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Abstract

The A-quiddities of size n are n-tuples of elements of a fixed set, solutions of a matrix equation appearing
in the study of Coxeter’s friezes. Their number and properties are closely linked to the structure and the
cardinality of the chosen set. Our main objective is an explicit formula giving the number of A-quiddities
of odd size, and a lower and upper bound for the number of A-quiddities of even size, over the rings Z/2"Z
(m > 2). We also give explicit formulae for the number of A-quiddities of size n over Z/8Z.

2020 Mathematics subject classification: primary 05A15; secondary 0SE16.
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1. Introduction

Coxeter’s friezes are mathematical objects which are closely linked to many topics
(see for example [8]). They were introduced at the beginning of the 1970s by Coxeter
(see [2]) and are defined as tables of numbers, belonging to a fixed set, having a
finite number of lines of infinite length, arranged with an offset, and for which some
arithmetic relations are verified. One of the main elements of the study of Coxeter’s
friezes is the resolution of the following equation over the chosen set:

a, —-1\(a,.; -1 a -1
M, (a,...,a,) = = —Id.
1 0 1 0 1 0

In particular, the intervention of the matrices M,(ay,...,a,) is very interesting since
they are involved in the study of many other mathematical objects, such as ‘negative’
continued fractions and discrete Sturm-Liouville equations.

The study of the previous equation naturally leads to the generalised equation

My(ay,..., a,) = +Id (ER)
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2 F. Mabilat 2]

over a subset R of a commutative and unitary ring A. We will say that a solution
(ai,...,a,) of (Eg) is a A-quiddity of size n over R (if there is no ambiguity, we will
omit the set over which we are working) and our goal is to study these objects over
different sets. There are several ways to achieve this objective. For example, we can
try to find a recursive construction and a combinatorial description of the solutions.
In this way, we have precise results about the solutions of (Ey-) (see [10]). We can
also define a notion of irreducible solutions and study them (see for example [3, 5, 6]).
We can also, and this is what we will do here, look for general information, such as
the number of solutions of fixed size. In this direction, we already have formulae for
R =N (see [1]) and for R = [F,. We recall the results in this case. For g the power of a
prime number p, B € SL,(FF;) and n € N*,

u;’q = H(ar,...,a,) € Fy, My(ay, ..., a,) = 1d}|

U, = Man, ... a,) € F!, M,(ai,...,a,) = -Id}|.

Moreover, if m € N* and k > 2,

el (m) k- - 1)
k-1 M \2) T Thk-nwe-

[m] =

THEOREM I.I (Morier-Genoud, [9, Theorem 1]). Let g be the power of a prime
number p and b € N, n > 4.

(i) Ifnisodd, then u,,, = [*5*] .
(1) Ifnis even, then there exists m € N* such that n = 2m.
@ Ifp=21u,=(q- ;) +¢""
(b) Ifp>2andmiseven, u,, = (q- 1)(';)(].
> . - — _ m m—l.
(©) Ifp>2andm>3isodd, u,,=(q 1)(2)q +q

Another proof of this result can also be found in [11].

THEOREM 1.2 [4, Theorem 1.1]. Let q be the power of a prime number p >?2 and
neN, n>4.

: . + _ - _n=l
(1) Ifnis odd, then uy , = u, , = [%5-1p.
(1) Ifn is even, then there exists m € N* such that n = 2m.

(@) Ifmiseven, u,, = (q- D@)q +qm

(b) Ifm >3 isodd, uf, = (g - 1)(3),

We will consider the case of the rings Z/NZ, that is to say, we will be interested in
the equation (Ez/nz) := (Ey). Note that the resolution of (Ey) is linked to the different
expressions of the elements of the congruence subgroup

['(N) := {C € SL,(Z), C = +Id [N]}.
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[3] Counting formulae for A-quiddities 3

Indeed, we know that all the matrices of SL,(Z) can be written in the form
M,(ai,...,a,), with a; a positive integer. Since this expression is not unique, we are
naturally led to look for all the expressions of this form for a given matrix or a set of
matrices. Note that we already have many results concerning the solutions of (Ey) (see
for example [5, 7]).

