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We use mollification to regularize the problem of deconvolution of random variables.
This regularization method offers a unifying and generalizing framework in order to
compare the benefits of various filter-type techniques like deconvolution kernels,
Tikhonov, or spectral cutoff methods. In particular, the mollifier approach allows
to relax some restrictive assumptions required for the deconvolution kernels, and
has better stabilizing properties compared with spectral cutoff or Tikhonov. We
show that this approach achieves optimal rates of convergence for both finitely and
infinitely smoothing convolution operators under Besov and Sobolev smoothness
assumptions on the unknown probability density. The qualification can be arbitrarily
high depending on the choice of the mollifier function. We propose an adaptive
choice of the regularization parameter using the Lepskiı̆ method, and we provide
simulations to compare the finite sample properties of our estimator with respect to
the well-known regularization methods.

1. INTRODUCTION

Deconvolution is a very classical issue in statistics and econometrics and is well
known to be an ill-posed problem. Various methods have been studied to regularize
it, among which the seminal deconvolution kernels (see Carroll and Hall, 1988;
Devroye, 1989; Stefanski and Carroll, 1990; Fan, 1991a, 1991b, among others),
the Tikhonov regularization (as in Carrasco, Florens, and Renault, 2007), and
the spectral cutoff (see Mair and Ruymgaart, 1996; Johannes, 2009). Projection-
based methods have also been investigated (as in Comte, Rozenholc, and Taupin,
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2006, 2007, or in Van Rooij and Ruymgaart, 1991; Efromovich, 1997; Pensky and
Vidakovic, 1999, among others).

Optimal rates of convergence have been achieved for these estimators for
various smoothness combinations between noise and density of interest (Fan,
1991b, Butucea, 2004, Butucea and Tsybakov, 2008), and also in multidimensional
anisotropic settings (Comte and Lacour, 2013, Rebelles, 2016, Lepskiı̆ and Willer,
2017, 2019). Among the classical assumptions required to proceed, authors often
impose the noise density function to be strictly positive, although this assumption
has been relaxed in Carrasco and Florens (2011), where the density may have
isolated zeros, or in Hall and Meister (2007), Delaigle and Meister (2011), and
Trong and Phuong (2015). Note also that an important stream of the literature has
been devoted to unknown density error, as in Delaigle, Hall, and Meister (2008),
Johannes (2009), or Delaigle and Hall (2016).

In this paper, we propose a different method to regularize the deconvolution
problem, which uses a regularization principle introduced in the deterministic
setting, and has been applied in several fields of signal and image processing
such as deconvolution of images in astronomy and computerized tomography
(as in Maréchal, Togane, and Celler, 2000). To the best of our knowledge, this
regularization principle has never been applied in the stochastic setting. We refer
to it as regularization by mollification, or merely as mollification.

Mollification belongs to a class of variational methods, like Tikhonov regular-
ization, and has also some commonalities with deconvolution kernels. A brief
history of the approach is given in Section 2.2. The present paper provides a
conceptual framework that facilitates comparisons, from both theoretical and
practical viewpoints, between mollification and competitors also defined as filter-
type estimators, such as deconvolution kernels, Tikhonov, or spectral cutoff. In
this framework, mollification appears to provide a better compromise between
stability of the estimator and fidelity to the data simultaneously over the whole
frequency range. This fact can be seen using both the variational definition of the
regularization method and the filter-type definition of the estimator. It is illustrated
later in the paper through simulations using a stability index tool.

We consider a multidimensional setting with a known isotropic error density,
provide rates of convergence for our mollified estimator in the general Besov
spaces setting, for ordinary smooth and supersmooth error cases, and show that
the obtained rates correspond to optimal rates found in the literature. We also
propose an empirical rule for the smoothing parameter selection based on the
Lepskiı̆ method and prove the convergence of the adaptive estimator.

The paper is organized as follows: In Section 2, we present the general setting
of deconvolution, introduce the mollification method, and define our regularized
estimator. In Sections 3 and 4, we study the convergence properties of our estimator
under an a priori parameter selection rule and also using the Lepskiı̆ method as
an a posteriori parameter selection rule. In Section 5, we provide a framework
for comparison with classical regularization methods and show, in particular,
that mollification allows to relax some restrictive assumptions required by the
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deconvolution kernels, while having better stabilizing properties than the Tikhonov
regularization, and better morphological properties than the spectral cutoff. At last,
in Section 6, we provide simulations to compare the finite sample properties of our
estimator with respect to the well-known methods.

2. SETTING AND THE MOLLIFICATION APPROACH

2.1. The Deconvolution Problem

2.1.1. Assumptions. Consider the equation Y = X + ε in which Y is the
observed random vector, X is the latent random vector, and ε is a random noise
vector. All random vectors Y,X, and ε have values in Rd. Throughout, we make
the following assumptions:

(A1) The random vectors X and ε are independent.
(A2) All random vectors Y, X, and ε have densities with respect to the Lebesgue

measure, denoted, respectively, by g, f, and γ .
(A3) Both f and g belong to L1(Rd)∩L2(Rd).

From assumptions (A1) and (A2), the equation Y = X + ε gives rise to the
relation g = f ∗ γ with the convolution (f ∗ γ )(x) := ∫

Rd f (x − y)γ (y)dy. Our
objective is to recover the density function f by solving this deconvolution
problem. We are mostly interested here in the case where γ is known, either from
modeling or from empirical observations. The density g is unknown and given only
approximately by the statistical sample Y1, . . . ,Yn.

Assumption (A3) places us in the familiar framework of Hilbert spaces, which
lend themselves naturally to variational methods. In this framework, finding the
unknown density f entails inverting the convolution operator Tγ defined by

Tγ : L2(Rd) −→ L2(Rd)

f �−→ Tγ f := f ∗γ .
(1)

A classical way to proceed to recover the density function f is to apply the
Fourier transform to the equation g = f ∗γ . The Fourier transform of an integrable
function h is defined by ĥ(ξ) := (Uh)(ξ) := ∫ e−2iπ〈x,ξ〉h(x)dx. When dealing with
square-integrable functions, we use the Fourier–Plancherel operator, obtained by
closure of the previous integral transform, thanks to the Plancherel theorem (see,
e.g., Rudin, 1970), denoted likewise. With the help of the Fourier convolution
theorem (see, e.g., Rudin, 1970), the deconvolution problem can then be rewritten
equivalently as ĝ = f̂ · γ̂ .

Remark 1. In this paper, estimated quantities are indexed with the sample
size n, whereas the hat is reserved for the Fourier transform.

2.1.2. Ill-Posedness. Recall the basic inequality ‖ f ∗γ ‖ ≤ ‖ f ‖‖γ ‖1 = ‖ f ‖,
in which ‖·‖ denotes (and will denote throughout) the L2-norm and ‖·‖1 denotes
the L1-norm. Under the mild assumption that the set

{
ξ ∈ Rd

∣∣ γ̂ (ξ) = 0
}

has
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Lebesgue measure zero, the operator Tγ is injective. As a matter of fact, Tγ f = 0 ⇔
f ∗γ = 0 ⇔ f̂ · γ̂ = 0 ⇔ f̂ = 0 ⇔ f = 0, where equality in L2(Rd) (that is, almost
everywhere) is meant. The difficulty is that the Moore–Penrose pseudoinverse T†

γ

of Tγ is unbounded, which makes the problem ill-posed. As a matter of fact, we

have inf‖ f‖2=1

∥∥Tγ f
∥∥2 = inf‖Uf‖2=1 ‖Uγ ·Uf ‖2 = 0. Here, the first equality follows

by the Plancherel theorem. As for the second equality, it is easily obtained from
the Riemann–Lebesgue lemma, which says that Uγ is continuous and vanishes at
infinity, by observing that, for every α ∈ Rd, U

(
e2iπ〈α,x〉f (x)

)
(ξ) = Uf (ξ −α).

Remark 2. In the one-dimensional case, the assumption that
{
ξ ∈ R

∣∣ γ̂ (ξ) = 0
}

has Lebesgue measure zero is much less stringent than imposing that |γ̂ (ξ)| > 0
for all ξ in R, as it is assumed in Stefanski and Carroll (1990) or Johannes (2009).
The strict positivity assumption of γ̂ was obviously related to the shape of the
kernel or spectral cutoff estimator and has been later generalized by Hall and
Meister (2007), Delaigle et al. (2008), and Trong and Phuong (2015), as well as
by Carrasco and Florens (2011), to allow for many isolated zeros. As we will see
later, as soon as we consider variational regularization methods, the estimator can
be defined in much more general settings.

The ill-posedness of the deconvolution problem makes it necessary to apply a
regularization method to solve it, and we present in the next section an introduction
to the variational approach to mollification that we will use in this work.

2.2. Mollification

In this section, we recall the historical roots of mollification and present the
variational approach to mollification.

2.2.1. Historical Background. Mollifiers were introduced in the field of par-
tial differential equations by Friedrichs (see Friedrichs, 1944; Wikipedia Con-
tributors, 2020). To the best of our knowledge, the term mollification has been
used in the field of inverse problems since the 80s. In the original works on the
subject, mollifiers were used to smooth the data prior to inversion, whenever
an explicit inversion formula was available. In his book, Murio (2011) presents
this approach and its application to some classical inverse problems, and gives
a rich bibliography on the subject. Let us mention, in particular, Hào (1994),
in which a sequence of “mollification operators” maps the improper data into
well-posedness classes of the problem, which provides a wide framework for the
mollification approach. Louis and Maass (1990) proposed an alternative approach,
based on inner product duality, and subsequently referred to as the method of
approximate inverses (see Schuster, 2007). Their paper opened the way to the
application of the concept to inverse problems in which the operator has no explicit
inverse, but the adjoint equation has explicit solutions. A third approach, based on a
variational formulation, also appeared in the same period of time. Lannes, Roques,
and Casanove (1987) give such a formulation while studying the problems of
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Fourier synthesis and deconvolution. To the best of our knowledge, this variational
formulation was not studied further until the papers by Alibaud, Maréchal, and
Saesor (2009) and by Bonnefond and Maréchal (2009), in which the convergence
of the variational formulation was explored.

2.2.2. The Mollification Approach. We now present the mollification method
and situate it among the various methodologies currently used for our deconvolu-
tion problem.

Redefining the Target Object. The mollification approach to solving ill-posed
equations, such as the deconvolution problem, consists in redefining the target
object by means of a convolution operator. Given an integrable function ϕ such
that

∫
ϕ = 1, one defines the family of functions (ϕβ)β∈(0,1] by letting ϕβ(x) :=

1
βd ϕ
(

x
β

)
, x ∈ Rd. The corresponding family of operators (Cβ)β∈(0,1], where

Cβ : f �→ ϕβ ∗ f , is then called an approximate identity. A standard approximation
theorem states that, for every f ∈ L2(Rd), Cβ f → f in L2(Rd) as β ↓ 0. Although
great generality can be reached in the above definition, it is customary to choose a
function ϕ that is smooth, isotropic, positive, and sometimes compactly supported
(see Wikipedia Contributors, 2020). So we will rather try to recover Cβ f in place
of f, and β is our regularization parameter.

Mollification as a Filter-Type Method. As discussed in Section 2.1, thanks to
the Fourier convolution theorem, we can write UTγ f = γ̂ · Uf . Recall that U is
unitary, that is, U−1 = U∗ where U∗ is the adjoint of U. The operator Tγ can then
be written as

Tγ = U∗ [γ̂ ]U,

in which
[
γ̂
]

denotes the operator of multiplication by γ̂ . More precisely, consider
the function h ∈ L∞(Rd) and let [h] : L2(Rd) → L2(Rd) be the multiplication
operator defined by ([h] f )(ξ) = h(ξ) · f (ξ), ξ ∈ Rd. Then, the inverse of
Tγ : L2(Rd) → ranTγ is given by

T−1
γ = U−1

[
1

γ̂

]
U.

