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Many studies in fields such as psychology and educational sciences obtain information about attributes
of subjects through observational studies, in which raters score subjects using multiple-item rating scales.
Error variance due to measurement effects, such as items and raters, attenuate the regression coefficients
and lower the power of (hierarchical) linear models. A modeling procedure is discussed to reduce the
attenuation. The procedure consists of (1) an item response theory (IRT) model to map the discrete item
responses to a continuous latent scale and (2) a generalizability theory (GT) model to separate the variance
in the latent measurement into variance components of interest and nuisance variance components. It
will be shown how measurements obtained from this mixture of IRT and GT models can be embedded
in (hierarchical) linear models, both as predictor or criterion variables, such that error variance due to
nuisance effects are partialled out. Using examples from the field of educational measurement, it is shown
how general-purpose software can be used to implement the modeling procedure.

Key words: generalizability theory, item response theory, hierarchical linear models, disattenuation, gen-
eralized partial credit model, generalizability coefficients.

Many studies in fields such as psychology and educational sciences obtain information about
attributes of subjects through observational studies, in which raters score subjects using multiple-
item rating scales. Usually, the items are assumed to measure a unidimensional latent variable
(denoted by θ ), though multidimensional generalizations exist. Examples that we consider in this
article are instruments measuring attributes of teachers such as efficient classroom management
(e.g., Van der Scheer et al., 2019), instructional skills (e.g., Van der Scheer et al., 2017; Bijlsma
et al., 2022), and differential instruction (e.g., Faber et al., 2018).

Observation instruments are typically comprised of polytomously scored items, such as
Likert-type scales. Dichotomously scored items are a special case. Data collected using multiple-
item rating scales are often analyzed using item response theory (IRT) models (van der Linden,
2016) . There are several advantages of using an IRT model over analyzing scores obtained by
aggregating item responses. IRT separates the effects of items and person in the response data.
This so-called parameter separation supports comparison of measures on different, though linked,
instruments, easy handling ofmissing data, including plannedmissingness by design, optimal item
administration designs and heteroscedastic definitions of measurement error. IRT offers the pos-
sibility to explain differences in tests scores across individuals who took (partly) different tests,
without these differences being affected by test- (or item-)specific effects.
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Next to item-related effects, observations may contain rater-related effects and effects due to
other measurement-facets, such as the specific tasks administered or the time-points of admin-
istration. Such measurement effects are often considered a nuisance because they add noise to
the estimates of the attributes of the objects of measurement. Note that in this article the terms
objects, objects of measurement and subjects are used interchangeably, they refer to the target of
themeasurement, say an essay of a student, the proficiency of a teacher, etc. Estimating a so-called
generalizability theory (GT) model allows to disentangle the total variation in observations into
variation due to differences across the objects of measurement (e.g., subjects) and variation due to
measurement error facets (e.g., raters, occasions; Cronbachet al., 1963; Brennan, 2001). Using the
estimates of the variance components, the impact of measurement error on the target of interest
scores can be assessed (Cronbach & Shavelson, 2014) . Further, generalizability coefficients
computed from these variance components can be used to index the (relative) magnitude of the
effect of the sampled measurement occasions on the observed scores of the objects of measure-
ment. These coefficients express the degree to which observed scores can be generalized over the
measurement occasions (e.g., Fan & Sun 2014, Vispoel et al., 2018) and can be adapted to assess
specific types of reliability, like test–retest and inter-rater reliability (e.g., Brennan, 2001, Vispoel
et al., 2019, Shrout & Fleiss 1979, McGraw & Wong, 1996, Ten Hove et al., 2021, 2022).

The combination of an IRT and GT model (labeled the GT-IRT model) provides a powerful
framework for the analysis of ratings obtained by itemized instruments (Patz et al., 2002; Glas,
2012; Choi &Wilson, 2018; Shin et al., 2019; Huang&Cai, 2023) . In this article, it will be shown
how the GT-IRT model can be used to correct for measurement error in an integrated approach—
for instance, how the GT-IRT model can be used to disattenuate regression coefficients in linear
models. The problem that needs to be tackled is that the advantages of IRT outlined above come
with a price. The GT model, and also the possible multilevel models in which the GT model
may be embedded, uses the latent variables θ of IRT as dependent or independent variables
rather than directly observed variables or functions of directly observed variables (e.g., scale
composites). However, these latent IRT variables are estimates rather than direct observations,
and the sampling variance of the θ estimates must be taken into account. One way of dealing
with the problem is using plausible value imputation (see, for instance, Khorramdel et al., 2020).
One of the issues is that the measurement model and structural model (the linear model on the
latent person parameters) must be estimated jointly, and plausible values would not help if they
come from just the measurement model alone and therefore do not have the correct relationship
with the other variables. In the present article, an extension of this approach is used, where the
plausible values are the full set of samples from aMarkov chainMonte Carlo (MCMC) estimation
procedure for a fully Bayesian model (see, for instance, Fox & Glas, 2001, 2003).

This article is structured as follows. First, we present the IRT model to map the discrete
item responses to a continuous latent scale, and the GT model to separate the variance in this
latent measurement into variance components of interest and variance components of nuisance.
Generalizability coefficients to assess the measurements’ reliability and agreement among raters
are also discussed. Second, a Bayesian estimation procedure that allows for the estimation of the
model parameters in an integrated approach is outlined. Third, using examples from the field of
educationalmeasurement, it is shown how theGT-IRTmodel can be embedded in linear regression
and factor analysis models, that incorporate the latent variables associated with the variance of
interest, and how this procedure can be used to answer substantive research questions.

1. Theoretical Background

In this section, we consider a straightforward casewith a fully crossed design. Generalizations
to observational designs that are not fully crossed will be treated in the example sections. We

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 19:49:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


44 PSYCHOMETRIKA

outline the model for a two-faceted observational design where raters (i.e., the first measurement
facet, indexed r = 1, . . . , R) assess objects (e.g., work by students, lessons delivered by teachers;
indexed j = 1, . . . , N ) on a second measurement facet (e.g., tasks, time-points; indexed t =
1, . . . , T ) using an instrument with K items (indexed k = 1, . . . , K ) to provide information
about an attribute of the objects (e.g., teacher proficiency or creativity). It is assumed that each
item k has Mk + 1 response categories labeled m = 0, . . . , Mk and that the instances of both
measurement facets (i.e., the raters and time-points) are randomly sampled from a larger pool of
potential instances of these facets.

To put the presentation of the GT-IRT model in perspective, consider the setup of the first
example that will be presented in the section Empirical Examples. The example pertains to the
evaluation of changes in the instructional skills of 34 teachers after they participated in an intensive
data-baseddecisionmaking intervention (Vander Scheer et al., 2017) . The teacherswere recorded
three times prior to the intervention, and three times after the intervention, and all recordings
were assessed by four independent raters. Instructional skills were measured with an observation
instrument of 35 Likert-scale items with 4 response categories. So in this example, N = 34,
R = 4, T = 6, K = 35 and Mk = 3, for all k.

Note that this setup could also be viewed as a 3-facet j × r × t × k design. However, in IRT
models and their applications, such as in large-scale educational surveys, the items making up a
test are usually treated as a fixed facet, where no generalization to a larger population of possible
items is involved. For simplicity, in subsequent steps we drop the item subscript k from the GT
part of the model. Interactions of item effects with other facets of measurement are still reflected
in the GT-IRT model. For instance, if an incomplete item administration design is used, item
parameters can still vary across other measurement facets (r and t). The possibilities of viewing
items as randomly sampled from some domain will be returned to in the Conclusions section.

