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Abstract

Objectives:This systematic literature review explores the applicationsof social network platforms
for disaster health care management and resiliency and investigates their potential to enhance
decision-making and policy formulation for public health authorities during such events.
Methods: A comprehensive search across academic databases yielded 90 relevant studies.
Utilizing qualitative and thematic analysis, the study identified the primary applications of
social network data analytics during disasters, organizing them into 5 key themes: communi-
cation, information extraction, disaster Management, Situational Awareness, and Location
Identification.
Results: The findings highlight the potential of social networks as an additional tool to enhance
decision-making and policymaking for public health authorities in disaster settings, providing a
foundation for further research and innovative approaches in this field.
Conclusions: However, analyzing social network data has significant challenges due to the
massive volume of information generated and the prevalence of misinformation. Moreover, it is
important to point out that social network users do not represent individuals without access to
technology, such as some elderly populations. Therefore, relying solely on social network data
analytics is insufficient for effective disaster health caremanagement. To ensure efficient disaster
management and control, it is necessary to explore alternative sources of information and
consider a comprehensive approach.

The growing frequency of disasters is a global concern due to population growth and societal
interconnections,1 which significantly impact more lives and properties.2 Additionally, disasters
can lead to severe consequences such as death, injury, displacement, and long-term health
impacts, and disrupt the economy and social services.3

The Emergency Event Database (EM-DAT) indicates a significant rise in the number of
deaths and overall damage from 2015 to 2022.4 The number of deaths has risen from 33 000 to
38 000, excluding COVID-19, while the overall damage has surged from 87million to 225million
USD. The urgency of coping with disasters has led to the implementation of strategies by
governments, organizations, and individuals to mitigate their negative impacts and enhance
future resilience.5 The focus of these strategies and measures is to identify and manage the risks,
needs, and vulnerabilities before and after the occurrence of disasters. To reduce disaster impacts,
Disaster Management (DM) is a systematic approach, involving mitigation, preparedness,
response, and recovery phases.6,7 Effective coordination and communication among sectors
are crucial for efficient management.8

Disasters can significantly impact health and well-being, necessitating the integration of
Disaster Health Care Management (DHM) into the disaster management framework.9–11

DHM involves improving treatment protocols andmass casualtymanagement to ensure efficient
delivery of health services12 to disaster-affected communities while minimizing risks to health
care workers and facilities.13 However, to enhance the efficiency of health services and to
minimize disaster risks, increasing resilience among societies and health care systems is crucial.14

Resiliency supports communities in anticipating and adjusting to, and rebounding from disas-
ters, reducing negative impacts.15 Integrating resilience measures within the DM framework
reinforces health care protocols and preparedness.16 This also requires considering the import-
ance of Situational Awareness (SA) during disasters for effective decision-making and
response.17 SA provides real-time information, enabling authorities to understand conditions,
allocate resources efficiently, and adapt strategies, thus enhancing immediate response capabil-
ities and building disaster resilience.18,19 Consequently, to enhance SA, identifying and moni-
toring public health perception and concern is essential in DHM, leading to better resiliency.

Communication and information sharing plays an important role in SA. Effective commu-
nication and data exchange among health care professionals, authorities, policy makers, and
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public ensures proper consideration of integrated DHM.20 Under-
standing the community’s needs and expectations is important for
inclusive, equitable, and responsive DHM.21

In this regard, technology advancements and utilization, e.g.,
Social Network (SN) and Artificial Intelligence (AI), can enhance
communication and SA forDHM.22 SNplatforms offer vast data on
human behavior and communication patterns, enabling authorities
to identify patterns, predict occurrences, and optimize response
efforts, thereby refining public health systems and increasing com-
munity resilience.23,24 However, the large SN data volume necessi-
tates the application of AI algorithms, capable of swift and precise
processing of huge datasets to reveal complex trends and patterns
undetectable to human observation with traditional methods.25

SNs integrationwith everyday life and activities has transformed
social interactions and unveiled opportunities to identify gaps in
health care services.26 Platforms like Facebook, Twitter, Instagram,
and LinkedIn have revolutionized information sharing and con-
nectivity, encouraging the emergence of social mining, big data
analytics, and computational methodologies.27 SNs also serve as
channels for individuals to express health-related concerns and
experiences, highlighting unrecognized issues28 such as health care
accessibility, service quality, and support for those with health
needs.

SNs facilitate communication between the public and govern-
mental/non-governmental organizations,29,30 providing real-time
data for health insights.31 This is especially useful during health
emergencies,32,33 enhancing community resilience and addressing
issues during34 or after emergencies.35 Despite SN’s applications in
DM, their specific roles and benefits in health care are not fully
explored. Further investigation could enhance strategies, response,
communication, and support before, during, and after disasters and
create new collaboration opportunities in DHM.

The interaction that could arise from the partnership of gov-
ernments, health care organizations, technology companies, and
researchers holds immense potential. Each of these stakeholders
holds unique expertise and could collectively unravel innovative
solutions that capitalize on the strengths of SNs. By developing and
implementing strategies that leverage these platforms, DHM could
be elevated to new standards. Therefore, this research aims to
investigate how SN can serve as a tool to support DHM operations
in monitoring situations, enhancing the quality of decisions to
increase resiliency in health care system regarding disasters. The
study attempts to identify and examine the current literature in SN
data analytics methods and approaches, with the goal of extracting
insight of their usage in DHM. Specifically, the study intended to
discover how SN data analytics can grant DHM authorities to have
access to a variety of opinions and perspectives, real-time informa-
tion, and expertise.

