
Modelling of Stellar Atmospheres
fA U Symposium, Vol. 210, 2003
N. E. Piskunov, W. W. Weiss, D. F. Gray, eds.

Non-local Convection Models for Stellar Atmospheres and
Envelopes

F. Kupkalv'

Astronomy Unit, School of Mathematical Sciences, Queen Mary,
University of London, Mile End Road, London, El 4NS, U.K.

Abstract.
We present an overview of the concepts underlying advanced non-

local Reynolds stress models of turbulent convection and review a com-
parison of this approach with a series of numerical simulations of fully
compressible convection. We then discuss results from applications of the
model to complete envelopes of A-type main sequence stars. The non-
local model reproduces surface velocities in agreement with the lower
limit of observed macro- and microturbulence velocities of A-star pho-
tospheres, the asymmetry of the surface velocity field as inferred from
spectral line profiles, and the overall structure of the photospheric and
subphotospheric convection zones, as predicted by the most recent nu-
merical simulations available for these stars. Traditionally, local models
of convection are unable to do so. We conclude with a brief survey of ex-
tensions of the model which are interesting for other applications such as
atmospheres of solar type stars and overshooting below deep convective
envelopes or above the core in massive stars.

1. Introduction

Stellar convection has remained one of the greatest challenges to theoretical
astrophysics ever since the era when the first successful model for it had been
devised, the now classical mixing length theory (MLT, Biermann 1948). The
dramatic progress in quality and amount of observations, the improvements in
accuracy and completeness of microscopic data such as opacities, and finally the
ever increasing computer power available to astrophysicists have changed the
demands on models of convection. For many problems in stellar astrophysics,
order of magnitude estimates to reconstruct the approximate thermal structure
of a star are now insufficient. A more predictive formalism is required which
can be used to compute velocity distributions, thermal profiles, and mixing
efficiencies without calibrating numerous parameters each time an individual
star or a group of stars is analysed. Two different methodologies have been
proposed to meet this challenge: numerical simulations of convection and a new
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generation of turbulence models which aim at a "non-local" approach to stellar
convection, but at much more modest demands on computational resources.

Each approach has its virtues and its shortcomings. Applications of the
numerical simulation approach to stellar convection are limited by the available
resources including both computing power and efforts to evaluate the numerical
data. For the time being, direct numerical simulations (DNS) which resolve all
scales relevant to the flow can only be afforded assuming idealised microphysics.
Therefore, simulations of stellar convection have to rely on volume averages over
the effects of scales smaller than the grid resolution and their interaction with the
larger, resolved scales carrying most of the energy (large eddy simulations, LES).
Such simulations can now be performed for stellar atmospheres and the upper
part of the envelope (down to the ionisation zone of He II) on a routine basis (cf.
the examples quoted in Kupka & Montgomery 2002). The most sophisticated
ones such as those by Stein & Nordlund (1998) have been performed in 3D and
are devoted to individual stars while more extended computations over the HR
diagram thus far have been limited to 2D (e.g., Freytag et al. 1996). Complete
stellar models cannot be build from such an approach, as the time scales required
for thermal relaxation towards a self-consistent solution are too long (see, for
example, Kupka 2001). Even if simulations are matched on top of MLT based
stellar models, this does not provide us with a solution for problems related to
the deeper envelope, such as overshooting (OV) below a deep convection zone, or
chemical composition mixing. Concerning stellar atmospheres, a more efficient
approach is required wherever large amounts of models and flux calculations are
needed, such as population synthesis or complete abundance analyses of groups
of hundreds of stars (Heiter & Luck, these proceedings). A more extreme, but
very important example are the r-.J 100 million stars for which spectra are ex-
pected from the IR spectrograph of the GAIA mission. These numbers speak
for themselves already, if we merely consider a fully automated analysis using
traditional "lD" model stellar atmospheres based on an MLT treatment of con-
vection. Even for an everyday stellar abundance analysis an improved, more
realistic convection model would be of convenience for the next couple of years.
The need for post-MLT convection models has thus nothing lost of its urgency,
despite the success of recent numerical simulations also documented in these
proceedings.

