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MAXIMAL QUOTIENT RINGS OF 
ENDOMORPHISM RINGS OF 

E{R R) -TORSIONFREE GENERATORS 

TATSUO IZAWA 

Introduction. Let R be a ring with identity and let H = End (E(RR)) 
and Q = Dou(E(RR)) = End(HE(RR)). Then Lambek [11] showed that 
Q is always isomorphic to Qm(R), the maximal right quotient ring of R. 
And Johnson [10] and Wong-Johnson [26] proved that Qm(R) is regular 
and right self-injective if and only if R is right non-singular, and then H 
is isomorphic to Qm(R), too. Moreover, Sandomierski [18] showed that 
Qm(R) is semi-simple Artinian if and only if R is right finite dimensional 
and right non-singular. And it is well known that Qm(R) is a quasi-
Frobenius ring if and only if E(RR) is a rational extension of RR and the 
ACC holds on right annihilators of subsets of E(RR). 

The purpose of this paper is to give some module-theoretic generaliza­
tions of these results. Let PR be an £(i^)-torsionless generator, and let 
S = End(P i2), H = End (E(P*)) and Q = Dou (E(P*)). Then Q is 
always isomorphic to Qm(R) (Proposition 3.1). But, H is not necessarily 
isomorphic to Qm(S), the maximal right quotient ring of 5. When is H 
isomorphic to Qm(S)? In this paper we will investigate the necessary and 
sufficient conditions for H to be the right self-injective (right self-injective 
semi-perfect, quasi-Frobenius, regular, and semi-simple Artinian, 
respectively) maximal right quotient ring of 5 (Theorem 3.5, Theorem 
4.2, Theorem 4.9, Theorem 5.1 and Theorem 5.3, respectively). 

This situation is described by the diagram below: 

H+-
End ( ) 

E(Ph 
Dou ( ) 

-+Q 

max. 
quotient 
ring 

S+-
End ( ) 

injective 
hull 

PR 
Dou ( ) 

max. 
quotient 
ring 

•+R 

This kind of investigation has been done in [27] in the special case where 
R is semi-prime. It was showed that if MR is a torsionless, finite dimen­
sional and non-singular right module over a semi-prime ring R, then 
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586 TATSUO IZAWA 

End (MR) has the semi-simple Artinian classical right quotient ring 
which is isomorphic to End(E(MR)). 

1. Prel iminar ies . Throughout this paper we assume that every ring 
has an identity element and every module is unital. Every homo-
morphism will be written on the side opposite the scalars. We denote 
by mod-R the category of all right E-modules. For any M Ç mod-E, we 
denote by E(MB), TLMR, End(MR) and Dou(MR), the injective hull 
of MR, a direct product of copies of MR, the endomorphism ring and the 
double centralizer of MR, respectively. We can induce a partially ordered 
relation among the family of all injective right E-modules by setting 
Ei ^ E2 if and only if Ei ^> YlE2. If E\ ^ E2 and E2 ^ E1} we say that 
Ei and E2 are equivalent. This is clearly an equivalence relation. Each 
equivalence class of injective right E-modules is called a hereditary 
torsion theory on mod-E. We will denote by tors-E the set of all hereditary 
torsion theories on mod-E. For each r G tors-E we call MR r-torsionfree if 
E(MR) c ^ I l E for every E £ T, and will denote by J^T the class of all 
r-torsionfree right E-modules. And we call MR r-torsion if YiomR(M, E) 
= 0 for every E £ T, and will denote by 3TT the class of all r-torsion 
right E-modules. 

For any r G tors-E and any M G mod-E, an E-submodule L of M is 
said to be r-dense (resp. T-saturated) if M/L is r-torsion (resp. r-torsion­
free). We will denote byJ?f T the set of all r-dense right ideals of E; i.e., 

^r = {IRQ RR\R/I is r-torsion}. 

«if r is a so-called Gabriel topology with respect to r. If RR is r-torsionfree, 
we call r faithful. We can partially order tors-E by setting r' ^ r if and 
only \i£TT, C c5 r

T . There exists the largest element among the set of all 
faithful hereditary torsion theories on mod-E, which is sometimes called 
the Lambek torsion theory, and which will be denoted by x (^ ) in this 
paper. It is well-known that x (^) is cogenerated by E{RR)\ i.e., 
E(RB) G X(R)' Moreover, MR is x(E)-torsionfree if and only if 
MR <=+ UE(RR), and MR is x(E)-torsion if and only if HomR(M, E(RR)) 
= 0. Any x(E)-torsionfree module is said to be E(RR)-torsionfree, too, 
in this paper. And any x(^)-dense submodule is said to be a dense sub-
module for short. TT(MR) denotes the r-torsion submodule of MRf which 
is the largest r-torsion submodule of MR. For any r G tors-E and any 
M G mod-E, ET(MR) denotes the r-injective hull of MR. It is well known 
that 

ET{MR) = {x £ E(MR)\(M:x) G ^r) 

- K E(MR)\CL(X) = 0 for every a\E(MR) -* E 

with a(M) = 0, where E G r}. 
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2. Torsion theoretic investigation. Let PR be a generator in mod-i? 
and S = End(Pfl). We will consider the two covariant functors, 
G: mod-i? —> mod-S, defined by 

G(XR) = HomR(P,X) 

and F: mod-5 —> mod-i?, defined by 

F(Ys) = F ® SP. 

Then it is well-known that G(E(MR))s = E(G(MR)S) for every 
M £ mod-i?. For any r £ tors-i?, let us put 

s/ = {Ye mod-S\F(Ys) ^T7\. 

Then we can easily show that se is closed under taking submodules, 
homomorphic images, direct sums and extensions. Hence stf — ^'a for 
some a £ tors-5. Then we will write it as a = F{r). The following Lemma 
2.1 and Lemma 2.2 have been shown in [9]. 

LEMMA 2.1. Let r Ç tors-i? and a = F(r). Then we have that 

G(ET(MR))s = Eff(G(MR)s) 

for each M 6 mod-i?. 