Our objective is to obtain the number of 1-quiddities of odd size, and an upper and
lower bound of the number of A-quiddities of even size, over the rings Z/2"Z. We
will also give a complete formula for Z/8Z. For this, forn > 2, m > 2 and € € {-1, 1},
we write Q(m) :={(ai,...,a,) € (Z/2"2Z)", M,(ai,...,a,) = €ld}, w;,zm = QL m)|,

We already have the following result.

+

n’2l11 + W7

= |Q, ' (m)| and w,om 1= w o

Wn,2’”

THEOREM 1.3 [4, Theorem 1.3]. Let n > 3.

() Ifnisodd wi,=w,,=3(4"2-2"3),
(1) Ifnis even, then there exists m € N* such that n = 2m.

(a) Ifmis even, W;A = %(4”‘2 +4x2"3) and Wy = %(4”_2 — 212,
(b) Ifmisodd, w;, = 342 =2"2) and w, , = (4" + 4 x2"),

We will prove the following two results.

THEOREM 1.4. Letm > 2 and € € {—1, 1}.
(1) Letn > 2. We have the equality:

. B 22mn—2n—2m—1(22n+3 _ 8)
Wone1,2m = Wopeyom = 3 .

(i1) Let n > 3. We have the two inequalities:

(@ 1Q5,0m)] > 1A, (m)| + 2" YAS,_ (m)l +m2"NAS,_ (m);

(b) 1Q5,(m)| < |AS, (m)| + 2" |AS, _ (m)] + 22" 2|AS, | (m)],
with |AS(m)| := 2m==3mn+l 4 8 x (=1)*1) /3.

THEOREM 1.5. Let n > 2. We have the two formulae:

. B 26n—2n—7(22n+3 _ 8) '

Wont1,8 = Wane18 = 3 ’
24n—5 _ 2311—3 + 26n—6 _ 23n
3 .

W g = 28 X 82 +

Theorem 1.4 is proved in Section 2.2 while the proof of Theorem 1.5 is given in
Section 2.3. To prove the theorems, we will first focus on the cardinality of the set
{(ar,...,a,) € (Z/2"2)", M,(ay,...,a,) = €ld and a, invertible} and then relate it to
|25 (m)|. More precisely, we will construct bijections which will allow us to find some
direct or recursive relations satisfied by the desired cardinalities.
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2. Proofs of the counting formulae

2.1. Preliminary results. The aim of this section is to provide some elements which
will be useful in the proofs of our main theorems. Throughout this section, U(m) :=
{x € Z/2"Z, x invertible}, QB(m) := {(ay,...,a,) € (Z/2"Z)", M, (a1, ...,a,) = B}.

PROPOSITION 2.1 [4, Lemma 2.16 and Proposition 2.18].

(i) Let A be a commutative and unitary ring. Let n = 21 > 4 and A be an invertible
element of A. Let (ay, . ..,a,) € A". If M, (ay,...,a,) = €ld, with € € {1, -1}, then
M,(Aay, A ay, ..., day_1, A an) = €ld.

(i1) Let A be a commutative and unitary ring. Let n € N*, n odd. The map

Son: {(ala .. -,an) eAVl’ Mn(a17 e »an) = Id}
— {(ai,...,a,) € A", My(ay, ..., a,) = -1d}

defined by (ay, . ..,a,) — (—ay, ..., —ay) is a bijection.

LEMMA 2.2. Let A be a commutative and unitary ring, and (a, b, c,u,v) € Ad.

(1) Ms(a, 1,b) = My(a—1,b - 1).
(i) Ms(a,—1,b) = —Mr(a+ 1,b + 1).
(iii) Suppose uv — 1 is invertible. Then

My(a,u,v,b) = Ms(a+ (1 = v)wv — )™, uv = 1,b + (1 — u)(uv — D).
(iv) Suppose v is invertible and x = (vb — 1)(uv — 1) — 1)v™! is invertible. Then

Ms(a,u,v,b,c) = Ma(a— (vb—2)x7 ", x,¢ — (uv = 2)x71).