2. Physics of non-local convection models

Local and non-local models of convection are both based on ensemble averages of
the Navier-Stokes equations (NSE). The goal of any convection model is to com-
pute only the moments or correlation functions of solutions to the NSE. But due
to the non-linearity of the equations for flows with high Reynolds number and
the non-locality of their solutions, no such model has yet been derived without
additional statistical assumptions. Derivations of closed systems of equations
for the moments are confronted with an infinite hierarchy of equations: each
moment A(Xl) is a function of moments of higher order. Hence, an equation
for instance for the Reynolds stress UiUj, where Ui and Uj are velocity fluctu-
ations around the ensemble mean, depends on quantities such as UiUjUk. A
similar functional dependence on moments of even higher order is observed, for
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example, in equations for UiUjUk, which causes an infinite loop. This property
is a direct consequence of the non-linearity of the NSE. For turbulent flows,
where the non-linear (advection) terms dominate over the linear (viscous, etc.)
terms, linearisations cannot be used to derive useful convection models, except
for particular aspects thereof such as stability analyses (Schwarzschild criterion,
etc.). Hence, there is no alternative known around making additional statistical
hypotheses, the closure assumptions, if we want to obtain a complete, well-
determined set of equations describing the lower order moments of the NSE for
stellar convection.

The matter is complicated by the fact that for an inhomogeneous flow, in-
cluding turbulent convection, the equations for moments given on one location,
say UiUj, directly depend on values of the moments at another location through
derivatives such as 8(UiUjUk) /8r. To account for that property turbulent con-
vection models have to be non-local, as opposed to the classical local convection
models which provide the convective flux Peony as a function of local mean val-
ues and just the mean temperature (and pressure) gradients alone. The most
well-known example among the local convection models is MLT. Non-local con-
vection models on the other hand provide differential equations for low order
moments such as Peony and are closed with assumptions on moments of higher
order. Consequently, quantities such as Peony or UiUj explicitly depend on the
function values of other moments at different (neighbouring) locations. Some
problems in turbulent convection such as the overshooting of fluid into stably
stratified layers in stellar atmospheres can only be addressed by a non-local ap-
proach. Others such as mixing or transport of angular momentum benefit from
a non-local approach to turbulent convection as well, particularly, because the
boundary regions of a convection zone are important in their case. Local mod-
els perform notoriously poor within these regions (cf. the discussion in Canuto
1993).