The unboundedness of 1/γ̂ yields that of T−1
γ (and T†

γ ). We call filter-type
method any regularization method which acts explicitly in the Fourier domain
by bounding the multiplication operation. The corresponding regularized solution
fREG is defined as fREG = U−1 [	]Ug or, equivalently, by f̂REG = 	 · ĝ, in which the
filter 	 depends on regularization parameters. The mollification solution to our
deconvolution problem is defined by

fMO,β := U−1

[
γ̂ ϕ̂β∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

]
Ug (2)
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or, equivalently, by f̂MO,β(ξ) = γ̂ (ξ) ϕ̂β (ξ)

|γ̂ (ξ)|2+|1−ϕ̂β (ξ)|2 ĝ(ξ). We observe right away that,

whenever ϕ is even, the solution is well defined for every positive value of the
regularization parameter β. As a matter of fact, in this case, the denominator of the
filter in (2) remains bounded away from zero, as a consequence of the Riemann–
Lebesgue lemma and of the fact that the real function ξ �→ 1− ϕ̂β(ξ) vanishes only
at ξ = 0.

Mollification as a Variational Method. It is readily seen that the above molli-
fication solution is also the minimizer of the functional

F ( f ) := 1

2

∥∥Cβg−Tγ f
∥∥2 + 1

2

∥∥(I −Cβ)f
∥∥2

, (3)

in which Cβ denotes the operator of convolution with ϕβ . From this angle of view,
the rationale for considering F is as follows. In the tautological decomposition
f = Cβ f + (I −Cβ)f , (I −Cβ)f is the undesired component, and it appears natural

to choose
∥∥(I −Cβ)f

∥∥2
as the penalty term. As for the fit term, the residual squared

norm
∥∥Cβg−Tγ f

∥∥2
promotes adequacy to the mollified data, that is, the data

corresponding to the target object, since Tγ Cβ = CβTγ .
Let us stress, at this point, that a major advantage of the variational approach

is that additional restrictions can be introduced as constraints in the optimization
problem. Since we are looking for a density, one may wish to search for mini-
mizers over some closed convex subset of L2, such as the subset of nonnegative
functions. Such constraints can be handled by means of a projection gradient
method, even in infinite-dimensional Hilbert spaces. See, for example, McCormick
and Tapia (1972), an early reference on this subject. In the finite-dimensional
implementation, projection onto the positive orthant is, of course, explicit, and
convergent numerical schemes can be used. Such methods have a long history, and
the interested reader may consult Bauschke and Combettes (2011) for a general
purpose book on constrained optimization in general Hilbert spaces. However, we
stress that adding constraints makes the convergence analysis considerably more
difficult.

Remark 3. The above design of the fit term relies on the observation that
convolution operators commute, giving rise to the simple intertwining relationship
Tγ Cβ = CβTγ . In a simpler version of mollification, one may merely require
adequacy to the original data, yielding the solution

fMM,β = U−1

[
γ̂∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

]
Ug. (4)

Well-Posedness. Clearly, fMO,β and fMM,β depend continuously on g. As a mat-
ter of fact, the Fourier–Plancherel operator is an isometry and the multiplication
operators by the bounded filter functions 	 in (2) and (4) have finite norms (see
Proposition A.1 in Appendix A).
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2.2.3. Estimation. The definition of the mollification given in (2) assumes the
knowledge of the density g, whereas in practice g can only be estimated from
a random i.i.d. sample (Y1, . . . ,Yn). In this formula, Ug may be replaced by the
empirical estimator

ĝn(ξ) = 1

n

n∑
j=1

e−2iπ〈ξ,Yj〉, (5)

but then the variational interpretation would no longer hold, for ĝn does not belong
to L2(Rd). By the way, it is the Fourier transform of the distribution

gn := 1

n

n∑
j=1

δYj, (6)

not that of a density. However, the formula (2) can be turned into a kernel-type
estimator by rewriting it as

fMO,β = U−1

[
γ̂∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

]
U(ϕβ ∗g) = U−1

[
γ̂∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

]
ϕ̂β · ĝ,

in which ĝ can now be replaced by the empirical estimator (5). Note that, under
the mild additional constraint that ϕ ∈ L2(Rd), the function ξ �→ ϕ̂β(ξ) · ĝn(ξ) is
also in L2(Rd) so that, in this case, the estimator corresponding to fMO,β is nothing
but the estimator corresponding to fMM,β applied to a kernel estimation of g with
the same bandwidth β−1. In what follows, we denote this estimator by

fβ,n = U−1

[
γ̂∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

]
U(ϕβ ∗gn). (7)

Remark 4. We stress here that the variational interpretation of the estimator
corresponding to fMM,β is possible only if preceded by an estimator gn of g such that
Ugn ∈ L2(R). For example, a kernel estimator of Ug of the form ξ �→ φ̂β ′(ξ) · ĝn(ξ),

in which φ is a kernel function and β ′ > 0 is the bandwidth parameter, may be
considered. In this case, the corresponding estimator of f would depend on the

two parameters β and β ′, and would take the form U−1
[

γ̂

|γ̂ |2+|1−ϕ̂β |2

]
φ̂β ′ · ĝn =

U−1

[
γ̂ φ̂β′

|γ̂ |2+|1−ϕ̂β |2

]
ĝn. A natural choice, which we make from now on, is a kernel

estimator with kernel ϕβ , i.e., Cβgn.

3. CONVERGENCE ANALYSIS

3.1. Consistency

In this subsection, we present a general consistency result where gn can be any
consistent estimator of the true unknown density g. Optimal rates of convergence
will be derived in the next subsections with gn defined as in equation (6).
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Theorem 5. Assume that gn is a consistent nonparametric estimator of g, that is
to say, E(‖gn −g‖2) → 0 as n goes to infinity. Let fn,β denote the mollified solution
corresponding to data gn. There then exists a sequence βn ↓ 0 such that

E
∥∥ fβn,n − f

∥∥2 → 0 as n → ∞.

The proof of the theorem relies on the following simple lemma.

Lemma 6. Let c : (0,1] → R+ be any function, and let (αn) be any sequence of
positive numbers which converges to zero. Then, there exists a sequence (βn) such
that:

(1) βn ↓ 0 as n → ∞.
(2) c(βn)αn → 0 as n → ∞.

Proof. Let (β(k)) ∈ (0,1]N
∗

be strictly decreasing, converging to zero.
Since (αn) converges to zero, for every k ∈ N∗, there exists nk ∈ N∗ such that
c(β(k))αn ≤ β(k), for all n ≥ nk. Clearly, we can choose (nk) to be strictly increasing.
Define (βn) ∈ (0,1]N

∗
by βn = 1 if n < n1 and, for k ≥ 1, βn = β(k) if nk ≤ n < nk+1.

Then (βn) has the desired properties. �

Proof of Theorem 5. Consider the classical decomposition: fβ,n − f = fβ,n −
fMO,β + fMO,β − f . Let us first control the size of the deterministic part. By Parseval’s
theorem,∥∥ fMO,β − f

∥∥2 =
∥∥∥(T∗

γ Tγ + (I −Cβ)∗(I −Cβ)
)−1

T∗
γ CβTγ f − f

∥∥∥2

=
∥∥∥∥∥
( ∣∣γ̂ ∣∣ 2ϕ̂β∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2
−1

)
f̂

∥∥∥∥∥
2

=
∫ ∣∣∣∣∣

∣∣γ̂ ∣∣ 2ϕ̂β∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2
−1

∣∣∣∣∣ 2
∣∣∣f̂ ∣∣∣ 2 dξ .

Since the integrand is dominated by the integrable function ξ �→ |f̂ (ξ)|2, and since
it converges pointwise to zero as β ↓ 0 (recall that ϕ̂β(ξ) = ϕ̂(βξ)), Lebesgue’s

dominated convergence theorem shows that
∥∥ fMO,β − f

∥∥2 −→ 0 as β → 0. Let us
now deal with the stochastic term. Using again Parseval’s theorem, we have

E
∥∥ fβ,n − fMO,β

∥∥2 = E
∥∥∥(T∗

γ Tγ + (I −Cβ)∗(I −Cβ)
)−1

T∗
γ Cβ(gn −g)

∥∥∥2

= E

∥∥∥∥∥
( ¯̂γ ϕ̂β∣∣γ̂ ∣∣ 2 + ∣∣1− ϕ̂β

∣∣ 2

)
(ĝn − ĝ)

∥∥∥∥∥
2

= c(β)E‖gn −g‖2 ,

in which c(β) := supξ

( ¯̂γ (ξ)ϕ̂β (ξ)

|γ̂ (ξ)|2+|1−ϕ̂β (ξ)|2

)2
. Using the Riemann–Lebesgue lemma,

it is easy to see that, for every fixed β > 0, the function inside the supremum takes
the value 1 at ξ = 0, vanishes at infinity, and is continuous. Consequently, the
supremum is always finite (and greater than or equal to 1). Now, applying Lemma 6
with αn = E‖gn −g‖2 yields the desired result. �
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Remark 7. Note that this result mentions the existence of a sequence βn, but
does not specify the condition it should satisfy jointly with E‖gn −g‖2. Indeed,
one must ensure that c(βn)E‖gn −g‖2 goes to 0 as n → ∞, which requires some
conditions on the smoothing parameter defining the nonparametric estimator gn.
The factor c(β) will be considered hereafter, where it will be proved that optimal
rates can be reached with suitably chosen mollifier.

We now proceed to analyze the convergence rates of mollification. Let f denote
the exact solution, and let fβ,n denote the mollified estimated solution in (7).

In the sequel, we first consider the convergence rates in the case of power-
type or exponential decay of γ̂ , combined with Besov-smoothness condition for f
(see Sections 3.3 and 3.4, respectively). Throughout, we assume that the mollifier
function ϕ enjoys the following properties.

Assumption 8. There exists a strictly decreasing differentiable function
	 : [0,∞) → R such that

∀ξ ∈ Rd, ϕ̂(ξ) = 	(|ξ |) (8)

(in which |ξ | denotes the euclidean norm of ξ ) and positive constants s,C	 < ∞
with the following properties:

∀t ∈ [0,1],
1

2
≤ 	(t) ≤ 1, (8a)

∀t ∈ [0,1], C−1
	 ts ≤ 1−	(t) ≤ C	ts, (8b)

∀t ∈ [0,1],
∣∣	′(t)

∣∣≤ C	ts−1, (8c)∫ ∞

0
	(t)2td−1 dt < ∞. (8d)

Let us discuss these assumptions. A function 	 with the property (8) exists if
and only if ϕ is isotropic, i.e., ϕ(x) depends on |x| only. In this case, ϕ̂ is isotropic
as well and real-valued. Note that 	(0) = 1 if and only if

∫
ϕ(x)dx = 1. The

first inequality in (8a) is a scaling condition on ϕ with respect to dilation. From
condition (8b), the integer part of s, denoted by �s�, is the order of the root of 1−	

at 0. Any density whose moments of order ≤ �s�−1 vanish satisfies this condition.
Finally, (8d) is equivalent to ϕ ∈ L2(Rd). Notice that the Levy kernels, defined by
	(t) = exp(−ts), satisfy Assumption 8 and are positive whenever s ∈ (0,2]. Note
also that Assumptions (8a) and (8b) are the same as in Fan (1991b).

Remark 9. For the sake of simplicity, we confined ourselves to isotropic
deconvolution. This choice is by no mean necessary algorithmically, and probably
also our analysis could be extended to anisotropic kernels as in Comte and Lacour
(2013), Rebelles (2016), and Lepskiı̆ and Willer (2019).

3.2. Besov–Nikolskiı̆ spaces

We will describe the smoothness of f in terms of the scale of Besov–Nikolskiı̆
spaces. These spaces will turn out to be the largest sets on which the bias of the MO
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and MM estimators converge at a given rate. For readers not familiar with these
spaces, we will recall the definition, collect a few basic properties, and provide
some background in the following.

Definition 10. For a function f ∈ L2(Rd), let ef (t) := ∫|ξ |>t

∣∣ f̂ ∣∣ 2(ξ)dξ, t > 0.

We define the Besov–Nikolskiı̆ space Bu
2,∞(Rd) of smoothness index u > 0 as the

set of all f ∈ L2(Rd) for which

‖ f ‖Bu
2,∞ :=

(
sup
t>0

(1+ t)2uef (t)

)1/2

is finite.