1.1. IRT Model

The IRT model is used to map the discrete item responses onto a continuous latent scale and
to model both item and subject parameters. The IRT model used here is the generalized partial
credit model (GPCM; Muraki, 1992) in a logistic representation. This choice is not essential.
Verhelst et al. (1997) have shown that the GPCM generally yields results that are similar to those
obtained by the graded response model (Samejima, 1969) or the sequential model (Tutz, 1990)
. The reason is that their item response curves, relating observed responses and the latent variable
θ , are very close. The same holds for the logistic and normal-ogive (or probit) representation of
these models.

The measurement occasion pertains to the observation of the target of measurement j and
one or more facets that influence the observation, say, a rater r , and a time-point t . In the GPCM,
the probability of a response Y jrtk in categories m = 0, . . . , Mk is given by

P
(
Y jrtk = m

∣∣θ jr t
) = exp

(∑m
h=1 αk(θ jr t − δkh)

)

1 + ∑Mk
y=1 exp

(∑y
h=1 αk(θ jr t − δkh)

) , (1)

where αk is the discrimination parameter of item k, δkh are item-location parameters, and θ jr t

is the latent variable associated with measurement occasion jr t . It is assumed that δk0 = 0 and
summations with upper-bounds and lower-bounds equal to zero yield a zero result. Note that the
denominator is a normalization factor, that is, it is the sum over all response categories to ensure
that the probability of all possible responses equals one. As a consequence, the probability of a
score in the zero-category is given by
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P
(
Y jrtk = 0

∣∣θ jr t
) = 1

1 + ∑Mk
y=1 exp

(∑y
h=1 αk(θ jr t − δkh)

) . (2)

This general formulation can be further extended to more facets (other than items), by adding
more subscripts to the latent variable θ jr t .

1.2. GT Model

TheGTmodel is used to separate themeasurement variance into variance components of inter-
est and nuisance components, based on the different facets of the measurement design. Because
the IRT model in Formula (1) is a probability model that already accounts for the item-specific
effects on the uncertainty of the latent scores and eliminates item-specific random error, the GT
variance decomposition concerns the latent observations θ jr t .

The measure of instructional skills of teacher j by rater r at time-point t , θ jr t is decomposed
into the main effect of the object of measurement (the teacher) and measurement facets, that is,

θ jr t = θ1 j + τ2r + τ3t + τ4 jr + τ5 j t + τ6r t + ε jr t , (3)

where θ1 j , τ2r , and τ3t are the main effects of teacher j, j = 1, .., N , rater r, r = 1, ..R, and time-
point t, t = 1, .., T , respectively. Further, τ4 jr , τ5 j t , and τ6r t , are the two-way interaction effects
between subject j and rater r , and time-point t , respectively. ε jr t is the three-way interaction
effect between subject j , rater r , and time-point k, which is confounded with the random error.

In the examples given below, the variable θ1 j will be used in a mixture of the GT model with
a linear regressions model to reduce attenuation. In the next section, the model will also be used
to construct generalizability coefficients, using the following variance decomposition. The total
variance of θ jr t is decomposed into orthogonal variance components associated with each effect,
that is,

σ 2
θ jr t

= σ 2
1 j + σ 2

2r + σ 2
3t + σ 2

4 jr + σ 2
5 j t + σ 2

6r t + σ 2
7 jr t . (4)

This general variance decomposition model can be applied in many situations. Raters may be
crossedwith allmeasurement occasions ormaybedistributedovermeasurement occasions accord-
ing to some linked design (see Empirical Example 2). Facets may be random (drawn from a pool
of possible instances) or fixed (when the possible tasks making up a facet are limited). Further, the
ratings may pertain to an absolute judgement (where agreement of raters is relevant) or a relative
judgement (pertaining to the ordering of objects where consistency across raters is relevant).

1.3. Reliability and Agreement in the GT-IRT Model

Based on the GT-IRT model defined in the previous sections, generalizability coefficients
are summary statistics that express the reliability of ordering subjects and are of interest for
correlation studies and linear regression analysis. These coefficients also offer the opportunity to
assess the reliability of the absolute standings of subjects on an attribute, such as a latent score on
a diagnostic test. This is accomplished using indices of dependability, which are closely related to
intraclass correlation coefficients (ICCs) for agreement. The difference will be discussed below.

Bechger et al. (2003) point out that the concepts of reliability in classical test theory (CTT)
and IRT are very much alike. Both are derived from the variance decomposition var(θ) =
var(E(θ |y)) + E(var(θ |y)), where θ is a true score or latent person variable, var(θ) is the
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population variance of θ and E(θ |y) is the expectation of θ given the observations y. Reliability
is expressed as a variance ratio, that is,

ρ2 = 1 − E(var(θ |y))
var(θ)

= var(E(θ |y))
var(θ)

. (5)

The true score θ is unknown, so an estimator is plugged in. In IRT, this leads to the so-called
expected a posteriori (EAP) score. Note that var(E(θ |y)) is the variance of the EAP estimates over
the complete sample of responses. Themeasurement error on the latent scale, that is E(var(θ |y)),
consists of two elements: the uncertainty regarding the position of θ on the latent scale given the
response pattern y and the uncertainty modeled by a GT model.

Besides being an easy summary of the generalizability of the assessments, generalizability
coefficients also support a so-called design study (D-study). In this approach, the variance com-
ponents of the GT model are estimated first in a so-called generalizability study (G-study), and
subsequently the results are used in a D-study to estimate the number of raters, time-points and
other possible facets to obtain a certain target reliability level. To define generalizability coeffi-
cients that facilitate this, an EAP estimator is defined that is analogous to the test score used in CTT
and its’ extension, generalizability theory, which is S j = ∑

r,t Y jr t/RT , where Y jrt is a manifest
continuous observation or total score. So we take the average over raters and time-points, that is
S j = ∑

r,t θ jr t/RT . After decomposing the variance of S j in a GT-IRT model, in the D-study
the desired reliability of an assessment averaged over raters and time-points can be estimated by
varying the number of raters R and the number of time-points T in

ρ2
R = σ 2

1 j

σ 2
1 j + σ 2

4 jr/R + σ 2
5 j t/T + σ 2

7 jr t/(RT )
, (6)

with σ 2
1 j = Var(E(S j |Y j )) and vector Y j is the concatenation of all responses given regarding

teacher j . The other variance components are posterior variances with an analogous definition, for
instance, σ 2

2r = Var(τ2r |Y j ). Note that Formula (6) is analogous to the expression for reliability
in the CTT-version of GT, only the variance components are defined differently. Note further that
the three variance components present in Formula (4), that is, σ 2

2r , σ
2
3t and σ 2

6r t , do not appear in
the denominator of Formula (6). The reason is that the assessment is averaged over time-points
and raters, so it works out the same for all objects in the sense that their ordering is not affected
by these factors. If the interest is in an absolute assessment rather than a relative assessment,
the assessments of the various raters on various occasions must be as similar as possible. Then,
the three omitted variances become important and must be included in the denominator of the
coefficient. This leads to a coefficient of Agreement given by

ρ2
A = σ 2

1 j

σ 2
1 j + σ 2

2r/R + σ 2
3t/T + σ 2

4 jr/R + σ 2
5 j t/T + σ 2

6r t/(RT ) + σ 2
7 jr t/(RT )

. (7)

The variance components are posterior variances defined analogously to the variance components
in Formula (6). Again, the expression for Agreement is analogous to the expression in the CTT-
version of GT, but with a different definition of the variance components.