Two main schemes for deriving closed equations of non-local models have
been used thus far. One-point closure models consider averages of the NSE in
physical space. The more advanced among them also compute various com-
ponents of or sums over UiUj and are known as Reynolds stress models. Such
models have first been proposed for turbulent stellar convection by Xiong (1978,
1985). More updated versions, which still include a mixing length to compute
the dissipation rate of turbulent kinetic energy, were given by Xiong et al. (1997)
and by Grossman et al. (1993). Canuto (1992, 1993, 1997) suggested the first
models which avoid the use of a local scale length (mixing length). Hence, they
may be called fully non-local models for stellar convection, where non-locality
refers to the equations for the second order moments (convective flux, turbulent
pressure, turbulent kinetic energy and its dissipation rate, and mean temperature
fluctuations), as the closure relations inevitably introduce locality assumptions
on the higher order moments. Two-point closures on the other hand are based
on ensemble averages performed in Fourier space and provide the spectra of the
moments. Integration over these spectra yields the one-point averaged quan-
tities required in stellar modelling. Canuto & Dubovikov (1998, CD98) have
used this approach to rederive an improved version of the earlier Canuto (1992)
model, again avoiding the use of a mixing length.
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Their approach is based on a general turbulence model they have developed
which thus far has successfully passed about 100 tests made for various types of
flow. The tests included mostly laboratory and numerical simulation data (see
CD98). The "CD98 model" is a non-local Reynolds stress model of turbulent
convection. It consists of five differential equations for the horizontal averages
of the second order moments which have to be solved together with the stellar
structure equations. To the latter they are coupled through the fluxes of enthal-
phy (convective flux) and turbulent kinetic energy, and through the turbulent
pressure. Due to its formal similarity with the previous models of Canuto (1992,
1993) the CD98 model can easily be extended to include compressibility effects
beyond the Boussinesq approximation, anisotropy, and non-locality. In the form
given by (Canuto 1992, 1993) the model has been successfully tested for geo-
physical flows (Canuto et al. 1994, 2001). Despite these reassuring results there
is of course no guarantee that this approach works equally well for the case of
stellar convection. Although the model of Xiong et al. (1997) has a number of
structural similarities with the CD98 model (or actually, from the viewpoint of
its derivation, the model of Canuto 1992) and despite it has already been applied
to the stellar case (see also these proceedings), the differences to the models of
Canuto (1992, 1993) and CD98 (which, e.g., avoid the use of a mixing length) are
too large to wave independent and thorough testing. In addition, a comparison
to numerical simulations of compressible convection has not been done before
for any of the advanced Reynolds stress models proposed for stellar convection.
To avoid that shortcomings of the modelling of the hydrodynamics are confused
with other problems (opacity data, non-locality of radiative transfer in stellar
atmospheres, etc.), a step-by-step procedure for the application and tests of this
type of model was suggested in Kupka (1996). The idea was to first test the
models with numerical simulations of compressible convection with idealised mi-
crophysics and later on relieve these limitations for the computation of realistic
stellar models. The final goal is to leave the parameter space nowadays accessi-
ble to the simulations and apply a thoroughly tested and physically much more
complete model to problems where, despite their much more severe limitations,
MLT and phenomenological models have been the only choice thus far.

3. Testing non-local models with numerical simulations

In Kupka (1999a, 1999b, 2001) the CD98 model was compared to 3D numerical
simulations of fully compressible convection performed by Muthsam et al. (1995,
1999) and to more recent computations by Muthsam. The latter encompass their
predecessors by a higher numerical resolution, usually lower Prandtl numbers,
and, in some casees, higher convective efficiencies (Kupka & Muthsam 2003 and
other publications of Muthsam). The simulations have been performed for plane
parallel geometry and constant surface gravity, for a perfect gas equation of state
with a prescribed ratio ~ of specific heats (usually 5/3), and a radiative conduc-
tivity which varied as a function of depth but was kept unaltered as a function of
time. The latter permits to easily define the parameter space (efficiency, stabil-
ity) for which the simulations take place. Moreover, this simplified microphysics
corresponds to how equation of state and radiative transfer are dealt with in
the derivation of the convection model. The diffusion approximation is assumed
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Figure 1. Convective flux in units of input flux at the bottom for a
case with efficient convection and a Prandtl number of 0.1.

147

to compute the radiative flux Frad. About two dozen configurations have been
investigated so far including a convection zone placed between two stable lay-
ers, or two convection zones surrounding a central, stable layer. The convective
efficiency range includes cases where F rad is at least 75% throughout the sim-
ulation domain, while for a few other configurations, Fconv r-;» 100% in some
layers within the convection zone. Viscosity was defined by a constant Prandtl
number in the range of 0.1 to 1.0 and Rayleigh numbers for these simulations
in the centre of the convection zone were between 105 and 106 , thus placing the
simulations in the highly turbulent regime (3 to 4 orders of magnitude above
the critical Rayleigh number for pure convection with a penetrable boundary).
The numerical resolution is 72 x 502 for the earlier simulations, while the more
recent ones have been done at 125 x 1002 and 160 x 1402 . The temperature
contrast between top and bottom varies between 1:4 and 1:10 while the density
contrast ranges from 1:10 to 1:20, encompassing between 4 and 5 pressure scale
heights (H p ) . Individual unstable (convection) zones span between 1 and 3 Hp

in these simulations. Thus, the parameter range shares many similarities to that
one encountered in the envelope of A stars in layers from the centre of the H
convection zone to below the region where He II becomes fully ionised.