PROOF. These formulae can be verified by direct computations. Note that items (i),
(i1) and (iii) are given in [3, Section 4]; item (iv) was an important formula obtained
by Cuntz during the preparation of [4] (private communication to the author in
2023). i

PROPOSITION 2.3. Let N =2", m > 2, B € SLy(Z/NZ) and n > 4. We define the set
AB(m) :={(ay,...,a,) € (Z/2"Z)", M,(ai,...,a,) = B and a; € U(m)}. Then

IAZ(m)| = 2" AL (m)| + 22" AR ().
PROOF. Letm > 2, B € SLy(Z/2"Z) and n > 4. We begin by defining

« OB(m) :={(ay,....an) € (Z/2"Z)", My(ay, ..., a,) = B;

o Af(m) ={(ay,...,a,) € Qf(m), a; € U(m)};

e AB(m,x) :={(ai,...,a,) € QB(m), ar = x};

oy : U(m) x U(m) X Z/2"Z —> U(m) where (u, v, w) — ((vw — D)(uv — 1) = 1)y~
e T(m,x) :={(u,v,w) € Um) X U(m) X Z/2"Z,y(u,v,w) = x}, x € U(m).
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We have the following equalities:
Ay = | | W, an) € QBm), @ = u)
uelU(m)

= | | t@,....a) € Qfm), @ = wand a3 ¢ U(m))
uelU(m)

X3 (u)

|| ] t@.....a» e Qftm), a2 =uand as = v}.

uelU(m) veU(m)

YB(u.v)

Letu = a+2"Z € U(m) (a € Z). We consider the sets XZ(u) and Y53 (u, v) separately.

We begin with Xf (u). Letv = b + 2™Z (b € Z) be a noninvertible element of Z/2"Z.
Then b is an even integer, so that ab is even and ab — 1 is odd. Thus, uv — 1 € U(m).
By Lemma 2.2(iii), we can define the following two maps:

* fou : XB(u) — AP (m) which takes (a1, u,a3,...,a,) to

(a1 + (1 = az)(uaz — 1) uazy — 1,a4 + (1 — u)(uaz — 1), as, ..., a,);
* gnu : AP (m) — XB(u) which takes (ay, . ..,a,-1) to

(a1 + W (@ + D)= Day  uu™ @z + 1), a3 + (u— Day'as, ..., ay1).

Then f,, and g, are reciprocal bijections, and |X? (w)| = |A_ (m)|.
Next, we consider Y2(u,v). Let v= b +2"Z (b € Z) be an invertible element of
Z/2™7Z. We have

Yf(u,v) = |_| {(ar,...,a,) € Qf(m),az =u, a3 =vand as = w}.
WeZ/2"Z.

ZB(u,v,w)

Hence, we will consider the sets Zf(u, v, w). Let w be an element of Z/2"Z, and a and
b odd integers. Then ab is odd and ab — 1 is even. Hence, uv — 1 is not invertible.
Let x = ¢(u,v,w) = (hw— 1)(uwv — 1) — 1)v~!. Since uv —1 is not invertible, x is
invertible. By Lemma 2.2(iv), we can define the following two maps:

* My = ZB(u,v,w) — AB(m, x) where
(@i, u,v,w,as,...,a,) — (@ — (ow = 2)x"" x,a5 — (v = 2x~', ag, ... ., ay);
* kv 1 AB ,(m,x) — ZB(u, v, w) where
-1 -1
(ai,...,an0)— (a1 + (vw=2)x ", u,v,w,az + (uv —2)x ,d4,...,0,_2).
Then /0 and Ky, are reciprocal bijections. Hence, |Z2 (u, v, w)| = |AZ (m, x).
Now, we give some properties of the sets 7(m, x). First,

