
and

ε6 � min
{
ε5r1
8Cε

,
r2ε

16Cεβη̃
,

r3ε

16Cεβkη̃
,

r3
4Cβkη̃

}
,

and finally choosing δ sufficiently small, we get (4.7). �

Based on lemmas 4.4 and A.3, the following result holds.

Lemma 4.5. Under the same assumptions of theorem 1.2 and (3.3), we have

H2(t) � e−C̃2tH2(0) + C

∫ t

0

e−C̃2(t−s)
(‖∇2ρL‖2

L2 + ‖∇2uL‖2
L2 + ‖∇2ηL‖2

L2

)
(s)ds,

(4.11)

for some positive constant C̃2 independent of δ.

Proof. By lemma A.3, we have

c0‖∇2ρh‖L2 � ‖∇3ρ‖L2 , c0‖∇2uh‖L2 � ‖∇3u‖L2 , c0‖∇2ηh‖L2 � ‖∇3η‖L2 .

Thus, (4.7) leads to

1
2

d
dt

H2(t) + ε5
r1c

2
0

8
‖∇2ρh‖2

L2 + ε5
r1
8
‖∇3ρ‖2

L2 + ε6
βkη̃c20

8
‖∇2uh‖2

L2

+ ε6
βkη̃

8
‖∇3u‖2

L2 +
r2εc

2
0

8βη̃
‖∇2ηh‖2

L2 +
r2ε

8βη̃
‖∇3η‖2

H1 +
r3A0

8λβkη̃
‖∇2τ‖2

H1

� Cδ‖∇2u‖2
L2 + Cδ‖∇2ρ‖2

L2 . (4.12)

By adding ε5
r1c2

0
8 ‖∇2ρL‖2

L2 + ε6
βkη̃c2

0
8 ‖∇2uL‖2

L2 + r2εc2
0

8βη̃ ‖∇2ηL‖2
L2 to both sides of

inequality (4.12), and choosing δ sufficiently small, we have

1
2

d
dt

H2(t) + ε5
r1c

2
0

16
‖∇2ρ‖2

H1 + ε6
βkη̃c20

16
‖∇2u‖2

H1

+
r2εc

2
0

8βη̃
‖∇2η‖2

H1 +
r3A0

8λβkη̃
‖∇2τ‖2

H1

� ε5
r1c

2
0

8
‖∇2ρL‖2

L2 + ε6
βkη̃c20

8
‖∇2uL‖2

L2 +
r2εc

2
0

8βη̃
‖∇2ηL‖2

L2 ,

where we let c0 ∈ (0, 1].
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Moreover, by virtue of (3.3) and the smallness of δ, ε5 and ε6, it is easy to check
that H2(t) is equivalent to

‖∇2ρ‖2
H1 + ‖∇2u‖2

H1 + ‖∇2η‖2
H1 + ‖∇2τ‖2

H1 .

Then there exists a positive constant C̃2 > 0 such that

d
dt

H2(t) + C̃2H2(t) � C‖∇2ρL‖2
L2 + C‖∇2uL‖2

L2 + C‖∇2ηL‖2
L2 .

By using Gronwall’s inequality again, we get (4.11) directly. �

4.2. Decay estimates of the low-frequency parts

Next, with the help of lemmas 4.3 and 4.5, we will study the decay rates of
solution (ρ, u, η, τ). As it can be seen from (4.5) and (4.11), we only need to analyse
the low-frequency part (|ξ| � c0) of (ρ, u, η).

Letting A be the following matrix of differential operators of the form

A =

⎛⎜⎜⎜⎝
0 r1div 0 0
r1∇ 0 r2∇ −r3
0 βη̃div −εΔ 0

0 −βkη̃(Δ + ∇div) 0
A0

2λ
− εΔ

⎞⎟⎟⎟⎠ ,

and setting

Ū(t) := (ρ̄(t), ū(t), η̄(t),divτ̄(t))T and U(0) := (ρ0, u0, η0,divτ0)T ,

we obtain from the linearized problem of (A.1) as below:{
∂tŪ + AŪ = 0, for t > 0,
Ū
∣∣
t=0

= U(0). (4.13)

Applying the Fourier transform to (4.13) with respect to the x-variable and solving
the ordinary differential equation with respect to t, we have

Ū(t) = A(t)U(0),

where A(t) = e−tA(t � 0) is the semigroup generated by the linear operator A and
A(t)f := F−1(e−tAξ f̂(ξ)) with

Aξ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
√−1r1ξT 0 0

√−1r1ξ 0
√−1r2ξ −r3

0
√−1βη̃ξT ε|ξ|2 0

0 βkη̃(|ξ|2δij + ξiξj) 0
(
A0

2λ
+ ε|ξ|2

)
δij

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, from proposition A.2, we have the following result.
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Lemma 4.6. For any integer m � 0, the following time-decay estimates for the low-
frequency part, i.e.,

‖∇m(A(t)UL(0))‖L2 � C(1 + t)−
3
4−m

2 ‖U(0)‖L1 , (4.14)

and

‖∇m(A(t)UL(0))‖L2 � C(1 + t)−
m
2 ‖U(0)‖L2 (4.15)

hold for any t ∈ (0,∞).

Remark 4.7. (4.14) and (4.15) are used to obtain the optimal time-decay estimates
of ‖(ρ, u, η, τ)(t)‖H2 and ‖∇3(ρ, u, η, τ)(t)‖L2 , respectively.

In what follows, based on the estimates in lemma 4.6, we establish time-decay esti-
mates for the low-frequency part of solutions to the nonlinear problem (2.1)–(2.3).
Denoting

U(t) := (ρ(t), u(t), η(t),divτ(t))T ,

then from (2.2), we have {
∂tU + AU = S(U), for t > 0,
U |t=0 = U(0) , (4.16)

where

S(U) = (S1, S2, S3,divS4)T .