Research Methodology

A Systematic Literature Review (SLR) was conducted to compre-
hensively review the background of the field. SLR ensures a com-
prehensive analysis of the existing knowledge to identify the
strengths and limitations of utilizing SNs in DHM, finding the
trends and suggesting future research directions. SLR and its ana-
lysis allowed the study to gain a deeper understanding of the role
and applications of SN in DHM and its revolution over the time.
The study conducted a thematic36 and qualitative content analysis37

on the retrieved articles. This analysis involved examining the data
for themes and patterns that could provide insights towards the
study objectives.

This study searched PubMed, CINAHL, Scopus, SpringerLink,
Emerald Insight, IEEE Xplore, ACMDigital Computing, and Goo-
gle Scholar. The selection of these databases was based on AUT
library guidelines38–40 and considering the multi-disciplinary
nature of the research. The main areas of this research were
classified into “social network,” “disaster management,” and
“health care.” Therefore, the following keywords were considered
to construct the search strings:

Social Network: “social media” OR “social network*”
DisasterManagement: “disaster management”OR “emergency

management” OR “mass emergency”
health care: health care OR “public health” OR medical* OR

“health care”
The general search query was: “disaster management” OR

“emergency management” OR “mass emergency” AND “social
media” OR “social network*” AND health care OR “public health”
OR medical* OR “health care”. However, a searching query was
optimized for each database (see Appendix 1).

The study applied inclusion and exclusion criteria (Table 1) to
ensure on relevancy and quality of the studies to be included in this
SLR.41

The initial number of articles retrieved was 9010, which was
reduced to 3256 after applying the inclusion and exclusion criteria
and removing duplicates. These 3256 articles were then subjected to
a detailed screening process based on their relevance to the research
questions and objectives. This screening involved a thorough
review of titles and abstracts, resulting in the elimination of 3166
studies that did not meet the criteria for inclusion. The remaining
90 studies were selected for an in-depth review. These selected
studies were then thoroughly examined to provide a detailed ana-
lysis of the research questions and objectives of the present study.
Figure 1 illustrates the systematic process of identifying and select-
ing following the PRISMA guidelines.

Findings and Results

The retrieved articles demonstrate a growing interest in using SN in
DHM, particularly since the beginning of the COVID-19 pandemic
(Figure 2).

To identify and visualize the central elements within the studies
in the dataset, this study used Network mapping techniques. As
illustrated in Figure 3A, “COVID-19,” “Social Media,” and
“Twitter” demonstrate the highest number of connections at the
core. This can be interpreted as the substantial pandemic’s influ-
ence and the critical role of digital platform in shaping discussions,
spreading information, and accelerating research initiatives.
COVID-19 stands as a critical node with direct connections to
diverse concepts such as “big data utilization,” “pandemic

Table 1. Inclusion/exclusion criteria

Inclusion criteria Exclusion criteria

Full text available Books / organization reports /
letters / thesis / abstract

English Studies with a pure technological
focus

2010 (the birth of modern SN
platforms) – 2022

Studies with no discussion of SN

Within the scope of SN usage in health
care and disaster management

Studies that focus on emergency
rather than disaster settings
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prevention strategies,” “social network analysis,” “data correlation
techniques,” “analysis of internet public opinion,” “cooperative
governance models,” and “data mining practices.” This shows the
multidisciplinary aspect of pandemics, demonstrating the necessity
for collaborations among health care, data analytics, public opinion
analysis, and governance experts.

Among SN platforms, Twitter acts as a dynamic hub connecting
discussions on natural disasters, content analysis, emotions, public
sentiment, and behavioral science. This showcases its role in fos-
tering dialogues about disasters and their diverse consequences,
including health-related issues. Moreover, direct links include crisis
communication techniques, citizen participation through science

Figure 1. Identification of studies process.

Figure 2. The number of publications per year.
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programs, coping strategy design, and communication tactics clar-
ify the role of SN platforms as dynamic hubs for disseminating
disaster-related information, engaging the public, and strategizing
resilience.

The evolution of study interests is illustrated in Figure 3B using a
color spectrum from which the changing landscape of DHM
research can be clearly seen. Not surprising, COVID-19 has trig-
gered a noticeable rise in research interest in the field. This reflects a
reassessment of disaster preparedness and an increased focus on
health care resilience, specifically concerning pandemics. These
observations highlight how disasters prompt enhanced informa-
tion sharing, communication, and collaboration across different
disciplines.

Social Network Platforms

Twitter identified as the most frequently used SN platform. This
could be rooted in Twitter swift communication, broad user base,
and API accessibility facilitating comprehensive data extraction for
varied SN investigations, notably in emergency contexts.42,43

Weibo, popular in China, serves as a significant avenue for express-
ing public opinions, while Instagram and Facebook, globally rec-
ognized for content sharing, have been extensively employed in
disseminating disaster-related information, accumulating substan-
tial daily views.44–47 Additionally, WhatsApp’s effectiveness in
interactive communication during disasters was evident, following
by YouTube,WeChat, and Baidu contributed to DHM as leveraged
SN platforms.48–53

Among media types analyzed in the out dataset, text emerges as
the predominant content form due to its rich information content,
ideal for linguistic pattern analysis, sentiment examination, and
discourse exploration. Its compatibility with processing and cat-
egorization enables large-scale analysis and is readily available on
SN platforms accompanied by user-generated captions, comments,
and hashtags, offering valuable insights into user behavior and
opinions. The abundance and ease of processing of text-based
content contribute to its extensive utilization in comprehensive
SN dataset studies, facilitating in-depth sentiment analysis and
effective topic modelling.