LEMMA 2.2. Let r £ tors-i? and a = F(T). Then if a is faithful, so also is 
r. If, furthermore, PR is E(RR)-torsionfree, the converse is true and x(5) = 
F(x(P))- Conversely, if x(S) = F(x(R)), PR is E(RR)4orsionfree. 

For any r £ tors-i? and M £ mod-/?, we put 

QT(MR) = Er{M/TT(M)), 

which is called the r-localization module of MR. And we call the endo-
morphism ring of QT(RR) the r-localization ring of i? and will denote it 
by i?T. It is well-known that i?r = QT(RR) as right i?-modules. In 
particular, the x(P)-localization ring of i? is called the maximal right 
quotient ring of i? and will be denoted by Qm(R) throughout this paper. 

THEOREM 2.3. Let PR be an E{RR)-torsionfree (resp. torsionless) 
generator in mod-i? and let S = End(PR), H = End(ET(PR)) and 
Q = Dou(ET(PR)) for any r 6 tors-i?. Then if r is faithful and if we put 
a — F(T), we have the following statements. 

(1) Q is isomorphic to i?r. 
(2) H is isomorphic to Sff. 
(3) ET{PR) is an E(QQ)-torsionfree (resp. torsionless) generator in 

mod-Q and 

H= HomQ(ET(PR),ET(PR)). 
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t 

End ( 
•Et(PB)-

Dou( 
-><2=i?r 

s+-
End ( ) Dou ( ) 

Proof. Since PB is a generator, i?B <© (P © 

£ r (P f i ) <© (£T(P f l) © . . . . © Er(PR))R, 

. © P ) K ; so 

where in general XB <© ( F © . . . © Y)R implies that XR is isomorphic 
to a direct summand of a finite direct sum of copies of YB. Let us consider 
the module 

HomR(Er(RR),Er(PB)). 

Since r is faithful, 

End(£ r ( i? s ) ) = Hom B (£ 7 (5 B ) ,£ r ( i? B ) ) 

= HomB(QT(RR),Qr(RB)) 

= Rr-

And <r is faithful by Lemma 2.2, and the functor G is full and faithful. 
Hence we have that 

H= Hom s (£ T (P B ) ,£ T (P f l ) ) 
^ Horns(G(ET(PR)), G(ET(PR))) 

= Hom s(£„(G(PB)) , £„(G(P«))) by Lemma 2.1 

= Horn s (£«,(£.?), £„(5S)) 
= Horn s(Ç.(5s), Q,(5S)) 
= 5,. 

Hence by a result of Hirata [8, Theorem 1.2], Hom B (£ r (P B ) , ET(PR)) 
is a finitely generated projective left Tf-module and 

RT ÊÉ End(*Hom s(ET(2? s), £ , (P*) ) ) . 

And hence Homij(£T(J?R), E,(PR)) is a generator as a right PT-module. 
Next, consider the exact sequence 

0 -» P B -> £ r ( P B ) -* ET(RR)/RR - • 0. 

Since E7(RR)/RR is r-torsion and ET{PR) is r-injective, we get the exact 
sequence 

0 -> Hom f l (£ T (P s ) /P , £ r (P*) ) -> HomB(£T(P f i), £T(P«)) 

- ^ H o m B ( P , E r ( P B ) ) - > 0 . 
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But, since ET(PR) is r-torsionfree because P Ç:^X(R) Çz<^T, we have 
that 

HomR(ET(RB)/R,ET(PB)) = 0. 

This implies that 

HomR(Er(RR)f ET(PR)) ^ HomB(RBt Er{PR)) 

~ ET{PR) 

as right P-modules. Since ET(PR) is r-closed (= r-torsionfree and 
r-injective), ET(PR) has an Pr-module structure which extends its 
structure as a right P-module. And every P-homomorphism between twro 
PT-modules, which are r-closed as right P-modules, is necessarily an RT-
homomorphism. Hence Er{PR) is isomorphic to HomR(ET(RR), ET(PR)) 
as a right PT-module. Therefore ET(PR) is a generator as a right 
PT-module. And since r is faithful, the canonical ring homomorphism 
r\R —> RT is a monomorphism; so 

HomRT(ET(PR),ET(PR)) C UomR(Er(PR),ET(PR)). 

Conversely, since ET(PR) is r-closed, 

UomR(ET(PR), Er{PR)) C Hom a r (£ T (P a ) , ET(PR)). 

Hence we have that H = HomRT(ET(PR), Er{PR)). Therefore ET(PR) is 
a finitely generated projective left iJ-module and 

Rr^HomH(ET(PR),ET(PB)). 

Hence 

Q = Dou(PT(P*)) = Hom*(£T(P*),£r(P*)) ^ PT. 

Thus, ET{PR) is a generator as a right Q-module and 

H= HomQ(ET(PR),ET(PR)). 

Next, we want to show that Er(PR) is an £((2e)-torsionfree right 
Q-module. It is known that if M is a right Q-module, which is r-closed 
as a right P-module, then E(MQ) = E(MR)Q. Hence 

E(QQ) = E(QR)Q = E(ET(RR)R)Q = E(RB)Ql 

since QR = ET(RR). Now, since PR is E(P*)-torsionfree, P« ^ I l E ^ ) ; 
so PT(P*) c+ TLE(RR). Hence 

£T(p«)0 >̂ UE(RR)Q ^ ri£(e0). 

Thus, ET(PR)Q is P(<2g)-torsionfree. 
Finally, we assume that PR is torsionless. Then PR c+ IlRR; SO 

ET(P*) c* £ T ( n P « ) c+ n £ T ( P f l ) , 
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since any direct product of r-injective right /^-modules is r-injective, 
too. Since ET(PR) and TLET(RR) are r-closed right i^-modules, 

ET(PR)Q^IlET(RR)Q = UQQ. 

Thus, ET(PR) is Q-torsionless. This completes the proof of Theorem 2.3. 