It can be shown that Bu
2,∞(Rd) equipped with the norm ‖ f ‖Bu

2,∞ is a Banach

space. For a concise introduction to more general Besov spaces Bu
p,q(R

d) with
p,q ∈ [1,∞] and a discussion of properties relevant for statistics, we refer to the
monograph Giné and Nickl (2021), in particular Sections 4.3.1 and 4.3.6.

Besov0-Nikolskiı̆ spaces were introduced and analyzed by Nikol’skii (1951) in
1951 several years before the introduction of Sobolev–Slobodeckij spaces in 1958
and general Besov spaces in 1959. It was shown by Kerkyacharian and Picard
(1993) that these are the largest sets in which density estimators by kernels or
wavelets converge at given power-type rate. More recently, it was demonstrated in
Hohage and Weidling (2017) that these spaces also characterize convergence rates
of most spectral regularization methods for many important inverse problems. Note
that anisotropic Besov spaces can also be defined (see Triebel, 2006).

Let us compare the Besov spaces Bu
2,∞(Rd) to the more commonly used Sobolev

spaces Hu(Rd) of functions f ∈ L2(Rd) for which the norm

‖ f ‖Hu :=
(∫

(1+|ξ |)2u|(Uf )(ξ)|2 dξ

)1/2

is finite. Under assumptions that will be introduced below, they coincide with
spectral source sets (T∗T)ν(L2(Rd)), and the estimation of the bias in these spaces
can conveniently be reduced to the estimation of the supremum norm of certain
real-valued functions.

The Sobolev space Hu(Rd) is a subspace of Bu
2,∞(Rd) since

(1+ t)2uef (t) ≤
∫

|ξ |>t
(1+|ξ |)2u|(Uf )(ξ)|2 dξ ≤ ‖ f ‖2

Hu .

An example of a function which belongs to B1/2
2,∞(R), but not to H1/2(R) is f (x) :=

exp(−x) for x ≥ 0, f (x) := 0 for x < 0 with Fourier transform (Uf )(ξ) = −1
2π iξ+1 and

ef (t) = O(t−1) as t → ∞. By translation and superposition, any piecewise smooth
function with a finite number of jumps and sufficient decay at infinity belongs to
the difference set B1/2

2,∞(R) \ H1/2(R). Analogously, B3/2
2,∞(R) \ H3/2(R) contains

piecewise smooth functions with kinks. By estimating the bias in Besov–Nikolskiı̆
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rather than Sobolev spaces, we can show optimal rates for such important classes
of functions. Moreover, we show that these function spaces cannot be further
increased.

3.3. Convergence Rates Under Power - Type Decay

In this section, we assume that the density γ of ε satisfies the following ordinary
smoothness condition:

C−1 (1+|ξ |)−a ≤ ∣∣γ̂ (ξ)
∣∣≤ C (1+|ξ |)−a , ξ ∈ Rd, (9)

for some a > 0 and C ≥ 1. In this case, the problem is mildly ill-posed. A classical
example of density function γ satisfying condition (9) are symmetrized chi-square
densities with a degrees of freedom. Another example for a = 2 is the Laplace
distribution.1

Note that with condition (9), we impose strict positivity of γ̂ . We stress that
such an assumption is only used for the purpose of deriving convergence rates.
Note also that some papers have proposed modified versions of this condition to
relax strict positivity, as in Hall and Meister (2007) and Delaigle et al. (2008).

We formulate below necessary and sufficient conditions for power-type conver-
gence rates of the bias as the parameter β tends to 0.

Theorem 11 (Approximation rates of MM). Suppose Assumption 8 and con-
dition (9) are satisfied. Then, for 0 < u < 2s + 2a, the following statements are
equivalent for f ∈ L2(Rd):

f ∈ Bu
2,∞(Rd), (10a)

sup
0<β≤1

β− su
s+a ‖ f − fMM,β‖ < ∞. (10b)

Moreover, ‖ f − fMM,β‖ = O(β2s) as β ↓ 0 if f ∈ H2s+2a(Rd).

Theorem 12 (Approximation rates of MO). Suppose Assumption 8 and
condition (9) are satisfied. Then, for 0 < u < s + a, the following statements
are equivalent for f ∈ L2(Rd):

f ∈ Bu
2,∞(Rd), (11a)

sup
0<β≤1

β− su
s+a ‖ f − fMO,β‖ < ∞. (11b)

Moreover, ‖ f − fMO,β‖ = O(βs) as β ↓ 0 if f ∈ Hs+a(Rd).

Note that in our proofs, we use both sides of the inequality in condition (9),
although the first inequality might be enough. Note also that the rates of MO and

1Note that, in the anisotropic setting, this assumption could be adapted as in Comte and Lacour (2013).

https://doi.org/10.1017/S0266466622000457 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000457


A MOLLIFIER APPROACH TO DECONVOLUTION 331

MM agree for smoothness parameters u < s+a, but for MO the best rate is O(βs)

for u = s+a, whereas MM can achieve rates up to O(β2s) for higher smoothness
of the solution f. This indicates that MM converges faster than MO for smooth
solutions in a deterministic setting where both methods can be applied to the noisy
data g. (Since the final aim is usually a rate of convergence as the deterministic
data noise level tends to 0, a deterministic analysis of the propagated data error
and a balancing of both error terms by a proper choice of β would be required to
complete the picture.)

This discussion is substantiated by the following proposition asserting that the
maximal rates O(β2s) and O(βs) in Theorems 11 and 12 cannot be improved except
for the trivial solution. This is the so-called “saturation effect” detailed below.
Note, however, that the saturation bound can be increased arbitrarily by increasing
the regularity of the mollifier. This result is a clear advantage of mollification over
Tikhonov.

Proposition 13 (Saturation). Suppose Assumption 8 holds true.

1. If ‖ f − fMM,β‖ = o(β2s), then f = 0.
2. If ‖ f − fMO,β‖ = o(βs), then f = 0.

Proof. 1. Suppose that ‖ f − fMM,β‖ = o(β2s), i.e.,

0 = lim
β↓0

β−4s‖ f − fMM,β‖2 = lim
β↓0

∫
Rd

(
β−2s(1− ϕ̂β)2

|γ̂ |2 + (1− ϕ̂β)2

)2

|Uf | 2 dξ,

the unitarity of the Fourier transform. Then, by Fatou’s lemma and (8b),

0 =
∫
Rd

liminf
β↓0

(
β−2s(1− ϕ̂β )2

|γ̂ |2 + (1− ϕ̂β )2

)2

|Uf |2 dξ ≥
∫
Rd

liminf
β↓0

(
β−2sC−2

	 (β|ξ |)2s

|γ̂ |2 + (1− ϕ̂β )2

)2

|Uf |2 dξ .

Therefore, the integrand on the right-hand side vanishes almost everywhere. Since
the first factor is positive almost everywhere, it follows that f = 0.

2. We have

Uf −UfMO,β =
(

1− ϕ̂β

|γ̂ |2
|γ̂ |2 + (1− ϕ̂β)2

)
Uf = (vβ + ϕ̂βwβ

)
Uf

with vβ := 1 − ϕ̂β and wβ := (1−ϕ̂β )2

|γ̂ |2+(1−ϕ̂β )2 . The proof now follows along the lines

of the first part by showing that

liminf
β↓0

β−s (vβ(ξ)+ ϕ̂β (ξ)wβ(ξ)
) = liminf

β↓0
[β−svβ(ξ)]+ lim

β↓0
[βsϕ̂β (ξ)] liminf

β↓0
[β−2swβ(ξ)]

≥ C−1
	 β−s(β|ξ |)s +0 = C−1

	 |ξ |s.

�
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Remark 14. Along the lines of the proof of Proposition 13, one can also show
that ‖ f − fMM,β‖ = O(β2s) implies f ∈ H2a+2s(Rd) in Theorem 11 as

C−2
	

∫
Rd

|ξ |4s |(Uf )(ξ)| 2 dξ ≤ liminf
β↓0

β−4s‖ f − fMM,β‖2 < ∞.

Similarly, one can show that ‖ f − fMO,β‖ = O(βs) implies f ∈ Ha+s(Rd) in
Theorem 12. In other words, in the M0-limit case u = s+a, the Besov smoothness
f ∈ Bu

2,∞(Rd) is no longer sufficient for the rate ‖ f − fMO,β‖ = O(β
su

s+a ), but we
need the stronger Sobolev smoothness f ∈ Hu(Rd).

To obtain error bounds for observed data in terms of the sample size n, the
bounds on the bias need to be complemented by bounds on the variance term.

Proposition 15 (Bound on variance term). With 	MO
β := γ̂ ϕ̂β

|γ̂ |2+(1−ϕ̂β )2 , we have

E
(∥∥ fβ,n − fMO,β

∥∥2
)

≤ 2

n
‖	MO

β ‖2
L2 .

In particular, if Assumption 8 and condition (9) hold true and 4s ≥ d −2a, then

E
(∥∥ fβ,n − fMO,β

∥∥2
)

= O

(
1

n
β− s(d+2a)

s+a

)
.

Proof. We compute

E
(∥∥ fβ,n − fMO,β

∥∥2
)

= E
(∥∥Ufβ,n −E

(
Ufβ,n

)∥∥2
)

= E
(∥∥	MO

β (ĝn − ĝ)
∥∥2
)

=
∫
Rd

∣∣	MO
β (ξ)

∣∣ 2 Var
(
ĝn(ξ)

)
dξ,

and in view of the independence of Y1, . . . ,Yn, we have Var
(
ĝn(ξ)

) =
1
n Var

(
e−2iπ〈ξ,Y1〉) ≤ 2

n . This implies the first inequality, and the second follows
from Lemma A.6. �

Now, we can show the main result of this section, an order optimal bound on
the mean integrated square error in terms of the sample size. Here and in the
following, we write ψ1(x) ∼ ψ2(x) as x → x0 for two positive functions ψ1 and
ψ2 if liminfx→x0

ψ1(x)
ψ2(x) > 0 and limsupx→x0

ψ1(x)
ψ2(x) < ∞.

Theorem 16 (Convergence rate). Suppose that Assumption 8 and condition (9)
hold true, that 4s ≥ d − 2a, and that f ∈ Bu

2,∞(Rd) for some 0 < u < s + a or

f ∈ Hs+a(Rd) for u = s+a. Then, for β ∼ n− s+a
2su+s(d+2a) , we obtain the optimal rate

E
(∥∥ fβ,n − f

∥∥2
)

= O
(

n− u
u+a+d/2

)
as n → ∞. (12)

Proof. Using the bias-variance decomposition, E
(

fβ,n
) = fMO,β ,

Proposition 15, and Theorem 12, we obtain
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E
(∥∥ fβ,n − f

∥∥2
)

= E
(∥∥ fβ,n − fMO,β

∥∥2
)

+∥∥ fMO,β − f
∥∥2

= O

(
1

n
β− s(d+2a)

s+a +β
su

s+a

)
= O

(
n− u

u+a+d/2

)
. �

The rates we obtain are optimal in a minimax sense, i.e., they cannot be improved
by any other method. In fact, it has been shown that even on smaller smoothness
classes, no better error bounds can be achieved, e.g., on univariate Hölder classes
(Fan, 1991b) or multivariate Sobolev classes (Johannes, 2009) or multivariate
Hölder classes (see Comte and Lacour, 2013, which also treats Sobolev spaces
and anisotropic smoothness classes).

3.4. Convergence Rates Under Exponential Decay

In this section, we assume that the density γ of ε satisfies the following super-
smoothness condition. More precisely, we assume that there exist constants a,κ > 0
and C ≥ 1 such that

C−1 exp
(−κ |ξ | a

)≤ |γ̂ (ξ)|2 ≤ C exp
(−κ |ξ | a

)
, ξ ∈ Rd. (13)

In this case, the problem is severely ill-posed. Note that a = 2 corresponds to
Gaussian errors ε and a = 1 to Cauchy errors.

