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ON A CONJECTURE OF ERDÔS, FABER, AND LOVÂSZ 
ABOUT ^-COLORINGS 

NEIL HINDMAN 

1. Introduction. Let se be a finite family of finite sets with the 
property that \A C\ B\ ^ 1 whenever A and B are distinct members ofs/ 
and let n = | U J / | . It is a conjecture of Erdôs, Faber, and Lovâsz ([1] a 
50 pound problem and [2] a 100 dollar problem) that there is an n-
coloring of s$ (i.e., a function f:s/ —> {0, 1, 2, . . . , n — 1} such that 
A C\ B = 0 whenever A and B are distinct members of se with 
f(A) = 1(B)). They actually state the conjecture in a different form. 
Namely, if n is a positive integer and SS = {Bp: 1 ^ p ^ n] is a. family of 
n sets satisfying (1) \BV\ = n for each p and (2) \BP C\ BQ\ ^ 1 when 
p 9e q, then there is an w-coloring of the elements of VJ S8 so that each 
set Bv gets all n colors. The equivalence of the two forms is easily seen by 
interchanging the roles of elements and sets. 

Thus, given Se, we may let Ak = {p:k G Bp) for each k G U Se. 
Then, letting sf = {Ak:k ^ U l ) , we have \\Js/\ = n and \AXC\ 
Ak\ ^ 1 when i ^ k. Now l e t / be an w-coloring of s?/. Given k G U ^ , 
if |̂ 4fc| ^ 2, let g(k) = f(Ak). Then g colors all elements of \J Se except 
those which lie in only one member of SS. Then g may be easily extended 
to the rest of U ^ so that each member of Se gets all n colors. 

That the original form of the conjecture implies our form is established 
in a similar fashion. We shall be interested throughout in our formulation 
and a particular strengthening of it. 

It will be helpful to view the problem as a board game on an n X n 
chessboard. Given a family se with jU s/\ = n and \A C\ B\ ^ 1 when­
ever A, B G s/ with A ^ B, (we shall call such a family s$ a small 
intersection family), label the columns of the board by the elements of 
U J / and assign names to the members o f^ . The object is to assign each 
set in s/ to a row of the chessboard, writing the name of that set in each 
column which is labeled with one of its elements. No two names may 
occupy the same square. For example let A = {1,2,3}, J5 = {2, 4, 5}, 
C = {1,4}, D = {1,5}, E = {3,4}, and F = {3,5} and let s/ = 
{A, B, C, D, E, F}. The following diagram illustrates a successful com­
pletion of the game. 
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1 2 3 4 5 

! A A A 

B B B 
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D E 
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E D 

F 

This solution corresponds to the coloring / of J / where f(A) = 0, 
f(B) = 1,/(C) = 2J(D) = / ( £ ) = 3, and / (F) = 4. 

We note that we can (and will) confine our attention to small inter­
section families s/ without singletons (since coloring the singletons is a 
trivial matter once all larger members of stf have been assigned ; there 
must necessarily be at least one gap in each column). 

There are two possible extremes for a small intersection family with 
KJs? - {1,2, . . . , n\. One is that J ^ = {{1, 2, . . . , n\ \ and the other 
is that s/ s= [{1, 2, . . . , n)}2, the set of two element subsets of 
{1,2, . . . , n j . The first extreme is completely trivial and the second 
extreme can be colored by letting 

fiihj}) = (i + j) modn. 

The difficulty in the problem obviously lies somewhere between the two 
extremes whenja^ includes several "large" sets, that is sets with at least 
3 elements. Given a small intersection family j / , we write 

&(s/) = {A es/:\A\ è 3}. 

Our principal result is that, given a positive integer k, a finite computa­
tion suffices to determine the truth of the Erdos-Faber-Lovâsz conjecture 
for all small intersection familiess/ (with n = \\Js/\ arbitrarily large) 
such that |Woêf ( j / ) | g k. We present this result in Section 2. 

Since, at this writing, it is conceivable that the reason the Erdôs-
Faber-Lovâsz conjectures has eluded proof is that it is false, one is 
interested in more than the finiteness of the computation. That is, in a 
search for a counterexample one is interested also in feasibility. The 
computation we describe in Section 2 is not really feasible for k > 8. 

In Section 3 we describe a computation which we have used to verify 
the Erdos-Faber-Lovâsz conjecture for all small intersection families Jtf 
with |Uo£? ( j / ) | g 10. (According to Erdos in conversation, this result 
is new.) The procedure described in Section 3 is logically weaker however, 
because it depends on the verification of a property which does not 
always hold. 
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2. Reduction to a finite computation. The board game described in 
the introduction is relatively easy iis/ includes a high proportion of large 
sets, for then fewer total squares are needed. In attempting to construct a 
counterexample, one is tempted to begin with a small intersecting family 
s/ with sufficiently many large sets to disrupt the modular coloring of the 
pairs, and then add additional elements t o U j / and add all available 
pairs toJï/ so as to force occupancy of a large proportion of the squares. 
We shall see here that if | U j / | = | U i f (s/)\ = n and this approach 
has not worked by the addition of n + 1 or fewer elements, it will not 
wrork at all. We (recall and) introduce some notation. 