Using the Duhamel’s principle, the solution of (4.16) can be stated as follows:

U(t) = A(t)U(0) +
∫ t

0

A(t− s)S(U)(s) ds. (4.17)

Lemma 4.8. Under the assumptions of theorem 1.2 and (3.3), for any integer m � 1,
there exists a positive constant C such that

‖∇mUL(t)‖L2 � C(1 + t)−
3
4−m

2 ‖U(0)‖L1 + Cδ

∫ t

0

(1 + t− s)−
3
4−m

2

× (‖∇(ρ, η)(s)‖L2 + ‖∇(u, τ)(s)‖H1) ds (4.18)

and

‖∇mUL(t)‖L2 � C(1 + t)−
3
4−m

2 ‖U(0)‖L1 + C

∫ t
2

0

(1 + t− s)−
3
4−m

2

× (‖(ρ, u, η)‖L2‖∇(ρ, u, η, τ)‖L2 + ‖∇(η, τ)‖L2‖∇u‖L2) (s) ds

+ C

∫ t
2

0

(1 + t− s)−
3
4−m

2

× (‖(η, τ)‖L2‖∇2u‖L2 + ‖∇2τ‖L2‖u‖L2

)
(s) ds

+ C

∫ t

t
2

(1 + t− s)−
m
2
(‖(ρ, u, η, τ)‖H2‖∇2(ρ, u, η, τ)‖L2

)
(s)ds.

(4.19)
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Remark 4.9. With the aid of (4.18) and (4.19), the optimal time-decay estimates
of ‖(ρ, u, η, τ)(t)‖H2 and ‖∇3(ρ, u, η, τ)(t)‖L2 will be obtained, respectively.

Proof. From (4.17), using lemma 4.6, we have

‖∇mUL(t)‖L2

� C
∥∥∇m

(A(t)UL(0)
)∥∥

L2 + C

∥∥∥∥∇m

∫ t

0

A(t− s)SL(U)(s)ds
∥∥∥∥

L2

� C(1 + t)−
3
4−m

2 ‖U(0)‖L1 + C

∫ t

0

(1 + t− s)−
3
4−m

2 ‖S(U)(s)‖L1ds

� C(1 + t)−
3
4−m

2 ‖U(0)‖L1

+ Cδ

∫ t

0

(1 + t− s)−
3
4−m

2 (‖∇(ρ, η)(s)‖L2 + ‖∇(u, τ)(s)‖H1) ds, (4.20)

where we have used the fact that

‖S(U)‖L1 � C‖(S1, S2, S3,divS4)(U)‖L1

� C (‖(ρ, u, η)‖L2‖∇(ρ, u, η, τ)‖L2 + ‖∇(η, τ)‖L2‖∇u‖L2

+ ‖(η, τ)‖L2‖∇2u‖L2 + ‖∇2τ‖L2‖u‖L2

)
. (4.21)

Hence, (4.18) is obtained.
Moreover, for (4.19), using (4.17) and lemma 4.6 again, we have

‖∇mUL(t)‖L2 � C
∥∥∇m(A(t)UL(0))

∥∥
L2 + C

∥∥∥∥∥∇m

∫ t
2

0

A(t− s)SL(U)(s)ds

∥∥∥∥∥
L2

+ C

∥∥∥∥∥∇m

∫ t

t
2

A(t− s)SL(U)(s)ds

∥∥∥∥∥
L2

� C(1 + t)−
3
4−m

2 ‖U(0)‖L1

+ C

∫ t
2

0

(1 + t− s)−
3
4−m

2 ‖S(U)(s)‖L1ds

+ C

∫ t

t
2

(1 + t− s)−
m
2 ‖S(U)(s)‖L2ds, (4.22)

where

‖S(U)‖L2 � C‖(S1, S2, S3,divS4)(U)‖L2

� C(‖(ρ, u, η)‖L3‖∇(ρ, u, η, τ)‖L6 + ‖∇(η, τ)‖L6‖∇u‖L3

+ ‖(η, τ)‖L∞‖∇2u‖L2 + ‖∇2τ‖L2‖u‖L∞)

� C‖(ρ, u, η, τ)‖H2‖∇2(ρ, u, η, τ)‖L2 . (4.23)

Thus, together with (4.21), (4.22) and (4.23), (4.19) can be obtained. �
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4.3. Optimal decay rates of ‖(ρ, u, η)(t)‖H2 and ‖τ (t)‖H1

In this subsection, we will obtain the time-decay estimates of (ρ, u, η, τ) with
the aid of lemmas 4.3, 4.5 and 4.8. Firstly, we consider the decay estimate of
‖(∇ρ,∇u,∇η,∇τ)(t)‖H2 .

Proposition 4.10. Under the same assumptions of theorem 1.2 and (3.3), we have

‖∇ρ(t)‖H2 + ‖∇u(t)‖H2 + ‖∇η(t)‖H2 + ‖∇τ(t)‖H2 � C(1 + t)−
5
4 . (4.24)

Proof. Owing to (4.5) and (4.18), we can obtain

H1(t) � e−C2tH1(0) + C

∫ t

0

e−C2(t−s)
(‖∇ρL‖2

L2 + ‖∇uL‖2
L2 + ‖∇ηL‖2

L2

)
(s)ds

� e−C2tH1(0) + C

∫ t

0

e−C2(t−s)(1 + s)−
5
2 ds

+ δ

∫ t

0

e−C2(t−s)

(∫ s

0

(1 + s− s′)−
5
2H1(s′)ds′

)
ds

� C(1 + t)−
5
2 + CδI(t)

∫ t

0

e−C2(t−s)

(∫ s

0

(1 + s− s′)−
5
2 (1 + s′)−

5
2 ds′

)
ds

� C(1 + t)−
5
2 + CδI(t)

∫ t

0

e−C2(t−s)(1 + s)−
5
2 ds

� C(1 + t)−
5
2 + CδI(t)(1 + t)−

5
2 ,

where I(t) = sup
0�s�t

(1 + s)
5
2H1(s).

Further, by virtue of the definition of I(t) and the smallness of δ, we can obtain

I(t) � C,

which is (4.24). We complete the proof of the proposition. �

Then, based on proposition 4.10, we can obtain the next proposition.

Proposition 4.11. Under the same assumptions of theorem 1.2 and (3.3), we have

‖τ(t)‖L2 � C(1 + t)−
5
4 , (4.25)

‖(ρ, u, η)(t)‖L2 � C(1 + t)−
3
4 . (4.26)
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Proof. Firstly, for ‖τ(t)‖L2 , we multiply (2.1)4 by 2τ and then integrate the
resulting equation over R3 to obtain

d
dt

∫
|τ |2 dx+

A0

λ

∫
|τ |2 dx+ 2ε

∫
|∇τ |2 dx

= 2
∫
S4 : τ dx+ 2βkη̃

∫
(∇u+ ∇Tu) : τ dx

�
(
A0

4λ
+ δ

)
‖τ‖2

L2 + C‖∇u‖2
L2 , (4.27)

where we have used Cauchy inequality and the fact that

‖S4‖L2 � ‖u‖L6‖∇τ‖L3 + ‖∇u‖L2(‖τ‖L∞ + ‖η‖L∞).

