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We present the results of direct numerical simulations of a NACA 0012 airfoil, with Mach
number 0.3 and angle of attack of 3°, examining the dynamics of the flow with increasing
Reynolds numbers. Two-dimensional simulation results are obtained with chord-based
Reynolds numbers in the range 3.2 x 103 < Re < 2.70 x 10*, where each simulation
uses the last time step of the previous one as a starting point, to capture the evolution
of dynamics as a function of Re. The development of the pressure fluctuations with
time shows a transition from periodic to quasi-periodic attractor for 2.38 x 10* < Re <
2.42 x 10*, leading to the emergence of secondary tones in the wall and acoustic field
pressure spectra, different from peaks related to the fundamental frequency f1 and the
respective harmonics; a second, incommensurate frequency f> appears, leading to several
secondary tones with frequency af| + bf>, with a and b integers. Further increase of
the Reynolds number leads to the emergence of a tertiary frequency, f3, indicating a
route to chaos of the Ruelle-Takens—Newhouse type. Such a mechanism is related to the
ladder-type characteristic structure of the tones, indicating that dynamic systems theory is
an important tool for understanding airfoil tonal noise.
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1. Introduction

Tonal noise emerges as an undesirable effect due to the flow over an airfoil. For low and
moderate Reynolds numbers, airfoils exhibit a distinctive ladder-type structure of tones
with a dominant frequency and secondary equidistant peaks (Paterson et al. 1973; Arbey
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& Bataille 1983). Such characteristics motivated several studies in order to understand the
mechanisms of airfoil aerodynamic self-noise generation (Arcondoulis et al. 2010).

Yarusevych, Sullivan & Kawall (2006) experimentally examined coherent structures
arising from the boundary layer and wake at low Reynolds numbers to understand the
associated mechanisms and evolution. At low Reynolds numbers, the laminar boundary
layer over the airfoil separates, and coherent structures in the separated shear layer were
seen to correspond to Kelvin—-Helmholtz vortices. It is known that the source of the
tonal noise is related to the trailing edge, where such convected coherent hydrodynamic
structures are correlated with the far-field noise (Jones, Sandham & Sandberg 2010; Sano
et al. 2019). It is clear that tonal noise is related to a boundary or shear layer that is
transitional (Probsting, Scarano & Morris 2015), and several studies analyse the problem
from different perspectives taking into account the relationship with the Reynolds and
Mach numbers and the angle of attack. The current view is that tonal noise is the result of
a feedback mechanism, with coherent structures that grow on a separated shear layer and
are scattered as an acoustic wave at the trailing edge, which excites new disturbances in an
upstream location, thus closing the loop (Fosas de Pando, Schmid & Sipp 2014; Sanjose
et al. 2019; Jaiswal et al. 2022; Ricciardi, Wolf & Taira 2022).

Considering flows with low to moderate Reynolds numbers, Probsting et al. (2015)
conducted an extensive experimental analysis of a NACA 0012 airfoil at a low angle of
attack to identify the relation between the tonal noise and the flow structures. The study
characterized coherent structures that are convected and scattered at the trailing edge, and
concluded that they play a main role in the tonal noise and reinforcing the significance of
such a phenomenon in the airfoil self-noise (Arcondoulis et al. 2010; Abreu, Cavalieri
& Wolf 2017; Sanjose et al. 2019; Sano et al. 2019; Jaiswal et al. 2022; Ricciardi &
Wolf 2022). In addition, when considering the Reynolds number and angle of attack, they
show that the problem can be separated between pressure-side and suction-side regimes
in the tonal noise generation, based on the eventual suppression of tones if boundary
layer transition is forced on one of the airfoil sides. This highlights that tonal noise
is a transitional phenomenon, disappearing if boundary layers on both airfoil sides are
turbulent.