COROLLARY 2.4. If PR is an E(RR)-torsionfree {resp. torsionless) 
generator in mod-R, and if we put 

S = End{PR),H = End (£ X (« ) ( ^ ) ) and Q = Dou(£x<«)CP*)), 

then we have the following statements. 
(1) Q is isomorphic to Qm{R). 
(2) H is isomorphic to Qm{S). 
(3) EX(R)(PR) is an E{QQ)-torsionfree {resp. torsionless) generator in 

mod-Q and 

H = HomQ{Ex(R){PR),Ex{R){PR)). 

Proof. By Lemma 2.2, x{S) = P{x{R))- Hence we have the assertions 
of this corollary by virtue of Theorem 2.3. 

3. Self-injective maximal quotient rings. If NR ç MR, then M 
is said to be a rational extension of N if for each module LR such that 
N C L C M and each / : L -» M, f{N) = 0 implies / = 0. There exists 
a unique maximal rational extension M oî M which is obtained as 
follows: 

M = {x e E(MR)\f(x) = Oiorallf:E(MR) -> E(MR) with 

f{M) = 0). 

For any faithful r £ tors-i?, RT is a rational extension of R as a right 
.R-module and Qm{R)R is a maximal rational extension of RR. A right 
ideal / of R is said to be dense if 

HomR{R/I,E{RR)) = 0. 

Hence J^X(R)
 =

 {IR £ RR\I
 IS a dense right ideal}. An i^-module M is 

called compactly faithful if RR <=-• 0w i f^ (a finite direct sum of copies 
of MR). 

PROPOSITION 3.1. / / MR is an E{RR)-torsionfree, compactly faithful 
right R-module, then Dou(E(MR)) is isomorphic to Qm{R). 

Proof. Since MR^UE(RR), E(MR) ^>UE{RR). Since MR is com­
pactly faithful, RR <^> ®nMR, and hence 

E(RB)c+@»E(MB). 

Hence E(MR) and E{RR) are equivalent injective right i^-modules. That 
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is, E(MR) e x(R)> And hence, if we put ER = (&nE(MR), we have that 
ER 6 x(R) and ER = E(RR) ® CR for some C G mod-P. Therefore 
Dou(ER) is isomorphic to Qm(R) by [21, Theorem 8.4]. 

On the other hand, since ER = ®nE(MR), Dou(E(MR)) is isomorphic 
to Dou(ER) by a well-known classical result. Thus, we have obtained 
the conclusion. 

Throughout the remainder of this paper we assume that PR is an 
E(RR)-tor sioniree generator in mod-P, and that 5 = End(PR), 
H = End(E(PR)) and Q = Dou(E(PR)), unless otherwise stated. 
Masaike [15] has defined a concept which he called generalized non-
singular and has characterized a ring which has the right self-infective 
maximal right quotient ring. Here we will generalize this concept to 
modules and characterize PR for which H is the right self-infective 
maximal right quotient ring of 5. 

LEMMA 3.2. Let PR be an E{RR)-torsionfree generator in mod-R, and 
let T be a faithful hereditary torsion theory on mod-R. Then the following 
statements are equivalent. 

(a) Er{PR) is infective as a right Rr-module. 
(b) ET{PR) is injective as a right R-module. 
(c) For any R-submodule L of P and any R-homomorphism a\L —» P , 

there exist a r-dense submodule M of P and an R-homomorphism fi:M —> P 
such that L C M and fi\L = a. 

Proof. It is well-known that (a) implies (b). 
(b) => (c). Let L be any submodule of P and let a be any P-map of L 

into P. Since ET (PR) is i?-injective, there exists an P-map y : P —> ET (PR), 
which extends a. Then, let us put M = y~l(P) and /3 = y\M. Clearly 
L C M and /3|L = a. It remains to show that M is r-dense in P. y induces 
an P-monomorphism 

y:P/M-+Er(PR)/P. 

Since ET{PR)/P is r-torsion, so is also P/M. That is, M is r-dense in P. 
(c) ==> (a). By Theorem 2.3, ET(PR) is a generator in mod-i?T. We 

want to show that ET(PR) is a quasi-injective right i?T-module. If it is 
shown, ET(PR) becomes an injective right Pr-module. Consider any 
i?T-submodule L of ET{PR) and any i?T-map a\L —» ET(PR). Let us put 
V = a:_1(P) H P. By (c), there exist a r-dense submodule M of P and 
an P-map p:M-^P such that V Q M and /3|L' = a|Z/. Since M is 
r-dense in ET(PR) because 3?~T is closed under taking extensions, and 
since ET(PR) is r-injective, f$ can be extended to an i^-map 

y.ET(PB)^ET(PB). 

Next, we will show that y is an extension of a, as well, y — a is a zero map 
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on V and hence y — a induces an i?-map 

T=â:L/L' -* Er(PB). 

On the other hand, since a induces an P-monomorphism 

â:L/a-i(P)->ET(PR)/P, 

L/orl(P) is r-torsion. And since 

a-l(P)/L' = a~l(P)/a-1(P) C\ P 

^a-i(P) + P/P^ET(PB)/P, 

then a~l(P)/L' is r-torsion, too. Hence the exact sequence 

0 -> a-'{P)/L' -> L/V -> L/a~l(P) -> 0 

shows that L/L' is r-torsion. This, as well as the fact that ET(PR) is 
r-torsionfree, implies that y — a is zero. Therefore we get y = a on L. Since 
7 is an P-endomorphism of the r-closed module ET(PR), y is necessarily an 
Pr-endomorphism. Hence y is an extension of a as an PT-homomorphism. 
Therefore ET(PR) is a quasi-injective right PT-module, as required. 

LEMMA 3.3. Let PR be an E(RR)-torsionfree generator in mod-P and 
S = End(Pfl). An R-submodule L of P is dense (i.e., x(P)-dense) in P if 
and only if anns(L:s) = Q for every s G 5. 

Proof. First, assume that sain s(L:s) = 0 for all s £ S. Suppose that L 
is not dense in P. There exists a non-zero <p G HomR(P/L, E(PR)), 
because E(PR) cogenerates x(P)- The exact sequence 

0 -> L -^ P - î P/L -> 0 

induces the exact sequence 

0 -> Horn,(P/L, £ (P*) ) -> Hom*(P, E(PR)) 

->HomR(L,E(PR))->0. 