In IRT, two versions of reliability are distinguished: global reliability and local reliability.
Global reliability refers to the concept as it is used in CTT, say, the extent to which two randomly
chosen persons from some population can be distinguished, either in the available sample, or
in circumstances with the same number, but other raters and time-points sampled from their
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respective populations, available. Local reliability is defined locally on the latent scale and refers
to the precision with which θ j is placed on the θ -scale. Local reliability is, for instance, of interest
for assessing the probability that a person is above or below some cut-off point on the latent scale,
or for assessing to what extent two latent scores θ j and θ j ′ can be distinguished. The value of
a person’s latent variable can be estimated by its posterior expectation and the precision of the
estimate can be represented by the associated posterior variance. If the measurement involves
raters and time-points, the introduction of a GT model on θ follows the same lines as above.
However, the variance component in the numerator now only pertains to one specific person
j . Therefore, the numerator of Formula (5) becomes var j (E(S j |Y j )), and the denominator is
adapted accordingly.

1.4. Estimation

In the examples, concurrent estimates are made for three integrated models: an IRT model,
a GT model and a linear model.

First, we need to find a suitable IRT model. As already mentioned above, IRT models have
many advantages but these advantages only apply when two conditions are met: the IRT model
must fit the data, and when linking the model via the latent variable θ to a GT model, or any
other regression model for that matter, the variance in the estimates of the latent variables must
be properly taken into account. Starting with the requirement of model fit, it must at least be
shown that the item parameters apply to all sub-populations (say all raters, all time-points, etc.)
and that the item response probabilities given by the formulas 1 and 2 as a function of θ jr t lead
to a reasonable representation of the data in all these sub-populations. The latter is known as the
requirement of no differential item functioning. Two approaches are possible to evaluate these
requirements. The first is to run a separate analysis in a frequentist framework, say a marginal
maximum likelihood (MML) framework and use the by now quite comprehensive collection of
fit indices available in such a framework (see, for instance, Glas, 2005). The second approach
is to evaluate the requirements in the Bayesian framework used for the concurrent estimation of
the GT-IRT model (see, for instance, Fox, 2010, Levy & Mislevy, 2016). Though testing the IRT
model is an essential first step, it is beyond the scope of the present article.

The next step is to obtain a concurrent estimate of the parameters of the GT-IRT model and
the regression model. At least two options are open: an MML procedure or a Bayesian approach.
A drawback of the MML approach is that the complex dependency structures in the data requires
the evaluation of various nested integrals (see, for instance, Fox & Glas, 2001, p. 287). A fully
Bayesian approach does not have that drawback. An MCMC procedure can be used to generate
the posterior distributions of all parameters. From these distributions, point estimates can be
obtained from their posterior means or medians. The repeated draws created in the procedure are
equivalent to a huge set of plausible values. One of the nice things about Bayesian estimation using
MCMC computational methods is that functions of parameters can be sampled along with their
constituent parameters. Therefore, the computation of credibility regions for the generalizability
coefficients, which are functions of variances, is relatively straightforward. Further, a Bayesian
approach allows to incorporate prior beliefs about the distribution of model parameters, which
eases estimation of, e.g., variance components for small sample sizes (which is often the case in
observational studies). More common is to use vague and uninformative priors and this approach
will be followed in the examples. Further explanation will follow below.

One of the important issues when using an MCMC procedure is whether the Markov chain
has actually converged. There are many tools available for checking convergence, but that topic
will not be extensively discussed in the present article. All examples were computed using 60,000
iterations with 5,000 burn in iterations, which proved to be more than sufficient for convergence,
judging from adequate mixing in the trace plots.
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1.5. Identification

An IRT model must be identified by fixing the origin and scale of the latent dimension.
This is typically done by constraining either item parameters or the mean and variance of the
distribution of latent parameters. Regarding using constraints on the item parameters, often the
item parameters are already known through estimation in other applications and are entered as
fixed constants. If this is not the case, the simplest way is to fix one discrimination parameter to
one, and one location parameter to zero. This may, however, not be an optimal solution if the item
parameters that are fixed to identify the model are poorly conditioned by the data. For instance,
if a dichotomously scored item has a very small number of correct responses, the standard error
of such an item is very large, this will propagate to all other item parameters, which will all
become inconveniently large. The same occurs when the discrimination parameter of the item
used for identification is very low or very high. Therefore, a better approach is to set the sum of
the item location parameters to zero, and the product of the item discrimination parameters to
one. However, depending on the priors and the MCMC computational algorithm, this approach
is not straight-forward. The alternative is fixing population parameters. Without the presence of
a linear model on the ability distribution, fixing its mean and variance zero and one, respectively,
is the simplest approach. However, in the present framework, the scale of the latent dimension is
made up of several variance components. Fixing the mean and variance of the best conditioned
distribution, usually the distribution of the main effect of the objects of measurement j , is a
practicable approach.

1.6. Priors

Bayesian estimation using MCMC computational methods entails drawing parameters from
the posterior distribution to map out its shape, where the posterior distribution is proportional
to the product of likelihood of the parameters given the data and the prior distributions of the
parameters. For the IRT model, several suggestions are available. For instance, Albert (1992)
suggests a flat prior on positive reals for discrimination parameters and a flat prior on the real line
for the difficulties. Alternatively, the discrimination parameters can also be given a log normal
prior or a truncated normal prior (a normal distribution restricted to the positive reals with a mean
and variance both equal to one). The latter approach was used in the examples below. In these
examples, the location parameters are given normal priors with variance equal to 1.0 and means
equal to the category index within the item. The latter was done to reflect the likely order of the
location parameters on the latent scale.

Finally, for variances an inverse gamma distribution is usually chosen, while Fox and Glas
(2001) suggest Jeffrey’s prior and discuss uniform and inverse-chi-squared priors as an alternative
for small sample sizes. In the examples given below, priors for precision parameters (the reciprocal
of variances, such as the variance components in a GTmodel) were Gamma distributions with the
two parameters equal to 0.01, such that the expectation and variance of the precision were equal
to 1.0 and 500, respectively. So this prior was quite vague. The covariance matrix introduced
below in the last example was given an inverse Wishart distribution with an identity matrix as a
parameter.

2. Empirical Examples

All three examples presented below are derived from a research project regarding teachers’
instructional skills. The aim of the present section is to give some examples of the modeling
possibilities of the approach presented above. For more information about the context in which
the data were collected and the items used, refer to the articles mentioned in the examples.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 19:49:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


CEES A. W. GLAS ET AL. 49

The analyses presented below are no strict replications of the data analyses in the articles: the
selection of items for the analyses is different, and the results of the analyses should not be used
for substantive conclusions. For such purposes, refer to the original three articles. All examples in
the sequel were analyzed using both the program Open Bugs and the program JAGS (Plummer,
2017) via the R package runjags. Scripts and data files associated with this article are available
on the Open Science Framework (OSF, https://osf.io/knzw9/).

2.1. Example 1: Evaluation of Teachers’ Instructional Skills

In this example, the data from Van der Scheer et al. (2017) are used. In the research project,
changes in the instructional skills of 34 teachers participating in an intensive data-based decision-
making interventionwere evaluated. In this example,we discuss three approaches to the estimation
of IRT item parameters, G- and D-coefficients for various research designs, and results of a linear
model based on the latent attribute scores issued from the GT-IRT model as outcome variables.

2.1.1. Data The 34 teachers were recorded three times prior to the intervention, and three times
after the intervention, and all recordings were rated by four independent raters. Instructional skills
were measured using the so-called the ICALT (International Comparative Analysis of Learning
and Teaching, Van de Grift, 2007, 2014) consisting of 35 Likert-scale items with 4 response
categories.

2.1.2. Modeling Procedure The item responses are modeled by the GPCM, so the probability
model for the response by a rater r at time-point t , when judging teacher j in categorym = 0, ..., 3
on an item k is given by the Formulas (1) and (2).