Besides a main tone and its harmonics, indicating time-periodic sound radiation,
multiple tones have been documented by experimental results (Moreau & Roger 2009;
Takagi & Konishi 2010; Padois et al. 2016; Zang, Mayer & Azarpeyvand 2019; Yakhina
et al. 2020) and numerical simulations (Jones & Sandberg 2011; Ricciardi, Arias-Ramirez
& Wolf 2020; Ricciardi et al. 2022), where the existence of one dominant frequency,
harmonics and secondary tones is one of the signatures of the airfoil noise. The main tone
and harmonics may be related to vortex shedding (Paterson et al. 1973) or an acoustic
feedback loop. (Tam 1974; Longhouse 1977; Tam & Ju 2012). However, the reason why
the flow exhibits secondary tones is still a question of debate (Golubev 2021).

Ricciardi et al. (2022) conducted a numerical simulation to analyse the trailing-edge
tonal noise using large eddy simulation and linear stability theory of a NACA 0012 airfoil
at a freestream Mach number of My, = 0.3, angle of attack of AoA = 3°, and Reynolds
number of Re = 5 x 10*. The study shows that, using the theory of linear stability, the
presence of a laminar separation bubble (LSB) enables a flow mechanism that amplifies
disturbances in the flow. These results agreed with the previous analysis of Wu, Sandberg
& Moreau (2021), which concluded that the presence of a LSB and reattachment at
the trailing edge are necessary conditions to start the feedback loop. It is important to
emphasize that the linear stability theory, by construction, does not capture nonlinear
interactions and is employed to describe the early stage of the perturbations (Sandham
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& Salgado 2008; Suponitsky, Sandham & Morfey 2010; Jaiswal et al. 2022). Another
critical aspect of the study is that the presence of the LSB plays a central role in the vortex
shedding along the suction side of the airfoil, which can affect the value of the dominant
tonal peak (Probsting & Yarusevych 2015).

The present study intends to shed light on the problem of airfoil tonal noise, examining
the emergence of the ladder-type structure of tones. To characterize the evolution of the
flow as a function of the Reynolds number, we employ the theory of dynamic systems to
interpret and analyse the data. Solutions will be characterized as periodic, quasi-periodic
or chaotic, and tracking transitions between the various behaviours shows the origin of
secondary peaks in the acoustic spectra.

The article is structured as follows. Section 2 introduces the numerical simulation
applied in this work. Section 3.1 presents the wall pressure as a function of time, obtained
at some representative positions, and phase portraits with the same pressure data. Section
3.2 investigates the chaotic behaviour signatures. In § 3.3, we show the auto-spectral
density of the pressure, highlighting the emergence of the relevant frequencies of the
problem. Section 4 presents the conclusions and discussion.

2. Numerical simulation

In this study, we use compressible direct numerical simulations (DNS) in a generalized
curvilinear coordinate and conservative form (Wolf et al. 2015). The numerical method
uses a sixth-order compact scheme implemented on a staggered grid for spatial
discretization (Nagarajan, Lele & Ferziger 2003). The scheme also employs the compact
filter method of Lele (1992). The implemented equations are non-dimensional, with
length, velocity components, density, pressure and temperature normalized by chord,
¢, free-stream speed of sound, a,, free-stream density, poo, ,oooago and (y — DTso,
respectively, where y is the specific heat ratio and T, the free-stream temperature (Wolf,
Azevedo & Lele 2012; Ricciardi et al. 2022). In figure 1, we show simulation results
in terms of the z-vorticity field, showing the reversed flow within a separation wake for
Re = 2.32 x 10* and Re = 2.42 x 10* and a LSB for Re = 2.66 x 10*. The figures show
vortex roll-up from a shear layer on the suction side. Vortex shedding is also observed from
the trailing edge, on the pressure side, to counterbalance the airfoil’s circulation variation.

In the Reynolds number regime studied here, the boundary layer separates at the suction
side of the airfoil and does not reattach. Figure 2 shows the extension of the separation
wake along the suction side of the profile and the wall-normal distance of the u = 0 line,
where we observe that there is no reattachment. The results show a different behaviour for
Re = 2.66 x 10* compared with the two other Reynolds numbers, with a time-averaged
reattachment shortly upstream of the trailing edge; this will be further explored later.