Disaster Types

Different types of disasters were identified in the dataset, with the
COVID-19 being the primary focus due to its global impact on
health care systems and SN platforms’ role in disaster communi-
cation.47,54–56 The dataset also includes investigations into other
infectious disease outbreaks, such as Zika 57 and Ebola.58,59 These
studies aim to identify patterns in public concerns and facilitate the
dissemination of health-related information to the public. Further-
more, SNs were also instrumental during earthquakes, to gain
deeper insights into the situation and to enhance relief oper-
ations.49,60 Similarly, during hurricanes and flood SN played a
crucial role in disseminating information, communicating risks,
and analyzing public sentiments to predict public resilience and aid
disaster responders effectively.61–65 Moreover, SN platforms were
utilized tomonitor environmental hazards, contributing to increase
public awareness.66,67 These platformswere also utilized in address-
ing a spectrum of other disaster types including typhoons, cyclones,
water shortages, and petrochemical accidents.66,68–70

Social Network Applications Themes

This study identified 5 primary categories where SNs play a crucial
role. These categories and sub-categories are illustrated in Figure 4.

Communication

As expected, communication emerged as the important role of SNs
in DM for across all disaster phases. Authorities leveraged SN to
disseminate emergency protocols and disaster preparedness guides
to a broad audience, fostering public awareness and readiness for
disaster response.61,62 SNs offer adaptable communication that
accommodate to various demographics, ensuring inclusivity and
multilingual content, enhancing trust, participation, and collabor-
ation among different groups and organizations in DHM
efforts.96,109,123 SNs enable coordination among government agen-
cies, emergency response teams, health care organizations, non-
profits, and the public in disaster preparedness efforts, increasing
resilience and ensuring well-informed populations.121

Figure 3. (A) Network mapping, (B) Overlay visualization.
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In disasters, SNs function as critical platforms for immediate,
real-time information dissemination.121 Authorities can use SNs
for swift sharing updates including evacuation directives, shelter
provisions, and availability of emergency services ensuring timely
access and minimizing confusion and misinformation. SNs also
enable an interactive, 2-way dialogue.50,94 Affected individuals can
use SN platforms to seek assistance, report emergencies, and pro-
vide firsthand information. This interactive feedback loop proves
invaluable for DHM authorities, enabling them to efficiently strat-
egize and allocate resources by using real-time insights and public
inputs. This seamless exchange of information facilitates the swift
deployment of resources and targeted responses to the pressing
needs of affected communities during crises.89,95,113

SNs are also crucial communication tools during recovery
efforts. SNs can promote coordination and collaboration among
various entities, including government agencies, emergency
response teams, health care institutions, and the public.114,130 SN

platforms enable community-driven initiatives, such as mobilizing
volunteers and the coordination of donation drives, fostering soli-
darity and resilience in affected communities by empowering indi-
viduals to actively participate in the recovery process. Additionally,
SNs offer an opportunity for shared content analysis and sentiment
tracking, providing valuable insights into public awareness and
sentiments following the disaster.74,111 By analyzing shared con-
tent, authorities gain a deeper understanding of the evolving needs
and feelings of the affected population which aids in the formula-
tion of more effective post-disaster communication strategies and
developing long-term recovery plans, ensuring targeted, sensitive,
and community-aligned efforts.

The role of SNs in DM spans beyond simple information
dissemination. It encompasses a spectrum of functions that stimu-
late public engagement, streamline coordination efforts, and estab-
lish feedback mechanisms. This comprehensive involvement
significantly amplifies the efficacy of communication strategies
throughout all stages of disasters, thereby yielding more efficient
and well-coordinated responses and recovery efforts. SN platforms
enhance communication strategies during disasters by facilitating
rapid dissemination of critical information, encouraging active
participation among stakeholders, and facilitating real-time inter-
actions. This enables DHM entities to adapt strategies and allocate
resources based on real-time needs and community feedback,
increasing resilience and ensuring effective disaster response and
recovery initiatives.

Situational Awareness

SA involves the monitoring and comprehension of disasters’
impact on public health through SN platforms.45,93,122 SNs support
real-time understanding of disasters’ impact on the public, serving
as crucial data sources for constant monitoring of evolving situ-
ations.115,124 SNs can be centralized spaces for affected individuals
to share personal experiences during disasters, enabling immediate
communication and identification of emerging health issues.81,94

This direct and unfiltered interaction is valuable in swiftly compre-
hending the evolving health landscape.

Individuals can also use SNs’ platforms to share timely
updates regarding their status, access to medical facilities, avail-
ability of essential supplies, and other relevant information.
Moreover, leveraging data mining and analytics techniques is
instrumental in recognizing patterns, trends, and potential focal
points of health issues.63,99,100 This approach significantly
improves the capacity and focus of responding to health chal-
lenges during disasters.

SNs are influential assets in enhancing disaster SA. These plat-
forms facilitate information sharing among impacted populations,
providing crucial insights into health needs and challenges during
disasters, enabling responders to adapt effectively.