Choosing δ sufficiently small in (4.27), it holds that

d
dt

∫
|τ |2 dx+

A0

2λ

∫
|τ |2 dx � C‖∇u‖2

L2 .

Further, using Gronwall’s inequality, the above inequality gives

‖τ(t)‖2
L2 � C e−

A0
2λ t‖τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)‖∇u(s)‖2

L2ds

� C e−
A0
2λ t‖τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)(1 + s)−

5
2 ds

� C(1 + t)−
5
2 ,

where we have used (4.24). Then we obtain (4.25).
Next, for ‖(ρ, u, η)(t)‖L2 , thanks to (4.18), let m = 0, we find that

‖(ρ, u, η,divτ)L(t)‖L2 � C(1 + t)−
3
4 ‖(ρ, u, η,divτ)(0)‖L1 + Cδ

∫ t

0

(1 + t− s)−
3
4

× (‖∇(ρ, η)(s)‖L2 + ‖∇(u, τ)(s)‖H1) ds

� C(1 + t)−
3
4 + Cδ

∫ t

0

(1 + t− s)−
3
4 (1 + s)−

5
4 ds

� C(1 + t)−
3
4 , (4.28)

where we have used (4.24).
In addition, by using lemma A.3 and (4.24) again, we have

‖(ρ, u, η,divτ)h(t)‖L2 � 1
c0

‖∇(ρ, u, η,divτ)(t)‖L2 � C(1 + t)−
5
4 . (4.29)

Combining with (4.28) and (4.29), and owing to (A.32), we can get (4.26) directly.
�

Further, the optimal decay estimates of second order for (ρ, u, η) and first order
for τ in the sense of L2 norm are obtained as below.
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Proposition 4.12. Under the same assumptions of theorem 1.2 and (3.3), we have

‖∇2ρ(t)‖H1 + ‖∇2u(t)‖H1 + ‖∇2η(t)‖H1 + ‖∇2τ(t)‖H1 � C(1 + t)−
7
4 , (4.30)

‖∇τ(t)‖L2 � C(1 + t)−
7
4 . (4.31)

Proof. Owing to (4.11), (4.20), (4.21) and propositions 4.10 and 4.11, we can obtain

H2(t) � e−C̃2tH2(0) + C

∫ t

0

e−C̃2(t−s)
(‖∇2ρL‖2

L2 + ‖∇2uL‖2
L2 + ‖∇2ηL‖2

L2

)
(s)ds

� e−C̃2tH2(0) + C

∫ t

0

e−C̃2(t−s)(1 + s)−
7
2 ds

+ C

∫ t

0

e−C̃2(t−s)

(∫ s

0

(1 + s− s′)−
7
2 (1 + s)−

8
2 (s′)ds′

)
ds

� C(1 + t)−
7
2 + C

∫ t

0

e−C̃2(t−s)(1 + s)−
7
2 ds

� C(1 + t)−
7
2 ,

which is (4.30).
Finally, for (4.31), multiplying ∇(2.1)4 by 2∇τ and then integrating the result

equation over R3, similar to (4.25), we get

d
dt

∫
|∇τ |2 dx+

A0

2λ

∫
|∇τ |2 dx � C‖∇2u‖2

L2 .

Further, using Gronwall’s inequality, the above inequality gives

‖∇τ(t)‖2
L2 � C e−

A0
2λ t‖∇τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)‖∇2u(s)‖2

L2ds

� C e−
A0
2λ t‖∇τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)(1 + s)−

7
2 ds

� C(1 + t)−
7
2 ,

where we have used (4.30). Hence, we complete the proof of the proposition. �

4.4. Optimal decay rates of ‖∇3(ρ, u, η)(t)‖L2 and ‖∇2τ (t)‖L2

Inspired by [48, 49], we are going to study the optimal decay estimates of
‖∇3(ρ, u, η)(t)‖L2 and ‖∇2τ(t)‖L2 . In the process, we have made full use of the
benefit of frequency decomposition.

Proposition 4.13. Under the same assumptions of theorem 1.2 and (3.3), we have

‖∇3ρ(t)‖L2 + ‖∇3u(t)‖L2 + ‖∇3η(t)‖L2 + ‖∇3τ(t)‖L2 � C(1 + t)−
9
4 , (4.32)

‖∇2τ(t)‖L2 � C(1 + t)−
9
4 . (4.33)
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Remark 4.14. The proof of proposition 4.13 consists of lemmas 4.15–4.16 below.

Lemma 4.15. Under the same assumptions of theorem 1.2 and (3.3), there exist
two small positive constants ε7 and ε8 which will be determined in the proof of the
lemma and lemma 4.16, such that

1
2

d
dt

H3(t) + ε7
r1
4
‖∇3ρh‖2

L2 + ε8
βkη̃

4
‖∇3uh‖2

L2

+
r2ε

2βη̃
‖∇4η‖2

L2 +
A0r3

8λβkη̃
‖∇3τ‖2

L2 +
r3ε

8βkη̃
‖∇4τ‖2

L2

� C(δ + ε7)‖∇3ρL‖2
L2 + C(δ + ε7 + ε8)‖∇3uL‖2

L2 + C(ε7 + ε8ε+ δ)‖∇3η‖2
L2 ,

(4.34)

where

H3(t) = ‖∇3ρ‖2
L2 + ‖∇3u‖2

L2 +
r2
βη̃

‖∇3η‖2
L2 +

r3
2βkη̃

‖∇3τ‖2
L2

+
∫ (

2ε7∇2u : ∇3ρh + 2ε8∇2divτ : ∇2uh − h(ρ) + βρ

r1 + βρ
|∇3ρ|2

)
dx.