The mesh employed in the simulations is of the O-type with 660 x 600 points in the
azimuthal and normal directions, with a domain size of 30c. This configuration is the
same as that used by Ricciardi ef al. (2020, 2022). It is important to mention that the
previous authors performed a mesh refinement study and determined that the present mesh
had sufficient resolution to capture the two-dimensional flow instabilities and acoustic
radiation accurately. Here, we employ the same mesh for lower Reynolds numbers and
assume it provides accurate results. We consider a NACA 0012 airfoil with a rounded
trailing edge of radius equal to r = 0.004c.

In order to study how the flow dynamics develops, and with a focus on obtaining the
transition of a time-periodic solution to a quasi-periodic solution and, then, to chaos, a
systematic approach is employed to hooking blocks of time step data by changing the
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Figure 1. Instantaneous z-vorticity field; (a) Re = 2.32 x 10%, (b) Re = 2.42 x 10* and (¢) Re = 2.66 x 10*.

Reynolds number. To that end, for each new Reynolds number case, we use the results of
the last iteration of the previous simulation as a starting point. With this method, we are
able to obtain the bifurcation diagram, as we will show in the subsequent sections. For
each simulation, 24 convective time units were considered, based on the airfoil chord and
free-stream velocity, sampled with Ar = 0.006, leading to 4000 samples per simulation.
The Reynolds number Re, based on the airfoil chord, is monotonically increased in
successive simulations, whereas the Mach number is held fixed at 0.3. For each simulation,
4000 snapshots were collected for analysis. Reynolds number is kept constant for each
simulation, and successive runs at higher Re start from the final snapshot of the preceding,
lower Re. This allows tracking of the flow behaviour and characterizes bifurcations

of solutions. The present study comprises 120 simulations (from Re = 3.2 x 10> to
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Figure 2. Averaged u = 0 lines for Re = 2.32 x 10% ( , blue), Re = 2.42 x 10* ( , orange) and Re =
2.66 x 10* ( , yellow); y, corresponds to the normal distance between the line of u = 0 and the upper
surface of the NACA 0012 airfoil.

Re = 2.70 x 10*, with steps of ARe = 200). The angle of attack for all simulations was
taken as 3°. For the first simulation, carried out at Re = 3.2 x 103, the flow shows a
permanent behaviour after discarding a long time series of 156 convective time units to
ensure that transients do not influence results.

The present study focuses on the range 2.34 x 10* < Re < 2.66 x 10%, where we
observe a transition to quasi-periodicity and chaos. Some results are nonetheless presented
with Re between 3.2 x 10° and 2.32 x 10*, with solutions displaying a limit cycle
behaviour.

3. Results
3.1. Phase portraits of wall pressure and Poincaré sections

To show the evolution of the dynamics as the Reynolds number is increased, we will
analyse wall-pressure results at representative positions near the trailing edge, x/c =
0.70,x/c = 0.80 and x/c = 0.90. Figure 3 shows a first transition of the dynamics
using the root-mean-square (RMS) of the pressure at x/c = 0.70, showing that for the
lowest Re considered here, the airfoil displays steady flow, with negligible fluctuations,
as illustrated by the sample wall-pressure RMS value. Above Re = 4 x 103, the flow
becomes unsteady, with time-periodic behaviours, as will be shown in what follows.
Figure 4 shows results in terms of the temporal wall-pressure signals and their phase
portraits for Re = 2.34 x 10, 2.38 x 10%, and 2.42 x 10%, followed by figure 5, which
depicts the phase portrait for a quasi-periodic flow at Re = 2.42 x 10*. Then, figures 6
and 7 present further results for Re = 2.46 x 10%, 2.50 x 10* and 2.54 x 10*, and for
Re = 2.58 x 10%,2.62 x 10* and 2.66 x 10%, respectively.

