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Abstract
We derive an upper bound on the density of Jones polynomials of knots modulo a prime number p, within a suffi-
ciently large degree range: 4/p7. As an application, we classify knot Jones polynomials modulo two of span up to
eight.

1. Introduction

Four decades after the discovery of the Jones polynomial, we have an impressive list of applications,
for example, the solution of the famous Tait conjectures on alternating knots, the existence of quantum
invariants of knots and manifolds and also new problems concerning the Jones polynomial itself. In
particular, it is an open question whether the Jones polynomial detects the trivial knot, and it is unknown
which Laurent polynomials g(t) ∈Z[t±1] are realised as Jones polynomials of knots. These two questions
set the Jones polynomial far apart from the Alexander polynomial, where the corresponding answers are
known. In this note, we take a tiny step towards classifying Jones polynomials of knots with coefficients
reduced modulo a prime number p.

Theorem 1. For all a, b ∈Z with b − a ≥ 7, the set of Laurent polynomials g(t) ∈ Fp[t±1] with coeffi-
cients in Fp =Z/pZ within the degree range from a to b, that are realised as Jones polynomials of knots,
has density at most 4/p7.

As we will see, the bound 4/p7 is sharp in the special case p = 2, any a ∈Z, and b = a + 8. In this
degree range, there are 29 potential Laurent polynomials with coefficients modulo 2, of which 16 =
4/27 · 29 are realised.

Corollary 1. For all a ∈Z, there are exactly 16 Jones polynomials of knots modulo two with minimal
degree ≥ a and maximal degree ≤ a + 8. All these Laurent polynomials are realised by finite connected
sums of 54 prime knots with crossing number 12 or less.

As Jones observed in his famous publication [4], for any knot K, the difference between the Jones
polynomial VK(t) and 1 is divisible by (t3 − 1)(t − 1). The proof of Theorem 1 rests on the following
refined statement, which does not seem to appear in the literature so far.

Theorem 2. Let h(t) = (t3 − 1)(t − 1)(t2 + 1) and

f (t) = (t2 − t + 1)h(t) = t8 − 2t7 + 3t6 − 4t5 + 4t4 − 4t3 + 3t2 − 2t + 1.
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For all knots K, there exists a unique polynomial p(t) ∈Z[t] of degree at most seven, belonging to one
of the four families below, so that VK(t) − p(t) is divisible by f (t):

(i) 1 + nh(t),
(ii) V31 (t) + nh(t)(2t − 1),
(iii) V51 (t) + nh(t),
(iv) V821 (t) + nh(t)(2t − 1).

All these families are parametrised by an integer n satisfying 2n = ±1 ± 3l. The symbols 31, 51, 821

refer to knots according to Rolfsen’s notation [7].

The membership of a given knot K to one of these families, as well as the value n ∈Z, is determined
by the pair of values VK(i), VK(ζ6). The explicit Jones polynomials appearing in Theorem 2 are

V31 (t) = −t4 + t3 + t,

V51 (t) = −t7 + t6 − t5 + t4 + t2,

V821 (t) = t7 − 2t6 + 2t5 − 3t4 + 3t3 − 2t2 + 2t.

At this point, the reader might already guess that the first theorem is an easy consequence of the second.
We will derive Theorems 1 and 2 in Sections 3 and 2, respectively. The corollary relies on the following
curious fact: there exist knots – for example the knot 12n237 in knotinfo notation [5] – whose Jones
polynomial is t12, modulo two. This is explained in the fourth and last sections.

2. Listing potential Jones polynomials

The Jones polynomial VK(t) ∈Z[t±1] of links K ⊂ S3 admits an elegant recursive definition by a skein
relation, which we only paraphrase here, since we will not make explicit use of it:

t−1 V(L+) − t V(L−) = (
t

1
2 − t−

1
2
)

V(L0).