The measurements θ jr t are decomposed into main effects of the object of measurement and
all effects of the measurement facets, as well as all their interaction effects. The model is given
in Formula (3), and its variance decomposition is given in Formula (4). In this example, J = 34,
R = 4, and T = 6. Thus, there were 816 responses (N × T × R = 34× 6 × 4 = 816) to the 34
items. To keep the tables of the present example concise, 10 out of the 34 items were randomly
chosen for the analyses, yielding 8160 observed item responses for analysis.

The first step in the analysis is to establish that the IRT model fits the data. We will not go
into detail here, but the items fit the model adequately, as can be inferred from the supplementary
information provided with the article of Van der Scheer et al. (2017). As a next step, three
approaches are considered for the estimation of the GT-IRT model.

2.1.3. Results Concurrent EstimatesTo take all uncertainty regarding themodel into account,
the ideal procedure is to obtain concurrent draws of all IRT and GT parameters from their joint
full posterior simultaneously. The results of this approach will be presented first. However, in
many situations, this approach proves impractical, so alternatives will be presented next.

Under the heading “Concurrent all parameters”, Tables 1 and 2 give the estimates of the
discrimination parameters (Table 1) and the average of the three item location parameters δk1, δk2
and δk3 (Table 2). For every item, this average gives an indication of the overall location of the
item on the latent scale. The column labeled “Median” gives the median of the MCMC generated
posterior distribution and the columns labeled “L2.5%” and “U97.5%” give the boundaries of the
central 95% credibility region.

MML (marginal maximum likelihood) estimates were used as starting values. These esti-
mates were computed disregarding the linear GT model and the hierarchical structure of the data.
Enhancing an IRTmodel in anMML frameworkwith complicated populationmodels proves prac-
tically infeasible due to the increased dimensionality of the latent space across which numerical
integration must marginalize.
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Table 1.
Empirical Example 1: Differences between estimates of discrimination parameters using various estimation strategies.

Item Concurrent all parameters Empirical Bayes Fixed values

L2.5% Median U97.5% L2.5% Median U97.5%

1 2.129 2.628 3.225 2.270 2.700 3.176 3.8032
2 1.891 2.316 2.789 2.015 2.364 2.784 3.2183
3 2.182 2.695 3.264 2.260 2.772 3.383 3.8454
4 2.002 2.464 2.993 2.089 2.577 3.112 3.5996
5 0.957 1.168 1.402 0.980 1.212 1.485 1.5545
6 0.636 0.793 0.975 0.651 0.814 1.005 1.1633
7 1.481 1.810 2.182 1.542 1.898 2.241 2.6945
8 0.869 1.066 1.287 0.885 1.091 1.328 1.5424
9 0.723 0.896 1.084 0.744 0.919 1.117 1.2891
10 0.487 0.612 0.752 0.510 0.635 0.779 0.8985

Table 2.
Empirical Example 1: Differences between estimates of average location parameters using various estimation strategies.

Item Concurrent all parameters Empirical Bayes Fixed values

L2.5% Median U97.5% L2.5% Median U97.5%

1 − 3.048 − 1.817 − 0.997 − 3.673 − 3.218 − 2.748 − 3.462
2 − 1.990 − 0.956 − 0.287 − 2.628 − 2.167 − 1.808 − 2.309
3 − 2.908 − 1.686 − 0.860 − 3.800 − 3.143 − 2.628 − 3.358
4 − 2.462 − 1.338 − 0.611 − 3.145 − 2.700 − 2.319 − 2.910
5 − 1.260 − 0.736 − 0.350 − 1.851 − 1.372 − 1.104 − 1.399
6 − 0.804 − 0.432 − 0.165 − 1.068 − 0.851 − 0.656 − 0.938
7 − 1.003 − 0.220 0.317 − 1.553 − 1.195 − 0.845 − 1.357
8 − 0.668 − 0.173 0.207 − 1.002 − 0.741 − 0.489 − 0.854
9 − 0.308 0.095 0.418 − 0.589 − 0.375 − 0.183 − 0.463
10 0.109 0.382 0.598 − 0.079 0.061 0.199 0.007

IRT estimates: Empirical Bayes Estimates and Fixed Item Parameter ValuesAs already
noted, the concurrent procedure is not always practical, for instance, if the number of item param-
eters is very large, or when the instrument has already been calibrated. In these situations, prior
information regarding the item parameters can be incorporated in the priors (a method dubbed
here empirical Bayes), or the available item parameter estimates can be used as fixed values, that
is, they are used as auxiliary data.

In Tables 1 and 2, the columns labeled "Empirical Bayes" give the estimates of the item
discrimination parameters and the average item location parameters using the Empirical Bayes
procedure. The estimation procedure was generally similar to the concurrent procedure and also
the prior for the discrimination parameter was the same as in the concurrent approach. However,
the item location parameters were given a normal prior with a mean as obtained in the MML
estimation step and a variance of 10.0. The last column in Tables 1 and 2 was obtained by
plugging in the MML item parameter estimates as fixed constants.
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Table 3.
Empirical Example 1: Estimates of variance components using various estimation strategies.

Concurrent estimate Empirical item priors Fixed item parameters

L2.5% Median U97.5% L2.5% Median U97.5% L2.5% Median U97.5%

σ 2
2r 0.141 0.204 0.308 0.137 0.196 0.295 0.135 0.193 0.291

σ 2
3t 0.135 0.193 0.291 0.132 0.188 0.279 0.132 0.187 0.280

σ 2
4 jr 0.142 0.192 0.267 0.140 0.188 0.259 0.110 0.143 0.187

σ 2
5 j t 0.168 0.229 0.320 0.164 0.223 0.309 0.120 0.154 0.197

σ 2
6r t 0.119 0.166 0.239 0.119 0.165 0.237 0.116 0.159 0.228

σ 2
7 jr t 0.292 0.387 0.537 0.278 0.373 0.512 0.169 0.201 0.239

Model identified by setting σ 2
1 j equal to 1.0.

It can be seen that the concurrent and empirical Bayes estimates of the discrimination param-
eters were quite close, but clearly lower than the fixed discrimination parameters. Still, the cor-
relations between the estimates are always above 0.99. For the average location parameters, the
picture was different, in the sense that the empirical Bayes estimates and the Fixed values were
closer and both lower than the concurrent estimates. Still, the correlations between the location
estimates were high, always higher than 0.98. The conclusion is that the estimates from the three
methods cannot be used interchangeably, but the relations between the items given the estimation
procedure are well preserved. Table 3 gives the estimates of the variance components of the GT
model for the three estimation approaches. Here, the estimates of the concurrent and empirical
Bayes approaches are quite close, while the imputation of fixed item parameters leads to some
non-systematic deviations.

LinearModel on Latent Attribute ScoresOne of the questions in this research was whether
the intervention of participating in the course had an impact. The intervention took place after
the first three time-points. The means and the mean difference between the first and last three
measurements are given in Table 4. The column labeled "816" gives the values computed with
the actual 816 response patterns that were available. Note that the values for the first three time-
points are indeed lower that the values for the last three time-points. The difference between
the measurements before and after the intervention are displayed in the last four rows. The row
labeled "Mean" gives the posterior mean value of the difference, the rows above and below give
the boundaries of the central 95% credibility region, and the last row gives the span of this region.
Note that the 95% credibility region does include the value 0.00, so if one would be interested in
hypothesis testing, the difference before and after the intervention would not be significant.

Next, it was investigated how many more observations would need to be available before the
confidence regionwould no longer include 0.00. Given the estimatedmodel parameters, additional
response patters were sampled, doubling the number of response patterns three times, to obtain
data sets of 1632, 3264 and 6528 response patterns. The numbers and effects of raters and time-
points were not altered. In the last column of Table 4, it can be seen that an increase to 6528 does
indeed lead to excluding the value 0.00 from the 95% credibility region. So in more traditional
(frequentist) terms, the conclusion is that the power is then increased, such that the null hypothesis
of no effect is rejected with a significance probability of 95%.