Information Extraction

Information extraction is the process of gathering and analyzing
data to understand disaster impacts, assist communities, and
inform governments and agencies for preparedness and public
health implications.92 SN data analytics can highlight specific
problems, such as how disaster relief activities might provoke
negative views if they are carried out without a thorough grasp of
local cultures.60 Also, by investigating the emotional expressions of
SN users before, during, and after disasters, it is possible to
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determine potential links between DHM activities and disaster
impacts.77 The analysis helps authorities detect risks, trends, and
early warnings; adopt preventative measures; and prepare the
public for disasters. Furthermore, during a disaster, it allows
authorities to analyze response operations’ effectiveness, make
requiredmodifications, and assess damages to prepare for recovery.

From the analysis, it is evident that researchers employed
diverse methodologies to analyze SN data for DHM, including AI
tools, Content Analysis, Social Network Analysis, and other ana-
lysis techniques. The discussion over them is provided in the
following subsection.

Machine Learning and Deep Learning

There has been an extensive use of Machine Learning (ML) and
Deep Learning (DL) techniques, particularly DL architectures, like
Long Short-Term Memory networks (LSTM), for analyzing
sequential data in SN data during disasters.80,113 Stacked LSTM
architectures have enabled amore intricate understanding of evolv-
ing patterns and sentiments over time, aiding in real-time decision-
making.101 Also, the RoBERTamodel, a variant of the Bidirectional
Encoder Representations from Transformers BERT architecture,
excelled in understanding context and semantics within textual
data, enabling deeper sentiment analysis and information extrac-
tion.81,90 Utilizing Multi-task Domain Adversarial Attention Net-
works (MT-DAAN) enabled simultaneous performance sentiment
analysis, entity recognition, and trend identification within SN
data.82 Traditional Machine Learning algorithms like Support Vec-
tor Machines (SVM),92,98,116 K-Nearest Neighbours (KNN),92,105

Naive Bayes classifiers,98,105 and ensemble methods such as Ran-
domForest, Adaboost, andGradient Boosting have proven effective
in classifying sentiments, identifying relevant topics, and forecast-
ing potential trends during disaster events.89,98,105,116 For instance,
SVM has significantly contributed to sentiment classification, dis-
tinguishing between positive and negative sentiments in SN data
during and after disasters.

NLP and Text Analysis

Natural Language Processing (NLP) and Text Analysis techniques
have been essential in dissecting the linguistic trails in SN data,
contributing to DHM research. Again, LSTM-based sentiment
analysis has enabled the interpretation of emotional expressions,
capturing the sentiments of individuals and communities before,
during, and after disaster.78 LatentDirichlet Allocation (LDA) topic
modelling has been crucial in uncovering latent themes and preva-
lent topics within massive volumes of disaster-related textual
data.50,66,78,97 Additionally, sentiment analysis using Python-based
libraries such as NLTK and Snow NLP allows for the extraction of
emotions, enabling a deeper understanding of public perceptions
and reactions in crisis situations.84,86

Furthermore, BERT, a contextual model understanding, has
been leveraged to accurately discern sentiment polarity and emo-
tional expressions. This model is employed with emotion analysis
to capture the alterations in public sentiments during different
disaster phases.84,100 Moreover, Named Entity Recognition (NER)
combined with Graph-based clustering effectively identifies and
categorizes entities and relationships in SN data.100,104 This helps
disaster response teams to swiftly identify critical information,
locations, and sentiment trends, enabling targeted and efficient
intervention strategies.

Hybrid Models

The Hybrid Methods adopted in analyzing SN data for DHM
involve combining diverse tools and techniques to gain compre-
hensive insights. Studies have employed combinations of method-
ologies such as LDA for topic modelling, sentiment analysis, and
correlation analysis to reveal complex perspectives in SN data
during disaster events.

The integration of NER, BERT, and Graph-based clustering
techniques enable extraction of location-specific information, sen-
timent trends, and relationship mapping.100 This integration can
support DM authorities in refining response strategies by consid-
ering geographic-specific needs and sentiment analysis. Further-
more, employing a combination of Convolutional Neural Network
(CNN) and RoBERTa,90 Word2Vec, fastText, and LSTM99 in a
unified pipeline has enabled holistic approaches to analyzing SN
data. Combining sentiment analysis, entity recognition, and deep
contextual understanding, these methods provide a comprehensive
view of SN data during disasters, aiding in informed decision-
making by authorities and organizations.

Within the dataset, a spectrum of studies extensively reached
into content analysis methodologies to examine SN data in DHM
contexts. These studies utilized qualitative and quantitative content
analysis approaches to analyze textual information in SN posts
during disaster events. Qualitative content analysis delved into
subjective aspects of SN discussions, uncovering intensity and
emotions57,74,75,103 while quantitative content analysis structured
sentiments, frequency, and statistical patterns.108,109

Additionally, thematic content analysis emerged as a fundamen-
tal tool in categorizing and identifying recurring topics in SN
conversations during disasters, offering a comprehensive view of
prevalent discussions and priorities.56 Psycho-linguistic analysis
decoded emotional cues and linguistic patterns in SN communica-
tions, revealing insights into individuals’ mental and emotional
states.124 Furthermore, 1 study leveraged SAS text miner, showcas-
ing an automated approach to content analysis, aiding in the
extraction, categorization, and summarization of information from
extensive volumes of data.58

Furthermore, the dataset contains studies that extensively
explore Social Network Analysis (SNA) techniques, which are not
specifically reliant on AI techniques or qualitative/quantitative
methods.114 Researchers used various methods, including special-
ized software like UCINET, to uncover intricate network structures
and dynamics in SN data.71

Moreover, employing semantic analysis techniques deepened
the understanding of underlying meanings conveyed through lan-
guage in SN discussions related to disaster events.96 Dynamic
network analysis methods were crucial in tracking changes in
network structures over time in SN platforms, offering insights
into evolving communication patterns, influence, and interactions.
These varied content analysis methodologies provided valuable
insights for developing informed DHM strategies without relying
on ML techniques.