The evaluation procedure for the calculations has been briefly explained
in Kupka (1999b, 2001). Both simulations and the equations of the non-local
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model 3J, stable-unstable-stable, Pr=1
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Figure 2. Flux of turbulent kinetic energy in units of input flux at the
bottom for a case with ineffecient convection and unit Prandtl number.

convection models are integrated in time over the thermal (Kelvin-Helmholtz)
time scale tKH, the longest one in the problem. The moment equations attain a
stationary state after tKH at which the simulations can be averaged over time to
calculate moments without including transient states. Reliable results for higher
order moments, in particular those including pressure fluctuations, have to be
computed from samples distributed over a significant fraction of tKH, while the
mean structure can be derived within merely one convective turnover time i.,
equaling a few multiples of the sound crossing time ts, the shortest time scale in
the problem. We give three examples here. Figure 1 shows Feonv in units of the
input flux at the bottom for model "1558". In this case, a vigorously convective
region of 2.5 H p is embedded between two stable layers. The results corrobo-
rate an earlier example discussed in Kupka (1999b, 2001) in which Feonv never
exceeds r-;» 25%: the local model fails near the boundary to stable stratification
and in the OV region while the non-local model reproduces the behaviour found
by the 3D simulations not only qualitatively, but even quantitatively to at least
within a factor of 2, and frequently even within 20%. To a large extent the dif-
ferences to the simulations observable in Fig. 1 can be traced to the modelling
of the pressure flux, i.e. the correlation p'w == (p'w) (p' and ware fluctuations
of pressure and vertical velocity around the ensemble mean). Evidently, even
the standard closure proposed in Canuto (1993), p'w == -0.2-p q2w ~ -0.4 Fkin

with Fkin as the flux of K == q2/2, the turbulent kinetic energy, is a major im-
provement for the model compared to the case in which this term is neglected

https://doi.org/10.1017/S0074180900133327 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900133327


Non-local Convection Models 149

(p'w = 0). Fig. 1 also shows that the performance of this closure in the OV
region is not as satisfactory as it is in the interior of the convection zone. Un-
fortunately, this term cannot be derived from the Canuto-Dubovikov turbulence
model. One interesting aspect about comparisons done with "model 1558" is
that the moments computed from its simulation are less constrained by the def-
inition of the radiative conductivity than cases with lower convective efficiency
(as in Kupka 1999a,b). Hence, the modelling of non-local quantities such as
F kin becomes more important. The latter attains -40% for the case shown in
Fig. 1 as compared to -4% in the model of inefficient convection, "3J", studied
in Kupka (1999b, 2001). Nevertheless, comparisons for cases with inefficient
convection are conclusive just as well. Figure 2 compares Fkin of "model 3J"
for 2D and 3D simulations with the two variants of the non-local model also
discussed in Fig. 1 and with the local limit of the CD98 approach. Indeed, also
for this scenario the inclusion of p'w provides an improvement: Fkin is much
closer to the 3D simulation result, if this term is taken into account. Moreover,
Feonv from the improved non-local model falls short of the 3D simulations by
only 1% inside the convectively unstable region and outperforms the 2D simula-
tions for this scenario. This has to be compared with the several percent found
in previous work (Kupka 1999b, 2001). Local models of course cannot provide
this quantity. Hence, the local limit of the CD98 model also predicts Fkin to be
zero. In Kupka (2001) it was noted that the 2D simulations overestimate the OV
while the non-local models rather underestimate it for the cases studied. Feonv
was found continuing much deeper into the lower stable zone instead of falling
off as observed in the 3D case and the non-local model (which predicted an even
faster decay). Figure 2 shows that the 2D simulation overestimates Fkin in the
centre of the convection zone but otherwise performs very well, provided we do
not consider OV regions where this quantity falls below 0.1%. This complements
the comparison between the 2D and the 3D case of this model given in Muthsam
et al. (1995) where the kinetic energy of the flow was found to be twice as large
in 2D than in 3D.