Generalizability Study and Design Study In a D-study, the number of raters and time-
points can be varied to investigate their relation to the expected reliability and agreement of future
applications of the instrument. When the estimates of the coefficients of reliability and agreement
obtained in a G-study are too low, more raters may be used to achieve a certain target reliability. Or

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 19:49:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


52 PSYCHOMETRIKA

Table 4.
Empirical Example 1: Changes in mean proficiency over subsequent measurements.

Mean proficiency

Time Number of records

Point 816 1632 3264 6528

1 0.661 0.774 0.758 0.862
2 0.438 0.532 0.555 0.583
3 0.640 0.743 0.729 0.846
4 0.779 0.895 0.886 1.048
5 0.861 0.957 0.975 1.106
6 0.858 0.958 0.979 1.093
Difference between T = 1, 2, 3 and T = 4, 5, 6
L2.5% − 0.115 − 0.081 − 0.075 0.014
Mean 0.247 0.254 0.257 0.303
U97.5% 0.596 0.600 0.592 0.643
95% range 0.771 0.681 0.667 0.657

Table 5.
Empirical Example 1: D-study: Agreement and reliability as a function of various numbers of raters and time-points.

Global Medium trait level Low trait level

R T L2.5% Median U97.5% L2.5% Median U97.5% L2.5% Median U97.5%

ρ2A 4 3 0.087 0.425 0.792 0.113 0.496 0.840 0.034 0.228 0.638
4 6 0.140 0.538 0.848 0.176 0.609 0.885 0.055 0.318 0.725
2 6 0.102 0.474 0.786 0.129 0.546 0.837 0.039 0.264 0.641
4 4 0.088 0.410 0.751 0.112 0.480 0.807 0.033 0.216 0.591
6 6 0.114 0.507 0.847 0.147 0.579 0.884 0.046 0.292 0.718

ρ2R 4 3 0.881 0.917 0.943 0.902 0.937 0.959 0.659 0.819 0.903
4 6 0.909 0.940 0.962 0.927 0.954 0.972 0.728 0.865 0.932
2 6 0.848 0.898 0.935 0.877 0.922 0.952 0.601 0.784 0.885
4 4 0.833 0.883 0.920 0.862 0.910 0.941 0.568 0.756 0.864
6 6 0.917 0.944 0.964 0.932 0.958 0.974 0.745 0.875 0.937

the number of raters may be lowered for financial reasons, if the thus adjusted coefficients do not
fall below the target. For the present example, a small D-study was carried out to assess the global
and local reliability and agreement. In this example, we focus on the first three time-points. The
reason is that expected reliability and agreement indicates that these observations will be stable
under ’parallel occasions’ (i.e., interchangeable raters, interchangeable time-points). In this study,
this is not the case, because of the intervention that took place after the third observation. Therefore,
the point of departure are the first three time-points. The results are given in Table 5. In principle,
the values of local reliability are unique for all teachers j . To keep the table manageable, the local
values are only presented for an average scoring teacher (average observed total score summed
over time-points and raters) and a low scoring teacher (lowest observed total score summed over
time-points and raters). The values in the rows for R = 4 and T = 3 give the results for the two
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coefficients for the actual design of the G-study. The other rows give the values of the coefficients
when either the number of raters, the number of time-points or both are varied. The boundaries
of the central 95% credible limits are given in the columns labeled “L2.5%” and “U97.5%” in
Table 5.

The values in the table are as expected: reliability indices are higher than agreement indices,
both decrease with fewer time-points or raters, and increase if time-points and raters are increased.
So more observations result in a higher reliability and agreement. Further, the estimates for the
average scoring teacher are higher than those for the low scoring teacher. That is, in the extremes
of the scale, the reliability and agreement drops. Finally, it can be seen that the values for the
average scoring teachers are higher than the values for the global reliability and agreement. This
is explained by the fact that the global values pertain to the complete sample of teachers and the
whole range of score levels.

2.2. Example 2: Differentiated Instruction

In this example, it is shownhow the latent attribute scores issued by theGT-IRTmodel are used
as a predictor variable, insteadof as anoutcomevariable as in the previous example. Themotivation
for this approach is to decrease the attenuation effect, that is, a predictor’s estimated effect will be
attenuated to the degree it is unreliable. So this GT-IRTmodel can yield a disattenuated regression
coefficient, as well as the reliability estimate that quantifies how much a manifest sum-score’s
effect would be attenuated.

The data are from Faber et al. (2018) who investigated the association between teachers’
differentiated instruction and their students’ changes in mathematical achievement.

2.2.1. Data Faber et al. 2018 investigated the relationship between differentiated instruction
of N = 51 teachers (which is the predictor) and their S = 953 students’ change in mathematical
achievement as a criterion variable. Students’ mathematics achievement was assessed using a
standardized mathematics test both as a pretest at the beginning of the school year and as a
post-test at the end of the school year.

Differentiated instruction was assessed through the ICALT questionnaire. This questionnaire
consisted of 35 Likert scale items with four response categories. For each of three observed
lessons, the questionnaire was filled out by three independent observers. So T = 3, R = 3 and
K = 35. The research design was crossed with somemissing data, that is, nine teachers were only
observed twice by the three observers. Therefore, the observational data on the ICALT comprised
of 432 response patterns.

2.2.2. Modeling Procedure As in the previous example, the item responses were modeled
by the GPCM, so if θ jr t is the proficiency of a teacher j ( j = 1, ..., J ) assessed by a rater
r, (r = 1, ..., R) at time-point t, (t = 1, ..., T ), then the probability of the response on item
k, (k = 1, .., K ) for the response categories m,m = 0, ..., M , is as defined in Formulas 1 and
2. Further, θ j tr is decomposed using the GT model in Formula 3, which includes all rater effects
and its interactions, and the target of the measurement, which is the teacher proficiency θ j . The
research question of whether the teachers’ use of differentiated instruction had an impact on the
students’ change inmathematical achievementwas investigatedwith a random interceptmultilevel
model.

At the student level, the researchers had access to data about students’ mathematical achieve-
ment at the end of the previous school year, grade (of 2nd- and 5th-grade students), gender, student
weight, and ability group (two dummy codes, high and low). These variables were included as
Level 1 covariates. The variable student weight is an administrative variable to provide a school
with extra funding if a student belongs to certain disadvantaged categories. The variable ability
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Table 6.
Empirical Example 2: Multilevel model with ICALT as predictor.

Variable Parameter L2.5% Median U97.5%

Grade β1 0.712 0.888 1.068 ∗ ∗
Gender β2 − 0.127 − 0.075 − 0.022 ∗ ∗
Weight β3 − 0.073 0.005 0.083
Pre-test β4 0.410 0.477 0.543 ∗ ∗
High-ability group β5 0.321 0.401 0.477 ∗ ∗
Low-ability group β6 − 0.302 − 0.211 − 0.110 ∗ ∗
High ability by θ j β7 − 0.080 0.081 0.244
Low ability by θ j β5 − 0.485 − 0.145 − 0.031 ∗ ∗
Grand mean γ0 − 0.704 − 0.583 − 0.460 ∗ ∗
Teacher proficiency θ j γ1 − 0.104 0.147 0.199
Planning instruction γ2 − 0.110 − 0.054 0.002
Error Level 1 0.148 0.163 0.179
Error Level 2 0.017 0.030 0.052
ICC 0.094 0.155 0.243
Main effect teachers σ 2

1 j 0.356 0.447 0.563

Main effect raters σ 2
2r 0.151 0.222 0.345

Main effect time-points σ 2
3t 0.147 0.217 0.338

Interaction teacher by rater σ 2
4 jr 0.164 0.224 0.312

Interaction teacher by time σ 2
5 j t 0.118 0.157 0.213

Interaction rater by time σ 2
6r t 0.134 0.191 0.288

Error component GT model σ 2
7 jr t 0.140 0.185 0.247

ρ2R 0.729 0.771 0.806
ρ2A 0.566 0.610 0.648

group was derived from the relative standing of a student in a pupil monitoring system. The
complete Level 1 model on the post-test score Yi j is given by

Yi j = β0 j + β1X01i j + β2X02i j + · · · + Ri j , (8)

where the residuals Ri j are assumed independent and normally distributed. The Level 1 covariates
are listed in the first 6 rows of Table 6. The Level 2 model defined on the random intercepts is
given by

β0 j = γ0 + γ1θ j + γ2W j +U0 j , (9)

where the residualsU0 j are assumed independent and normally distributed. Level 2 covariates are
θ j , which is the teachers’ proficiency in using differential instruction and Wj which is a variable
indicating the extent to which differential instruction was planned by the teacher. In Table 6, it
can be seen that β6 and β7 are the coefficients of a cross-level interaction between the teacher
proficiency variable θ j and the students’ ability level.