Note that with condition (13), as for condition (9), we impose strict positivity
of γ̂ . This condition could be relaxed as in Hall and Meister (2007) and adapted
to the anisotropic setting (as in Comte and Lacour, 2013).

When γ̂ satisfies condition (13), we only obtain logarithmic convergence rates
for the bias under finite smoothness assumptions on f. Furthermore, no saturation
effects occur in this setting.

Theorem 17 (Approximation rates). Suppose that Assumption 8 and condition
(13) hold true with s > 1

2 . Then, the following statements are equivalent for u > 0:

f ∈ Bu
2,∞(Rd), (14a)

sup
0<β<1

(− lnβ)u/a
∥∥ f − fMM,β

∥∥< ∞, (14b)

sup
0<β<1

(− lnβ)u/a
∥∥ f − fMO,β

∥∥< ∞. (14c)

Note that, as for condition (9), we again use in the proofs both sides of condition
(13), although the first inequality might be enough. For the variance term, a rather
coarse estimate is sufficient.

Proposition 18 (Bound on variance term). If condition (13) holds true, then,
for any b > 4s, the statistical error satisfies

E
(∥∥ fβ,n −E

(
fβ,n
)∥∥2
)

= O

(
1

n
β−2b

)
.
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Proof. Due to Proposition 15, we can reduce the proof to showing that∫
Rd

|ζβ(ξ)|2|ϕ̂β(ξ)|2 dξ = O(β−b) with ζβ(ξ) := γ̂ (ξ)

|γ̂ (ξ)| 2 + (1− ϕ̂β(ξ))2
.

Due to assumption (8d), it suffices to show that

‖ζβ‖∞ = O(β−b). (15)

On the one hand, we have∣∣ζβ(ξ)
∣∣

β−b
≤ 1

β−b
∣∣γ̂ (ξ)

∣∣ ≤ Cβb exp(κβa) if |ξ | ≤ β,

and, on the other hand, using the monotonicity of 	 and (8b), we have∣∣ζβ(ξ)
∣∣

β−b
≤ βb

(1−	(β |ξ |))2
≤ βb

(1−	(β2))2
≤ C	βb−4s if |ξ | > β.

As b > 4s, these bounds imply (15). �

Combining these results yields the following logarithmic convergence rates with
respect to the sample size.

Theorem 19 (Convergence rates). Suppose that Assumption 8 and condition
(13) hold true with s > 1

2 . Let f ∈ Bu
2,∞(Rd) for some u > 0, and let β = 1

n . Then

E
(∥∥ fβ,n − f

∥∥2
)

= O
(
(lnn)−2u/a

)
as n → ∞.

Proof. This follows from the bias-variance decomposition

E
(∥∥ fβ,n − f

∥∥2
)

= E
(∥∥ fβ,n − fMO,β

∥∥2
)

+∥∥ fMO,β − f
∥∥2

using fMO,β = fMO,β , Theorem 17, and Proposition 18. �

The rates in Theorem 19 are again minimax, and similar to Fan (1991b) or Comte
and Lacour (2013) (for the multidimensional setting assuming isotropy), but only
logarithmic.

To achieve faster than logarithmic rates for smooth noise distributions satisfying
(13), one would have to assume that f belongs to smoothness classes consisting
of infinitely differentiable or even analytic functions (see Pensky and Vidakovic,
1999; Butucea, 2004; Butucea and Tsybakov, 2008).

4. REGULARIZATION PARAMETER SELECTION

In this section, we propose fully data-driven choice of the regularization parameter
and show that it achieves a bias-variance compromise. This empirical method will
be implemented in Section 6.
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4.1. The Lepskiı̆ Balancing Principle

In the previous convergence results, the choice of the regularization parameter
β requires the a priori knowledge of the smoothness of the unknown function f.
To adapt to the unknown smoothness of f, we need to use an a posteriori parameter
choice rule. In what follows, we present the Lepskiı̆ principle, developed in Lepskiı̆
(1991, 1992, 1993), and simplified in the context of inverse problems in Mathé and
Pereverzev (2003) or Mathé (2006). The method starts with the well-known error
decomposition∥∥ fβ,n − f

∥∥≤ ∥∥ fβ,n − fMO,β

∥∥+∥∥ fMO,β − f
∥∥, for all β > 0. (16)

We seek to choose β such that the right-hand side of (16) is minimal. The main
issue is that the bias

∥∥ fMO,β − f
∥∥, which is increasing in β, is typically unknown,

whereas for the variance term E
(∥∥ fβ,n − fMO,β

∥∥2
)

, which is decreasing in β, we

have established a bound in Proposition 15. We confine β to a finite equidistant grid
on a logarithmic scale given by Bn := {β0qj : j = 0, . . . ,Jn}, for some 0 < q < 1 and
some β0 > 0, and Jn is chosen as the smallest integer such that

√
2/n‖	MO

minBn
‖ > 1.

The Lepskiı̆ principle attempts to balance the two terms on the right-hand side of
(16) by determining the largest β̃ ∈ Bn such that all differences fβ − fβ̃ , for β ∈ Bn

with β < β̃, are dominated in norm by the noise bound from Proposition 15:

β� := max

{
β̃ ∈ Bn :

∥∥∥ fβ,n − fβ̃,n

∥∥∥≤ 2
√

2θ√
n

∥∥	MO
β

∥∥ for all β ∈ Bn with β < β̃

}
(17)

for some parameter θ > 0.

4.2. Convergence Result

To prove error bounds for the Lepskiı̆ balancing principle, we need a large
deviation inequality for the variance term.

Proposition 20. Let CMO be the constant from Lemma A.6, and let Cc :=√
8+34.5
2
√

2
. Then, for all ρ > 1 and for all n ∈ N, we have

P

[
sup

0<β≤β0

β
s(a+d/2)

s+a ‖ fβ,n − fMO,β

]
‖ ≥ ρ2

√
2CMO√
n

≤ exp

(
− ρ

Cc

)
. (18)

With this, we can prove order optimal rates up to a logarithmic factor.

Theorem 21. Under the assumptions of Theorem 16, the expected error for the
regularization parameter β∗ determined by the Lepskiı̆ balancing principle (17)
with θ ≥ 2 satisfies
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E
(‖ fβ∗,n − f ‖2

)= O

((
lnn√

n

) 2u
u+a+d/2

)
as n → ∞.

Proof. We define an event good event An that sup0<β≤β0
β

s(a+d/2)
s+a ‖ fβ,n −

fMO,β‖ ≤ Cc(lnn)2
√

2CMO√
n

. Then, by Proposition 20 with ρ = ρ(n) = Cc lnn, its

complement Ac
n, i.e., the bad event, has probability P

[
Ac

n

]≤ 1
n .

Note that, at least for sufficiently large n, the minimum of the right-hand side of
(16) is attained at a parameter β in [minBn, maxBn]. Therefore, the deterministic
oracle inequality in Mathé (2006, Cor. 1) shows that, in the event An, the error is
bounded by

‖ fβ∗,n − f ‖ = O

((
lnn√

n

) u
u+a+d/2

)
,

where the logarithm appears in comparison to Theorem 16 since in the noise bound
1/

√
n is replaced by lnn/

√
n compared to Proposition 15 due to our choice of ρ(n).

Using (18), it is easy to see that

E
(‖ fminBn,n − fMO, minBn‖

∣∣Ac
n

)≤ C
lnn√

n
(minBn)

−s(a+d/2)
s+a ≤ C′ lnn,

where the definition of Bn was used in the second inequality. Using the error
decomposition (16) and the monotonicity of the error components, we finally
obtain

E
(‖ fminBn,n − fMO, minBn‖

)
= E

(‖ fminBn,n − fMO, minBn‖
∣∣An
)

P[An]+E
(‖ fminBn,n − fMO, minBn‖

) ∣∣Ac
n P
[
Ac

n

]
≤ O

((
lnn√

n

) u
u+a+d/2

)
+ (‖ fMO,β0 − f ‖+C′ lnn

) 1

n
= O

((
lnn√

n

) u
u+a+d/2

)
.

�

5. FRAMEWORK FOR COMPARISON

The purpose of this section is to put the various approaches (mollification,
Tikhonov, deconvolution kernels, and spectral cut-off) in a unified framework and,
by doing so, to derive theoretical and numerical tools for their comparison and
assessment.

5.1. The Filtering Viewpoint

5.1.1. Deconvolution Kernels. The deconvolution kernels were introduced by
Stefanski and Carroll (1990) in the late 80s, in the case d = 1. In essence, the decon-
volution kernel estimator stabilizes the reconstruction by bounding the function
1/γ̂ . More precisely, using our notation system, and ignoring (temporarily) the
discrete aspects carried by the estimation process, the reconstructed density can
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be written as

fDK = U−1

[
ϕ̂h

γ̂

]
Ug (19)

or, equivalently, by

f̂DK(ξ) = ϕ̂(hξ)

γ̂ (ξ)
ĝ(ξ) = ϕ̂h(ξ)

γ̂ (ξ)
ĝ(ξ), (20)

where ϕh is defined as ϕh(x) := 1
hϕ
(

x
h

)
with h > 0. Here, ϕ is the deconvolution

kernel (denoted by K in the original paper by Stefanski and Carroll, (1990), and in
the subsequent literature) and h is the regularization parameter. The corresponding
filter 	 is here defined by 	(ξ) = ϕ̂h(ξ)/γ̂ (ξ). We see right away that, for the
solution to be well defined and stable, it is necessary that:

(a) the function γ̂ does not vanish;
(b) for every h > 0, the function ξ �−→ ϕ̂(hξ)/γ̂ (ξ) is bounded.

Notice that, whenever γ is symmetric, γ̂ is real, and hence condition (a) entails
strict positivity of γ̂ . As a matter of fact, the Riemann–Lebesgue lemma tells us
that γ̂ is continuous and vanishes at infinity (and of course γ̂ (0) = 1). At all events,
the above assumptions are somewhat restrictive, obviously, and constitute a serious
limitation of the methodology.

Remark 22. In the original paper by Stefanski and Carroll (1990), it was also

requested that, for every h > 0,
∫ ∣∣∣ ϕ̂h(ξ)

γ̂ (ξ)

∣∣∣ dξ < ∞. This assumption ensures that the

function
(
ϕ̂h(ξ)/γ̂ (ξ)

)
ĝ(ξ) in equation (20) is integrable, allowing for application

of the inverse Fourier integral transform. However, the latter function is square-
integrable anyways, allowing for the application of the inverse Fourier–Plancherel
operator. This is why this assumption can be relaxed.

Remark 23. The deconvolution kernels can be regarded as a particular instance
of the approximate inverses, a regularization method that was introduced, in the
deterministic setting, in Louis and Maass (1990), and gave rise to a large amount
of developments. See Appendix B.

5.1.2. Spectral Cutoff. In the spectral cutoff method, usually designed for the
case d = 1 (see, e.g., Johannes, 2009, and the references therein), the Fourier
transform of the reconstructed density is merely truncated whenever γ̂ (ξ) falls
below a threshold a > 0, which plays the role of the regularization parameter. The
spectral cutoff may be regarded as a special case of the deconvolution kernels,
in which the regularization parameter is indexed on the convolution kernel γ : the
solution is defined as

fSC = U−1

[
1|γ̂ |2≥a

γ̂

]
Ug
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or, equivalently, as f̂SC(ξ) = 1{|γ̂ |2≥a}(ξ)

γ̂ (ξ)
ĝ(ξ). Here,1S denotes the indicator function

of the set S, that is, the function which takes the value 1 if the argument belongs to
S and 0 otherwise. Therefore, the spectral cutoff is also a filter-type regularization
method, with

	(ξ) = 1{|γ̂ |2≥a}(ξ)

γ̂ (ξ)
.

The spectral cutoff produces a solution that belongs to the class of band-limited
functions. The inverse Fourier transform of the kernel 1{|γ̂ |2≥a} is not a density
function, and its behavior is similar to the well-known sinc function. We will see
in Section 6 that this specific choice introduces additional perturbations (a Gibbs-
like phenomenon) in the reconstruction. Note that the numerator of the filter 	

could be replaced by a smooth cutoff that smoothly goes to zero beyond a. That
would remove the Gibbs phenomena and place us back into the framework of
kernel methods.