Location Identification

The utilization of spatiotemporal data derived from SNs signifi-
cantly enhances the understanding of public health during
ongoing disasters. This form of data combines spatial and tem-
poral information, providing a comprehensive view of how
health-related issues evolve over both space and time.52,80,100 This
insight is valuable for assessing the dynamics of a disaster’s
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impact on public health. For instance, real-time tracking of
infection locations and population on SN platforms helps author-
ities make informed decisions, implement targeted interventions,
and provide SA.80,99

Location identification from SN data in disasters is the process
of identifying the location of SN posts related to a disaster event. For
example, one research utilized DL to categorize disaster-related
tweets from impacted areas,80 while another employed text analysis
to track individuals’ positions during disasters.52 These methods
show how advanced technologies can extract vital location-specific
details from SN data. In separate research, a hybrid ML technique
was used to identify disaster-related locations.100 This technique
illustrates the interaction between various ML methodologies like
NER and advancedmodels like BERT, to highlight disaster-affected
locations.

The utilization of spatiotemporal data from SN platforms aids in
understanding health issues’ geographical spread and progression
during disasters with advanced analyses and tools demonstrating
potential for effective public health interventions.

Disaster Management

The analysis of the studies in the review dataset revealed the
significant impact of SN platforms across all phases of DM. SN
platforms prove invaluable in prevention by spreading essential
information, increasing awareness, and enhancing community
preparedness.53,119 SN platforms aid in the response phase by
facilitating communication, coordinating relief efforts, providing
real-time updates,49,67,72,124 and aiding authorities in decision-
making and policy formulation.50,64,68,107,123 These networks con-
tribute to SA by extracting information, monitoring initiatives, and
detecting hazards and vulnerabilities, crucial for mitigation and
preparedness.74,119 In relief operations, SN assists in identifying
affected areas, connecting aid organizations with communities, and
streamlining resource distribution. In the recovery phase, SN
remains crucial by helping to allocate resources effectively, identi-
fying vulnerable groups, and assessing evolving community needs
and sustainable recovery.60,64,124

Discussion and Conclusion

Studies show SN platforms are crucial for authorities to effectively
communicate and share essential information during health emer-
gencies, assessing public awareness and planning responses.87 SN
platforms foster collaboration and communication between
authorities and the public, enhancing disaster risk mitigation and
resilience by influencing public perceptions and assessing public
awareness and response intentions.42,62,120 Moreover, SN improves
SA, allowing people, organizations, and governments to monitor
and comprehend the effects of disasters and facilitate more effective
responses to emerging needs.68,122 Through the analysis of SN data,
it is possible to address the needs before, during, and after disasters
with better efficiency.

AI technologies enable swift implementation of adaptive strat-
egies by analyzing user-generated content on SN platforms, iden-
tifying valuable patterns and trends to enhance health care
efforts.66,68 Employing AI models enables the efficient controlling
of health care requirements throughout various stages of disasters
to analyzing extensive SN data in real-time. The AI-driven analysis
detects frequent patterns, emerging trends, public opinions, and the
dynamics of the disasters. Ultimately, this leads to the preservation

of lives and the reduction of disaster-related consequences in
communities.66,68

Although, SN platforms have provided new approaches for
information sharing and networking, they have also accelerated
the generation of massive amounts of information.131 As a conse-
quence, the rapid pace of information generation has led to infor-
mation overload, a state where the amount of data overwhelms the
capacity to process it effectively.132 Additionally, the excessive
amount of data can strain cognitive abilities, reduce attention spans,
and lead to decision fatigue due to the overwhelming amount of
choices or data to process.133

Moreover, the quick spread of false and inaccurate information
on SN platforms has raised concerns about potential harm to
individuals and society.134 False information in DHM can lead to
severe consequences, necessitating accurate and timely information
for authorities and policy-makers to make informed decisions.135

Misleading information can intensify disaster impact, undermine
public trust in authorities’ response efforts, and contribute to
harmful beliefs.136 This can result in non-compliance with safety
measures that can put people in danger. Therefore, the use of
reliable, accurate, and up-to-date information in DHM is crucial
to prevent the spread of false information and its negative effects.

Additionally, it is important to recognize that SNs cannot fully
represent the entire community’s population.137 In fact, individuals
who use SN may not be the most vulnerable during disasters,
potentially distorting understanding of affected populations, espe-
cially the elderly and those without technology access. To better
understand disaster-affected populations, a comprehensive
approach combining SN data with diverse communication
methods, community engagement, traditional media, and field
assessments is essential to ensure a better understanding of diverse
disaster-affected groups.