U(m) x Um) x (Z/2"Z) = I_I {(u,v,w) € U(m) x U(m) X Z/2"Z, y(u, v, w) = x}.
xelU(m)
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Let x € U(m). We define two maps:

a: T@m,1) — T(m, x) Bi: T(mx) — T(m,1)
w,v,w) +—  (ux,vx~', wx) w,v,w) +—  (ux~ ' vx,wx™ ")’

Then a, and g, are reciprocal bijections, so |T(m, x)| = |T(m, 1)|. Moreover,

272 = UGm) X UGm) X (Z/2"Z) = ) 1T0m,2) = 2"~ T(m, D).
xeU(m)
So, |T(m, x)| = |T(m, 1)| = 2>"~1,
If we collect all these observations,

Afeml = > XK@+ Y YEa, )

uelU(m) u,velU(m)
= D el Y (Y )
ueU(m) u,veU(m) wezZ/2"Z

el i+ Y (Y v w)

xeU(m) (u,v,w)eT(m,x)

=2" AR )+ ) ( > |Af_2(m,x)l)

xeU(m)  (u,v,w)eT(m,x)

= 2" NAE )+ " TOm, lIAL,(m, x)]
xeU(m)

= 2" AL (m)l + 1TGn, D] Y A5 (m, )
xeU(m)
= 2m_1|Af_l(m)| + |T(m’ l)llAf—Z(m)l
= 2" NAE ()| + 22" |AE (). .
REMARK 2.4. Let x#y be two invertible elements of Z/2"Z. In general,

IAf(m, x)| # IA,’f(m,y)I. For instance, by computation, we find the following values:
IA¥(3,1+8Z)| = 20 and |AY'(3,3 + 8Z)| = 8.

PROPOSITION 2.5. Let N =2", m > 2, B € S1,(Z/NZ) and n > 4. We define the set
Af(m) ={(ay,...,a,) € (Z/NZ)', M,(a,,...,a,) = Band a, € U(m)}. Then

2mn—n—4m+l(2n + (_l)n % 8) 2mn—n—3m(2n + (_l)n+1 % 16)

A (m)| = 3 |AZ (m)] + 3 |AS (m).
PROOF. We set
-1
m—1 2m—1 1 1 _om | —— -1
A=(21 20 ) and Pz[l —1], sothat 7! = —/ 2’_"11 .
2_m 2m—l 3 ﬁ 1
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[7] Counting formulae for A-quiddities 7

TABLE 1. Numerical values of |A}Id(3)\ and \Afl(_%)l for small values of n.

n 3 4 5 6 7 8 9 10

[AY@3) 1 4 48 320 2816 21504 176128 1392640
IAS3)) 0 8 32 384 2560 22528 172032 1409024

By the previous proposition,

( |AB(m)| ) _ (Zm_l 22"’_1) (|Af_l(m)|) _ qgnh (lAf(m)l)
|AB (m)] 1 0 J\AZ ,(m)| A (m)])
Moreover, A = P( 2(')" 723,, )P~!'. Hence,

grmmn Al (n 4 (—1)" X 8)
3
L2 (1 X 16)

3
Let S:=(97") and 7 := (| }). Then SL,(Z) is generated by S and 7 and we have
M (ai,...,a,) =T*"S---T“S forall (ay,...,a,) € Z".

Az (m)| = AG(m)|

AT (m)]. O

COROLLARY 2.6. Letm > 2 and n > 4. Then

2mn—n—3m 2n+l 8 —1 n+1
A )] = 1A, ) = @7 r8xC),

3
B 2mn7n73m+1 (zn + (_l)n X 8)
A (m)] = 1A, (m)| = 3 ;
~ 2mn7n73m(2n+l + 8% (_1)n+1)
AL )] = 1A, (m)] = 1A (m)| = 3 -
PROOF. We apply the formula given in the previous proposition with the following

values:
A )l = A7)l = 2771, 1A ()] = 1A (m)| = 1;
ASm)| = A m)| = 27, 1AS(m)| = A% (m)] = 0;
AL m) = 18T m)l = 2771, AL ()] = (AT (m)] = 1.
For instance, we have the values shown in Table 1.