Hence <£/ G H o m ^ P , E(PR)) is non-zero and pj(L) = 0. Since P f l is a 
generator and 5 = End(P jR), 

H o m « ( P , E ( P s ) ) s = £ ( 5 S ) . 

Hence there exists s £ S such that 0 ^ <pjs G 5. But, 

vjs(L:s) C ^i(L) = 0. 

Hence by our assumption, we have <pjs = 0, which is a contradiction. 
Therefore 

Horn*(P/L, E(PR)) = 0. 

That is, P is a dense submodule in P . 
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Conversely, assume that L is dense in P. For any s' € anns(L'.s), we 
can induce the commutative diagram: 

P/(L :s) • P/L 

r\ L 
Y T 

P • £ ( P « ) 

because 5 is an P-monomorphism and E(PR) is injective. Since 
Hom^(P/L, E(PR)) = 0 by assumption, <p = 0, and hence s' = 0. Thus, 
anns(£:s) = 0 for every s £ S. 

For any M G mod-P, let us put K(M) = [LR C M^l there exists an 
P-map <pLiL —> M such that ^^ cannot be extended to any submodule 
properly containing L}. 

LEMMA 3.4 Pe/̂  PR be an E(RR)-torsionfree generator in mod-P and 
S = End(Pfl). Then the following statements are equivalent. 

(1) For any R-submodule L of P and any R-homomorphism a\L —* P, 
a can be extended to a dense submodule of P. 

(2) ann5 M = 0 for every M G K(P). 

Proof. (1) =» (2). Let M € X(P) . Then-Mis dense in P by (1). Hence 
anns M = anns(M: ls ) = 0 by Lemma 3.3. 

(2) => (1). For any a\L —» P, there exists a maximal fiiM —> P such 
that L Ç I and /3\L = a by Zorn's lemma. Then we want to show that 
M is dense in P . It suffices to show that (Mis) £ K(P) for all s G 5, 
according to our assumption and Lemma 3.3. Define (pi (Mis) —> P by 
ip(y) = P(sy) for each y G (M:s). Then <p cannot be further extended. 
For, suppose there exist X 2 (Mis) and \f/lX —> P such that ^ |(M:s) = 
<p. Then, define 7 : M + sX —•> P by 

7(y + **0 = /5(y) + iK*). 
If 3; + sx = 0, where 3> G M and x G l , 

7(y + sx) = j8(y) + t^(x) = 0(y) + <?(x) = 0(y) + 0(sx) 

= j8(y + sx) = 0. 

Hence 7 is well-defined. And for any y £ if, 7(3/) = /3(y). Since 
X 2 (M:s), there exists x ^ I such that sx & M. Hence M + sX 2 M. 
This contradicts the maximality of M. Hence we have that (Mis) Ç. K(P) 
for all s £ S. 

We are now ready to prove the next theorem. 
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THEOREM 3.5. Let PR be an E(RR)-torsionfree generator in mod-i? and 
let S = End(P*), H = End(E(PR)) and Q = Dou(E(PR)). Then the 
following statements are equivalent. 

(1) H is a right self-injective ring and is isomorphic to Qm(S). 
(2) H s Qm(S)(H 3 $->p\Ex(R)(PR)). 
(3) HS^E(SS). 
(4) I (J) = 0 for every J G K(S), where I (J) denotes the left annihilator 

of J in S. 
(5) E(PR) is a rational extension of PR. 
(6) (P:x) is a dense right ideal of R for each x G E(PR). 
(7) For any R-submodule L of P and any R-homomorphism a\L —> P , 

there exist a dense submodule M of P and an R-homomorphism (3:M —> P 
such that L C M and /3|L = a. 

(8) anils M = O/or every AT G K(P). 
When these conditions are satisfied, E(PR) is a torsionless generator in 
mod-Q and H = HomQ(E(PR), E(PR)), and the following equivalent 
conditions hold. 

(9) Q is right self-injective. 
(10) QR ^ E(RR). 
(11) 1(1) = Ofor every I G K(R), where 1(1) denotes the left annihilator 

of I in R. 
If, furthermore, PR is a finitely generated projective generator in mod-P, all 
conditions (1)—(11) are equivalent. 

Proof. First, notice that Q is always isomorphic to Qm(R) by Proposi­
tion 3.1. And if MR is a generator with 5 = End(MR), it is well-known 
that (a) 5 is right self-injective if and only if MR is injective, and (b) 
if MR is injective, R is right self-injective. 

(5) => (6). Since E(PR) is rational over PR, 

UomR(E(PR)/P,E(PR)) = 0. 

This implies that 

HomR(E(PR)/P,E(RR)) = 0, 

because E(RR) is cogenerated by E(PR). Hence E(PR)/P is x e x ­
torsion. Therefore (P'.x) is a dense right ideal of R for each x G E(PR). 

(6) => (1) and (9). (6) implies that E(PR) = Ex(R)(PR). Then we 
can induce E(RR) = Ex{R)(RR). For, since PR is a generator, ÇBnPR = 
RR 0 XR for some X G mod-P; so 

®nE(PR) = E(RR) 0 E(XR). 

Then we have that 

®«(E(PR)/PR) ^ ®nE(PR)/®«PR 

^E(RR)/R 0 E(XR)/X. 
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Since E(PR)/P is x(^)-torsion %XÏ&3TX{R) is closed under taking direct 
sums and submodules, also E(RB)/R is x(^)-torsion. Hence E(RR) = 
EX(R)(RR), as required. By Corollary 2.4, E(PR) is an E((2^)-torsionfree 
generator in mod-Q and 

H= HomQ(E(PR),E(PR))} 

and Q (resp. if) is isomorphic to Qm(R) (resp. QTO(S)). But, on the other 
hand, since 

Ç is right self-infective by Lemma 3.2. Hence E{PR) is Q-torsionless. 
And since E(PR) is an injective right Q-module by Lemma 3.2, 
H = E n d ( Z ^ P ^ Q ) is right self-injective, too. Thus, we have (6) => (1) 
and (9), and the assertion that E(PR) is a torsionless generator in 
mod-Q and 

H= HomQ(E(PR),E(PB)). 