Furthermore, some types of disasters, such as earthquakes,
hurricanes, or cyber-attacks can cripple communication networks,
cutting off access to vital channels like SN platforms.138 Moreover,
displaced individuals might lose their personal technological
devices, further limiting their ability to connect via SN.139 Disrup-
tions in communication and information dissemination exacerbate
challenges in disaster response, highlighting the need for alternative
approaches to reach and assist affected communities.

Relying solely on SN for DHM presents a research gap, high-
lighting the potential for incomplete or inaccurate information due
to individuals who are either not active on or lack access to SN
platforms. Such oversight can render their concerns and needs
invisible within DM frameworks. Future studies should consider
the experiences of non-active SN users to fully understand the
broader population’s perspectives. To address this issue, efforts
should be made to collect information from a variety of sources
in order to guarantee a thorough grasp of the situation.

Furthermore, while SN platforms are undeniably valuable in
emergency situations, they should not serve as the total means to
manage disasters. Effective DHM requires coordinating various
resources and strategies, planning, robust communication proto-
cols, preparedness measures, and collaboration among stake-
holders. It involves thorough preparation by identifying risks,
evaluating disaster impacts on health care, and creating flexible
emergency response strategies.

It is critical to understand that SN data analytics is only 1 of
several ways that should be employed for an effective DHM.
Comprehensive DHMmandates integrating diversemethodologies
and data sources beyond SN platforms, including traditional data
collection, community engagement, expert consultations, and
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unpublished data. By embracing a diverse array of resources, DHM
efforts can be more resilient and adaptive in addressing the com-
plexities of DM.

It is important to acknowledge that the current study has certain
limitations that may be addressed in future research. This study
may have overlooked some relevant literature due to selection of
keywords and inclusion/exclusion criteria, despite efforts to address
these limitations throughwell-defined research protocols and exist-
ing theories. The research underscores the significance of utilizing
SNs despite their challenges, paving the way for future research and
robust methodologies to enhance disaster decision-making. Future
studies should incorporate multiple information sources to
improve accuracy and quality, advance scientific knowledge, and
aid in informed decision-making processes.

Supplementary material. To view supplementary material for this article,
please visit http://doi.org/10.1017/dmp.2024.294.
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“disastermanagement”OR “emergencymanagement”OR “mass emergency” AND “social media”OR “social network*” AND healthcare OR
“public health” OR medical* OR “health care”

CINAHL “disastermanagement”OR “emergencymanagement”OR “mass emergency” AND “social media”OR “social network*” AND healthcare OR
“public health” OR medical* OR “health care”

Emerald Insight “disaster management” OR “emergency management” OR “mass emergency” AND ("social media" OR “social network*”) AND (healthcare
OR “public health” OR medical* OR “health care”)

IEEE Xplore ("Full Text & Metadata":"disaster management" OR “Full Text & Metadata”:"emergency management" OR “Full Text & Metadata”:"mass
emergency") AND ("Full Text & Metadata":"social media" OR “Full Text & Metadata”:"social network*") AND ("Full Text & Metadata":
healthcare OR “Full Text & Metadata”:"public health" OR “Full Text & Metadata”:medical* OR “Full Text & Metadata”:"health care")

PubMed (("disaster management" OR “emergency management” OR “mass emergency” OR disaster* AND ((fft[Filter]) AND (english[Filter]))) AND
("social media" OR “social network*” AND ((fft[Filter]) AND (english[Filter])))) AND (healthcare OR “public health”ORmedical* OR “health
care” AND ((fft[Filter]) AND (english[Filter]))) AND ((fft[Filter]) AND (english[Filter])) Filters: Full text, English

Scopus (ALL ("disaster management” OR “emergency management” OR “mass emergency”) AND ALL (healthcare OR “public health” OR medical*
OR “health care”) AND ALL ("social media" OR social AND network*)) AND PUBYEAR > 2009 AND (LIMIT-TO (DOCTYPE , “ar”) OR LIMIT-TO
(DOCTYPE , “cp”)) AND (LIMIT-TO (LANGUAGE , “English”) )

SpringerLink ’healthcare | “public health” | “health care” & “disaster management” | “emergency management” & “social media”’

Google Scholar ("disastermanagement" OR “emergencymanagement”OR “mass emergency”) AND ("socialmedia" OR “social network*”) AND (healthcare
OR “public health” OR “medical* OR ”health care")
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Appendix 2. Selected studies for the review