As usual, the notation L+, L−, L∞ refers to diagrams of links that look locally as follows:

When restricted to knots K, rather than links, the Jones polynomial satisfies the following restrictions
in the roots of unity 1, i, ζ3, ζ6:

1. VK(1) = 1,
2. V ′

K(1) = 0,
3. VK(ζ3) = 1,
4. VK(i) = ±1,
5. VK(ζ6) = ±(

√−3)m.

The first four conditions were already derived by Jones [4]; the fifth one by Przytycki [6]. In fact,
these restrictions admit generalisations to links, giving rise to similar divisibility results for the Jones
polynomial of links; we will not discuss these here. The exponent m in condition (5) coincides with the
rank of the first homology of the double branched cover M2(K) with coefficients in F3 =Z/3Z, and can
also be interpreted as the dimension of the 3-colouring invariant of K, as described in [6]. The sign in
condition (4) is determined by the Arf invariant of K: VK(i) = (−1)Arf(K). In terms of Vassiliev invariants,
the first two conditions reflect the fact that knots admit no non-constant finite type invariants of order
zero and one [1]. Interestingly, this implies that no monomial other than 1 is the Jones polynomial of a
knot [3]. Here is a remarkable consequence of the first three conditions together: VK(t) − 1 is divisible
by (t − 1)2(t2 + t + 1) = (t3 − 1)(t − 1).
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Even better, suppose p(t) ∈Z[t±1] admits the same values as VK(t), for t = 1, i, ζ3, ζ6, and satisfies
p′(1) = 0. Then the difference VK(t) − p(t) is divisible by (t − 1)2 times the product of the minimal
polynomials of i, ζ3, ζ6:

f (t) = (t − 1)2(t2 + 1)(t2 + t + 1)(t2 − t + 1)

= t8 − 2t7 + 3t6 − 4t5 + 4t4 − 4t3 + 3t2 − 2t + 1.

Therefore, all we need in order to derive Theorem 2 is finding a suitable set of reference polynomials
p(t), with p′(1) = 0, covering all the possible values of knot Jones polynomials at t = 1, i, ζ3, ζ6. This is
easy enough.

Proof of Theorem 2. First, we observe that all the four families of polynomials listed in Theorem 2
satisfy p(1) = 1, p′(1) = 0 and p(ζ3) = 1. Here, we use the fact that h(t) = (t3 − 1)(t − 1)(t2 + 1) has a
double root at t = 1 and a single root at t = ζ3.

Next, we observe that all the polynomials of families (i) and (iv) listed in Theorem 2 satisfy p(i) = 1,
and all the polynomials of families (ii) and (iii) satisfy p(i) = −1. Here, we use that h(t) also has a single
root at t = i.

Last, we take care of the value p(ζ6), which should cover all the complex numbers of the form
±(

√−3)m. The values of

p(t) = 1, V31 (t), V51 (t), V821 (t)

at t = ζ6 are 1,
√

3i, −1,
√

3i, respectively. Furthermore, we have h(ζ6) = 2 and h(ζ6)(2ζ6 − 1) = 2
√

3i.
This implies that the polynomials of families (i) and (iii) cover all the odd integers at t = ζ6, while the
polynomials of families (ii) and (iv) cover all the odd multiples of

√
3i at t = ζ6. Altogether, the four

families listed in Theorem 2 cover all the possible combinations of values of knot Jones polynomial at
t = 1, i, ζ3, ζ6, including the double root at t = 1. This finishes the proof of Theorem 2.

3. Jones polynomial modulo primes

The goal of this section is to derive Theorem 1 by reducing Theorem 2 modulo a fixed prime number p.
We use the notation f̄ (t) ∈ Fp[t±1] for the reduction of f (t) ∈Z[t±1] modulo p. Theorem 2 remains valid
modulo p, with the additional feature that the parameter n is in Fp. From this, we deduce that the number
of Jones polynomials of knots modulo p in the degree range [0, 7] is at most 4p. This is in accordance
with the ratio 4/p7, since there are exactly p8 polynomials modulo p in the degree range [0, 7]. We will
refer to these 4p potential Jones polynomials as reference polynomials f̄1, f̄2, . . . , f̄4p ∈ Fp[t±1].