5.1.3. Tikhonov Regularization. The Tikhonov regularization (see Tikhonov
and Arsenin, 1977) has been applied and studied in the context of econometrics in
Carrasco et al. (2007) and Carrasco and Florens (2011). The Tikhonov solution is
defined by fTK = (T∗

γ Tγ +αI
)−1

T∗
γ g or, equivalently, by

fTK = U−1

[ ¯̂γ
|γ̂ |2 +α

]
Ug.

Expressed in the Fourier domain, we get f̂TK(ξ) = γ̂ (ξ)

|γ̂ (ξ)|2+α
ĝ(ξ). The solution is

well defined for every positive value of the regularization parameter α. Therefore,
the Tikhonov method can be regarded as a filter-type technique (for deconvolu-
tion), with

	(ξ) = γ̂ (ξ)

|γ̂ (ξ)|2 +α
.

Note that Carrasco and Florens (2011) define their solution in weighted L2-spaces
in order to recover the compactness of the operator Tγ , which we do not need in
our context.

5.2. The Variational Viewpoint

For simplicity of the notation, Tγ is now denoted by T. Consider the generic
functional

F ( f ) := 1

2
‖Pg−Tf ‖2 + α

2
‖Hf ‖2 ,

in which P and H are bounded operators. By specifying the operators P and H
as well as the parameter α, we can retrieve the aforementioned methods. Recall
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first that, under the following complementation condition (see Morozov, 1984,
also mentioned in Engl, Hanke, and Neubauer, 1996): ∃μ > 0: ∀f ∈ F, ‖Tf ‖2 +
‖Qf ‖2 ≥ μ‖ f ‖2 , the operator T∗T + H∗H admits a bounded inverse, and that,
consequently, the unique minimizer of F , namely

f̄ = (T∗T +αH∗H
)−1

T∗Pg

depends continuously on g. Since T = U−1
[
γ̂
]

U, it is readily seen that T∗ =
U−1

[
γ̂
]

U and T∗T = U−1
[∣∣γ̂ ∣∣ 2

]
U. Therefore:

(1) Letting H = P = I obviously yields the Tikhonov functional.
(2) The choice H = I − Cβ , P = Cβ = U−1

[
ϕ̂β

]
U, and α = 1 yields the mollifi-

cation functional.
(3) Letting α = 0 and P = Ch (where Ch denotes the operator of convolution with

ϕh) yields the functional F ( f ) = ‖Chg−Tf ‖2 /2, whose unique minimizer is

T†Chg = (T∗T)−1T∗Chg = U−1

[
ϕ̂h

γ̂

]
Ug,

which turns out to be the deconvolution kernel solution fDK.
(4) Letting α = 0 and P be the convolution by U−11|γ̂ |2≥a yields the spectral cutoff

solution fSC.

Notice first that the convolution kernels corresponding to the above three filters
need not be real (if γ is not symmetric) or even positive, in case they are real.
Notice also that, in the Tikhonov case, 	(0) = (1 +α)−1 �= 1, which implies the
additional drawback that the integral of the reconstructed function will not be equal
to one, as one should expect from a density. We may then consider the modified
Tikhonov filter

	(ξ) = (1+α)γ̂ (ξ)∣∣γ̂ (ξ)
∣∣ 2 +α

.

In this modified version, we merely let P = [(1+α)1] instead of P = I = [1],
in which 1 denotes the function identically equal to 1. As for the mollification
approach, it would also make sense to consider a version with P = I, letting the
regularization be operated by H = I − Cβ only. The corresponding filter is easily
shown to be

	(ξ) = γ̂ (ξ)∣∣γ̂ (ξ)
∣∣ 2 + ∣∣1− ϕ̂β(ξ)

∣∣ 2
,

and we shall refer to the corresponding method as the modified mollification.
Finally, notice that the particular kernel corresponding to the spectral cutoff
method is the inverse Fourier transform of the function 1{|γ̂ |2≥a}/γ̂ , and that the
regularization parameter is now a > 0. Table 1 gives an overview of the functionals
and filters associated with each regularization method.
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Table 1. Overview of regularization methods for the decon-
volution problem

Functional F Filter 	

TK
1

2
‖g−γ ∗ f ‖2 + α

2
‖ f ‖2 γ̂∣∣γ̂ ∣∣2 +α

MT
1

2
‖(1+α)g−γ ∗ f ‖2 + α

2
‖ f ‖2 (1+α)γ̂∣∣γ̂ ∣∣2 +α

MO
1

2

∥∥ϕβ ∗g−γ ∗ f
∥∥2 + 1

2

∥∥ f −ϕβ ∗ f
∥∥2 γ̂ ϕ̂β∣∣γ̂ ∣∣2 + ∣∣1− ϕ̂β

∣∣2
MM

1

2
‖g−γ ∗ f ‖2 + 1

2

∥∥ f −ϕβ ∗ f
∥∥2 γ̂∣∣γ̂ ∣∣2 + ∣∣1− ϕ̂β

∣∣2
DK

1

2
‖ϕh ∗g−γ ∗ f ‖2 ϕ̂h

γ̂

SC
1

2

∥∥∥1̌{|γ̂ |2≥a} ∗g−γ ∗ f
∥∥∥2 1{|γ̂ |2≥a}

γ̂

Notes: TK stands for Tikhonov, MT for modified Tikhonov, MO for molli-
fication, MM for modified mollification, DK for the deconvolution kernels,
and SC for the spectral cutoff.

5.3. Comparisons

We have seen that mollification reaches optimal convergence rates, along with
its competitors: the deconvolution kernels, the spectral cutoff, and the Tikhonov
regularization. The purpose of this section is to compare mollification to the other
approaches from other viewpoints.

5.3.1. Deconvolution Kernels Versus Mollification. We emphasize that, obvi-
ously, the regularization parameters h and β have the same interpretation. The first
obvious limitation of the deconvolution kernels is the restriction imposed by the
decrease of γ̂ and its strict positivity. For example, if γ is Gaussian, the decrease of
ϕ̂ at infinity should be faster, which discards many deconvolution kernels. An even
more extreme example is provided by the convolution kernel γ (x) = sinc2(πx). Its
Fourier transform is the triangle function

γ̂ (ξ) =
⎧⎨⎩

ξ +1, if ξ ∈ [−1,0),

−ξ +1, if ξ ∈ [0,1),

0, elsewhere.

Here, the convolution operator Tγ fails to be injective, as a consequence of the
fact that the support of γ̂ is the interval [−1,1], and the deconvolution kernel
solution cannot be defined. By contrast, the mollification solution is defined for
any even mollifier ϕ ∈ L1(R) and any positive value of β. Moreover, in the
variational formulation of the deconvolution kernels, the regularization appears
only in the fit term, so that the optimization problem remains ill-posed. This
may be an obstacle to the introduction of additional constraints, such as the
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positivity of the reconstruction, since such a constraint can be introduced only
in the variational form. On the contrary, the variational form of the mollification
approach is stable, thanks to the regularization term, and such a constraint may
therefore be safely introduced. The only price to be paid would then be a different
numerical strategy (based on optimization). We emphasize here that deconvolution
kernels and mollification both aim at reconstructing an explicit object, which
we refer to as the target object, namely, ϕβ ∗ f . This is why both estimators
depend on one smoothing parameter only. In addition, as will be illustrated in
Section 6, whenever the deconvolution kernels regularization is well-defined, the
performance of both the deconvolution kernels and mollification approaches are
similar, in terms of the tradeoff between fidelity and stability.

5.3.2. Spectral Cutoff Versus Mollification. Unlike the case of deconvolution
kernels, the spectral cutoff solution remains defined when γ̂ vanishes. The target
object, in the sense defined above, is ψa ∗ f , with ψa = U−11{|γ̂ |2≥a}. The function
ψa can be regarded as a target impulse response of the reconstruction. Its definition
relies not only on the regularization parameter a, but also on the shape of γ̂ . We
stress here that, as the inverse Fourier transform of some indicator function, this
impulse response may have poor morphological properties, and may induce Gibbs-
like oscillations in the reconstructed density. These oscillations may incidentally
produce significant negative parts, which is a serious drawback for probability
densities. By contrast, the mollification approach enables to choose an apodized
target impulse response, by avoiding sharp edges in the Fourier domain. This will
be illustrated in Section 6. Notice at last that, as in the case of the deconvolution
kernels, the variational form of the spectral cutoff has no regularization term.
Again, this may be an obstacle to the introduction of additional constraints, such as
the positivity of the reconstruction (see the discussion in the previous paragraph).

5.3.3. Tikhonov Versus Mollification. Unlike deconvolution kernels, spectral
cutoff, and mollification, Tikhonov regularization does not appeal to any target
object, which is a conceptual drawback. The regularization is uniformly exercised
in the Fourier domain, as can be seen from the variational formulation. Using the
well-known fact that the Fourier–Plancherel operator is an isometry, the Tikhonov

solution is readily seen to be the minimizer of FTK( f ) = 1
2

∥∥∥ĝ− γ̂ · f̂
∥∥∥2 + α

2

∥∥∥f̂
∥∥∥2

.

The penalty term attracts f̂ toward zero everywhere. This contradicts the action of
the fit term in the low-frequency domain, where both ĝ and γ̂ are not expected
to be close to zero. This opposition between the fit and regularization terms may
induce an unfavorable tradeoff between stability and fidelity to the model. The
mollification approach avoids this pitfall by introducing a smooth disjunction of
the realms of action of the fit and regularization terms, as can be seen from the
transposition of the mollification functional in the Fourier domain: FMO( f ) =
1
2

∥∥∥ϕ̂β · ĝ− γ̂ · f̂
∥∥∥2 + 1

2

∥∥∥(1− ϕ̂β)f̂
∥∥∥2

. The resulting improvement in the tradeoff

between stability and fidelity to the initial model equation will be illustrated by
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means of simulations in Section 6. A nice aspect of Tikhonov, that is shared with
mollification, is that, unlike the deconvolution kernels and the spectral cutoff, the
variational formulation is stabilized, which opens the way to the introduction of
the positivity constraint.

Remark 24. Hybrid kernel ridge regularization has been considered in Hall
and Meister (2007), Delaigle et al. (2008), and Trong and Phuong (2015) so
as to relax strict positivity of the error density. In particular, in Delaigle et al.
(2008), the corresponding estimator combines the deconvolution kernel approach
with a Tikhonov-type estimator. This hybrid method entails the choice of two
regularization parameters. In the variational approach of mollification as defined
in equation (3), the two parts of the functional to be minimized contribute to the
same objective: that of reconstructing a smoothed version of the object of interest.
As a result, mollification has only one regularization parameter.

6. SIMULATIONS

Having derived, in the previous section, a common framework for all reconstruc-
tion methods under consideration, we now proceed to develop tools for their
assessment and comparison, in terms of the tradeoff between stability and fidelity.
In all cases, fREG = U−1 [	]Ug, in which the filter 	 depends on regularization
parameters. If g is replaced by its estimation gn, the corresponding reconstruction
is denoted by fREG,n. Otherwise expressed, fREG,n := U−1 [	]Ugn.

6.1. Assessment of the Various Regularization Methods

We now define the quantities to be used for the assessment of the various
regularization methods. Concerning the fidelity, a meaningful quantity is the
reconstruction error

fREG,n − f = ( fREG,n − fREG
)+ ( fREG − f

)
= U−1 [	]U(gn −g)+ ( fREG − f

)
. (21)

In the right-hand side, the first and second terms will be, respectively, called the
statistical error and regularization error. The L2-norm of the reconstruction error,
referred to as the reconstruction-rise (Root Integrated Square Error), will be one
important indicator to compare the performances of the main four regularization
methods: deconvolution kernels, spectral cutoff, Tikhonov regularization, and
mollification.