2.2.3. Results All parameters in the model, that is, all parameters of the IRT model, the
GT model and the multilevel regression model were concurrently estimated using the Bayesian
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MCMC method discussed above. The resulting posterior medians of the regression parameters,
the variance components and the intraclass correlation coefficient (ICC) which indicates the level
of dependence in the multilevel model are displayed in Table 6. The first 11 rows of the table
give the estimates of the fixed effects of the multilevel model, the next lines give the estimates
of the variance components and the ICC. The ICC was sampled along with the other parameters.
The column labeled "Median" gives the medians of the sampled posterior distributions of the
parameters. An effect is assumed to be significantly different from zero if the sign of the lower
and upper bound of the central 95% credibility region are the same. If this is the case, the last
column has an entry with two stars.

The Generalizability of Teaching Proficiency. The last 8 rows of Table 6 give the estimates
of the GT model. One of the issues that has to be dealt with when using a latent variable as a
predictor is the scale of the latent variable. Because all other predictors are scaled to a standard
normal distribution, it was decided that this was also applied to the variables θ j tr . The two last
rows of Table 6 give the reliability and agreement of the observations. A minimum reliability
coefficient of.70 is often mentioned as a norm for reliability when scores are used for low-stakes
decisions, so the reliability could be considered sufficient.

ExplainingMathematicalAchievement.The results are as follows. There is a positive effect
of the grade, a small negative effect of gender (boys perform slightly better at mathematics), and a
positive effect of the pretest.Note that neither teacher proficiencyof usingdifferentiated instruction
θ j nor planning differentiated instruction had a significant effect. Further, there was a negative
cross-level interaction between low-ability students and teacher proficiency θ j , which of course
is unfortunate: the interaction term is−0.145, which basically just cancels out the positive simple
effect of theta (0.147), so teacher proficiency makes even less impact on low-ability students.
Finally, the ICC shows that approximately 15% of the variance in the outcomes is explained by
the Level 2 predictors.

Next, it was investigated whether the power of the study with respect to finding significant
effects of teacher proficiency θ j and its interactionwith the two ability groupsmight be augmented
by a possible augmentation of the reliability of the observations. Therefore, data sets were simu-
lated with exactly the same design as the original study, using the parameters estimates obtained
in the previous study, except for the variance of the error component σ 2

7 jr t . This error component
was chosen such that the reliability of the first simulation was slightly lower than the original one
(0.710 versus 0.771), while the reliability of the other three replications was higher (0.861, 0.882
and 0.889). The results of the simulations are given in Table 7. Note that when the reliability is
improved, the effect of the proficiency θ j became significant. However, the interaction between
the teachers’ proficiency and students belonging to the high-ability group had no effect.

2.3. Example 3: A multidimensional GT-IRT Model

In the two previous examples, it was shown how the latent variables issued from the GT-IRT
model can be embedded in a linear regression model as either outcome or predictor variables.
However, the latent IRT variables need not be unidimensional. Multidimensional IRT (MIRT)
models, also known as full-information factor analysis models, are also available and applied
for the analysis of categorically scored item responses (Bock et al., 1988; Ackerman, 1996)
. The term “full-information” pertains to the fact that estimation of the model does not depend
on a covariance matrix, but takes into account the complete set of observed response patterns.
A Bayesian approach for the estimation of the MIRT model was presented by Béguin and Glas
(2001). In the present section, an example will be given of how a GT-MIRT model can be used to
take measurement error into account when making inferences about the dependence structure of
response data.
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Table 7.
Empirical Example 2: Varying the reliability of the ICALT.

L2.5% Median U97.5%

Reliability 0.621 0.710 0.805
θ j − 0.100 0.138 0.418
High ability by θ j − 0.088 − 0.004 0.078
Low ability by θ j − 0.202 − 0.101 − 0.006 ∗ ∗
Reliability 0.861 0.882 0.898
θ j − 0.037 0.206 0.405 ∗ ∗
High ability by θ j − 0.043 0.032 0.102
Low ability by θ j − 0.181 − 0.094 − 0.017 ∗ ∗
Reliability 0.882 0.901 0.916
θ j 0.057 0.279 0.502 ∗ ∗
High ability by θ j − 0.055 0.006 0.066
Low ability by θ j − 0.144 − 0.071 − 0.003 ∗ ∗
Reliability 0.889 0.907 0.924
θ j 0.094 0.323 0.531 ∗ ∗
High ability by θ j − 0.044 0.008 0.064
Low ability by θ j − 0.135 − 0.071 − 0.007 ∗ ∗

The example is based on data from Dobbelaer (2019). This example pertains to observations
of lessons by each of three types of assessors: the teachers giving the lessons, their students and
external observers form the Inspectorate of Education. The original research interest was in the
relation between the assessments of the three types of observers. In this section, various models
for assessing this relation are addressed. All three types of observers used the so-called Impact!
instrument. For information on the Impact! instrument and the research settings, refer toDobbelaer
(2019). The selection of data in the present article is somewhat different from the selections made
in the referenced thesis. As is the case with the other examples, the present article does not invite
substantive conclusions; our interest is solely in demonstrating the psychometric approach.

2.3.1. Data For each of 25 teachers, three lessonswere assessed by the three types of observers.
The observations of the external observers were collected in a fully crossed design, that is, three
trained raters assessed all lessons. The number of students varied from20 to 30 students per teacher.
The Impact! instrument consisted of 15 Likert-type items, with four ordered score categories per
item.

2.3.2. Modeling Procedure and Results Teaching quality is operationalized as latent variable.
Define θ1 j , θ2 j and θ3 j as the Teaching Quality of teacher j assessed by the external observers,
the students, and the teachers, respectively. It will be assumed that the three assessments have a
multivariate normal distribution, that is,

⎡

⎣
θ1 j
θ2 j
θ3 j

⎤

⎦ ∼ N

⎛

⎝

⎡

⎣
μ1
μ2
μ3

⎤

⎦

⎡

⎣
σ 2
11 σ12 σ13

σ21 σ 2
22 σ23

σ31 σ23 σ 2
33

⎤

⎦

⎞

⎠ .

The items had response categories labeled m = 0, ..., 3, and the responses were modeled by
the GPCM, that is, (1) and (2) define the probability of a response in categorym on item k. Below,
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Table 8.
Empirical Example 3: Summary of models used for analyses.