Figure 3 emphasises that the differential equation for the dissipation rate of
turbulent kinetic energy E is an important ingredient for the non-local convection
models. It avoids the introduction of a scale length (mixing length) l defined by
the assumption l ~ 0.8K1.5 / E, where K is given by another relation (a differential
equation in case of non-local models). Here, we have considered the case in
which p'w = 0, which has also been assumed in Kupka (1999b, denoted ApJL
526 in Figure 3). The scale lengths l derived from the non-local models are in
overall agreement with the value obtained from the simulations. The difference
between the two non-local models is due to the more refined closure used for
the third order moments taken from Canuto et al. (2001) which had not been
available to Kupka (1999b). It is of the same magnitude as the difference to the
simulations. If we use the closure for p'w described above, l is overestimated
inside the convection zone by 40% to 50%, though this is still smaller than the
overestimate of 80% resulting from 2D simulations of this scenario. Nevertheless,
all these calculations predict a rapid decrease of l within the OV. The assumption
of l to be proportional to H p , however, as done in most astrophysical applications
and particularly in MLT, begins to fail near the boundary to stable stratification
and is completely off the mark in the OV region, especially for the layers below
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Figure 3. The scale length l == 1r / ko~ 0.8K1.5 / E computed from 3D
simulations and non-local models (different closures) for a case with
inefficient convection. The standard mixing length rule fails near the
boundary of the convection zone and in the OV region.

the convection zone (we have set a == 0.8 to fit the computed l in the centre of
the convection zone).

The most important conclusions drawn from comparisons with idealised
simulations of compressible convection, which will be discussed in detail in
Kupka (2003) and Kupka & Muthsam (2003), can be summarised as follows:
a) the usage of the most complete version of the Canuto (1992, 1993) and CD98
models is essential for the modelling of the hydrodynamics, b) the improvements
of local models are most obvious near the boundary to stable stratification and
within the OV region, c) it is essential to use a differential equation for E to
avoid usage of the ill-defined scale length l and its related tuning parameter(s),
d) the tuning of various closure parameters is a fruitless exercise: although a
fine tuning may allow a precise match of a particular quantity (such as the solar
radius), tweaking numerical parameters is normally a waste of time, because the
failure of a closure relation is generally due to its functional form rather than
a numerical factor. Hence, an improvement of the entire model could only be
achieved by considering a physically more realistic closure hypothesis.
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A-star envelope, Teff=8000 K, log(gsurf)=4.4, Z=solar
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Figure 4. Fconv and 10Fkin in units of the bottom input flux for an
envelope with Teff == 8000 K, surface log (g) == 4.4, and solar metal-
licity. The relations for the third order moment solved in Kupka &
Montgomery (2002), MNRAS 330, are based on a modified version of
the original proposal of Canuto et al. (2001), C2001 TOMs. Such alter-
ations only result in minute changes compared to the totally different
solution obtained from MLT (tuned to match max(Fconv ) ) .