Obviously, the reconstruction- rise depends on the value of the regularization
parameter of the considered regularization method (either h, a, α, or β), and their
range of variations as well as their impact on the solution (through the chosen
regularization method) may not be easily comparable. That is why we have also
introduced a common criterion to evaluate the stability of the reconstruction, which
we define below.
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In our setting, the reconstructed density depends linearly on the data g, and the
error on the data gn −g is potentially amplified by the action of the reconstruction
operator U−1 [	]U by a factor equal to its operator norm (see equation (21) as an
illustration). Since U is unitary, the operator norm of the reconstruction operator
U−1 [	]U is equal to the L∞-norm of 	 (see Proposition A.1 in Appendix A).
The stability of the reconstruction can then be estimated via the computation of
‖	‖∞ as a function of the regularization parameters. We may refer to ‖	‖∞ as an
instability index.

Therefore, in Section 6.2, we study the performance of the regularization
methods by comparing the variation of the reconstruction- rise with respect to
the instability index, whose level can be arbitrarily fixed for all regularization
methods. To any fixed level of the instability index corresponds a fixed value
of the regularization parameter. Notice that the reconstruction error depends on
the true value f, unobserved in practice. The residual gn −Tγ fREG,n may then serve
the purpose of evaluating the fidelity to the original model. Some additional plots
to evaluate the performance of the regularization methods are provided using the
residual rise with respect to the instability index.

We also provide in Section 6.3 a comparison using the optimal oracle choice
of the regularization parameter for each method, which corresponds to the setting
where the estimators should perform the best. Under this oracle framework, we
perform Monte Carlo (MC) simulations and check that, on average, our estimator
still outperforms the other methods. We also check that our empirical selection rule
for the regularization parameter is working well in practice.

One way to compare the performances of the four approaches is to plot the
various components of the rise and the residual rise versus the reached instability
index. The results are shown in Figure 2. Note that the top-left panel allows to find
for each method the optimal instability index minimizing the reconstruction rise
and is only available in a simulated data framework (the true f is known), whereas
the bottom-right panel with the residuals is available in a real data framework and
can be used to find the optimal method for a given level of the instability index.

6.2. Comparison Using the Instability Index

We illustrate the comparison between the various regularization approaches with
an example. The signal f is a Beta(3,2) density function, rescaled for having the
support [−2,2] (note that its standard deviation is σf = 0.8). The sample size is n =
500, and the noise γ is a Cauchy(0,σ ), where σ is the scale, i.e., Cauchy(0,σ ) =
σ t(1), where t(1) is a student-t with one degree of freedom.2 Since the standard
deviation does not exist, we choose the scale σ = 0.20 such that this Cauchy has
an interquartile range (IQR) equal to 0.40.

We choose for the mollification and the deconvolution kernel techniques a
normal density with regularization parameters β and h, respectively. So, in this

2Note that other cases have been implemented, for example, when noise γ is an N(0,σ 2) where σ = 0.5∗σf = 0.40.
Since the results were similar, and in order to save space, we do not present these additional results in the paper.
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Figure 1. The instability index as a function of the regularization parameters.

case, where the four approaches described above can be used, we expect a quite
similar behavior between the mollification and deconvolution kernel approaches.
Figure 1 shows how the instability index varies with the regularization parameter
in the four methods. In all the cases, as it should, the methods are more stable when
increasing the regularization parameter.

6.3. Comparison Using Oracle Regularization Parameter Choice

The Root Integrated Squared Errors ( rise ) of the total error has a minimum for an
optimal oracle value of the parameters. This oracle choice for the regularization
parameters is obviously not reachable in practice since the rise depends on the true
unknown function f. So, in practice, it is mandatory to use an empirical selection
rule, such as the Lepskiı̆ method proposed in Section 4. In what follows, we use
this oracle framework as another way to assess the various regularization methods.

First, direct and precise calculations for this particular sample of size n = 500
give the values shown in Table 2. We observe that the best performance is achieved
by the mollification approach. For this particular sample of size n = 500, it is
also interesting to show how the function f can be reconstructed in the various
approaches (with the optimal oracle values of the regularization parameters). This
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Figure 2. Various components of the rise and the corresponding values of the residual rise as a
function of the instability index.

Table 2. Reconstruction- rise for the
four methods and values of optimal
regularization parameter.

Method Parameter Rec- rise

MOL β = 0.30346 0.042010

TIK α = 0.12912 0.109681

KER h = 0.37571 0.043268

CUT a = 0.36546 0.077186
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Figure 3. Different estimates of the signal f and its true value.

is shown in Figure 3, where the various estimates are displayed along with the
true value of the density f. We see how irregular is the estimate in the Tikhonov
approach and the Gibbs effect of the cutoff approach for values of |x| greater than 2.
Again, we see that the mollification and deconvolution kernel approaches give very
similar and good results.

Then, for the case illustrated previously, we perform an MC experiment by
simulating a large number of times, say M, a sample of size n, and compare
the performance of the different approaches by recording the achieved minimal
reconstruction rise for each approach, and then averaging over the M simulated
samples. The results are displayed in Table 3. The table provides the MC esti-
mator of the average optimal rise for the reconstruction error of the signal f,
defined in (21), computed over M = 1,000 simulated samples, i.e., arise =
1
M

∑M
m=1

∥∥ fREG,n,m − f
∥∥, where fREG,n,m is the reconstruction obtained with the

sample m of size n computed with the optimal regularization parameter obtained by
minimizing the reconstruction rise. To appreciate if the differences are significant,
we also provide the MC standard deviation of this estimator, i.e., Stdarise =√

1
M(M−1)

∑M
m=1

(∥∥ fREG,n,m − f
∥∥−arise

)2
, which corresponds to the standard-

deviation formulas of the average estimator arise (which requires to divide by√
M). The table also gives for each case the average of the M optimal values of

the regularization parameters. At last, in addition to the results obtained for the
optimal values of the regularization parameters, we also compute values using the
Lepskiı̆ method for the mollification in order to check that the results obtained
were close to the optimal setting. More specifically, we fix q = 0.99, Jn = 500,
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Table 3. MC performances of the four methods over M = 1,000
replications of samples of size n = 100, 500, and 1,000, respectively

Method MOL(Lepskiı̆) MOL TIK KER CUT

n = 100

arise 0.195860 0.100038 0.209369 0.106937 0.105383

Stdarise 0.001213 0.000941 0.000898 0.000952 0.000813

〈RegPar〉 0.810334 0.358822 0.238026 0.460649 0.373794

n = 500

arise 0.114902 0.064398 0.134029 0.070904 0.068135

Stdarise 0.000637 0.000470 0.000543 0.000481 0.000450

〈RegPar〉 0.524592 0.257730 0.124067 0.344160 0.272226

n = 1,000

arise 0.091830 0.052165 0.108078 0.058255 0.055289

Stdarise 0.000417 0.000355 0.000426 0.000366 0.000359

〈RegPar〉 0.444509 0.221208 0.094325 0.303763 0.225243

Notes: The quantity arise is the MC average of the reached optimal reconstruction rise,
Stdarise is its MC standard deviation, and 〈RegPar〉 is the mean of the respective
optimal values of the regularization parameters, except for the first column where the
regularization parameter is chosen using the Lepskiı̆ method.

β0 = 10, and θ = 0.75. Although our analysis, which is based on a deterministic
argument, only covers the case θ ≥ 2, it is well known (see Bauer and Lukas, 2011)
that, for stochastic errors, better results can be achieved for smaller values of θ .

From the table, we see that for each method, as expected, the rise decreases
when the sample size increases. The mollification approach provides better results
than the other regularization techniques, and the difference is significant (com-
pared with the respective standard errors). The cutoff method seems to be better
than the deconvolution kernel (when available) and than the Tikhonov, which
appears to be the less reliable method. Of course, these general comments apply
only for the chosen scenario, but added with the theoretical comparisons made
above, this MC exercise seems to advocate for using mollification techniques in
deconvolution problems.

7. CONCLUSION

We have introduced the mollification approach to the deconvolution of probability
densities. We have established the consistency of the corresponding estimator. By
placing mollification in the framework of filter-type methods, we have compared
it, both theoretically and numerically, with various other methods, namely the
deconvolution kernels, the spectral cutoff, and the Tikhonov regularization. This
comparison reveals notably that the mollification enables to substantially extend
the domain of applicability of the deconvolution kernels, while providing better
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performances than all methods under consideration in terms of the tradeoff
between fidelity and stability of the reconstruction. mollification inherits advan-
tages of both the deconvolution kernels (in particular, a target object is clearly
defined) and the Tikhonov regularization (in particular, the flexibility brought by
the variational formulation).

We have studied the convergence rates of mollification for the problem of
deconvolution of probability densities. It has been shown that optimal rates are
reached by mollification both in the power decay and exponential decay settings
under general Besov regularity assumptions. There is a saturation effect in the
case of power decay, but this saturation bound can be made as large as desired by
suitable choice of the mollifier. This is a definite advantage compared to Tikhonov
regularization and explains our computational result. There is no saturation effect
in the case of exponential decay. Hence, both our theoretical and our computational
results suggest that mollification is a very promising regularization method for the
deconvolution of probability densities.

APPENDIX A. Proofs of the Results in Sections 3.3, 3.4, and 4.2

We start this section by a result on the operator norm of the multiplication operator, which
will be useful later in the proofs.

Proposition A.1. Let ϕ be in L∞(R), and let M : L2(R) → L2(R) be the multiplication
operator defined by Mf = ϕ · f . Then, ‖M‖ = ‖ϕ‖∞, in which ‖M‖ denotes the operator
norm of M.

Proof. We can assume without loss of generality that ‖ϕ‖∞ > 0. Let λ denote the
Lebesgue measure on R. Clearly,

∫ |ϕf |2 dλ ≤ ‖ϕ‖2∞
∫ |f |2 dλ = ‖ϕ‖2∞ ‖ f‖2 , so that

‖M‖ ≤ ‖ϕ‖∞. In order to obtain the opposite inequality, let ε > 0 be fixed. The Lebesgue
measure being σ -finite, one can find A ⊂ R measurable such that:

(i) 0 < λ(A) < λ(R) = ∞;
(ii) for every x ∈ A, ϕ(x) ≥ ‖ϕ‖∞ − ε.

As a matter of fact, let A◦ := {x ∈ R
∣∣ |ϕ(x)| ≥ ‖ϕ‖∞ − ε

}
. Then λ(A◦) > 0 (for otherwise

one would have ‖ϕ‖∞ ≤ ‖ϕ‖∞ − ε). If λ(A◦) < ∞, then just take A = A◦. Otherwise,
consider an increasing sequence (Bn) such that λ(Bn) > 0 for all n and ∪nBn = R. The
sequence (A◦ ∩Bn) is increasing, with limit A◦. For n◦ sufficiently large, λ(A◦ ∩Bn◦) > 0,
since λ(A◦ ∩Bn) → λ(A◦) > 0. Thus, take A = A◦ ∩Bn◦ in this case.

Now, let f = 1A/
√

λ(A). Then f ∈ L2(R) and ‖ f‖2 = 1, so that

‖M‖2 ≥ ‖Mf‖2 =
∫

|ϕf |2 dλ = 1

λ(A)

∫
A

|ϕ|2 dλ ≥ (‖ϕ‖∞ − ε
)2.

Since ε can be chosen arbitrarily small, we have shown that ‖M‖ ≥ ‖ϕ‖∞. �

The following lemma shows that bounding the regularization error over Sobolev balls
coincides with bounding the supremum norm of certain functions.
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Lemma A.2. For any u > 0, we have

sup
‖ f ‖Hu≤1

‖ f − fMM,β‖ = ‖τβ,u‖∞ with τβ,u(ξ) := (1− ϕ̂β (ξ))2(1+|ξ |)−u

|γ̂ (ξ)|2 + (1− ϕ̂β (ξ))2
.

Proof. Note that

Uf −UfMM,β =
(

1− γ̂ γ̂

|γ̂ (ξ)|2 + (1− ϕ̂β (ξ))2

)
Uf = (1− ϕ̂β (ξ))2

|γ̂ (ξ)|2 + (1− ϕ̂β (ξ))2
Uf .