Proof. Following some arguments similar to the proof of lemma 3.4 for the case
� = 3 and μ = ν = 0, one has

1
2

d
dt

(
‖∇3ρ‖2

L2 + ‖∇3u‖2
L2 +

r2
βη̃

‖∇3η‖2
L2

+
r3

2βkη̃
‖∇3τ‖2

L2 −
∫
h(ρ) + βρ

r1 + βρ
|∇3ρ|2 dx

)
+
r2ε

2βη̃
‖∇4η‖2

L2 +
A0r3

4λβkη̃
‖∇3τ‖2

L2 +
r3ε

4βkη̃
‖∇4τ‖2

L2

� Cδ
(‖∇3u‖2

L2 + ‖∇3ρ‖2
L2

)
, (4.35)

where we have used the following inequality:

‖∇3

(
1

r1 + βρ

)
‖L2 � C‖∇ρ∇ρ∇ρ‖L2 + C‖∇2ρ∇ρ‖L2 + C‖∇3ρ‖L2

� C‖∇ρ‖3
L6 + C‖∇2ρ‖L6‖∇ρ‖L3 + C‖∇3ρ‖L2

� C‖ρ‖2
L∞‖∇3ρ‖L2 + C‖∇3ρ‖L2(‖∇ρ‖L3 + 1)

which is established by Hölder inequality, sobolev inequality and Gagliardo-
Nirenberg inequality.

In addition, applying operator ∇2div to the equation of (2.1)4 and ∇2 to the
equation of (2.1)h

2 , multiplying the results by ∇2uh and ∇2divτ respectively, then
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summing them up and integrating it over R3, we can get

d
dt

∫
∇2divτ : ∇2uh dx− βkη̃

∫
∇2
(
Δ(uh + uL) + ∇div(uh + uL)

)
: ∇2uh dx

=
∫

(∇2divS4 − A0

2λ
∇2divτ + ε∇2Δdivτ) : ∇2uh dx

+
∫

(∇2Sh
2 − r1∇3ρh − r2∇3ηh + r3∇2divτh) : ∇2divτ dx, (4.36)

where we have used the frequency decomposition (A.32). Then, similar to the case
� = 2 and μ = ν = 0 in (3.40), we have∫

(∇2divS4 + ε∇2Δdivτ) : ∇2uh dx

�
(
βkη̃

8
+ Cδ

)
‖∇3uh‖2

L2

+ Cδ‖∇3u‖2
L2 + Cδ‖∇3(η, τ)‖2

L2 + C‖∇4τ‖2
L2 , (4.37)

and ∫
(∇2Sh

2 − r1∇3ρh − r2∇3ηh + r3∇2divτh) : ∇2divτ dx

� ε‖∇3ρh‖2
L2 + Cδ‖∇3ρ‖2

L2 + Cδ‖∇3u‖2
L2

+ C(ε+ δ)‖∇3η‖2
L2 + Cε‖∇3τ‖2

L2 . (4.38)

Finally, combined with lemma A.3, the rest term of (4.36) can be deal with like∫
−A0

2λ
∇2divτ : ∇2uh dx � ε‖∇2uh‖2

L2 + Cε‖∇3τ‖2
L2

� Cε‖∇3u‖2
L2 + Cε‖∇3τ‖2

L2 . (4.39)

Together with (4.37), (4.38) and (4.39), using Hölder inequality and Cauchy
inequality, and choosing δ and ε small enough, we can deduce from (4.36)

d
dt

∫
∇2divτ : ∇2uh dx+

βkη̃

2
(‖∇3uh‖2

L2 + ‖∇2divuh‖2
L2)

� C(ε+ δ)‖∇3ρh‖2
L2 + Cδ‖∇3ρL‖2

L2 + C‖∇3uL‖2
L2

+ C(ε+ δ)‖∇3η‖2
L2 + Cε‖∇3τ‖2

H1 , (4.40)

where we have used the fact that

‖f‖L2 � ‖fL‖L2 + ‖fh‖L2 , ∀ f ∈ L2(R3).

Similarly, applying operator ∇2 to the equation of (2.1)2 and (2.1)h
1 , multiplying the

results by ∇3ρh and −∇2divu respectively, then summing them up and integrating
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it over R3, we have

d
dt

∫
∇2u : ∇3ρh dx+ r1

∫
∇3(ρL + ρh) : ∇3ρh dx

=
∫

(∇2S2 − r2∇3η + r3∇2divτ) : ∇3ρh dx

+
∫

(−∇2Sh
1 + r1∇2divuh) : ∇2divu dx. (4.41)

Further, from (4.41) and referring to the case � = 2 and μ = ν = 0 in (3.48), we can
deduce the following inequality:

d
dt

∫
∇2u : ∇3ρh dx+

r1
2
‖∇3ρh‖2

L2

� C‖∇3ρL‖2
L2 + C‖∇3u‖2

L2 + C‖∇3η‖2
L2 + C‖∇3τ‖2

L2 . (4.42)

Hence, ε7 (4.42) together with (4.35) and ε8 (4.40) yields

1
2

d
dt

H3(t) + ε7
r1
2
‖∇3ρh‖2

L2 + ε8
βkη̃

2
‖∇3uh‖2

L2 +
r2ε

2βη̃
‖∇4η‖2

L2

+
A0r3

4λβkη̃
‖∇3τ‖2

L2 +
r3ε

4βkη̃
‖∇4τ‖2

L2

� C(ε8ε+ δ)‖∇3ρh‖2
L2 + C(δ + ε7)‖∇3ρL‖2

L2 + C(δ + ε7)‖∇3u‖2
L2

+ Cε8‖∇3uL‖2
L2 + C(ε7 + ε8ε+ δ)‖∇3η‖2

L2 + Cεε8‖∇3τ‖2
H1 + Cε7‖∇3τ‖2

L2 .

Firstly, choosing a fixed positive constant ε � βkη̃r1
64C2 , and taking

ε7 � min
{
ε8βkη̃

8C
,

A0r3
16Cλβkη̃

}
and

ε8 � min
{
ε7r1
8Cε

,
A0r3

16Cελβkη̃
,

r3ε

8Cεβkη̃

}
,

and finally choosing δ sufficiently small, we get (4.34). �

Moreover, with lemmas 4.15 and A.3, the following result holds.

Lemma 4.16. Under the same assumptions of theorem 1.2 and (3.3), we have

H3(t) � e−C̃3tH3(0) + C

∫ t

0

e−C̃3(t−s)
(‖∇3ρL‖2

L2 + ‖∇3uL‖2
L2 + ‖∇3ηL‖2

L2

)
(s)ds,

(4.43)
for some positive constant C̃3 independent of δ.
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Proof. By lemma A.3, we have

c0‖∇3ηh‖L2 � ‖∇4η‖L2 .