(1) => (3). Since ^ ^ G w ( 5 ) , 

and hence H is right self-injective if and only if H s is injective by Lemma 
3.2. Thus, we have Hs ^ E(SS). 

(3) =* (5). 

tfs^ E(SS) = E(G(PB)8) = G(E(PR))S. 

This shows that 

Hom*(E(P s ) /P , .E(P s ) ) = 0 . 

Hence we conclude that E(PR) is rational over PR. 
(2) <=> (5). By virtue of Corollary 2.4, we can identify HomR(Ex(R)(PR), 

Ex(R)(PR)) with Qm(S). Assume (2). Then every a G Qm(S) can be 
uniquely extended to 0 G # = HomBCE(PB), E(PR)). Hence £(P f i ) is 
a rational extension of Ex{R){PR). Thus, we get E(PR) = Ex(R)(PR). 
Hence (5) holds. Conversely, since (5) implies E(PR) = EX(R)(PR), (2) 
clearly holds. 

(5) =• (7). By (5), we have E(PR) = Ex(R)(PR). Hence we get (7) 
by Lemma 3.2. 

(7) => (5). By Lemma 3.2, Ex(R)(PR) is i^-injective. Hence we get 
EX(R)(PR) = E(PR). Thus, (5) holds. 

(7) <=> (8). This is due to Lemma 3.4. 
(9) <=» (10). Since Ç ^ (?m(#), we have 

QR == EX(R)(RB). 
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Hence Q is right self-injective if and only if 

EX(R)(RR) = E(RR) 

by Lemma 3.2. 
Next , we assume tha t PR is a finitely generated projective generator 

in mod-P . Then we can easily show tha t Ex{R)(PR) is a finitely generated 
projective generator as a right Qm.(R)-module and 

Qm(S) ^ H o m Q m ( B ) ( £ x ( K ) ( P B ) , £ x ( « ) ( P J 2 ) ) 

by using Corollary 2.4. We want to show t h a t (9) implies (6) in this case. 
(9) => (6). Since Q is right self-injective, so is also Qm(R). And since 

EX(R)(PB) is a finitely generated projective right Qm(R)-module by the 
above remark, EX(R)(PR) is Qm(R)-infective. Hence EX(R)(PR) is jR-injec-
tive by Lemma 3.2. Thus , we have 

EX(B)(PB) = E(PB). 

Therefore (9) implies (6). 
Thus , if PR is a finitely generated projective generator, we have shown 

tha t all conditions but (4) and (11) are equivalent . Again we assume 
tha t PR is an E(7£K)-torsionfree generator. 

(1) => (4). By (1), Qm(S) is right self-injective. Consider the diagram: 

Then , applying (9) =* (8) to this si tuation, we get (4). 
(4) => (5). (4) implies that Qm(S) is right self-injective by using 

(8) => (9). Since EX,-R)(PR) is a generator as a right Qm(R)-module and 

Qm(S) = HomQmiR)(ExiR)(PR), ExiR)(PR)) 

by Corollary 2.4, EX(R)(PR) is Çw(i?)-injective. Hence ExiR)(PR) is 
P-injective by Lemma 3.2. Therefore we have J E ^ ) (P f l) = E(PR). Thus , 
(5) holds. 

(11) => (9). (11) implies tha t Qm(R) is right self-injective by using 
(8) => (9). Hence Q is right self-injective by Proposition 3.1. 

(9) =» (11). By (9), Ç / n(P) is right self-injective. Since Qm(R) = 
D O U ( £ ( J R B ) ) , 7? satisfies the condition (11) by using (9) => (8). 

This completes the proof of Theorem 3.5. 

Pu t t ing P = R in Theorem 3.5, we get the next well-known result. 
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COROLLARY 3.6. Let H = End(E(RR)) and Q = Dou(E(RR)). Then the 
following conditions are equivalent. 

(1) H is right self-infective and isomorphic to Qm(R). 
(2)H^Qm(R). 
(Z)HR^E(RR). 
(4) E(RR) is a rational extension of RR. 
(5) (R:x) is a dense right ideal of R for each x t E(RR). 
(6) For any right ideal I of R and any R-homomorphism all •—• R, there 

exist a dense right ideal J and an R-homomorphism fi:J—*R such that 
I C J and fi\I = a. 

(7) / ( / ) = Ofor every J G K(R). 
(8) Q is right self-infective. 
(9) QB ^ E(RB). 

Remark. Masaike [15] has called a ring R right generalized non-
singular if R satisfies the condition (7) of Corollary 3.6, and has proved 
the equivalence of (7) and (8) of Corollary 3.6. 

4. Quasi-Frobenius maximal quotient rings. Let dim MR denote 
the least integer n, if it exists, such that every direct sum of submodules 
of MR has t^n non-zero summands. If dim MR = n < co , MR is said to 
be finite dimensional. In particular, if dim RR — n < zo, R is called 
right finite dimensional. E(MR) is finite dimensional if and only if so 
also is MR. The next lemma has its origin in [27, Lemma 1.4]. 

LEMMA 4.1. Let H be a ring containing S. If H is a right quotient ring 
of S {i.e., H s is a rational extension ofSs), then H is right finite dimensional 
if and only if so also is S. 

Proof. This proof is similar to that of [27, Lemma 1.4]. 

THEOREM 4.2. Let PR be an E(RR)-torsionfree generator in mod-i£ and 
let S = End(PR), H = End(E(PR)) and Q - Dou(E(P*)). If H is a 
right self-infective ring which is isomorphic to Qm(S), then the following 
statements are equivalent. 

(1) H is semi-perfect. 
(2) S is right finite dimensional. 
(3) E(PR) is finite dimensional. 
(4) PR is finite dimensional. 