PROPOSITION 2.7. Let N = 2", m > 2, B € SL,(Z/NZ) and n > 3. We define the set
AZ(m, 1) := {(ay,....a,) € Qi(m), ay = —1}. Then |A](m, =1)| = |7, (m)|.

PROOF. By Lemma 2.2(ii), (ay,...,a,) € AB(m,~1) - (a; + L,a3 + l,a4,...,a,) €
Q% (m) is a bijection. O
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LEMMA 2.8. Let m > 2. Then |{(x,y) € (Z/2"Z) — U(m))?, xy = 0}| = m2" ",
PROOF. We have the following equalities:
R = {(x,y) € (Z/2"Z) - U(m))*, xy = 0}
={(0,y), y € (Z/2"Z) — U(m)} U {(x,0), x € (Z/2"Z) — U(m) and x # 0}
L{Qa+2"2,2'b+2"Z), 1 <k<m—-1,m—k<Il<m-1,
a,bodd,0 < 2%a,2'b < 2™).

Hence,

m=1 m—=1
|R| — 2mfl + 2mfl — 1+ szfkfl Z 2mflfl
k=1

I=m—k
m—1
1 2
_Am 2m-2 —k
L ) Z?W(l—z )
k=1
=2" 1+ 2" m=1-(1 =271 = m2m!. O

PROPOSITION 2.9. Letm > 2. Then wj[g,,, =(m+2)2"", WZ,zm =2"
PROOF. (i) Q}(m) = {(-y,x,y,—x) € (Z/2"Z)*, xy =0}. Hence, by the previous
lemma,
Q4 (m)] = l{(x,y) € (Z/2"Z) - U(m))*,xy = 0}] + {(x, 0),x € U(m)}|
+1{(0,y),y € Um)}| = (m +2)2"".
(i) Q;'(m) = {(v,x,y,%) € (Z/2"Z)*, xy=2+2"Z}. Let x=2a+2"Z and y =

2b+2"7Z, (a,b) € 72. Then xy =4ab +2"7 # 2 + 2™Z since 4ab — 2 is not a multiple
of 2" (m > 2). So, xy = 2 implies x € U(m) or y € U(m). Hence,

19 mll = [{(=2x7",x, 2071, =), x € U + (=, 2y, y, =2y7), y € Um))| = 2"
O

2.2. Proof of Theorem 1.4. LetN =2",m > 2,n > 2 and € = 1. Define the sets:

e Qf(m) :={(ay,...,a,) € (Z/2"Z)", M\(ay,...,a,) = eld};
e Av(m) :={(ar,...,a,) € (Z/2"Z)", My(ay,...,a,) = €ld and a; € U(m)};
e As(myu) = {(ay,...,a,) € Qs(m), a, = u} for u € U(m).

(i) By Proposition 2.1(i) and Lemma 2.2(i), we can define the maps:

(VS A5, (m, u) — Q5 (m)
(ar,u,as,...,a0) +— (qqu—lazu—1,a " asu, ..., apu™")
Opu Q5 (m) — A5, (m, u)
@,...,am1) +— (a1 +Du "V u,(a+ Du'asu, ..., am1u)"

Then ,, and 6,, are reciprocal bijections. Hence, Q5 _,(m)| = |AS, (m,u)| and so
IAS, (m, w)| = |AS, (m,v)| for all u,v € U(m).
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Moreover, |AS, (m)| = X ,cum IAS, (m, w)| = 2m"|£2;n_l(m)|. By Corollary 2.6,

2mn—2n—3m(22n+1 + 8% (_1)2n+1) 22mn—2n—4m+1(22n+1 _ 8)
3x 2 B 3 ’

+ _ 1 _
Woy1om = 1€, (M) =

So, by Proposition 2.1(ii),

22mn—2n—2m—1(22n+3 _ 8)

+ D -
Wonstom = Wopsrom = 3
(i1) Let n > 3. We have the equality:

Qs,my =As,0m | | || (... a0) €Q5,0m), ar=x, a3 =y}
x¢U(m) yeZ/2"Z

G;n(x’y)
=as,om | ] || 6w ||| ] Gy
x¢U(m) yeU(m) x¢U(m) y¢U(m)

Letx = a + 2™Z (a € Z) be anoninvertible element of Z/2"Z. Lety = b + 2"Z (b € Z).
Then a is an even integer, so ab is even and ab — 1 is odd. Thus, xy — 1 € U(m). By
Lemma 2.2(iii), we can define the two maps: oy, : G5, (x,y) — A5, (m,xy — 1)
where

(@1, X, Y, a4, ..., a20) > (@ +(1=))xy-D 7" xy = Lag+(1-0)xy - D7 as, ..., az)
and 7,y : A5, (m,xy — 1) — G5, (x,y) where
(ar,xy— 1L as,...,a-1)
— (@ - (1 =yay - DL yas— (1 -y — D7 aa, ... az1).

Then o,y and 7, are reciprocal bijections. Hence, |G5, (x, y)| = |AS, _,(m,xy — 1)|.

Let y € U(m). Then x € (Z/2"Z — U(m)) — xy — 1 € U(m) is a bijection. Indeed,
let z € U(m). The equation xy — 1 = z has exactly one solution, x = (z + 1)y~!, in
(z/2"Z) — U(m). Hence,

‘ |_| u G;n(x,y)‘: Z Z G5, (x, y)l = Z Z IAS,_ (m,xy — 1)

x¢U(m) yeU(m) yeU(m) x¢U(m) yeU(m) x¢U(m)
= >0 DTNl = D IAS,  (m)
YyeU(m) zeU(m) yeU(m)
= 2" AS,  (m).
Moreover,

’ |_| Gin(xsy)l= Z G5, (x, ) = Z IAS,_ (m,xy = 1)|.

x,y¢U(m) x,y¢U(m) x,y¢U(m)
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TABLE 2. Different possible values of xy — 1 for x, y noninvertible elements of Z/8Z.

xy 0+8Z 2+8Z 4487 6+8Z
0+ 8Z -1+ 8% -1+ 8% -1+ 8Z -1+ 8Z
2+ 8Z -1+ 8% 3+ 8Z -1+ 8Z 3+ 8Z
4+ 87 -1+ 8% -1+ 8% -1+ 8Z -1+ 8Z
6+ 8Z -1+ 8% 3+ 8Z -1+ 82 3+8%Z
So,
|_| G;n(x’ y) < Z |A§n—l(m)| = zzm_zlAgn—l(m)l‘
x,y¢U(m) x,y¢U(m)
In addition,
‘ |_| G5, (x,y)| = u G, (x,y)| = m2" ' |AS,_,(m)l.
x,ygU(m) x,y¢U(m),xy=0

Indeed, let x,y be two noninvertible elements of 7Z/2"Z satisfying xy = 0.
Then (-y,x,y,—x) € Q}l(m). For all elements (ay,...,ax-4) € A5, ,(m), we have
(=, %y, =x,a1,...,a23-4) € G5, (x,¥). So, |G5, (x,y)| > |AS,_,(m)|. By combining this
with the result of Lemma 2.8, we reach the desired inequality.

Hence,

AS, (m)| + 2" AS,_ ()] + m2" A, (m)|
<[5, (m)| < |AS, (m)| + 2771 AS,_ (m)] + 22" 2AS, ().

If we associate this inequality with the formula given in Corollary 2.6, we have the
result given in the theorem.

2.3. The case of Z/87Z. The aim of this section is to prove Theorem 1.5. We use the
notation introduced in the previous section.