Label GT Model IRT Model dim(θ) dim(α, β) N.Pars DIC

GT.IRT1.AB1 Yes Yes 1 1 78 38070
GT.IRT3.AB1 Yes Yes 3 1 77 37990
GT.IRT1.AB3 Yes Yes 1 3 198 36090
GT.IRT3.AB3 Yes Yes 3 3 197 36080
IRT3.AB1 No Yes 3 1 63 38110
IRT3.AB3 No Yes 3 3 183 36070
GT.KTT Yes No 0 0 –

two cases will be considered: one where the instrument functioned exactly the same for all types
of observers, i.e., the item parameters are the same across observers, and one where the three
groups of observers each have their own set of item parameters. The measurement error models
for the three types of observers are as follows.

The model for the external observers is the GT model as defined by Formula (3), that is,

θ1 jr t = θ1 j + τ2r + τ3t + τ4 jr + τ5 j t + τ6r t + ε7 jr t , (10)

for teachers j = 1, .., 25, lessons t = 1, .., 3, and external observers r = 1, .., 3. The variance
decomposition is as in Formula (4), but the variance of the teacher proficiency θ1 j is now equal
to the first element σ 2

11 of the covariance matrix.
In this example, students are nestedwithin teachers. In such a (partially) nested—multilevel—

design, some of the measurement facets are nested, resulting in the confounding of some of the
effects in Formula 3. A different GT model therefore applies. The rater effects τr are indistin-
guishable from the two-way interaction effect between subjects and raters, τ jr . Let i : j denote
that student (the rater) i is nested within teacher j . The number of students present at the lessons
varies slightly, so let N jt be the number of students present at lesson t . Then the GT-model for
the students indexed i = 1, ...N jt becomes

θ2(i : j)t = θ2 j + ωt + ωi : j + ω j t + ε(i : j)t . (11)

The variance of θ2 j is equal to the second diagonal element of the covariance matrix, σ 2
22.

Assume that θ3 j t is the latent variable associated with the self-assessment of teacher j regard-
ing lesson t . Then it is assumed that this latent variable has a normal distribution, that is,

θ3 j t = θ3 j + ε3 j t , ε3 j t ∼ N
(
0, σ 2

2 j t

)
. (12)

Note that the variance of θ3 j is the third diagonal element σ 2
33 of the covariance matrix. In terms

of MIRT, the model presented here is a "between-items" multidimensional IRT model. That
is, every item loads on a specific latent dimension. An alternative is a so-called within-items
multidimensional IRT model, where every item can load on one, more than one or all dimensions.
Such models are not considered here.
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Testing the GT-MIRTmodel Four versions of the GT-MIRT model outlined in the previous
section will be tested against each other. Each model was estimated by a concurrent Bayesian
MCMC method. An overview of the models is given in the first four rows of Table 8. The model
labeled GT.IRT1.AB1 has only one IRT scale related to the variables θ1 j , θ2 j , and θ3 j and all
responses are modeled by the same IRT model. Further, every type of observer has a distinct
normal distribution for the proficiency parameters. So the model is similar to the one introduced
above, except that the covariance matrix of θ1 j , θ2 j , and θ3 j is now diagonal. To identify the
model, the distribution for the parameters for the students, θ2 j , was set equal to standard normal.
For the external observers’ responses, the estimation procedure resulted in μ̂1 = −0.49 and
σ̂ 2
7 jr t = 0.69. So the external observers were far less favorable and more homogeneous regarding

the proficiency of the teachers. For the self-assessments of the teachers, the estimates were equal
to μ̂3 = 0.11) and σ̂ 2

3 j t = 0.84. So these assessments were on average the most favorable. The
DIC obtained is displayed in the last column as 38070. The number of parameters is determined
as follows. The IRT model has 15 discrimination parameters (or factor loadings) and 45 item
location parameters, so in total 60 item parameters. The parameters for the model for the external
observers are the variances of the main effects, the two-way interaction effects, and the error
component. This leads to 7 parameters. The model for the students and the teachers has 5 and 2
variance parameters, respectively. Finally, there are 2 free means and 2 free variances of teachers
proficiency. So in total, the model has 78 free parameters.

Generalizations of the IRT-GT model Next, the model GT.IRT1.AB1 is generalized in
three directions. The first model with labeled GT.IRT3.AB1 has three correlated proficiency
dimensions where the item parameters are assumed to be the same over the three dimensions. In
these models, we assume that the item parameters apply to all three types of observers simultane-
ously. The second model, labeled GT.IRT3.AB3 is more general, since it is assumed that every
type of observer has its own set of item parameters. This also holds for the third model, labeled
GT.IRT1.AB3, but here it is assumed that the latent proficiency variable is unidimensional. That
is, all items load on the same unidimensional IRT scale, but the values of the item parameters
are different for the three types of observers. Further, every type of observer has a distinct nor-
mal distribution for the proficiency parameters, but the proficiency parameters load on the same
unidimensional scale.

To determine the number of parameters, note that the models GT.IRT3.AB1 and GT.IRT3
.AB3 have three correlated proficiency dimensions with a joint multivariate normal distribution
with 3 means and a covariance matrix with 6 parameters. The origin and scale of the three
dimensions need to be fixed to identify the model. In a standard multidimensional IRT model,
this is usually done by fixing the three means to zero and the diagonal of the covariance matrix
to one. The covariance matrix then becomes a correlation matrix. In the present model, things
are a bit more complicated, because for GT.IRT3.AB1 and GT.IRT3.AB3 the assumption that
the three types of observers have the same means and variances on the latent scale is unrealistic.
Therefore, the estimates of the means and the variances of the GT part of model GT.IRT1.AB1
were plugged in as fixed constants to identify the modelsGT.IRT3.AB1 andGT.IRT3.AB3. The
fit of the model does not depend on the chosen 6 restrictions, other restrictions on the mean and
covariance would be just as valid, and the DIC used below does not depend on the values that are
actually chosen. ModelGT.IRT3.AB1 has 60 item parameters, 14 parameters stemming from the
GT models, 3 mean parameters and 6 parameters in the covariance matrix, minus 6 restrictions.
This amounts to a total of 77 free parameters. The DIC obtained is displayed in the last column as
37990. The relative fit of the models GT.IRT1.AB1 and GT.IRT3.AB1 can be tested using their
DIC estimates, Models with a smaller DIC should be preferred to models with larger DIC. The
numbers of free parameters of the two models are approximately the same, but also the values of
their DICs are quite close, though the 3-dimensional model seems to fit slightly better than the
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Table 9.
Empirical Example 3: Correlation between item parameter estimates for two models.

Model GT.IRT3.AB1 GT.IRT3.AB3-1 GT.IRT3.AB3-2

α GT.IRT3.AB3-1 0.945
GT.IRT3.AB3-2 0.845 0.677
GT.IRT3.AB3-3 0.929 0.843 0.872

δ GT.IRT3.AB3-1 0.977
GT.IRT3.AB3-2 0.704 0.539
GT.IRT3.AB3-3 0.539 0.884 0.607

one-dimensional one. To investigate model fit further, these two models will be compared to two
more general models GT.IRT1.AB3 and GT.IRT3.AB3, respectively.

The previous analyses were based on the assumption that the item parameters apply to all
three types of observers simultaneously. In the next two analyses this assumption is replaced
by the assumption that every type of observer has its own set of item parameters. This leads to
an extra of 2 times 60 item parameters. So the model GT.IRT1.AB1 changes to GT.IRT1.AB3
and the number of free parameters changes from 78 to 198. In the same manner, the model
GT.IRT3.AB1 changes to GT.IRT3.AB3 and the number of free parameters changes from 77
to 197. The values for the means and variances in the covariance matrix used above were again
plugged in as fixed constants. In the last column of Table 8, it can be seen that the difference
between theDIC for the originalmodels and the enhancedmodels is equal to 1910, so the latter two
models are an important improvement. Finally, to decide between the two models, the estimates
of the item parameters are inspected. Table 9 gives an overview of the correlations between the
item parameter estimates of GT.IRT3.AB1 and the three dimensions of GT.IRT3.AB3, which
are labeledGT.IRT3.AB3-1,GT.IRT3.AB3-2, andGT.IRT3.AB3-3. Note that the correlation of
the discrimination parameters betweenGT.IRT3.AB3-2 andGT.IRT3.AB3-1 is 0.0677, which is
quite low.Also the correlation between the location parameters betweenfirst and seconddimension
and between the second and third dimension are low. So the conclusion is that assuming that these
item parameters differ between types of observers is corroborated, and the final conclusion is that
the model GT.IRT3.AB3 fits the data best.