When this is soy Q is the right self-infective semi-perfect maximal right 
quotient ring of R. 

Proof. (1) <=> (3) and (3) <̂> (4) are well known. By our assumption 
and Lemma 4.1, 5 is right finite dimensional if and only if H is also. On 
the other hand, since H is right self-injective, H is semi-perfect if and 
only if H is right finite dimensional. Thus, we have (1) <^ (2). And then, 
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since HE(PR) is a finitely generated projective left module over a semi-

perfect ring H, HE(PR) is a finitely generated semi-perfect module. Hence 

Q = HomH(E(PR),E(PR)) 

is a semi-perfect ring by [14, Theorem 6.1]. 

Pu t t ing P = R in Theorem 4.2, we get the next result. 

COROLLARY 4.3. Let H = End(E(RB)) and Q = Dou(E(RB)). If H is 
right self-injective and isomorphic to Qm(R), then the following conditions 
are equivalent. 

(1) H is semi-perfect. 
(2) E(RR) is finite dimensional. 
(3) R is right finite dimensional. 
(4) Q is semi-perfect. 

For any M (E mod-R, an i^-submodule L of M is called rat ionally 
closed if L has no proper rational extension in M. 

T H E O R E M 4.4. Let PR, S, H and Q be the same as in Theorem 4.2. If 
arms M = 0 for each M (z K(P) and PR satisfies the ACC on rationally 
closed submodules, then H is right self-infective semi-primary and is iso­
morphic to Qm(S). When this is so, Q also is right s elf-infective and semi-
primary. 

Proof. By Theorem 3.5, E{PR) is rational over PR. Then it is known 
t h a t the lattice of rat ionally closed submodules of E{PR) is isomorphic 
to t ha t of PR. Hence, since E{PR) is an injective module which satisfies 
the ACC on rationally closed submodules, H = Enâ(E(PR)) is semi-
pr imary by [20, Corollary 12]. This as well as Theorem 3.5 shows tha t 
i f is a r ight self-injective semi-primary ring which is isomorphic to 
Qm(S). To show the last assertion of this theorem, it suffices to prove 
the next proposition. 

PROPOSITION 4.5. Let HM be a finitely generated projective left module 
over a semi-primary ring H. Then Q = End (HM) is a semi-primary ring. 

Proof. Since HM is a finitely generated projective module over a semi-
perfect ring H, Q = Rnd(HM) also is a semi-perfect ring by [14]. And 
since i f is a semi-primary ring, HM can be regarded as a finite direct 
sum of indecomposable left ideals of H; say HM = ©^=iif^z, where each 
e{ is a primitive idempotent of H. het fi'.HM —* HPLZU be the projection 
map of M onto Het for each i = 1, 2, . . . , n. Then {ft} is a set of or tho­
gonal primitive idempotents of a semi-perfect ring Q and lQ = / i + 
. . . . + fn. And we have t ha t 

fiQft ^ HomH(Heu He,) ^ eiHet 
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for each i — 1, . . . , n. Since each gj is a local idempotent of a semi-
primary ring H, each exile x is semi-primary by [16, Theorem 2]. Hence, 
since each fiQfi also is semi-primary, then Q is a semi-primary ring by 
using [16] again. 

COROLLARY 4.6. If 1(1) = 0 for every I £ K(R), and if R satisfies the 
ACC on rationally closed right ideals, then Qm(R) is right self-injective and 
semi-primary. 

Remember that for any r £ tors-i^ and any M G mod-R, a submodule 
L of M is called r-saturated if M/L is r-torsionfree. We denote by 
SatT(Af) the lattice of all r-saturated submodules of M. 

LEMMA 4.7. Let MR be a right R-module the injective hull of which 
cogenerates a hereditary torsion theory r on mod-R. Let E(MR) = ET(MR) 
and H = End(E(MR)). Then 

SatT(M) = {LR C MR\L = annM X for some subset X of H). 

Proof. L G SatT(ikf) if and only if M/L is r-torsionfree if and only if 

M/L^UE(MR) 

if and only if 

L = nfaexKer(fa) 

for some X Ç Hom^(M, E(MR)). Since E(MR) is injective, we have 
the exact sequence 

0 -> HomB (£(MB ) /M, E(MR)) -> HomB(£(MB) , £(M«)) 

->Hom«(M, E(M«) )->() . 

Since E(MR)/M is r-torsion and E(MR) is r-torsionfree, 

Hom B (£(M«) /M,E(M B ) ) = 0, 

and so we can identify Hom^(M, E(MR)) with HornR(E(MR), E(MR)) 
= H. Hence L G SatT(Af) if and only if 

L = n / a €xKer( / a ) for some X Q H 

if and only if 

L = annM X for some X C 77. 

LEMMA 4.8. Le/ iV^ C ATR s^c/̂  /fta£ Affl w a rational extension of NR, 
and let H = End (MR). For any two left ideals, L\ and L2of H with L2$= Li, 
we have the following statements. 

(1) If r(L\) ^ r(L2), where r(Lt) denotes the right annihilator of Lt in 
H, then we have that annM L\ £ annM L2. 

(2) annM Li £ annM L2 if and only if ann^ L\ £ ann^ L2. 
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Proof. (1) Assume that r{L\) £ r(L2). Clearly annM Lx C annA/L2. 
Let a G if be such that L2a = 0 and X\a 7^ 0 for some X\ £ Li. Then 
Xiâ TV) 7̂  0, since M^ is rational over NR. Hence there exists n £ N 
such that Xi<x(n) ^ 0. On the other hand, x2a{n) = 0 for all x2 G L2. 
Hence a(n) G annM L2, but ain) (£ ann M Lj . So we have that 
annM L\ Ç annM L2. 

(2) First, assume that annM Li £ ann^ L2. Then there exists y (z M 
such that L2;y = 0 and X\j 9^ 0 for some X\ £ L\. Since M is rational 
over Nj there exists an element r £ R such that yr £ N and Xi^r 7e 0. 
Hence 

yr £ N r\ anna/ L2 = ann^ L2, 

but 

yr Q N C\ anriiw Li = ann^ Li. 