2.1 Definition.s/ is a small intersection family if and only if \\J s/\ is 
finite, \A (~\ B\ ^ 1 whenever A and B are distinct members of stf, and 
each member of s/ has at least two elements. 

2.2 Definition. Let k and n be positive integers with k S n and l e t s / 
be a small intersection family with U s / = {1, 2, . . . , k). 

(a) &(s/) = {A £s/:\A\ è 3} 
(b) *& (s/, n) = s/ KJ {{i,j\ :1 S i < j ^ n and {i, j) is contained in 

no member of s/\ 
(c) s/ can he colored if and only if there is a function f\s/ —> 

{0, 1, 2, . . . , k — 1} such that 4̂ C\ B = 0 whenever 4̂ and J3 are distinct 
members ois/ with/(^4) = f{B). The function/ is called a coloring ois/. 

The family ^ (s/, n) is a "completed" intersection family. Note that 
^{sé.n) is a small intersection family and that *£ (J£ {s/),n) -

2.3 Definition. Let Ja/ and ^ be small intersection families with 
| U s / \ = |U ^?| . J ^ and ^ are isomorphic if and only if there is a one to 
one function / I U J / ^ U J * such that ^ = {f[A]:A Ç J / ) . 

2.4 LEMMA. Le/ & and w &£ positive integers such that k ^ n and n is odd. 
Let s/ be a small intersection family with U J / = {1,2, . . . , i j . If 
^(s/,n) can be colored, then each of <£ (s/, 2n), ^ (s/,2n + 1), 
Wis/, 2n + 2), and <£ (s/, 2n + 3) can be colored. 

Proof. Let / be a coloring of ^ ( J / , n) (so that / : ^ ( j / f »)—> 
{0, 1, 2, . . . , n - 1}) and let t (E {0, 1, 2, 3}. We define a coloring g of 
^ ( j / , 2 « + /) as follows. Note that 

<g(s/,2n + /) = ^{s/,n) \J \{i,j}:l S i S n < j ^ 2n + t) 

\J {{ij}:n + l S i <j ^ 2n + t}. 

For 4 Ç ^ ( J / , w), we let g (4) = f(A). For 1 ^ i^ n < j S 2n + t 
we let g({i,j}) be that member of {n, n + 1, n + 2, . . . , 2n + / — 1} 
which is congruent to (i + j ) modulo (w + /). For n + 1 ^ i < j" :g 
2w + / we split into cases depending on the value of /. 
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Case 1. J = 0. Let g({i,j\) be that member of {0, 1, 2, . . . , n - 1} 
which is congruent to (i + j) modulo n. 

Case 2. / = 1. Let g({i,j}) G {0, 1, 2, . . . , n - 1}. If j S 2M, let 

g(K j ) ) = (* + i ) niodw. 

If j = 2w + 1, let 

g({i, j}) = 2i mod n. 

Case 3. / = 2. If j = i + 1, let g({i,j}) = i. Let 

g({M + 1,2M + 2}) = M. 

For all remaining possibilities we will have g({i,j\ ) 6 {0, 1, 2, . . . , n — 1}. 
If n + 1 ^ i < i + 1 < j ^ 2M, let 

g(K j}) = (* + j ) mod «. 

If M + 2 S iû 2«, let 

g({i, 2M + 2j) = 2 ^ mod w. 

If n + 1 g i ^ 2M - 1, let 

g({i, 2M + 1}) = (2i + 1) mod n. 

Case 4. / = 3. If j = i + 1, letg({i,j}) = i. Let 

£({M + 1,2M + 3}) = M. 

For all remaining possibilities we will have g ({i,j}) d {0, 1, 2, . . . , M — 1}. 
lfn + 1 ^ i <i+ 1 <j ^2n,let 

g(\hj\) = (i + j) mod w. 

If n + 1 S i ^ 2M, let 

g({i, 2M + 2} ) = 2i mod M. 

If M + 1 S i S 2M - 1, let 

g({i, 2M + 1}) = {2i + 1) mod M. 

If M + 2 g i g 2M + 1, let 

g({i, 2M + 3}) = (2i - 1) mod M. 

Note that in each case we have defined 

g\<£{s/, 2M + 0 -> {0, 1, 2, . . . , 2M + t - 1}. 

We shall verify that g is a coloring only for the case t = 3, the other cases 
being similar. 