Proof of Theorem 1. Suppose we are given a degree range [a, b] with b − a ≥ 7 and a knot K with
Jones polynomial V̄K(t) in that degree range. By Theorem 2, there exists a reference polynomial f̄i, so
that V̄K(t) − f̄i is divisible by

f̄ (t) = t8 − 2t7 + 3t6 − 4t5 + 4t4 − 4t3 + 3t2 − 2t + 1 ∈ Fp[t
±1].

Denote the minimal and maximal degree of V̄K(t) − f̄i by α and β, respectively. Then there exist unique
coefficients

cα, cα+1, . . . , cβ−8 ∈ Fp,

satisfying the following equation:

V̄K(t) − f̄i = f̄ (t)
(
cαtα + cα+1tα+1 + · · · + cβ−8tβ−8

)
.

The polynomial V̄K(t) is therefore determined by β − α − 7 parameters in Fp. However, since V̄K(t) is
in the degree range [a, b], all the coefficients cγ with γ 
∈ [a, b − 8] are determined by fi alone. In other
words, only the coefficients ca, ca+1, . . . , cb−8 change if we vary V̄K(t) in the given degree range. Since
there are 4p reference polynomials f̄i, this allows for a maximum of 4p times pb−a−7 potential Jones
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polynomials, out of a total of pb−a+1 polynomials with coefficients in Fp in the degree range [a, b]. The
resulting ratio is again 4/p7, as claimed.

For odd primes p ≥ 5, the bound 4/p7 is never sharp, since the parameter n appearing in Theorem 2,
case (i), satisfies 1 + 2n = ±3l. In particular, 2n cannot be −1 (mod p), since 3l cannot be zero (mod p).
The knot table at our disposition (knotinfo, up to 12 crossings [5]) is too small to draw any conclusion
about the sharpness of the bound 4/p7 for p = 3. This leaves us with the case p = 2, which is most
interesting and deserves its own section.

4. Jones polynomial modulo two

The list of 4p potential Jones polynomials in the degree range [0, 7], called reference polynomials in the
previous section, boils down to eight polynomials for p = 2. These are in fact realised by the following
knots: the trivial knot O, 31, 51, 52, 821, 943, 10140, 10160. The corresponding Jones polynomials (mod 2)
are

1, t + t3 + t4, t2 + t4 + t5 + t6 + t7, t + t2 + t4 + t5 + t6,

t3 + t4 + t7, 1 + t + t7, 1 + t + t2 + t3 + t5 + t6 + t7, 1 + t2 + t3 + t5 + t6.

In order to prove Corollary 1, we need to find 16 knot Jones polynomials in the degree range [a, a + 8],
for all a ∈Z, which appears rather difficult. Luckily, a single knot comes at our rescue: 12n237.

As mentioned above, no monomial other than 1 is the Jones polynomial of a knot. Indeed, no polyno-
mial of the form p(t) = atn, except 1, satisfies p(1) = 1 and p′(1) = 0. In contrast, the Jones polynomial
of the knot 12n237 is a non-trivial monomial modulo 2:

V̄12n237(t) = t12 (mod 2).

Remark 1. The connected sum of the knot 12n237 with its mirror image has trivial Jones polynomial
modulo 2. The existence of non-trivial knots with that property, even prime ones, was known before
[2]. Likewise, for odd primes p, the monomial t12p is a potential Jones polynomial modulo p, since
t12p − 1 is divisible by f (t) = (t2 − t + 1)(t3 − 1)(t − 1)(t2 + 1) in Fp[t±1]. We do not know whether t12p

(modulo p) is the Jones polynomial of an actual knot.