Therefore we have that ann^v Pi $= ann^ L2. Since the converse is trivial, 
this completes the proof of Lemma 4.8. 

THEOREM 4.9. Let PR be an E(RR)-torsionfree generator in mod-P and 
let S = End(PR), H = End (E(PR)) and Q = Dou (E(PR)). If H is right 
s elf-infective and isomorphic to Qm(S), then the following statements are 
equivalent. 

(1) H is a quasi-Frobenius ring. 
(2) SatX(fl) (E(PjB)) is Noetherian. 
(20 { YR C E(PR)\Y = a*mEiP)X for some X C H\ satisfies the ACC. 
(3) Satx(E)(P) is Noetherian. 
(30 {ME C PR\M = <mnPX for some X C if} sa /w/^ ^ ACC. 
(4) Satx(/s)(5) is Noetherian. 
(40 {/s S 5s|7 - r(X) for some X C if} sa*w/îw Jfce ACC. 

When these conditions are satisfied, the next two equivalent conditions hold. 
(5) Q is a quasi-Frobenius ring. 
(6) SatX(R)(R) is Noetherian. 

Proof. By Theorem 3.5, we have E(PR) = ExiR)(PR). Hence by 
Lemma 4.7, we get (2) <̂> (20 and (3) <=> (30, and by Lemma 4.8 we 
get (20 «=> (30-

(1) => (20- Let YiQ Y2Q F3 , be the ascending chain of 
annihilators of subsets of H in E(PR). Then, since H is left Artinian, the 
descending chain of left ideals, 

ann# Y\ 2 ann# Y2 Z) annff F3 2 • • • • 

terminates; say ann# Yn — ami# Yn+i. Then 

Yn = ann^ ( P )ann / / yw = ann £ ( ? ) ann^ Yn+1 = Yn+1. 

Hence we get (1) => (20-
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(30 => (1). Letr(Xi) C r(X2) £ r(X3) be any strictly ascending 
chain of right annulets of H. Then by Lemma 4.8, we have the strictly 
ascending chain of right annihilators, 

annP Xi £ annP X2 $= annP X3 Ç.  

Hence H must satisfy the ACC on right annulets. Since H is right self-
injective, too, H is a quasi-Frobenius ring. Thus, we get (30 => (1). 

Next, by our assumption and Theorem 3.5, H s = E(Ss) and H s is 
rational over Ss, and End (Hs) is the right self-injective maximal right 
quotient ring of S. Hence the equivalence of (1), (3) and (30 of this 
theorem guarantees that of (1), (4) and (40-

(1) => (5). Since E(PB) is a faithful, finitely generated projective left 
iJ-module and Q = End(HE(PR)), Q is also a quasi-Frobenius ring. 

(0) <=> (6). By our assumption, Qm(R) (== Q) is right self-injective, and 
so End (E(RR)) is right self-injective and is isomorphic to Qm(R) by 
Corollary 3.6. Hence the equivalence of (1) and (3) of this theorem 
guarantees that of (5) and (6). This completes the proof of Theorem 4.9. 

Remark. In Theorem 4.9, the implication (5) => (1) does not neces­
sarily hold. A result of [19, Theorem 2] shows this. 

COROLLARY 4.10. Let H = End(E(RR)) and Q = Dou(E(RR)). If 
H is right self-injective and isomorphic to Qm(R), then the following con­
ditions are equivalent. 

(1) H is a quasi-Frobenius ring. 
(2) Satx(R) (E(RR)) is Noetherian. 
(20 { YB Q E(RR)\Y = 2LnnE(R)X for some X C H] satisfies the ACC. 
(3) Satx(R)(R) is Noetherian. 
(30 {IR Q RR\I = ann^ X for some X C E{RR)\ satisfies the ACC. 
(4) Q is a quasi-Frobenius ring. 

5. Semi-simple Artinian maximal quotient rings. By Z(MR) we 
denote the singular submodule of MR. For any M G mod-R, if Z(MR) 
— 0, Mis called a non-singular module. In particular, if Z(RR) ~ 0, then 
R is said to be a right non-singular ring. It is well known that (a) if N is 
an essential submodule of M, then Z(NR) = 0 if and only if Z(MR) = 0, 
and (b) if NR C MR and if Z(NR) = 0, then M is rational over N if and 
only if M is essential over N. 

THEOREM 5.1. Let PR be an E(RR)-torsionfree generator in mod-i? and 
let S = End(Ptf), H = End(E(PR)) and Q = Dou(E(PR)). Then the 
following statements are equivalent. 

(1) H is a regular, right self-injective ring and is isomorphic to Qm(S). 
(2) H is semi-primitive. 
(3) S is a right non-simgular ring. 
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(4) PR is non-singular. 
(5) Q is regular and right self-injective. 
(6) Q is regular. 
(7) R is a right non-singular ring. 

In particular, if PR is a non-singular generator in mod-R, then all con­
ditions (1) — (7) hold. 

Remark. (3) <=> (4) and (3) => (7) have been obtained in [2, Theorem 
4.9] in a slightly different form. 

Proof of Theorem 5.1. (4) => (1). Since Z(PR) = 0,E(PR) is a rational 
extension of PR and Z(E(PR)) = 0. Hence H is regular, right self-
injective and is isomorphic to Qm(S) by a result of [26] and Theorem 3.5. 

(1) => (5). By Theorem 3.5, E(PR) is a finitely generated projective 
left i7-module and 

Q = HomH(E(PR),E(PR)). 

Then Q is regular and right self-injective by a result of [1, Corollary 2.6], 
since so also is H. 

(5) => (6). This is trivial. 
(6) => (7). Since Q = Qm(R), RR is essential in QR. Hence we can 

easily show that Z(RR) C Z{QR) C Z(QQ). Since Q is regular, Z(QQ) = 0, 
and hence Z(RR) = 0. 

(7) => (4). Since PR is £(i^fl)-torsionfree, 

PR^IlE(RR). 