Author(s) Topic Platform Disaster Event

C. Wukich and I. Mergel 71 Used SN analysis software package UCINET Twitter -

H. A. Abu-Alsaad and R. R. K. Al-Taie 52 NLP Twitter -

B. Sahoh and A. Choksuriwong 104 NER Twitter -

D. Bennett 107 Qualitative content analysis Twitter -

R. Aswani, A. K. Kar and P. V. Ilavarasan 108 Quantitative content analysis Twitter -

L. Fernandez-Luque and M. Imran 112 Literature review - -

S. J. Teague, A. B. R. Shatte, E. Weller, M. Fuller-
Tyszkiewicz and D. M. Hutchinson 115

Scoping review - -

M. Arslan, A. M. Roxin, C. Cruz and D. Ginhac 118 Systematic review - -

C. Wukich 123 Qualitative analysis - -

M. Yang, Y. Li and M. Kiang 125 Qualitative analysis - -

H. N. Alshareef and D. Grigoras 127 Proposing a system - -

H. N. Alshareef and D. Grigoras 129 Proposing a system Twitter -

F. Niknam, M. Samadbeik, F. Fatehi, M. Shirdel,
M. Rezazadeh and P. Bastani 46

Content analysis Instagram COVID–19

S. Yum 73 Content analysis Twitter COVID–19

Y. Yang and Y. Su 74 Qualitative analysis - COVID–19

P. C. I. Pang, Q. Cai, W. Jiang and K. S. Chan 75 Qualitative analysis Facebook COVID–19

M. K. Leibowitz, M. R. Scudder, M. McCabe, J. L.
Chan, M. R. Klein, N. Seth Trueger, et al. 76

Qualitative and quantitative analysis Twitter COVID–19

L. Liu, Y. Tu and X. Zhou 78 LSTM sentiment analysis, LDA topic modelling Weibo COVID–19

Z. Zhong 50 Text analysis using a combination of LDA, sentiment
analysis, correlation analysis

Baidu COVID–19

S. Yu, D. Eisenman and Z. Han 83 Sentiment analysis using Python and Snow NLP
Python libraries

Weibo COVID–19

M. Taeb, H. Chi and J. Yan 84 NLTK, TF-IDF, LDA, BERT Twitter COVID–19

V. Negri, D. Scuratti, S. Agresti, D. Rooein, G.
Scalia, A. Ravi Shankar, et al. 85

VisualCit, a pipeline for image-based social sensing Twitter COVID–19

L. Li, A. Aldosery, F. Vitiugin, N. Nathan, D.
Novillo-Ortiz, C. Castillo, et al. 86

K-Means, TF-IDF, NLTK Twitter COVID–19

X. Han, J. Wang, M. Zhang and X. Wang 87 Time series, LDA Weibo COVID–19

T. Awoyemi, K. E. Ogunniyi, A. V. Adejumo, U.
Ebili, A. Olusanya, E. H. Olojakpoke, et al. 88

TF-IDF, LDA, sentiment and emotion analysis Twitter COVID–19

S. Andhale, P. Mane, M. Vaingankar, D. Karia
and K. T. Talele 90

CNN-RoBERTa Twitter COVID–19

A. Adikari, R. Nawaratne, D. de Silva, S.
Ranasinghe, O. Alahakoon and D. Alahakoon
91

NLP, word embeddings, markov models Twitter COVID–19

H. Adamu, M. J. B. M. Jiran, K. H. Gan and N. H.
Samsudin 92

NLP, SVM, KNN Twitter COVID–19

Y. E. Park 51 Semantic network analysis Twitter - YouTube COVID–19

A. A. Mir and R. Sevukan 94 Sentiment analysis using VADER Twitter COVID–19

K. Li, C. Zhou, X. R. Luo, J. Benitez and Q. Liao 95 Text mining and NLP Weibo COVID–19

M. U. Hoque, K. Lee, J. L. Beyer, S. R. Curran, K.
S. Gonser, N. S. N. Lam, et al. 96

Sentiment analysis using VADER Twitter COVID–19

H. Gao, D. Guo, J. Wu and L. Li 44 DLUT-Emotion ontology for sentiment analysis Weibo COVID–19
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(Continued)