Proof of Corollary 1. Using the knot 12n237 with Jones polynomial t12 modulo 2, we can reduce the
realisation problem to finitely many values of a ∈Z. Indeed, suppose we find 16 Jones polynomials in a
fixed degree range [a, a + 8], realised by the knots K1, K2, . . . , K16. Then, by adding k copies of the knot
12n237 to the knots Ki, we obtain 16 Jones polynomials in the degree range [a + 12k, a + 12k + 8].
This also works for negative integers k, by adding |k| copies of the mirror image of the knot 12n237
to the Ki. Hence, in order to cover all degree ranges, it is sufficient to consider the cases −9 ≤ a ≤ 2.
In fact, it is even enough to consider the cases −4 ≤ a ≤ 2, by the symmetry VK(t) = VK∗ (t−1) between
the Jones polynomial of a knot K and its mirror image K∗. Based on Rolfsen’s table [7] and knotinfo
[5], we found 53 prime knots, plus the trivial knot O, which provide 16 Jones polynomials in all degree
ranges of the form [a, a + 8], a ∈ {−4, −3, −2, −1, 0, 1, 2}. These knots include all knots with crossing
number ≤ 8, except the knots 89, 813, 816, 818 (whose Jones polynomials modulo 2 coincide with the ones
of 41#41, 84, 810, 812, in this order), as well as the following knots:

942, 943, 944, 10124, 10126, 10127, 10128, 10133, 10136, 10140, 10143, 10145,

10146, 10147, 10160, 10163, 10165, 11n63, 11n71, 11n99, 11n118, 11n173.

The table below indicates the degree range of their corresponding Jones polynomials modulo 2. Our
convention here is chosen so that K has higher maximal degree than K∗. By taking suitable connected
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Table 1. Knots with Jones polynomials of span ≤8

Degree
range Knots
[− 4, 4] O, 31, 3∗

1, 41, 61, 6∗
1, 63, 77, 7∗

7, 41#41, 83, 812, 817, 942, 10136, 10∗
136

[− 3, 5] O, 31, 41, 61, 62, 63, 77, 84, 88, 820, 942, 944, 10136, 10146, 10147, 10163

[− 2, 6] O, 31, 41, 52, 61, 62, 31#41, 76, 3∗
1#51, 81, 87, 810, 820, 944, 10160, 10163

[− 1, 7] O, 31, 51, 52, 62, 31#41, 76, 86, 811, 814, 820, 821, 943, 10140, 10160, 11n173
[0, 8] O, 31, 51, 52, 31#31, 72, 74, 82, 85, 819, 821, 943, 10126, 10140, 10143, 10160

[1, 9] 31, 51, 52, 31#31, 72, 73, 74, 75, 819, 821, 10133, 10165, 11n77, 11n99, 11n118, 41#821

[2, 10] 51, 31#31, 71, 73, 75, 31#52, 815, 819, 821, 10124, 10127, 10128, 10145, 10165, 11n63, 11n118

sums of these knots, together with the knot 12n237 (making it a total of 54 prime knots), and all their
mirror images, we find 16 Jones polynomials in every degree range of the form [a, a + 8], as stated in
Corollary 1.

Remark 2. We do not know to what extent the statement of Corollary 1 can be generalised. For example,
we found 64 knot Jones polynomials modulo two in the degree ranges [− 5, 5] and [0, 10], all realised
by knots with 12 or fewer crossings.

We invite the reader to answer the following concluding questions.

Question 1. Let p be an odd prime. Is there a knot K ⊂ S3 with

V̄K(t) = t12p (mod p)?

Question 2. Does every degree range [a, b] with b − a ≥ 7 contain 2b−a−4 Jones polynomials modulo 2,
as predicted by Theorem 1?

Question 3. Is every Laurent polynomial p(t) ∈Z[t±1] satisfying conditions (1)–(5) the Jones polyno-
mial of a knot?
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