Then Z{RR) — 0 implies that Z(HLE(RR)) = 0, and hence we get 
Z(PB) = 0. 

(1) =» (2). This is trivial. 
(2) =» (1). Consider any h:E(PR) -» £ ( P B ) such that A(P) - 0. 

Hence 

A G {/ G # |Ke r ( / ) is essential in E(PR)} = Rad 77. 

Therefore h = 0 by assumption (2). This shows that E(PR) is a rational 
extension of P B . Hence i7 = Qm(S) by Theorem 3.5. On the other hand, 
H = H/Rad H is regular and right self-injective by results of Utumi 
and Osofsky (e.g., see [17, Lemma 7 and Theorem 12]). 

(3) <=> (4). This is due to [2, Theorem 4.9]. This completes the proof 
of Theorem 5.1. 

Putting P = R in Theorem 5.1, we get the next well-known result. 

COROLLARY 5.2. Let H = End(£(P^)) and <2 = Dou(E(PB ) ) . P&ew 
the following statements are equivalent. 

(1) H is a regular, right self-injective ring and is isomorphic to Qm(R). 
(2) H is a semi-primitive ring. 
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(3) R is a right non-singular ring. 
(4) Q is a regular and right self-injective ring. 
(5) Q is a regular ring. 

THEOREM 5.3. Let PR be an E{RR)-torsionfree generator in mod-R and 
let S = End(PR), H = End(E(P*)) and Q = Don(E(PR)). Then the 
following statements are equivalent. 

(1) H is semi-simple Artinian and is isomorphic to Qm(S). 
(2) H is semi-simple Artinian. 
(3) S is right finite dimensional and right non-singular. 
(4) PR is finite dimensional and non-singular. 

When these conditions are satisfied, the next two equivalent conditions hold. 
(5) Q is semi-simple Artinian. 
(6) R is right finite dimensional and right non-singular. 

And then H and Q are Morita equivalent via HE{PR)Q. 

Remark. The equivalence of (1) and (4), and the last statement of 
this theorem are in [2, Corollary 4.10]. 

Proof. (1) t=> (4). In this case, H is regular and right self-injective by 
Theorem 5.1. Then H is semi-simple Artinian if and only if H is semi-
perfect if and only it E(PR) is finite dimensional if and only if PR is 
finite dimensional. 

(1) <=> (2). This is clear by Theorem 5.1. 
(2) <=> (3). In this case, all conditions of Theorem 5.1 hold. Then H 

is right finite dimensional if and only if 5 is also by Lemma 4.1. And, 
since H is regular and right self-injective, H is semi-simple Artinian if 
and only if H is right finite dimensional. Thus, we have (2) <=» (3). 

(1) => (5). Since H^(PR) is faithful, finitely generated projective and 
Q = End(HE(PR)), Q is semi-simple Artinian. 

(5) <=$ (6). Let us put Qf = End(E(RR)). Under the assumption (5) 
or (6), we have that Qf ~ Qm(R) and that Qf is regular and right self-
injective. Then the equivalence of (2) and (4) of this theorem guarantees 
that of (5) and (6). 

COROLLARY 5.4. Let H = End(E(RR)) and Q = Dou(E(RR)). Then 
the following conditions are equivalent. 

(1) H is semi-simple Artinian and isomorphic to Qm(R). 
(2) H is semi-simple Artinian. 
(3) R is right finite dimensional and right non-singular. 
(4) Q is semi-simple Artinian. 

And then H and Q are Morita equivalent via HE{RR)Q. 

COROLLARY 5.5. If PR is a finite dimensional, non-singular generator 
in mod-R, then S = End(PR) has the semi-simple Artinian maximal right 
quotient ring which is isomorphic to H = End(E(PR)). 
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Proof. Since PR is E(i?B)-torsionfree by our assumption, our assertion 
is clear by virtue of Theorem 5.3. 

Remark. In Theorem 5.3, the implication (5) =» (1) does not neces­
sarily hold. The next corollary shows this. 

COROLLARY 5.6. Let R be a right finite dimensional, right non-singular 
ring, and let FR be an infinitely generated free right R-module. Then 
H = End(E(FR)) is a regular, right self-infective, but not left self-infective 
ring which is isomorphic to Qm(S), where S = End(FR). And then 
Q = Dou(E(FR)) is the semi-simple Artinian maximal right quotient 
ring of R. 

Proof. Let FR = Ç&a£AXaR be a non-finitely generated free right 
i^-module with free basis {xa}a€A- Since R is right finite dimensional and 
right non-singular, every direct sum of non-singular, infective right 
i^-modules is injective, too. Hence @aeAE(xaR) is an injective right 
i^-module. Then we can easily verify that 

E{FR) = 0 a € A E ( * J ? ) . 

By Theorem 5.1, H is a regular, right self-injective ring which is iso­
morphic to Qm(S). And since E(FR) is a generator in mod-Q and 
H = HomQ(E(FR), E(FR)) by Theorem 3.5, E(FR) is a finitely generated 
projective left //-module. On the other hand, E(FR) is not an injective 
left H-module by [19, Theorem 1], since it is a direct sum of infinite 
non-zero submodules. Therefore H cannot be left self-injective. But, Q is 
the semi-simple Artinian maximal right quotient ring of R by Theorem 
5.3 and Proposition 3.1. 

As an immediate consequence of Corollary 5.6, we have the next 
result. 

COROLLARY 5.7. The endomorphism ring of an infinitely generated free 
right module over a semi-simple Artinian ring is a regular and right self-
injective ring which is not left self-injective. 

Note added in proof. After having type-written this manuscript, the 
author found that we can easily deduce Proposition 4.5 also from a 
result of J.-E. Bjork [Conditions which imply that subrings of semi-
primary rings are semi-primary, J. Algebra 19 (1971), 384-395, Theorem 
4.1], which states that if M is a left module of a finite presentation over 
a semi-primary ring R, then End{RM) is semi-primary. 

The author would like to thank the referee for his valuable advice. 
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