Some Further Analyses Combining an IRT model with a GT model is not yet the standard
approach to the analysis of data from observations. Usually, the GT model is directly imposed on
the observed sum scores. Therefore, it was investigated whether imposing a 3-dimensional model
(one dimension for every type of observer) combined with the GT models defined above directly
on observed responses rather than on latent variables would lead to important differences. The
observations were the logits of the sums of the item responses labeled 0,...,3. The model is labeled
GT.KTT. Themodel parameters were again estimated using the BayesianMCMCprocedure. The
estimates of the correlations between the dimensions of the three types of observers are displayed
in the second column of Table 10. The third and fourth columns give the correlations obtained
using the models outlined above. The results for GT.IRT3.AB1 are quite similar to the results
of GT.KTT. So introducing an IRT model with discrimination and location parameters does not
make much difference. This would, of course, change if there would be a lot of missing responses,
either by design or depending on the observers response behavior. In such cases, sum scores are
less meaningful. The fourth column with the results of the GT.IRT3.AB3 model, gives a much
different picture, because all correlations increase substantially. So taking into account that the
observation instrument functions quite differently for the three types of observers has a significant
impact on the results.
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Table 10.
Empirical Example 3: Latent correlations under various models.

Model

Correlation GT.KTT GT.IRT3.AB1 GT.IRT3.AB3 IRT3.AB1 IRT3.AB3

σ12 0.325 0.395 0.806 0.493 0.852
σ13 0.015 0.033 0.795 0.266 0.825
σ23 − 0.018 − 0.019 0.761 0.181 0.823

The final two analyses relate to the question what would happen if the hierarchical structure
of the data, such as the nesting of responses under observers and lessons, and the nesting of
students under teachers would be ignored. To address this question, the GT model was removed
frommodelGT.IRT3.AB1 to produce a model labeled IRT3.AB1, which is a 3-dimensional IRT
model with the same item parameters for all three types of raters, but without a GTmodel to assess
the reliability of the assessments. In the same manner, the model GT.IRT3.AB3 was stripped of
the GTmodel, to produce a three-dimensional IRT model with three sets of item parameters, This
model was labeled IRT3.AB3. The model parameters were again estimated using the Bayesian
MCMC procedure. By comparing the estimated correlations of GT.IRT3.AB1 with IRT3.AB1
and of GT.IRT3.AB3 with IRT3.AB3 in Table 10 it can be seen that ignoring the GT model
and the hierarchical structure leads to an increase of the correlations. The reason is that part of
the dependence between the latent variables that can be attributed to their nested structure and
ignoring this part of the dependence increases the estimate of the dependencies. So ignoring the
hierarchical structure leads to unwanted bias.

3. Conclusion

The aim of this article is to draw attention to the possibility of buildingmodels for observation
studies with itemized rating scales by combining an IRT model with a GT model. The two main
advantages are (1) it produces an estimate of the latent variable of interest, both on the individual
level and globally,which is corrected for rater and other nuisance effects and (2) the latent variables
of interest can be directly embedded into linear regression models to correct for attenuation bias.

It was shown that software for Bayesian analysis using MCMC computational methods pro-
vides a flexible framework where practitioners can build their own models dedicated to their own
needs. Many topics related to such analyses were ignored, for instance, checking the convergence
of theMCMCchains, choosing priors and evaluation ofmodel fit. Readers that want to dive deeper
into these matters are referred to excellent books by, for instance, Lee (2007), Fox (2010) and
Levy and Mislevy (2016). One point in this respect that needs mention is that the software used
for this article, OpenBUGS and JAGS (via the R package runjags), sometimes fails to start
up without proper starting values for item parameters and variance components. In such cases,
running a simplified version of the model using MML usually works well. Another drawback of
the used software is that restrictions on parameters are difficult to implement. In Example 3, it
would have been helpful to identify the model via restrictions on the discrimination and location
parameters, but in the used software, this proved infeasible. The solution to fix the mean and
the residual variances of the GT models has no consequences for model fit, but it hampers the
comparison of item parameters across analyses.
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One of the important advantages of IRT is the possibility of using incomplete item admin-
istration designs. For instance, the National Assessments of primary and secondary education in
the Netherlands consist of larger pools of observational items (say 320 items related to 12 tasks),
a large number of students (say 2500), and a limited number of raters (say 24). The total sample
of students is divided into 12 subgroups and every subgroup is administered two of the tasks in a
linked design. The design for the assignment of raters to students is not fully crossed: part of the
student sample is scored once by one rater, and the remainder are scored by two raters. The design
of the distribution of raters across observations is linked. To complicate matters further, the diffi-
culty of the tasks is targeted at the level of the various education streams of the students. Clearly,
performing a GT study based on total scores in such a complicated design has little meaning. On
the other hand, the IRT part of the GT-IRT model can account for both the design effect of (a) the
combination of raters, students, and scored items and (b) the effect of the adaptive administration
of tasks.

Finally, as already mentioned above, items are considered as fixed effects. That is, the item-
ized measurement instrument is considered as a given entity. This is in accordance with most
formulations of IRT, although some IRT models with random item parameters have been pro-
posed (see for instance Geerlings et al., 2011, and Glas et al., 2016). From the perspective of
factor analysis, unidimensional IRT models with fixed item parameters are closely related to con-
generic factor-analysis models, and these models have also been used in generalizability studies
(see Vispoel et al., 2021).

On the other hand, the item parameters can also be seen as random (see, for instance, Jor-
gensen, 2021). That is, items are assumed to be sampled from a well-defined domain to which
one wants to generalize, and they constitute yet another measurement facet. An advantage of
this approach is that it allows for interaction between the items and the other facets. This is
helpful to detect items that have large contributions to inconsistencies in response behavior. This
approach is closely related to the detection of differential item functioning conditional on raters
or other facets in IRT. For the one-parameter model for dichotomously scored items (Rasch,
1960) , incorporating random item parameters into the GT-IRT model via a logit or probit link, is
straightforward. The item response probabilities are function of a difference between the latent
variable θ jr t and a single item difficulty parameter δk , that is, of θ jr t−δk , and so the item parameter
is mapped to the same latent scale as θ jr t and has an additive relation with the rest of the facets.
For the two- and three-parameter models for dichotomously scored items, incorporating random
discrimination and guessing parameters into the GT-IRT model using an analogous approach is
not straightforward. For instance, the item response probabilities are a function of αkθ j − δk ,
and the multiplication depending on both k and j presents a problem. In the same manner, for
polytomously scored items, introducing random item parameters only works for the partial credit
model (PCM; Masters, 1982), which is similar to the GPCM defined by Formulas (1) and (2),
but without the discrimination parameter αk . So also here, introducing discrimination parameters
again leads to difficulties.

In sum, this article showcased how a combination of IRT and GT can help improve linear
modeling procedures of observation data based on itemized scales. Additionally, it was shown how
different GT-based measured can be used to inspect the degree to which latent scale scores can be
generalized over measurement facets such as raters and occasions. Various practical applications
of the integrated model were illustrated using three empirical examples.

Data Availability Data, OpenBugs Scripts and the R code used in the illustration are available
on the Open Science Framework: https://osf.io/knzw9/.
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