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Abstract. With so many spectroscopic surveys, both past and upcoming, such as SDSS and
LAMOST, the number of accessible stellar spectra is continuously increasing. There is there-
fore a great need for automated procedures that will derive estimates of stellar parameters.
Working with spectra from SDSS and LAMOST, we put forward a hybrid approach of Kernel
Principal Component Analysis (KPCA) and Support Vector Machine (SVM) to determine the
stellar atmospheric parameters effective temperature, surface gravity and metallicity. For stars
with both APOGEE and LAMOST spectra, we adopt the LAMOST spectra and APOGEE
parameters, and then use KPCA to reduce dimensionality and SVM to measure parameters.
Our method provides reliable and precise results; for example, the standard deviation of effec-
tive temperature, surface gravity and metallicity for the test sample come to approximately
47–75K, 0.11–0.15 dex and 0.06–0.075 dex, respectively. The impact of the signal:noise ratio of
the observations upon the accuracy of the results is also investigated.
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1. Introduction

Massive databases of spectra of celestial objects are being obtained nowadays by sur-
veys of large areas of the sky, such as SDSS (York et al. 2000; http://www.sdss.org/),
2dF (Colless et al. 2001; http://www.2dfgrs.net/), and LAMOST (Wang et al. 1996;
http://www.lamost.org/). Analyses of those data yield radial velocities and atmospheric
parameters of several million objects. Many novel parameterisation methods have been
developed and adapted to different applications. Nevertheless, since most of the spectra
from the large sky surveys are of medium or low resolution, the efficiency and precision
of applying existing methods to those big data sets should be validated and tuned in
detail.

The APO Galactic Evolution Experiment (APOGEE) (Holtzman et al. 2015), which is
part of the SDSS project, has published several hundred thousand high-resolution, high
signal-to-noise infrared spectroscopy data together with well-estimated stellar param-
eters. The combination of the APOGEE stellar parameters with the large volumes
of LAMOST spectra has a high potential. The Kernel Principal Component Analysis
(KPCA), an extension of Principal Component Analysis (PCA), is commonly used to
reduce dimensionality. In the case of astronomical spectra, the pixel number (the dimen-
sionality) is about several thousand and is thus too large for most machine-learning
algorithms. Instead of extracting complicated spectral indices by applying astronomical
knowledge, the KPCA dimensionality reduction is data oriented and easy to use. The
processed data are then trained and tested using Support Vector Machine (SVM). When
we select objects common to both LAMOST and APOGEE as the training set, the stel-
lar parameters of other LAMOST spectra can be predicted. In this work, the training
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Table 1. Performance of KPCA and SVM methods using APOGEE and LAMOST data.

g-band SNR Parameter Sample Size Gaussian fit σ Gaussian offset N-fold σ N-fold offset

100–500 Teff 3617 23.58K –0.076K 47.76K –0.62K

50–100 Teff 5820 33.79K –0.39K 50.94K 0.82K

20–50 Teff 9551 43.55K –1.375K 75.22K 2.30K

100–500 log g 3530 0.052 dex –0.00034 dex 0.11 dex –0.0059 dex

50–100 log g 5650 0.070 dex –0.00084 dex 0.11 dex –0.0043 dex

20–50 log g 9544 0.093 dex 0.00093 dex 0.15 dex –0.0063 dex

100–500 [Fe/H ] 3509 0.019 dex 0.00049 dex 0.056 dex –0.0065 dex

50–100 [Fe/H ] 5629 0.024 dex –0.00022 dex 0.066 dex –0.0077 dex

20–50 [Fe/H ] 9346 0.035 dex 0.00019 dex 0.075 dex –0.0060 dex

precision is validated by applying a 10-fold cross-validation method. The result should
provide a valuable reference for all big-volume machine-learning algorithms.

2. Data and Method

Targets that are common to both APOGEE and LAMOST were chosen and divided
into different groups according to their signal-to-noise ratios (SNR) in the g-band. We
used normalised spectra from LAMOST and the parameters from APOGEE. The cross-
match distance of APOGEE and LAMOST was 3′′. Individual pixels with abnormal
masks were removed. Wavelengths were corrected to the rest-frame using radial veloc-
ities from APOGEE, and then re-sampled between 4000–8800 Å with a step length of
1 Å; fluxes were normalised. We limited the method to data with 3500 <Teff < 5500 K.
The scikit-learn python package (See http://scikit-learn.org) was used. First, the spec-
tral dimensionality reduction was performed using KPCA with the radial basis function
(RBF) kernel (γ = 10). An output dimension of 500 was selected. The parameter regres-
sion was then carried out using SVM with the RBF kernel. A small number of outliers
was removed in order to keep the sample clean. Two classes for cross-validation from the
scikit-learn package, GridSearchCV and RandomizedSearchCV, were applied to optimise
the SVM parameters.
The final parameters for Teff were [γ = 4096, C = 16, ε= 0.02];
the final parameters for log g were [γ = 8, C = 16, ε= 0.01];
the final parameters for [Fe/H] were [γ = 16, C = 4, ε= 0.01]. A 10-fold cross-validation
was performed to estimate the performance. Each time 90% of the sample was reduced
dimensionally and trained; the remaining 10% was processed with the trained reduction
model and the regression model.

3. Results

To assess the performance, we compared the estimated values with the ones from
APOGEE using the 10-fold cross-validation method. The results are shown in Table 1.
Our results for the high-SNR case are also illustrated in Fig. 1. The cross-validation
standard deviation in Teff was 47.76 K, 50.94 K and 75.22 K, for the 100–500, 50–100
and 20–50 SNR groups, respectively. The deviation was obviously smaller for higher
SNR data. However, the difference between the first two SNR groups was not distinct.
The SNR suggested for applying this method is above 50 in the g-band. It was also
apparent that the Gaussian fit deviation was much smaller than the N-fold cross-check
one, by approximately 50%. Further analysis showed that more than 95% of the sample
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Figure 1. Performance of KPCA and SVM method using APOGEE and LAMOST data in
the g-band; SNR between 100 and 500.

had deviations less than 3 × the Gaussian fit σ. The mean offset between the predicted
values and the values from APOGEE was almost negligible.

Deviation in log g varied from 0.11–0.15 dex, depending on the SNR. Compared to
log g, the deviation for [Fe/H] was smaller by about 50%. The SNR had a similar effect
on the estimate of log g and [Fe/H], as seen in Teff . The Gaussian fit deviation was
smaller than the N-fold cross-validation by approximately 60%.

The larger deviation in log g, compared to that of [Fe/H], may be caused by the small
range of log g covered by APOGEE, which focused on observing Galactic red giants. At
present our method of using APOGEE parameters and LAMOST spectra is applicable
to giants, and can be expanded to other stars if the training set is changed.
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4. Conclusions

In this work, the KPCA and SVM methods were used with APOGEE parameters and
LAMOST spectra. The training parameters for Teff are [γ = 4096, C = 16, ε= 0.02]; those
for log g are [γ = 8, C = 16, ε= 0.01], and those for [Fe/H] are [γ = 16, C = 4, ε= 0.01].
The standard deviation of the effective temperature, surface gravity and metallicity
respectively come to approximately 47–75K̇, 0.1–0.15 dex and 0.06–0.075 dex, respec-
tively. Data with higher SNR can produce much better results. A lower limit to SNR
of 50 in the g-band was suggested, but performances with SNR as low as 20 were also
acceptable. 95% of the sample have deviations less than 3σ. Our method does appear to
be effective for estimating stellar-atmosphere parameters.
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