Thus, (4.34) leads to

1
2

d
dt

H3(t) + ε7
r1
4
‖∇3ρh‖2

L2 + ε8
βkη̃

4
‖∇3uh‖2

L2

+
r2εc

2
0

2βη̃
‖∇3ηh‖2

L2 +
A0r3

8λβkη̃
‖∇3τ‖2

L2

� C(δ + ε7)‖∇3ρL‖2
L2 + C(δ + ε7 + ε8)‖∇3uL‖2

L2

+ C(ε7 + ε8ε+ δ)(‖∇3ηL‖2
L2 + ‖∇3ηh‖2

L2), (4.44)

By adding ε7
r1
4 ‖∇3ρL‖2

L2 + ε8
βkη̃
4 ‖∇3uL‖2

L2 + r2εc2
0

2βη̃ ‖∇3ηL‖2
L2 to both sides of

inequality (4.44), taking

ε7 � r2εc
2
0

8Cβη̃
and ε8 � r2εc

2
0

8Cεβη̃
,

and choosing δ sufficiently small, we have

1
2

d
dt

H3(t) + ε7
r1
4
‖∇3ρ‖2

L2 + ε8
βkη̃

4
‖∇3u‖2

L2 +
r2εc

2
0

4βη̃
‖∇3η‖2

L2 +
A0r3

8λβkη̃
‖∇3τ‖2

L2

� C‖∇3ρL‖2
L2 + C‖∇3uL‖2

L2 + C‖∇3ηL‖2
L2 .

Moreover, it follows from integration by parts, the Young inequality and lemma A.3
that∫ (∇2u : ∇3ρh + ∇2divτ : ∇2uh

)
dx =

∫ (−∇2divu : ∇2ρh + ∇2divτ : ∇2uh
)

dx

� 1
2
‖∇2divu‖L2 +

1
2
‖∇2ρh‖L2 +

1
2
‖∇2divτ‖L2 +

1
2
‖∇2uh‖L2

� 1
2
‖∇3 u‖L2 +

1
2
‖∇3ρ‖L2 +

1
2
‖∇3 τ‖L2 .

Hence, by virtue of (3.3) and the smallness of δ, ε7 and ε8, it is easy to check that
H3(t) is equivalent to

‖∇3ρ‖2
L2 + ‖∇3u‖2

L2 + ‖∇3η‖2
L2 + ‖∇3τ‖2

L2 .

Then there exists a positive constant C̃3 > 0 such that

d
dt

H3(t) + C̃3H3(t) � C‖∇3ρL‖2
L2 + C‖∇3uL‖2

L2 + C‖∇3ηL‖2
L2 .

By using Gronwall’s inequality, we get (4.43). �

With the help of lemmas 4.15–4.16, we are ready to prove proposition 4.13.
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Proof of proposition 4.13. Thanks to the case m = 3 in (4.19), (4.43), propositions
4.10, 4.11 and 4.12, we can obtain

H3(t) � e−C̃3tH3(0) + C

∫ t

0

e−C̃3(t−s)
(‖∇3ρL‖2

L2 + ‖∇3uL‖2
L2 + ‖∇3ηL‖2

L2

)
(s)ds

� e−C̃3tH3(0) + C

∫ t

0

e−C̃3(t−s)(1 + s)−
9
2 ds

+ C

∫ t

0

e−C̃3(t−s)

(∫ s
2

0

(1 + s− s′)−
9
2 (1 + s)−

8
2 (s′)ds′

)
ds

+ C

∫ t

0

e−C̃3(t−s)

(∫ s

s
2

(1 + s− s′)−3(1 + s)−
10
2 (s′)ds′

)
ds

� C(1 + t)−
9
2 + C

∫ t

0

e−C̃3(t−s)(1 + s)−
9
2 ds

� C(1 + t)−
9
2 ,

which is (4.32).
Then, for (4.33), multiplying ∇(2.1)4 by 2∇2τ and then integrating the result

equation over R3, similar to (4.25) and (4.31), we get

d
dt

∫
|∇2τ |2 dx+

A0

2λ

∫
|∇2τ |2 dx � C‖∇3u‖2

L2 .

Using Gronwall’s inequality, the above inequality yields

‖∇2τ(t)‖2
L2 � Ce−

A0
2λ t‖∇2τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)‖∇3u(s)‖2

L2ds

� C e−
A0
2λ t‖∇2τ(0)‖2

L2 + C

∫ t

0

e−
A0
2λ (t−s)(1 + s)−

9
2 ds

� C(1 + t)−
9
2 ,

where we have used (4.32). Hence, we complete the proof of the proposition.
Finally, based on propositions 4.10–4.13, the decay rates of the solution stated

in proposition 4.1 are obtained. Thus, we finish the proof of theorem 1.2. �
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Appendix A.1. Estimates on the linearized system

Let us consider the following linear system for (ρ̄, ū, η̄,divτ̄):⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̄t + r1divū = 0,
ūt + r1∇ρ̄+ r2∇η̄ − r3divτ̄ = 0,
η̄t + βη̃ divū− εΔη̄ = 0,

divτ̄t +
A0

2λ
divτ̄ − εΔdivτ̄ − βkη̃(Δū+ ∇divū) = 0.

(A.1)

As it can be seen from (4.5), (4.11) and (4.43), to study the decay estimates of
(ρ, u, η, τ), we only need to analyse the low frequency part (|ξ| � c0) of (ρ̄, ū, η̄, τ̄).

If we adopt Λs := (−Δ)
s
2 as the notation for the pseudo-differential opera-

tor defined by Λsf := F−1(|ξ|sf̂(ξ)), we only need to study ρ̄, d := Λ−1divū
and Pū := Λ−1curlū, where curlji ū = ∂j ū

i − ∂iū
j ; η̄, q := Λ−1divdivτ̄ and Pdivτ̄ :=

Λ−1curldivτ̄ . Indeed, by the definition of P, we have

ū = −Λ−1∇d− Λ−1divPū,

divτ̄ = −Λ−1∇q − Λ−1divPdivτ̄ .