4. Envelopes of A stars: comparison with data and with local models

After the promising comparisons with numerical simulations based on idealised
microphysics the computer code to solve the equations of non-local convection
models was modified to calculate stellar envelopes with realistic microphysics.
First results for the ionisation zone of He II in A-stars were presented by Kupka
& Montgomery (2001). Fully self-consistent models for the complete, convec-
tive part of A-star envelopes ranging from the upper atmosphere down to below
the lower overshooting region of the He II convection zone were presented by
Kupka & Montgomery (2002). The necessary alterations to the original code
primarily consisted in the inclusion of the Los Alamos equation of state and
OPAL opacities (Rogers et al. 1996, Iglesias & Rogers 1996) and the adoption
of a spherical geometry and an adaptive grid based on the surface mass as an
independent variable. The boundary conditions have been altered to keep tem-
perature, pressure, and radius fixed at the top, while the luminosity is kept
fixed at the bottom. With this setting, envelopes computed with the code de-
scribed in Pamyatnykh (1999) can be used as initial solutions. Self-consistency
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(independence of the convection model used to compute the initial solution) is
guaranteed by placing the domain for which the envelope is calculated into suffi-
ciently thick stable boundary layers, relaxation over tKH, and cross-checking the
final solution for being radiative near the boundaries. Photospheric radiative
transfer is treated in the grey (diffusion) approximation apart from an optional
"dilution factor" for compatibility with the upper boundary condition provided
by the code described in Pamyatnykh (1999) and the effect of smoothing of tem-
perature fluctuations by radiative transfer (Spiegel 1957). Further details are
given in Kupka & Montgomery (2002). The model stellar envelopes consist of
usually 200 mass shells distributed from TRoss 1"'..1 10-3 in the photosphere down
to regions where T 1"'..1 105 K. The relative sizes of the shells are re-adjusted
during the solution procedure to resolve the temperature gradient.

A-star envelope, Teff=8000 K, log(gsurf)=4.4, Z=solar
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Figure 5. Average convective (root mean square) velocities for the
same envelope as in Figure 4. Again the difference between the same
particular closures of the non-local model is minute compared to the
one obtained from MLT (tuned to match max(Fconv ) ) .

Calculations were done for a number of variants of the non-local convection
models, but for their presentation Kupka & Montgomery (2002) selected the
model which had been found to compare best with the numerical simulations
for idealised microphysics thus far. Envelopes were computed for a range of
metallicities (Z==0.006, 0.02, and 0.06), for iso-sequences of constant surface
gravity log(g) , and for models along an evolutionary track of a star with 2.1 Mev.
Here, we summarise their main results along with a few additional remarks. First
of all, for stars with Teff between 7200 K and 8500 K in the main sequence band,
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the convection zones due to the ionisation of H and of He I are always merged
into one region. This "H convection zone" and a second zone deeper inside
the envelope due to the ionisation of He II, the "He II convection zone", were
found to be connected in terms of the velocity field, but separated in terms of
Feony and temperature fluctuations. In this sense, both convection zones are
connected by a single overshooting region in which average (root mean square)
vertical velocities never drop notably below 1 km s-l. This result is supported by
the 2D numerical simulation of Freytag (1995) and Freytag et al. (1996). Local
convection models fail on this problem, as they cannot account for overshooting.
Moreover, the photospheric velocities found for the non-local model are of the
order of 1.5 to 2 km s-l at T'Ross rv 2/3 which is consistent with the lower
limit of observed micro- and macroturbulence velocities (cf. Landstreet 1998)
and also the 2D simulations. Again, local models are not able to retrieve this
result. Moreover, Fkin is positive in the photosphere and the same naturally
holds for the skewness Sw of the vertical velocity fluctuations. Following a
simple upstream-downstream model of the flow topology as in CD98 this implies
that the filling factor, the fraction of the horizontal area covered by upstreaming
material, must be less than 1/2, in agreement with the observed line profiles of A-
stars (cf. Landstreet 1998). Once more, local convection models cannot predict
this quantity. Figures 4 and 5 summarise these findings for an envelope model
with a Teff of 8000 K. The overshooting found below the He II convection zone
ranges about 0.45 H p , if we consider a non-zero convective flux as the criterion
for the extent of overshooting (as in Kupka & Montgomery 2002). A slightly
larger result of about 0.6 H p is obtained, if we consider the turbulent kinetic
energy K instead of Feony . Beyond that region the moments decay exponentially
at a rate determined by the Prandtl number of the problem. This extent of OV
is supported by the 2D simulations of Freytag (1995) and Freytag et al. (1996)
in the sense of a lower limit, as their calculations predict the well-mixed OV
region to be even three times larger in terms of radial depth. Finally, it was
noted by Kupka & Montgomery (2002) that Q in MLT models would have to be
increased from 0.4 at a Teff of 8000 K to about 1.0 at a Teff of 7100 K to match
the maximum of Feony in the H convection zone, while a completely different set
of Q values, larger than 1.5, would be required to achieve the same in the lower
lying He II convection zone inside the envelope. This is all the more interesting,
as the 2D simulations predict exactly the same trends. As can be concluded
from the Q values for MLT already, the temperature gradients found for A-type
main sequence stellar envelopes change from inefficient convection with radiative
gradients for a Teff around 8000 K to one with adiabatic stratification appearing
for values of Teff just below 7200 K. These results hold also for higher and lower
metallicity models, although the exact numerical values change. The robustness
of these results towards minor changes in the closure assumptions is illustrated
in Figures 4 and 5: if the original model of third order moments of Canuto et al.
(2001) is used rather than its modification mentioned in Kupka & Montgomery
(2002), throughout most of the envelope the results change by less than 10%
and exceed 20% only in the photosphere and the centre of the He II convection
zone. Such changes are of the same magnitude as found for the case of idealised
microphysics (Figures 1 to 3).
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5. Some further extensions, conclusions