Author(s) Topic Platform Disaster Event

N. Gamal, S. Ghoniemy, H. M. Faheem and N. A.
Seada 99

Linear classifier, MLP, RNN, and CNN Twitter COVID–19

S. De Rosis, M. Lopreite, M. Puliga and M.
Vainieri 101

LSTM Twitter COVID–19

W. Chipidza, E. Akbaripourdibazar, T. Gwanzura
and N. M. Gatto 102

LDA Twitter COVID–19

M. Machmud, B. Irawan, K. Karinda, J. Susilo
and Salahudin 103

Qualitative analysis Twitter COVID–19

M. Chong and H. W. Park 54 Content analysis Twitter COVID–19

Y. Li, Y. Chandra and N. Kapucu 106 LDA Weibo COVID–19

E. Mori, B. Barabaschi, F. Cantoni and R.
Virtuani 47

Qualitative content analysis Facebook COVID–19

Y. Wang, H. Hao and L. S. Platt (2021) 62 Dynamic network analysis Twitter COVID–19

L. Liu, Y. Tu and X. Zhou 110 AHPSort II, SMAA–2 - COVID–19

Y. Xing, Y. Li and F. K. Wang 111 TF-IDF Twitter, Weibo COVID–19

N. A. Hasanah, N. Suciati and D. Purwitasari 113 Word2Vec, fastText, CNN, RNN and LSTM Twitter COVID–19

D. Yao, J. Li, Y. Chen, Q. Gao and W. Yan 114 Social network analysis - COVID–19

Y. Zhuang, T. Zhao and X. Shao 53 Qualitative analysis WeChat COVID–19

F. Binsar and T. Mauritsius 116 SVM, Random Forest and Naïve Bayes Twitter COVID–19

T. D. Durowaye, A. R. Rice, A. T. M. Konkle and K.
P. Phillips 56

Thematic content analysis Facebook COVID–19

D. M. Abdulah and M. S. Saeed 117 Statistical Analysis Facebook COVID–19

B. Dutta, M. H. Peng, C. C. Chen and S. L. Sun 119 Delphi Method, NLP - COVID–19

F. M. Alhassan and S. A. AlDossary 120 Content analysis Twitter COVID–19

S. Luna, A. Guerrero, K. Gonzalez and A. Akundi
55

NLP, Sentiment Analysis Twitter COVID–19

S. Fissi, E. Gori and A. Romolini 121 CERC Facebook COVID–19

I. Amin, Z. Pramestri, G. Hodge and J. G. Lee 122 - Twitter COVID–19

T. Muswede and S. L. Sithole 48 Qualitative analysis WhatsApp COVID–19

A. Tommasel, A. Diaz-Pace, D. Godoy and J. M.
Rodriguez 124

Psycho-linguistic analysis Twitter COVID–19

R. Mittal, W. Ahmed, A. Mittal and I. Aggarwal 42 Sentiment analysis (data extraction), Qualitative
analysis

Twitter COVID–19

Q. Chen, C. Min, W. Zhang, G. Wang, X. Ma and R.
Evans 28

Systematic review Weibo COVID–19

H. Abbas, M. M. Tahoun, A. T. Aboushady, A.
Khalifa, A. Corpuz and P. Nabeth 126

- - COVID–19

P. K. Dalela, S. Sharma, N. K. Kushwaha, S.
Basu, S. Majumdar, A. Yadav, et al. 105

Linear SVC, logistic regression, multinomial Naive
Bayes, Random Forest, XGBoost, KNN

Twitter Cyclone

S. Madichetty and M. S 81 RoBERTa model and feature-based method Twitter Different Disaster Scenario

J. Krishnan, H. Purohit and H. Rangwala 82 Multi-task domain adversarial attention network (MT-
DAAN)

Twitter Different Disaster Scenario

J. Radianti, S. R. Hiltz and L. Labaka 60 Content analysis Twitter Earthquake

T. Onorati and P. Díaz 93 Semantic analysis Twitter Earthquake

C. Havas and B. Resch 97 LDA Twitter Earthquake

K. Rudra, P. Goyal, N. Ganguly, P. Mitra and M.
Imran 65

Integer linear programming technique Twitter Earthquake, Flood, Typhoon

A. Asif, S. Khatoon, M. M. Hasan, M. A.
Alshamari, S. Abdou, K. M. Elsayed, et al. 70

VGG–16, AHP, CNN - Earthquake, Hurricane, and
Typhoon
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(Continued)

Author(s) Topic Platform Disaster Event

A. J. Lazard, E. Scheinfeld, J. M. Bernhardt, G. B.
Wilcox and M. Suran 58

SAS text miner Twitter Ebola

K. C. Finch, K. R. Snook, C. H. Duke, K.-W. Fu, Z.
T. H. Tse, A. Adhikari, et al. 67

Scoping review - Environmental Disaster

U. A. Bukar, F. Sidi, M. A. Jabar, R. N. H. B. Nor, S.
Abdullah and I. Ishak 64

ANN, PLS-predict, PLS-SEM - Flood

B. Wang and J. Zhuang 61 Content analysis Twitter Hurricane

S. I. Garske, S. Elayan, M. Sykora, T. Edry, L. B.
Grabenhenrich, S. Galea, et al. 77

Local Indicator of Spatial Association (LISA) Twitter Hurricane

S. Shams, S. Goswami and K. Lee 80 Deep learning based framework using LLR,Single
LSTM, Stacked LSTM, ConvNet

Twitter Hurricane

N. Assery, X. Yuan, X. Qu, S. Almalki and K. Roy 89 TF-IDF, random forest, decision tree Twitter Hurricane

C. Fan, F. Wu and A. Mostafavi 100 A pipeline which integrates Named Entity Recognition
(NER), Location Fusion, BERT, Graph-based
clustering

Twitter Hurricane

S. Chen, J. Mao and G. Li 63 Location classification, Time slicing, sentiment
classification

Twitter Hurricane

B. Wang and J. Zhuang 61 Content analysis Twitter Hurricane

K. A. Lachlan, P. R. Spence and X. Lin 109 Quantitative content analysis Twitter Hurricane

S. Saleem and M. Mehrotra 68 Literature review Twitter Hurricane, Earthquake,
Flood, Cyclone

A. H. Alamoodi, B. B. Zaidan, A. A. Zaidan, O. S.
Albahri, K. I. Mohammed, R. Q. Malik, et al. 72

Systematic review - Infectious Diseases

S. Ghosh, P. K. Srijith and M. S. Desarkar 98 Naive bayes classifier, SVM, decision trees, random
Forest, Adaboost, gradient boosting

Twitter Natural Disasters

H. Seddighi, I. Salmani and S. Seddighi 43 Literature review Twitter Natural Disasters, Pandemic

M. Basu, S. Ghosh, A. Jana, S. Bandyopadhyay
and R. Singh 49

- WhatsApp Nepal Earthquake

L. E. Charles-Smith, T. L. Reynolds, M. A.
Cameron, M. Conway, E. H. Lau, J. M. Olsen,
et al. 128

Systematic review - Outbreak

M. Abbassinia, O. Kalatpour, M. Motamedzade,
A. Soltanian and I. Mohammadfam 69

Qualitative analysis - Petrochemical

H. Woo, Y. Cho, E. Shim, K. Lee and G. Song 79 NLP Twitter Sewol Ferry Disaster

S. Shan, F. Zhao, Y. Wei and M. Liu 45 Qualitative content analysis Weibo Typhoon

J. Xiong, Y. Hswen and J. A. Naslund 66 LDA, sentiment analysis Twitter Water crisis

L. Hagen, R. Scharf, S. Neely and T. Keller 57 Qualitative content analysis Twitter Zika
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