Furthermore, recall that ‖ f‖Hu = ‖w‖ with w(ξ) := (1 + |ξ |)uUf (ξ). This together with
the unitarity of the Fourier transform implies sup‖ f ‖Hu≤1 ‖ f − fMM,β‖ = sup‖w‖≤1 ‖τβ,u ·
w‖ = ‖τβ,u‖∞ since that operator norm of a multiplication operator in L2 is given by the
supremum norm of the multiplier function (see Proposition A.1). �

Lemma A.3 (Asymptotic properties of intersection points). Let �,	 : R+ → R∗+ be
strictly decreasing functions that go to zero at infinity, and let C > 0. Then, for every β > 0,
the equation

C�(t) = 	(0)−	(βt) (A.1)

has a unique solution t∗β which satisfies t∗β → ∞ and βt∗β → 0 as β ↓ 0.

Proof. Without loss of generality, assume that �(0) = 1, so that � is a decreasing
bijection from R+ to (0,1] and its inverse �−1 is a decreasing bijection from (0,1] to
R+. Similarly, 	(0)−	 is an increasing bijection from R+ onto [0,	(0)), and its inverse
(	(0)−	)−1 is an increasing bijection from [0,	(0)) onto R+. It is then easy to see that

ψ : (a,∞) −→ R∗+
t �−→ ψ(t) := (	(0)−	

)−1(C�(t)
)
,

with a := �−1(C−1	(0)
)

is a decreasing bijection. Then the solution to equation (A.1)
coincides with the solution to the equation βt = ψ(t). Now, existence and uniqueness
of t∗β follows from strict monotonicity of t �→ βt − ψ(t) and the intermediate value
theorem. Furthermore, the desired limits follow immediately from the above fixed point
characterization of t∗β . �

Lemma A.4 (Approximation error of mollifier). If f ∈ Bu
2,∞(Rd) and Assumption 8 holds

true, there exists a constant M independent of f such that
∥∥ f −Cβ f

∥∥≤ M ‖ f‖Bu
2,∞ βmin(s,u)

for all β sufficiently small.

Proof. We have∥∥ f −Cβ f
∥∥2 =

∫
Rd

(1−	(β |ξ |))2 ∣∣ f̂ (ξ)
∣∣2 dξ =

∫ ∞
0

(1−	(βt))2(−def (t))

=
∫ ∞

0
ef (t)d (1−	(βt))2 dt.
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In order to estimate the integral, we treat the subintervals
(

0,β−1
)

and
(
β−1,∞

)
separately. For the first interval, we use Assumption 8 to obtain∫ 1

β

0
ef (t)d (1−	(βt))2 dt = 2β

∫ 1
β

0
ef (t)(1−	(βt))(−	′(βt))dt

≤ 2C2
	 ‖ f‖2

Bu
2,∞

∫ 1
β

0
(1+ t)−2uβ(βt)s+(s−1) dt

≤ 2C2
	 ‖ f‖2

Bu
2,∞

β2s

(∫ 1

0
t2s−1 dt +

∫ 1
β

1
(1+ t)−2ut2s−1 dt

)
= ‖ f‖2

Bu
2,∞

O
(
β2s +β2u

)
.

On the second interval, we estimate∫ ∞
1
β

ef (t)d (1−	(βt))2 dt ≤ ef

(
1

β

)∣∣∣(1−	(β·))2
∣∣∣TV

≤ ‖ f‖2
Bu

2,∞

∣∣∣(1−	(β·))2
∣∣∣TVβ2u. �

Under Assumptions 8 and condition (9), we have

1

C2
�β,u(|ξ |) ≤ τβ,u(ξ) ≤ C2�β,u(|ξ |) with �β,u(t) := (1−	(βt))2 (1+ t)−u

(1+ t)−2a + (1−	(βt))2
,

for all ξ ∈Rd . For the proof of Theorem 11, we need the following bound on these functions,
which is equivalent to convergence rate in Sobolev balls:

Proposition A.5 (Bias bounds in Sobolev balls). Suppose that Assumption 8 and
condition (9) hold true, and let τβ,u be defined as in Lemma A.2. Then

‖τβ,u‖∞ ∼ β
min
(

su
s+a ,2s

)
as β ↓ 0.

In particular, sup‖ f ‖Hu≤1 ‖ f − fMM,β‖ ∼ β
min
(

su
s+a ,2s

)
.

Proof. By Lemma A.3, the equation

(1+ t)−a = 1−	(βt) (A.2)

has a unique solution t̄β which satisfies t̄β → ∞ and β t̄β → 0 as β ↓ 0. Therefore,
(1 + t̄β)−a ∼ (t̄β)−a and 1 −	(β t̄β) ∼ (β t̄β)s as β ↓ 0. We deduce that (t̄β)−a ∼
(β t̄β)s, or

t̄β ∼ β
− s

s+a as β ↓ 0. (A.3)

Omitting the smaller of the two terms in the denominator of �β,u(t) yields the upper bound

�β,u(t)

2
≤ �β,u(t) ≤ �β,u(t) with �β,u(t) :=

{
(1−	(βt))2(1+ t)2a−u, 0 ≤ t ≤ t̄β,

(1+ t)−u, t ≥ t̄β .
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Caseu ∈ [0,2a]: In this case, �β,u is increasing for t ≤ t̄β and decreasing for t ≥ t̄β , and
therefore

‖τβ,u‖∞ ∼ ‖�β,u‖∞ ∼ ‖�β,u‖∞ = �β,u(t̄β) = (1+ t̄β)−u ∼ β
su

s+a .

Caseu > 2a: In this case, we need further work to bound �β,u on the interval [0, t̄β ]. Using

assumption (8b) and the inequalities 1
2max(1,t) ≤ 1

1+t ≤ 1
max(1,t) , we obtain

C−2
	 22a−u�β,u(t) ≤ �β,u(t) ≤ C2

	�β,u(t) for 0 ≤ t ≤ t̄β

with

�β,u(t) :=
{

(βt)2s, 0 ≤ t ≤ min(1, t̄β),

β2st2s+2a−u, 1 < t ≤ t̄β .

Since � is continuous, positive, and decreasing on (t̄β,∞), we have

‖�β,u‖L∞([0,∞)) = ‖�β,u‖L∞([0, t̄β ]) ∼ ‖�β,u‖L∞([0, t̄β ])

=
{

�β,u(t̄β) ∼ β
su

s+a , u ≤ 2s+2a,

�β,u(1) ∼ β2s, u > 2s+2a.

This completes the proof. �

Proof of Theorem 11. The last statement on the limit case u = 2a + 2s follows from
Proposition A.5.

(10a)⇒(10b): Note that Uf − UfMM,β = (1−ϕ̂β )2

|γ̂ |2+(1−ϕ̂β )2 Uf . Therefore, estimating the

square of the fraction by

rβ(t) :=
(

(1−	(βt))2

(1+ t)−2a + (1−	(βt))2

)2

(A.4)

with 	 from Assumption 8, we obtain with C from condition (9) that

C−2 ∥∥ f − fMM,β

∥∥2 ≤
∫

mld
rβ(|ξ |)|̂ f (ξ)|2 dξ

=
∫ ∞

0
rβ(t)d(−ef )(t) =

∫ ∞
0

ef (t)drβ(t). (A.5)

In the third line, we have used partial integration and the fact that rβ(0) = 0 and

limt→∞ ef (t) = 0. For the numbers t̄β defined by (A.2), we have t̄β ∼ β
− s

s+a (see (A.3))
and

rβ(t̄β) = 1

4
, (A.6)

for all β ∈ (0,1]. We split the integral on the right-hand side of (A.5) into two parts:

C−2 ∥∥ f − fMM,β

∥∥2 ≤
∫ t̄β

0
ef (t)drβ(t)+

∫ ∞
t̄β

ef (t)drβ(t).
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As ef is decreasing and limt→∞ rβ(t) = 1, the second integral is bounded by∫ ∞
t̄β

ef (t)drβ(t) ≤ ef (t̄β)(1− rβ(t̄β)) ≤ 3

4
‖ f‖2

Bu
2,∞

(1+ t̄β)−2u ≤ C2
1 ‖ f‖2

Bu
2,∞

β
2su
s+a

for some C1 independent of f and β sufficiently small. For the first integral, we introduce

some μ ∈
(

u
2s+2a,1

)
and estimate∫ t̄β

0
ef (t)drβ(t) ≤ ‖ f‖2

Bu
2,∞

∫ t̄β

0
(1+ t)−2u drβ(t)

= ‖ f‖2
Bu

2,∞

∫ t̄β

0
(1+ t)−2urβ(t)μ

1

rβ(t)μ
drβ(t)

≤ ‖ f‖2
Bu

2,∞
sup
t>0

[
(1+ t)−2u/μrβ(t)

]μ ∫ t̄β

0

1

rβ(t)μ
drβ(t)

= ‖ f‖2
Bu

2,∞
‖�2

β,u/μ‖μ∞
rβ(t̄β)1−μ

1−μ
≤ C2μ

2 ‖ f‖2
Bu

2,∞
β

2su
s+a

4μ−1

1−μ
,

where C2 := sup0<β≤1 β
− s

s+a
u
μ ‖�β,u/μ‖∞ is finite for u < 2a + 2s by Proposition A.5.

Putting these estimates together shows that

∥∥ f − fMM,β

∥∥≤ C

(
C1 +Cμ

2
2μ−1

√
1−μ

)
‖ f‖Bu

2,∞ β
su

s+a .

(10b)⇒(10a): It follows from (A.5) and (A.6) that

C2 ∥∥ f − fMM,β

∥∥2 ≥
∫ ∞

t̄β
rβ(t)d(−ef )(t) ≥ rβ(t̄β)

∫ ∞
t̄β

d(−ef )(t) = 1

4
ef (t̄β). (A.7)

If M denotes the value of the supremum in (10b), this shows that ef (t̄β) ≤ 4(CM)2β
2su
s+a ≤

C3 t̄−2u
β for some C3 > 0. As limβ→0 t̄β = ∞ and ef (0) = ‖ f‖2 < ∞, this shows that

‖ f‖Bu
2,∞ < ∞. �

Proof of Theorem 12. The last statement on the limit case u = a + s follows from the
triangle inequality∥∥ f − fMO,β

∥∥≤ ∥∥ f −Cβ f
∥∥+∥∥Cβ f − fMO,β

∥∥ (A.8)

≤ ∥∥ f −Cβ f
∥∥+∥∥Cβ

∥∥∥∥ f − fMM,β

∥∥,
along with Lemma A.4 and Proposition A.5.

(11a)⇒(11b): We use again the triangle inequality (A.8). The second term on the right-

hand side is of order O
(
β

su
s+a

)
by Theorem 11. By Lemma A.4, the first term is of order

O
(
βmin(u,s)

)
, which is of higher order o

(
β

su
s+a

)
as long as u < s+a.

(11b)⇒(11a): We have∥∥ fMO,β − f
∥∥≥ ∥∥ fMO,β −Cβ f

∥∥−∥∥Cβ f − f
∥∥

= ∥∥Cβ fMM,β −Cβ f
∥∥−∥∥Cβ f − f

∥∥ .
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As in (A.7), we can show that

C2 ∥∥Cβ fMM,β −Cβ f
∥∥2 ≥ rβ(t̄β)2	(β t̄β)2ef (t̄β) = 1

4
	(β t̄β)2ef (t̄β).

As limβ→0 β t̄β = 0, this together with (11b) and Lemma A.4 yields

ef (t̄β) ≤ 4C2

	(β t̄β)2

∥∥Cβ fMM,β −Cβ f
∥∥2

≤ 8C2

	(β t̄β)2

(∥∥ fMO,β − f
∥∥2 +∥∥Cβ f − f

∥∥2
)

= O

(
β

2su
s+a +β2min(u,s)

)
= O

(
β

2su
s+a

)
= O

(
t̄2u
β

)
,

and we conclude that f ∈ Bu
2,∞(Rd). �

Lemma A.6. Under the assumptions of Proposition 15, there exists a constant CMO for

all β0 > 0 such that ‖	MO
β ‖ ≤ CMOβ

− s(a+d/2)
s+a for all β ∈ (0,β0].