The time series and phase portraits illustrate periodic, quasi-periodic and chaotic
behaviour. In this view, considering values of Re below 2.38 x 10%, the flow has periodic
oscillations for the three considered positions, with phase portraits showing a closed
circuit. By lowering the Reynolds number, figure 3 shows that this limit cycle originates
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Figure 4. Wall pressure and phase portraits as a function of Reynolds number, from Re = 2.34 x 10* to Re =
2.42 x 10*. The pressure fluctuations are obtained at x/c = 0.70 ( , blue), x/c = 0.80 ( , orange) and
x/c = 0.90 (—, yellow); (a) Re = 2.34 x 10*, (b) Re = 2.38 x 10* and (c) Re = 2.42 x 10*.

at a Hopf bifurcation that takes place at Re = 4 x 10°. This transition corresponds to the
type of bifurcation where a fixed point (the steady laminar solution) starts to display an
oscillatory unstable mode, and consequently, a stable limit cycle emerges from the solution
(Paul ef al. 2012). As the increase in the limit cycle amplitude is gradual, as shown in
figure 3, this transition can be further characterized as a supercritical Hopf bifurcation
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Figure 5. Pressure phase portraits at Re = 2.42 x 10*. The pressure fluctuations are obtained at
x/c =0.70, x/c = 0.80 and x/c = 0.90 following the axis coordinates.
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Figure 6. Wall pressure and phase portraits as a function of Reynolds number, from Re = 2.46 x 10* to Re =
2.54 x 10*. The pressure fluctuations are obtained at x/c = 0.70 ( , blue), x/c = 0.80 ( , orange) and
x/c = 0.90 (—, yellow); (a) Re = 2.46 x 10%, (b) Re = 2.50 x 10* and (c) Re = 2.54 x 10*.

(Alligood, Sauer & Yorke 1996), thus representing the first instability of the laminar
solution, which displays a laminar separation wake at the suction side. In this regime,
the system displays periodic behaviour, with vortex shedding near the separation point.
Between Re = 2.38 x 10* and Re = 2.42 x 10%, the behaviour of the system becomes
quasi-periodic, as observed in the phase portrait in figure 4(c). This feature can be
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Figure 7. Wall pressure and phase portraits as a function of Reynolds number, from Re = 2.58 x 10* to Re =
2.66 x 10*. The pressure fluctuations are obtained at x/c = 0.70 ( , blue), x/c = 0.80 (——, orange) and
x/c = 0.90 (—, yellow); (a) Re = 2.58 x 10*, (b) Re = 2.62 x 10* and (c) Re = 2.66 x 10*.

related to the presence of a separation wake that oscillates and modulates the pressure
fluctuations in amplitude (Ricciardi et al. 2020). The quasi-periodicity is more marked for
downstream locations closer to the trailing edge. The dynamics thus transitions from a
limit cycle to a torus, as illustrated in figure 5, in a secondary Hopf bifurcation, as seen
in other studies (Kashinath, Waugh & Juniper 2014; Lustro et al. 2019; Cavalieri, Rempel
& Nogueira 2022). The emergence of quasi-periodic behaviour is related to a periodic
solution that becomes unstable. Stability analysis in these cases is done using Floquet
theory, and the emergence of quasi-periodicity occurs when two complex conjugate
Floquet multipliers become unstable, leading to the appearance of a torus with two
incommensurate frequencies (Guckenheimer & Holmes 2013).

It becomes evident that, for the present configuration, the flow dynamics experiences a
transition from periodic to quasi-periodic, for Re between 2.38 x 10* and 2.42 x 10*. A
further increase of the Reynolds number suggests a chaotic dynamics, as shown in figure 7.
To interpret the pressure results in figures 4, 6 and 7, a bifurcation map is obtained using
the local maximum (minimum) for each simulation Re (Kreilos & Eckhardt 2012). We can
track the evolution of the results as this parameter is changed. A periodic solution becomes
a point in the local maximum (minimum), and quasi-periodic and chaotic attractors appear
as dense regions due to the difference in the maximum (minimum) peaks. By plotting
the local maximum (minimum) results as a function of Re, one may track the changes
in behaviour as the Reynolds number is increased. The bifurcation map is obtained in
figure 8, showing three distinctive regions, i.e. periodic, quasi-periodic and chaotic. Based
on the bifurcation map and the results discussed earlier, it is clear that, for Reynolds
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2.32 x 10* and Re = 2.52 x 10*.

less than 2.38 x 10%, the flow behaves periodically, appearing with a single point, or
period-1, in the Poincaré section. On the other hand, for Re = 2.42 x 10%, the bifurcation
map spreads, with each Re occupying a line in the maximum (minimum) local. The
tori illustrated in figures 4, 6 and 7 appear in the Poincaré section as a line segment,
where the peaks vary in a delimited region. For further increases of Re, the pressure
fluctuation near the trailing edge starts behaving chaotically, as will be more fully explored
next.