Let A and J5 be distinct members of ^ (s/, 2M + 3) and assume 
g(4) = g(B). If 4 , J5 G ^ ( ^ , M), then / ( 4 ) = f(B) so A n B = 0. 
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We thus may assume A = {i,j} with i < j , 1 ^ i ^ 2n + 2 and w + 
1 ^ j ^ 2^ + 3. We can't have both B G ^ {s/, n) and i g w for then 
g(5) < » ^ g(4) . Further if B G ^ ( J ^ , w) and n < i, then 4 C\ B = Q 
as desired. We thus may assume B = {l,m} with l<m,l^l^2n + 2 
and w + l ^ m ^ 2 n + 3. Using the fact that g (A) = g (B) (so that for 
example one can't have g (A) < n and g(B) ^ w) there are a total of 
eleven cases to consider depending on how g(A) and g(B) were defined. 
These cases involve however only five different arguments, so we will 
present one example of each argument, leaving the rest to the reader. 

Case 1. i g n and I ^ n. Then (i + j) = (I + m) mod (n + 3). If 
4̂ H 5 9e 0, then either i = / or j = m. If i = I, thenj = m mod (n + 3) 

and since j , m Ç {w + 1, w + 2, . . . , 2n + 3} we conclude that j = m 
and hence 4̂ = B. Similarly if j = m, then i = I. 

Case 2.i ^ n and m = Z + l > w + l. Then [i -\- j) = I mod (w + 3). 
If A C\ B = 0, then either j = m or j — I. If j = I, then i = 0 mod 
(n + 3). If j = m, then (i + 1) = 0 mod (n + 3). But 1 ^ i ^ n so 
either conclusion is impossible. 

All remaining cases which we will consider involve both n + 1 ^ i and 
» + 1 ^ Z. 

Case 3. j = m = 2w + 2 and 2, / ^ 2w. Then 2̂* = 21 mod n and 
hence, since n is odd, 2 = I mod w. Since i, l £ { w + l , w + 2, . . . , 2w} 
we have i = / and hence A = B. 

Case 4. w + 1 ^ ^ < ^ + 1 < j ^ 2w, m = 2w + 3, and w + 2 ^ / ^ 
2» + 1. Then (i + j) - (2/ - 1) mod w. Suppose A H\ B ^ d. Then 
i = I or j = I. U i = I, then j = (i — 1) mod n and hence j = 2n and 
i = w + 1. But this is impossible since i = / ^ n + 2. If 7 = /, then 
2 = (j — 1) mod n and hence j = i + 1, a contradiction. 

Case 5. j = 2n + 2, w + 1 ^ ^ ^ 2n, m = 2n + 3, and » + 2 < 
I ^2n+l. Then 2i = (2/ - 1) mod w. If A H 5 ^ 0, then i = / and 
hence 0 = — 1 mod n, a contradiction. 

2.5 THEOREM. Let nbe a positive integer and let se be a small intersection 
family with U J / = ( 1 , 2 , . . . , W | . / / ( 1 ) W W odd and &\s$', m) can be 
colored for n ^ m ^ 2n — 1 or (2) n is even and ^ {s/, m) can be colored 
for n ^ m ^ 2n + 1, then ^ (s/, m) can be colored for all m ^ n. 

Proof. Suppose not and pick the least such m. Then m = 2r + / where 
/ G {0, 1,2,3} and r is an odd number such that ^(s/, r) can be 
colored, contradicting Lemma 2.4. 

2.6 COROLLARY. Let nbe a positive integer. A finite computation suffices 
to determine the truth (or falsity) of the statement uwhenever s/ is a small 
intersection family with \\J & (s/)\ ^ n,s/ can be colored". 

Proof. We shall first describe the computation (in gross terms). There 
are finitely many small intersection families se with \J S$ C {1, 2, . . . , n) 
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and a finite computation suffices to find them all (although it will do to 
find one representative of each isomorphism class). Given such a small 
intersection family se, a finite computation suffices to determine if each 
of ^ ( J / , »), ^ ( J / , n + 1), . . . , ^ ( J / , 2n + 1) can be colored. 

If in the process described above, a small intersection family se and 
an integer m are found with U J / C (1,2, . . . , W ) and n ^ m ^ 2n -\- \ 
such that (if(s/,m) cannot be colored, then the quoted statement is 
false. ( O n e h a s ^ ( Ç f ( j / , m ) ) ç / ) 

Assume then that all such & (s/, m) can be colored and let J* be a 
small intersection family with \\J ^(3ê)\ ^ n. Let k = |U <%\ and let 

/ : U ^ - ^ > { 1 , 2 , . . . , & } 

such t h a t / [ U i f ( ^ ) ] C {1,2, . . . , n}. Let 

J / = {f[A]:A £&(&)}. 

Since each of ^(stf, n), V(s/, n + 1), ...,&( s/,2n + 1) can be 
colored, we have by Theorem 2.5 that ^(s/, k) can be colored. Since 

we have that «â? can be colored. 