We already have the formula for w;n 118 = Wan1g: Letn >3and e € {—1, 1}. We will
focus on Q5 (3)] + €25 (3)]. The proof of Theorem 1.4 gives us the following formula:

195, 3)] = 1A5,3)] + 4IA5,_, (3 + Z 1A%, (3, xy = D).
x,y¢U(3)

To give a complete formula, we have to study the value of 3, \q13) A5, (3, xy — D).
To do this, we will use the different possible values of xy — 1 (x,y ¢ U(3)) given in
Table 2.

From Table 2,

Z IAS, | (B,xy = D) = 12]AS, (3, —1 + 8Z)| + 4|AS, (3,3 + 8Z)|.
x,y¢U(3)
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Hence,

wang = [€25,3)] + 1€, 3l
= |AS, ) + 41A5,_ B + 12|A5, (3, —1 + 8Z)| + 4|AS, (3,3 + 8Z)| + |AL(3)
+4|A55 B+ 121A55_ (3, —1 + 8Z)| + 4lA5c_ (3,3 + 8Z).

For xeU(m), the map (ai,...,am-1) €A, (3,%) > (=ay,...,—ay-1) €

A5, (3, —x) is a bijection (by Proposition 2.1(ii)). Thus, |A5  (3,x) = |A5,_, (3, —x)I.

Besides, by Corollary 2.6, |A7(3)| = |A;€(3)| for all / > 5. Hence,
wang = 2|A5,(3) + 8|AS, (3 + 12|A5, (3, =1 + 8Z)| + 4|AS,,_, (3,3 + 8Z)]

+ 12|A5; (3, =1 + 8Z)| + 4|A5,_(3,5 + 8Z)|

= 2|A5, )+ 8IAS, B + 12|A5, (3, =1 + 8Z)| + 4]AS5,,_, (3)
+ 12|A5;_ (3, =1 + 8Z)| = 4IA5, (3,1 + 8Z)| = 4|A5,_, (3,1 + 8Z)]

=2|A5, 3 + 12]A5, 3 + 12|A5, (3, =1 + 8Z)| + 12|A5¢_,(3, -1 + 8Z)|
—4|1A5; (3, =1 + 8Z)| - 4|A5, (3, -1 + 8Z)|

=2|A5, (3 + 12]A5, (3] + 8|AS,_, (B, =1 + 8Z)| + 8|A5;_,(3,—1 + 8Z)|

=2|A5, (3 + 12]AS,_,(3)] + 8wy,—25  (by Proposition 2.7).

Hence, by Corollary 2.6,
n—3
24(n—k)—6 +7 X 26(n—k)—9
W8 = Sn_2W4’g + Z Sk 3

k=0

24n—6 n=3 1\ 7 x 269 n=3 1\k

=28 x84+ T — (—) T (—)

3 4\ 3 8

=0
_ wa  2M o 270 e
=28 x 8"+ 3 (1=-2""+ 3 (1 =27

24n—5 _ 23n—3 + 26n—6 _ 23n
3 .

=28 x 8% +

This formula is already true for n = 2. This completes the proof of Theorem 1.5.

2.4. Numerical applications. We can also establish other formulae. Indeed, with
the Chinese remainder theorem, we can easily prove the following results.

COROLLARY 2.10. Let k = py ... p, with p; distinct odd prime numbers. For m > 2

andn > 2,
W;,ka =(ar,...,a,) € (Z]2"kZ)", M,(a;,...,a,) =1d}| = w;’zmu;’plu;’m ... u;p
W = a1, ... an) € (Z/2"kZ), My(ay,...,a,) = -1d}| = (Y /S T T
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TABLE 3. Numerical values of w* ,, for some values of n and N.

nN
) N 16 2 3 40
3 1 1 1 1 1
5 80 320 800 1280 2080
7 5376 86016 489216 1376256 3499776
9 348160 22282240 285491200 1426063360 5666652160
TABLE 4. Numerical values of w, g for small values of n.
n 2 3 4 5 6 7 8 9 10

weg 12 28 160 1440 10752 88320 696320 5605376

We give some values obtained with the formulae given in Theorems 1.4 and 1.5 in
Table 3. We begin with wy , for n odd.
Finally, we consider w,, g in Table 4.
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