A direct comparison to the numerical simulations performed for stellar atmo-
spheres and the upper part of stellar envelopes is possible and an obvious next
step. However, it is important to do such a comparison for identical microphysics
(equation of state, opacitites) and numerical resolution to draw more solid con-
clusions. The code used in Kupka & Montgomery (2002) treats only the viscous
and conductive (radiative transfer) parts of the problem implicitly, as done in
most numerical simulations. Once the fully implicit solver currently being de-
veloped and tested is ready for production runs, deep convective envelopes as in
F stars or the sun can be calculated, ranging from the entire photosphere down
to below the overshooting region of the lowermost envelope convection zone in
these stars. With only a few minor changes the same technique is readily ap-
plicable to the problem of overshooting in convective cores of massive stars. At
this stage, a more extended comparison with data will be extremely interesting,
just as a comparison to the convection model used by Xiong et al. (1997, see
also these proceedings).

A number of extensions of the non-local convection models have recently
been proposed to include the effects of concentration gradients and a mean
flow due to rigid or differential rotations. Although we cannot extend on them
here, these will be extremely useful, if the non-local modelling approach is used
more frequently in its most promising fields of application: first and foremost
stellar evolution (globular clusters, pre-main sequence, late phases of stellar
evolution, cluster photometry). Moreover, various aspects of the notorious Li
problem could be addressed with these models, while complete solar models
based on this approach could be challenged by results from helioseismology.
As for stellar atmospheres, the most interesting applications certainly include
the "mass production" areas such as stellar population synthesis. Because this
will require the computation of stellar atmospheres with granulation effects at
least for the cool parts of the HR diagram, an extension of the model towards
a non-local treatment of radiative transfer is most likely necessary. Finally,
the application of this approach to cases involving a magnetic field appears very
attractive, although it requires that a number of basic theoretical problems have
successfully been addressed before.
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6. Discussion

STEIN: 2D and 3D simulations have very different relation between velocity
and temperature fluctuations. As a result 2D simulations lead to incorrect line
profiles (see Asplund, Ludwig, Nordlund & Stein, A&A 346, L17, 2000.)
KUPKA: Yes, I agree. This is why I have used the 3D simulations of H. Muthsam
rather than their 2D counter-parts: the latter predict clearly different higher or-
der correlations and too large an overshoot. As far as A stars are concerned, the
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only simulations available to compare to were done in 2D and I would certainly
prefer, if 3D simulations were available for at least a few cases. The actual test
for the capability of the non-local model to predict line profiles is indeed the
comparison to observations such as those by Landstreet 1998, A&A 338, 1041
once synthetic spectra will be available based on this treatment.
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