Proof. Due to Assumption 8 and condition (9), we have

‖	MO
β ‖2 ≤

∫ ∞
0

C2(1+ t)−2a	(βt)2∣∣C−2(1+ t)−2a + (1−	(βt))2
∣∣2 td−1 dt.

We use the numbers t̄β defined in (A.2) and estimate the integrand on the three subintervals

(0, t̄β), (t̄β, 1
β ), and ( 1

β ,∞) separately. Using the asymptotic behavior (A.3) of t̄β as β ↓ 0
and Assumption 8, we obtain∫ t̄β

0

C2(1+ t)−2a	(βt)2∣∣C−2(1+ t)−2a + (1−	(βt))2
∣∣2 td−1 dt ≤ C6

∫ t̄β

0
(1+ t)2atd−1 dt

= O
(

t̄d+2a
β

)
= O

(
β

− s(d+2a)
s+a

)
,

∫ 1
β

t̄β

C2(1+ t)−2a	(βt)2∣∣C−2(1+ t)−2a + (1−	(βt))2
∣∣2 td−1 dt ≤ C2C4

	

∫ ∞
t̄β

(1+ t)−2atd−1

(βt)4s
dt

= O

(
β

− s(d+2a)
s+a

)
,

∫ ∞
1
β

C2(1+ t)−2a	(βt)2∣∣C−2(1+ t)−2a + (1−	(βt))2
∣∣2 td−1 dt ≤ 4C2

∫ ∞
1
β

(1+ t)−2a	(βt)2td−1 dt

≤ 4C2β2a−d
∫ ∞

1
t̃−2a	(t̃)2 t̃d−1 dt̃

= O
(
β2a−d

)
.

Since − s(d−2a)
s+a ≤ 2a−d if and only if 4s ≥ d −2a, this yields the desired result. �
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Proof of Theorem 17. (14a)⇒(14b): We proceed as in the proof of Theorem 11,

replacing the definition (A.4) of rβ by rβ(t) :=
(

(1−	(βt))2

exp(−κta)+(1−	(βt))2

)2
. Moreover, we

define t̄β :=
(
− 1

κ lnβ
)1/a

such that exp(−κ t̄aβ) = β. It is clear that t̄β → ∞ and β t̄β → 0

as β ↓ 0. As in the proof of Theorem 11, we estimate

C−2 ∥∥ f − fMM,β

∥∥2 ≤
∫ t̄β

0
ef (t)drβ(t)+

∫ ∞
t̄β

ef (t)drβ(t).

As ef is decreasing and limt→∞ rβ(t) = 1, the second integral is bounded by∫ ∞
t̄β

ef (t)drβ(t) ≤ ef (t̄β)(1− rβ(t̄β)) ≤ ‖ f‖2
Bu

2,∞
(1+ t̄β)−2u

≤ C1 ‖ f‖2
Bu

2,∞
(− lnβ)−2u/a

for some C1 independent of f and β ∈ (0,1). As in the proof of Theorem 11, we choose
some μ ∈ (0,1) and bound the first integral by∫ t̄β

0
ef (t)drβ(t) ≤ ‖ f‖2

Bu
2,∞

rβ(t̄β)1−μ

1−μ
sup

0<t≤t̄β

[
(1+ t)−2u/μrβ(t)

]μ
,

≤ ‖ f‖2
Bu

2,∞
rβ(t̄β)1−μ

1−μ

(
(− lnβ)−2u/a

)
C2μ

2 ,

where C2 := sup0≤β≤1

(
(−lnβ)

u
aμ sup0<t≤t̄β

[
(1+ t)−u/μrβ(t)1/2

])
is finite for all u > 0.

Indeed, we have, for 0 < t ≤ t̄β ,

rβ(t)1/2 ≤ (1−	(βt))2

exp(−κta)
≤ C2

	(β t̄β)2sexp(κ t̄aβ) ≤ C2
	

(
1

κ

)2s/a
β2s−1 (− lnβ)2s/a

such that C2 ≤ C2
	

(
1
κ

)2s/a
sup0≤β≤1β2s−1 (− lnβ)

2s
a + u

aμ . As the last supremum is finite

for s > 1/2, we have shown that∫ t̄β

0
ef (t)drβ(t) = O

(
(− lnβ)2u/a

)
.

Putting everything together shows that
∥∥ f − fMM,β

∥∥ = O
(
(− lnβ)−u/a

)
as β ↓ 0.

(14b)⇒(14c): This follows again from (A.8).
(14c)⇒(14a): As in the proof of Theorem 12, we obtain

ef (t̄β) ≤ 8

	(β t̄β)2

(∥∥ fMO,β − f
∥∥2 +∥∥Cβ f − f

∥∥2
)

.

Using limβ→0 β t̄β = 0, together with (14c) and Lemma A.4, this yields

ef (t̄β) = O
(
(− lnβ)−2u/a +βmin(u,s)

)
= O

(
(− lnβ)−2u/a

)
= O

(
t̄−2u
β

)
.

This shows that f ∈ Bu
2,∞(Rd). �
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Proof of Proposition 20. Our proof is based on the following general large deviation
inequality due to Massart based on the seminal work by Talagrand.

Theorem [Massart, 2000, Thm. 3] Let F ⊂ L∞(Rd) be a countable family of functions with ‖ϕ‖∞ ≤ b
for all ϕ ∈ F . Moreover, let

Z := n sup
ϕ∈F

∣∣∣∣∫
Rd

ϕ(dgn −gdx)

∣∣∣∣ (A.9)

and v := nsupϕ∈F
∫
Rd ϕ2gdx. Then

P
[
Z ≥ (1+ ε)EZ +√8vξ +κ(ε)bξ

]
≤ exp(−ξ), (A.10)

for all ε,ξ > 0, where κ(ε) = 2.5+32/ε.

To apply this to Z := nβ
s(a+d/2)

s+a ‖ fβ,n − fMO,β‖, we write the estimator in the form f̂β =
	̌MO

β ∗ gn with gn defined in (6) and 	̌MO
β the inverse Fourier transforms of the functions

	MO
β in Proposition 15. Since the unit spheres of separable Hilbert spaces are separable,

there exists a sequence (hm)m∈N which is dense in the unit sphere of L2(Rd), and the
variance term can be written in the form (A.9) as follows:

‖ fβ,n − fMO,β‖
= sup

m∈N
|〈hm,fβ,n − fMO,β 〉| = sup

m∈N

∣∣∣〈hm,	̌MO
β ∗ (gn −g)〉

∣∣∣
= sup

m∈N

∣∣∣〈	̌MO
β (−·)∗hm,(gn −g〉

∣∣∣= β
− s(a+d/2)

s+a sup
ϕ∈Fβ

∣∣∣∣∫
Rd

ϕ(dgn −gdx)

∣∣∣∣ .
Here, Fβ := {ϕm,β : m ∈ N} and ϕm,β := β

s(a+d/2)
s+a 	̌MO

β (−·)∗hm, and we have

|ϕm,β (x)| ≤ β
s(a+d/2)

s+a

∫
Rd

|	̌MO
β (−x+ y)hm(y)|dy ≤ β

s(a+d/2)
s+a ‖	MO

β ‖L2‖hm‖L2 ≤ CMO

by Lemma A.6. Let Mβ be a separable dense subset of (0,β0] and set F :=⋃β∈Mβ
Fβ .

Then b := sup{‖ϕ‖∞ : ϕ ∈ F} ≤ CMO, and by Proposition 15 we have

E
(
n‖ fβ,n − fMO,β‖)≤ n

(
E‖ fβ,n − fMO,β‖2

)1/2 ≤ CMO
√

2nβ
− s(a+d/2)

a+s .

Finally, we use that the operator Rβ : g �→ 	̌MO
β ∗g is a Hilbert–Schmidt from the weighted

space L2(gdx) to L2(Rd) where the norm of the former space is given by ‖h‖gdx) =
(
∫ |h|2gdx))1/2. Since the operator norm of an integral operator is bounded by the L2-norm

of its kernel, we obtain

‖Rβ‖2
L2(gdx)→L2 ≤

∫
Rd

∫
Rd

|	̌MO
β (x− y)|2 dxg(y)dy = ‖	̌MO

β ‖2 ≤ C2
MOβ

− s(2a+d)
a+s
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using Lemma A.6 again. Therefore,

v = n sup
v∈F

∫
Rd

ϕ2gdx ≤ nβ
s(d+2a)

s+a sup
m

‖R∗
βhm‖2

L2(gdx)
≤ nC2

MO.

Plugging all this into (A.10) with ε = 1 yields

P

[
sup

β≤β0

β
s(a+d/2)

a+s ‖ fβ,n − fMO,β‖ ≥ 2
√

2CM0√
n

+ CM0
√

8ξ√
n

+ 34.5CM0ξ

n

]
≤ exp(−ξ),

for all ξ > 0. As 1
n ≤ 1√

n
and

√
ξ ≤ ξ for ξ ≥ 1, this yields (18) with ρ = Ccξ . �

APPENDIX B. The Deconvolution Kernels as Approximate Inverses

Following Schuster (2007), we say that a family function ψβ : Rd ×Rd → R indexed by
a parameter β ∈ (0,β◦] is a mollifier if:

(i) for every β > 0 and y ∈ Rd , ψβ(·,y) ∈ L1(Rd)∩L2(Rd), and
∫
Rψβ(x,y)dx = 1;

(ii) for every f ∈ L2(Rd), the function f (β) defined by f (β)(y) = 〈f,ψβ(·,y)〉 converges
to f in L2(Rd) as β ↓ 0.

For a general bounded linear operator T in L2(Rd), assuming the existence of a family
of functions

(
vβ(·,y)) such that

∀β > 0, ∀y ∈ Rd, T∗vβ(·,y) = ψβ(·,y), (B.1)

we see that f (β) is then given by f (β)(y) = 〈f,T∗vβ(·,y)〉= 〈Tf,vβ(·,y)〉= 〈g,vβ(·,y)〉 . More
generally, if ψβ(·,y) belongs to D

(
(T∗)

) = ranT∗ + (ranT∗)⊥, then the minimum norm
least square solution to (B.1) is used instead, and denoted by vβ(·,y) again. The family of
mappings

T̃β : L2(Rd) −→ L2(Rd)

g �−→ 〈
g,vβ(·,y)〉

is then called an approximate inverse of T. If ψβ(x,y) = ϕβ(y−x) and T is the convolution

operator in (1), then the function f (β) is a convolution of f :

f (β)(y) =
∫
Rd

f (x)ψβ(x,y)dx =
∫
Rd

f (x)ϕβ(y− x)dx = (ϕβ ∗ f )(y).

The family of functions (ϕβ) (indexed by β in some interval of the form (0,β◦]) emulates
the Dirac distribution as β ↓ 0). It is referred to as an approximation of unity. The standard
way to produce such an approximation of unity is to choose an integrable function ϕ with∫

ϕ(x)dx = 1 and to define ϕβ by ϕβ(x) := 1
βd ϕ

(
x
β

)
, x ∈ Rd . For the convolution

operator T in (1), we have (T∗)−1 = U∗ [ 1
γ̂

]
U. Provided that ψβ(·,y) belongs to ranT∗,

for all β > 0 and all y ∈ Rd , equation (B.1) yields

Uvβ(·,y)(ξ) =
[

1

γ̂
Uψβ(·,y)

]
(ξ) = 1

γ̂ (ξ)

∫
e−2iπ〈ξ,x〉ϕβ(y− x)dx = e−2iπ〈ξ,y〉 ϕ̂β (ξ)

γ̂ (ξ)
.
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Using the unitarity of U, the solution f (β) is then given by

f (β)(y) := 〈g,vβ(·,y)〉= ∫ ĝ(ξ)e2iπ〈ξ,y〉 ϕ̂β (ξ)

γ̂ (ξ)
dξ =

(
U∗
[

ϕ̂β

γ̂

]
Ug

)
(y).

Clearly, the latter estimate corresponds to the deconvolution kernel solution.
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