3. Split colorinês. The procedure which we described in the proof of 
Corollary 2.6, while logically interesting, is computationally unrealistic. 
In this section we describe a procedure which has two big advantages and 
one big disadvantage. The advantages are that it significantly reduces the 
time needed to find a coloring and that it eliminates the need to check for 
colorings of several extensions. (The latter statement is made precise in 
Theorem 3.2.) The disadvantage is that it doesn't always work. 

Consider again the board game described in the introduction. Now 
consider the following more difficult game. A diagonal fence is drawn 
across the board and the requirement is added that no set can cross the 
fence. Again letting A = {1,2, 3}, B = {2,4, 5}, C = {1,4},£> = {1,5}, 
E = {3, 4}, F = {3, 5} and se = {A, B, C, D, E, F] a successful com­
pletion of the game is diagrammed below. 

1 2 3 4 5 

ID 

\B 

E 

) F 

E 

B 

D 

B 

F 

A 

1 c 

\B 

E 

) F 

E 

B 

D 
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A 

E 
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E 

B 

D 

B 
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A 
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A A 
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1 c 

A A 
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The first advantage which we mentioned can be seen here by noting 
that, if the sets are assigned in the order D, B, F, C, A, E} then no free 
choices are involved. Consequently coloring time is significantly reduced. 
(The exact reduction depends of course on the cleverness of the algo­
rithms involved.) We call such a coloring a split coloring. 

3.1 Definition. Let n be a positive integer and let s/ be a small inter­
section family with KJ s/ — {1, 2, . . . , n}. A split coloring of s/ is a 
coloring / of stf such that, whenever A £ se, either min A > f{A) or 
max ./I ^ f{A). 

3.2 THEOREM. Let nbe a positive integer and let se be a small intersection 
family with U J / = | 1 , 2 , . . . , « ) . / / *$ (s/, n) has a split coloring so 
does &(sf,n + 1). 

Proof. Let / be a split coloring of ^ (s/,n). Define a split coloring g 
of ^ ( J / , n + 1) as follows. First let A G ^ ( J / , n). If max A ^ f(A), 
let g(A) = f(A). Iff (A) = 0, let g(A) = n. If min A > f(A) è 1, let 
g(A) =f(A) - 1. For i£ {1,2, . . . , « } , let g({i, n + 1}) = i - 1. 

3.3 COROLLARY. Let se be a small inter section family. If some isomorphic 
copy of ^ ( Jz? ( s / ) ) has a split coloring, thens/ can be colored. 

We have verified (by computer) that some isomorphic copy of each 
small intersection family s/ with VJ s/ C {1, 2, . . . , 10} has a split 
coloring. Consequently, if s/ is a small intersection family with 
| U i ? ( j a O | S 10, t h e n j / can be colored. 

The smallest small intersection family which we know of with the 
property that no isomorphic copy has a split coloring is the following. 

s/ = {{1, 2, 3, 4, 5, 6}, {1, 7, 8, 9, 10, 11}, {1, 12, 13, 14, 15, 16}, 
{1, 17, 18, 19, 20, 21}, {1, 22, 23, 24, 25, 26}, {1, 27, 28, 29, 30, 31}, 
{2, 7, 12, 17, 22, 27}, {2, 8, 13, 18, 23, 28}, {2, 9, 14, 19, 24, 29}, 
{2, 10, 15, 20, 25, 30}, {2, 11, 16, 21, 26, 31}, {3, 7, 13, 19, 25, 31}, 
{3, 8, 14, 20, 26, 27}, {3, 9, 15, 21, 22, 28}, {3, 10, 16, 17, 23, 29}, 
{3, 11, 12, 18, 24, 30}, {4, 7, 14, 21, 23, 30}, {4, 8, 15, 17, 24, 31}, 
{4, 9, 16, 18, 25, 27}, {4, 10, 12, 19, 26, 28}, {4, 11, 13, 20, 22, 29}, 
{5, 7, 15, 18, 26, 29}, {5, 8, 16, 19, 22, 30}, {5, 9, 12, 20, 23, 31}, 
{5, 10, 13, 21, 24, 27}, {5, 11, 14, 17, 25, 28}, {6, 7, 16, 20, 24, 28}, 
{6, 8, 12, 21, 25, 29}, {6, 9, 13, 17, 26, 30}, {6, 10, 14, 18, 22, 31}, 
{6, 11, 15, 19,23,27}}. 

(The verification that no isomorphic copy ois/ has a split coloring was 
accomplished with the aid of a computer.) We have (without computer 
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assistance) used Theorem 2.5 to show that ^ ( J / , n) for this particular 
stf can nevertheless be colored for all n ^ 31. 

The author would like to thank Marshall Cates and Phil Metzger for 
several helpful conversations. 
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