We see that (ρ̄, d, η̄, q) and (Pū,Pdivτ̄) satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̄t + r1Λd = 0,
dt − r1Λρ̄− r2Λη̄ − r3q = 0,
η̄t + βη̃Λd− εΔη̄ = 0,

qt +
A0

2λ
q − εΔq − 2βkη̃Δd = 0,

(A.2)

and {
Pūt − r3Pdivτ̄ = 0,

Pdivτ̄t +
A0

2λ
Pdivτ̄ − εΔPdivτ̄ − βkη̃ΔPū = 0.

(A.3)

Applying Fourier transform to the linearized system (A.2) and (A.3), we arrive at⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ˆ̄ρt + r1|ξ|d̂ = 0,
d̂t − r1|ξ| ˆ̄ρ− r2|ξ|ˆ̄η − r3q̂ = 0,
ˆ̄ηt + βη̃|ξ|d̂+ ε|ξ|2 ˆ̄η = 0,

q̂t +
A0

2λ
q̂ + ε|ξ|2q̂ + 2βkη̃|ξ|2d̂ = 0,

(A.4)

and ⎧⎨⎩P̂ūt − r3P̂divτ̄ = 0,

P̂divτ̄ t +
A0

2λ
P̂divτ̄ + ε|ξ|2P̂divτ̄ + βkη̃|ξ|2P̂ū = 0.

(A.5)
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A.1.1. Estimates on (ˆ̄ρ, d̂, ˆ̄η, q̂)

We introduce the following corrected modes different from those in [47]:

â = ˆ̄ρ+
2λ
A0

r3r1|ξ|
[
A0

2λ
+ (ε− 2βkη̃

2λ
A0

r3)|ξ|2
]−1

q̂, (A.6)

ô = d̂+
2λ
A0

r3q̂, (A.7)

ẑ = ˆ̄η +
2λ
A0

r3βη̃|ξ|
[
A0

2λ
+ (ε− 2βkη̃

2λ
A0

r3)|ξ|2
]−1

q̂, (A.8)

q̂ = q̂. (A.9)

Then the system (A.4) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ât + r1|ξ|ô = − 4λ
A0

r3r1βkη̃A1|ξ|3ô,

ôt +
4λ
A0

r3βkη̃|ξ|2ô − r1|ξ|â − r2|ξ|ẑ

=
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|2q̂,

ẑt + βη̃|ξ|ô + ε|ξ|2ẑ = ε
2λ
A0

r3βη̃A1|ξ|3q̂ − 4λ
A0

r3β
2kη̃2A1|ξ|3ô,

q̂t +
[
A0

2λ
+ (ε− 2βkη̃

2λ
A0

r3)|ξ|2
]
q̂ = −2βkη̃|ξ|2ô,

(A.10)

where the coefficient A1 is defined by

A1 =
[
A0

2λ
+ (ε− 2βkη̃

2λ
A0

r3)|ξ|2
]−1

.

From the corrected modes, it is not hard to find that the estimates of (â, ô, ẑ, q̂)
can be easily translated into the estimates of (ˆ̄ρ, d̂, ˆ̄η, q̂) for small |ξ|. Next, let us
turn to study the estimates of (â, ô, ẑ, q̂). From (A.10), we easily obtain

1
2

d
dt

(|â|2 + |ô|2 +
r2
βη̃

|ẑ|2) +
r2ε

βη̃
|ξ|2|ẑ|2 +

4λ
A0

r3βkη̃|ξ|2|ô|2

= − 4λ
A0

r3r1βkη̃A1|ξ|3Re(ô ¯̂a)

+
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|2Re(q̂ ¯̂o)

+
r2ε

βη̃

2λ
A0

r3βη̃A1|ξ|3Re(q̂ ¯̂z) − r2
βη̃

4λ
A0

r3β
2kη̃2A1|ξ|3Re(ô ¯̂z). (A.11)
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Multiplying (A.10)1 and (A.10)2 by ¯̂o and ¯̂a, respectively, yields

d
dt

Re(¯̂a ô) + r1|ξ||ô|2 − r1|ξ||â|2 − r2|ξ|Re(ẑ ¯̂a)

= − 4λ
A0

r3r1βkη̃A1|ξ|3|ô|2 +
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|2Re(q̂ ¯̂a)

− 4λ
A0

r3βkη̃|ξ|2Re(ô ¯̂a). (A.12)

Combined with (A.11) and −ε̃|ξ|× (A.12), it holds that

1
2

d
dt

(
|â|2 + |ô|2 +

r2
βη̃

|ẑ|2 − 2ε̃|ξ|Re(¯̂a ô)
)

+ r1ε̃|ξ|2|â|2 +
r2ε

βη̃
|ξ|2|ẑ|2 +

(
4λ
A0

r3βkη̃ − ε̃r1

)
|ξ|2|ô|2

=
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|2Re(q̂ ¯̂o) − ε̃r2|ξ|2Re(ẑ ¯̂a)

+ ε̃
4λ
A0

r3r1βkη̃A1|ξ|4|ô|2

− ε̃
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|3Re(q̂ ¯̂a)

+ ε̃
4λ
A0

r3βkη̃|ξ|3Re(ô ¯̂a) − 4λ
A0

r3r1βkη̃A1|ξ|3Re(ô ¯̂a)

+
r2ε

βη̃

2λ
A0

r3βη̃A1|ξ|3Re(q̂ ¯̂z) − r2
βη̃

4λ
A0

r3β
2kη̃2A1|ξ|3Re(ô ¯̂z)

=
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
|ξ|2Re(q̂ ¯̂o) − ε̃r2|ξ|2Re(ẑ ¯̂a) + II1.

(A.13)

It is natural to derive the estimates for those terms on the right-hand side of (A.13).
First, the first two terms can be controlled by

λ

A0
r3βkη̃|ξ|2|ô|2 +

A0

4λr3βkη̃
A2

2|ξ|2||q̂|2 +
ε̃r1
2

|ξ|2|â|2 +
ε̃r22
2r1

|ξ|2||ẑ|2, (A.14)

where

A2 =
2λ
A0

r3

(
4λ
A0

r3βkη̃ − ε− (r2βη̃ + r21)A1

)
.

Similarly, we can drive the bound of the last term.

|II1| � C|ξ|3|(â, ẑ)||(q̂, ô)| + C|ξ|4|ô|2. (A.15)

https://doi.org/10.1017/prm.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.2


484 S. Liu, W. Wang and H. Wen

Substituting (A.14) and (A.15) into (A.13) yields

1
2

d
dt

(
|â|2 + |ô|2 +

r2
βη̃

|ẑ|2 − 2ε̃|ξ|Re(¯̂a ô)
)

+
r1ε̃

2
|ξ|2|â|2 +

(
r2ε

βη̃
− ε̃r22

2r1

)
|ξ|2|ẑ|2 +

(
3λ
A0

r3βkη̃ − ε̃r1

)
|ξ|2|ô|2

� A0

4λr3βkη̃
A2

2|ξ|2||q̂|2 + C|ξ|3|(â, ẑ)||(q̂, ô)| + C|ξ|4|ô|2. (A.16)

Now, we move on and derive the estimates of q̂ as follows. Multiplying (A.10)4 by
¯̂q and using Cauchy inequality, we then obtain the following inequality:

1
2

d
dt

|q̂|2 +
[
A0

2λ
+
(
ε− 2βkη̃

2λ
A0

r3

)
|ξ|2
]
|q̂|2

= −2βkη̃|ξ|2Re(ô ¯̂q)

� λ

2A0
r3βkη̃|ξ|2||ô|2 +

2A0

λr3
βkη̃|ξ|2|q̂|2,

which implies

1
2

d
dt

|q̂|2 +
[
A0

2λ
+
(
ε− 2βkη̃

2λ
A0

r3 − 2A0

λr3
βkη̃

)
|ξ|2
]
|q̂|2 � λ

2A0
r3βkη̃|ξ|2||ô|2.

(A.17)

Finally, combining with (A.16) and (A.17) yields

1
2

d
dt

(
|â|2 + |ô|2 +

r2
βη̃

|ẑ|2 + |q̂|2 − 2ε̃|ξ|Re(¯̂a ô)
)

+
r1ε̃

2
|ξ|2|â|2 +

(
r2ε

βη̃
− ε̃r22

2r1

)
|ξ|2|ẑ|2 +

(
2λ
A0

r3βkη̃ − ε̃r1

)
|ξ|2|ô|2

+
[
A0

2λ
+ (ε− 2βkη̃

2λ
A0

r3 − 2A0

λr3
βkη̃ − A0

4λr3βkη̃
A2

2)|ξ|2
]
|q̂|2

� C|ξ|3|(â, ẑ)||(q̂, ô)| + C|ξ|4|ô|2. (A.18)

Taking ε̃ := min
{

r1ε
2r2βη̃ ,

λr3βkη̃
A0r1

}
, and introducing the Lyapunov functional

L2
com := |â|2 + |ô|2 +

r2
βη̃

|ẑ|2 + |q̂|2 − 2ε̃|ξ|Re(¯̂a ô).

It is clear that, for |ξ| � 1
ε̃ , we have L2

com is equivalent to |â|2 + |ô|2 + r2
βη̃ |ẑ|2 + |q̂|2.

Hence, from (A.18), using Cauchy inequality, there exists a small positive constant
c1 � 1

ε̃ depending only on the parameters ε, k,A0, β, η̃, λ, ε̃ and ri (i = 1, 2, 3) such
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that
1
2

d
dt

L2
com +

r1ε̃

4
|ξ|2|â|2 +

r2ε

4βη̃
|ξ|2|ẑ|2 +

λ

2A0
r3βkη̃|ξ|2|ô|2 +

A0

4λ
|ξ|2|q̂|2 � 0.

Namely, we have

d
dt

L2
com + C3|ξ|2L2

com � 0, (A.19)

for some positive constant C3 independent of |ξ|. Then it follows form (A.19) that
for ξ � c1

|(â, ô, ẑ, q̂)(t)|2 � C e−C3|ξ|2t|(â, ô, ẑ, q̂)(0)|2. (A.20)

Recalling the relation between (â, ô, ẑ, q̂) with (ˆ̄ρ, d̂, ˆ̄η, q̂) in (A.6)–(A.9), and thanks
to (A.20), we can easily deduce the following inequality holds.

|(ˆ̄ρ, d̂, ˆ̄η, q̂)(t)|2 � C e−C3|ξ|2t|(ˆ̄ρ, d̂, ˆ̄η, q̂)(0)|2, for |ξ| � c1. (A.21)

A.1.2. Estimates on (P̂ū, P̂divτ̄ )

We introduce the following corrected modes:

v̂ = P̂ū+
2λ
A0

r3P̂divτ̄ , (A.22)

ŵ = P̂divτ̄ , (A.23)

Then the system (A.5) can be rewritten as⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̂t +

2λ
A0

r3βkη̃|ξ|2v̂ +
2λ
A0

r3

(
ε− 2λ

A0
r3βkη̃

)
|ξ|2ŵ = 0,

ŵt +
A0

2λ
ŵ +

(
ε− 2λ

A0
r3βkη̃

)
|ξ|2ŵ + βkη̃|ξ|2v̂ = 0.

(A.24)

Multiplying (A.24) with ¯̂v and ¯̂w respectively and use Cauchy inequality, we have

1
2

d
dt

|v̂|2 +
2λ
A0

r3βkη̃|ξ|2|v̂|2

= − 2λ
A0

r3

(
ε− 2λ

A0
r3βkη̃

)
|ξ|2Re(ŵ ¯̂v)

� λ

2A0
r3βkη̃|ξ|2|v̂|2 +

2λ
A0βkη̃

r3

(
ε− 2λ

A0
r3βkη̃

)2

|ξ|2|ŵ|2, (A.25)

and

1
2

d
dt

|ŵ|2 +
(
A0

2λ
+ (ε− 2λ

A0
r3βkη̃)|ξ|2

)
|ŵ|2

= −βkη̃|ξ|2Re(v̂ ¯̂w)

� A0

2λr3
βkη̃|ξ|2|ŵ|2 +

λ

2A0
r3βkη̃|ξ|2|v̂|2. (A.26)
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Together with (A.25) and (A.26), it holds that

1
2

d
dt

(|v̂|2 + |ŵ|2) +
λ

A0
r3βkη̃|ξ|2|v̂|2

+

[
A0

2λ
+

(
ε− 2λ

A0
r3βkη̃ − A0

2λr3
βkη̃ − 2λ

A0βkη̃
r3

(
ε− 2λ

A0
r3βkη̃

)2
)
|ξ|2
]

× |ŵ|2 � 0. (A.27)

By choosing |ξ| � c2, which makes A0
2λ +

(
ε− 2λ

A0
r3βkη̃ − A0

2λr3
βkη̃ − 2λ

A0βkη̃

r3(ε− 2λ
A0
r3βkη̃)2

)
|ξ|2 � A0

4λ � A0
4λ |ξ|2 true. Then, from (A.27), we have

1
2

d
dt

(|v̂|2 + |ŵ|2) +
λ

A0
r3βkη̃|ξ|2|v̂|2 +

A0

4λ
|ξ|2|ŵ|2 � 0.

Hence, there exists a positive constant C4 independent of |ξ| such that

d
dt

(|v̂|2 + |ŵ|2) + C4|ξ|2(|v̂|2 + |ŵ|2) � 0. (A.28)

Thanks to (A.28), we can deduce

|(v̂, ŵ)(t)|2 � C e−C4|ξ|2t|(v̂, ŵ)(0)|2, for |ξ| � c2. (A.29)

Further, from the definitions (A.22) and (A.23), (A.29) implies that, for |ξ| � c2,

|(P̂ū, P̂divτ̄)(t)|2 � C e−C4|ξ|2t|(P̂ū, P̂divτ̄)(0)|2. (A.30)

A.1.3. Decay estimates of the low frequency part

Taking c0 = min{c1, c2}, and combining with (A.21) and (A.30), we have the
following proposition.

Proposition A.1. It holds that, for |ξ| � c0,

|(ˆ̄ρ, d̂, ˆ̄η, q̂)(ξ, t)|2 � C e−2C5|ξ|2t|(ˆ̄ρ, d̂, ˆ̄η, q̂)(ξ, 0)|2

and

|(P̂ū, P̂divτ̄)(ξ, t)|2 � C e−2C5|ξ|2t|(P̂ū, P̂divτ̄)(ξ, 0)|2,
for some positive constant C5 independent of ξ.

For the low frequency part, we have the following decay estimates for solutions
to the linearized problem (A.1), (2.3).

Proposition A.2. It holds that

‖∂m
x (ρ̄, ū, η̄,divτ̄)L(t)‖L2 � C(1 + t)−

3
4− |m|

2 ‖(ρ̄, ū, η̄,divτ̄)(0)‖L1 ,

and

‖∂m
x (ρ̄, ū, η̄,divτ̄)L(t)‖L2 � C(1 + t)−

|m|
2 ‖(ρ̄, ū, η̄,divτ̄)(0)‖L2

for any |m| > 0.
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Proof. By using Plancherel’s theorem and proposition A.1, we have

‖∂m
x (ρ̄, d, η̄, q)L(t)‖L2

= ‖(iξ)m(ˆ̄ρ, d̂, ˆ̄η, q̂)‖L2
ξ(|ξ|�c0)

�
(∫

|ξ|�c0

|ξ|2|m||(ˆ̄ρ, d̂, ˆ̄η, q̂)(ξ, t)|2dξ
) 1

2

� C

(∫
|ξ|�c0

e2C5|ξ|2 |ξ|2|m| e−2C5|ξ|2(1+t)|(ˆ̄ρ, d̂, ˆ̄η, q̂)(ξ, 0)|2 dξ

) 1
2

� C

(∫
|β|�c0

√
1+t

|β|2|m|(1 + t)−|m|− 3
2 e−2C5|β|2 |(ˆ̄ρ, d̂, ˆ̄η, q̂)(ξ, 0)|2 dβ

) 1
2

� C(1 + t)−
3
4− |m|

2 ‖(ˆ̄ρ, d̂, ˆ̄η, q̂)(0)‖L∞

� C(1 + t)−
3
4− |m|

2 ‖(ρ̄, ū, η̄,divτ̄)(0)‖L1 . (A.31)

Moreover, we can also deduce

‖∂m
x (ρ̄, d, η̄, q)L(t)‖L2 � C(1 + t)−

|m|
2 ‖(ρ̄, ū, η̄,divτ̄)(0)‖L2 .

By similar calculations, we can get

‖∂m
x (Pū,Pdivτ̄)L(t)‖L2 � C(1 + t)−

3
4− |m|

2 ‖(ū,divτ̄)(0)‖L1 .

and

‖∂m
x (Pū,Pdivτ̄)L(t)‖L2 � C(1 + t)−

|m|
2 ‖(ū,divτ̄)(0)‖L2 .

Then, we finish the proof of proposition A.2. �

Appendix A.2. Some useful inequalities

Let 0 � ϕ0(ξ) � 1 be a function in C∞
0 (R3) such that

ϕ0(ξ) =

{
1, |ξ| � c0

2 ,

0, |ξ| � c0,

where c0 is a positive constant. Based on the Fourier transform, we can define a
low and high frequency decomposition (fL(x), fh(x)) for a function f(x) as follows

fL(x) = F−1(ϕ0(ξ)f̂(ξ)), and fh(x) = f(x) − fL(x). (A.32)

The following lemma can be obtained directly from the definition (A.32) and
Plancherel’s theorem.
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Lemma Appendix A.2.1 [38]. If f ∈ Hm(R3)(m � 2) is divided into two parts
(fL, fh) by the low and high frequency decomposition (A.32). It holds that

cm1−m2
0 ‖∇m2fh‖L2(R3) � ‖∇m1f‖L2(R3),

for any integers m1 and m2 with m2 � m1 � m.

Finally, the following elementary inequality will also be used.

Lemma Appendix A.2.2 [15]. If a > 1 and b ∈ [0, a], then it holds that∫ t

0

(1 + t− s)−a(1 + s)−bds � C(a, b)(1 + t)−b.

Lemma Appendix A.2.3 [14, 41]. Let m � 1 be an integer, then we have

‖∇m(fg)‖Lp(Rn) � C‖f‖Lp1 (Rn)‖∇mg‖Lp2 (Rn) + C‖∇mf‖Lp3 (Rn)‖g‖Lp4 (Rn),

where 1 � p, pi � +∞, (i = 1, 2, 3, 4) and

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4
.
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22 C. Guillopé, Z. Salloum and R. Talhouk. Regular flows of weakly compressible viscoelas-
tic fluids and the incompressible limit. Discrete Contin. Dyn. Syst. Ser. B 14 (2010),
1001–1028.
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