3.2. Investigation of chaotic behaviour

To evaluate whether a given behaviour is quasi-periodic or chaotic, we apply an
infinitesimal disturbance to the initial condition of the simulation to track if the reference
and the disturbed case will diverge as time advances. This is accomplished for the
simulation cases of Re = 2.42 x 10* and Re = 2.62 x 10*, with initial disturbances of

the norm equal to 10~!!. This was carried out by taking the vector g of flow properties

(the properties are p, pu, pv and e, respectively density, x and y momentum components
and total energy), and disturbing it as

q, =1 +d)q. (3.1)

The disturbed variables g, are used to start a new simulation, with d = 1 x 10~'!. By
tracking the evolution of the L;-norm of the difference between original and disturbed
simulations, we may detect sensitivity to small disturbances of the initial conditions and
thus characterize if the system is chaotic.

In figure 9, we show the difference of the pressures over the suction side, using
the Lr-norm. The results show that, for Re = 2.42 x 10, the difference between the
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Figure 9. The Ly-norm over the suction side, the difference between the not disturbed pressure case (p) and
disturbed pressure case (pg) of Re = 2.42 x 10* (——, blue) and Re = 2.62 x 10* ( , orange).

two solutions remains bounded, displaying that the system is still in the quasi-periodic
behaviour. For Re = 2.62 x 10*, we can see an exponential growth of the perturbations,
showing a sensitivity to the initial conditions that characterizes chaos.

3.3. Pressure auto-spectral density

As discussed in the earlier sections, the system transitions from periodic to quasi-periodic
between Re = 2.38 x 10* and Re = 2.42 x 10*, as shown by the pressure fluctuations
and phase portraits of figure 4. The system goes from a stable period-1 limit cycle to a
quasi-periodic attractor (Cavalieri et al. 2022). We will now evaluate how such a transition
affects the auto-spectral densities of pressure fluctuations, which start to display additional
peaks corresponding to secondary tones. They are computed using segments of 4000
snapshots overlapped by 90 % with a rectangular window.

If we take the auto-spectral density of the pressure signal and track the evolution of
the system, one observes the presence of one dominant frequency and its harmonics,
J1 =~ 0.78, for all Reynolds numbers, and another incommensurable frequency f> & 0.34
emerging at Re = 2.42 x 10*, which supports the quasi-periodicity pattern of the problem
(Alligood et al. 1996), as shown in figure 10. The first frequency can be related to
coherent structures scattering at the trailing edge and radiating acoustic fluctuations
(Ffowcs Williams & Hall 1970; Yarusevych et al. 2006; Sanjose et al. 2019; Sano et al.
2019). When the system becomes quasi-periodic with these two frequencies, f] and f,
nonlinear interactions between such frequencies lead to the occurrence of several other
tones; such nonlinear interactions among tones were detected by Padois et al. (2016) via
a bi-coherence analysis. It is possible to obtain the frequencies of other tones using the
linear relation af] + bf>, with a and b integers shown in figures 10(c)—10(g) (Eckmann &
Ruelle 1985), as usual in quasi-periodic behaviour.
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Figure 10. The power spectral density (PSD) of the wall-pressure function of Reynolds number at x/c = 0.80
(——, black) and the acoustic pressure at x/c = 0.50 and y/c = 1.00 ( , red); (@) shows the dominant

frequency, fi & 0.78, and its harmonics; these dominant frequencies are present in (a)—(); (¢) shows the related
quasi-periodic attractor PSD for Re = 2.42 x 10*, with one new incommensurable frequency f> & 0.34; The
case Re = 2.50 x 10* shows another incommensurable frequency f3 & 0.24 in the simulation; (@) Re = 2.34 x

10%, (b) Re = 2.38 x 10%, (¢) Re = 2.42 x 10*, (d) Re = 2.46 x 10*, (¢) Re = 2.50 x 10*, (f) Re = 2.54 x
10%, (g) Re = 2.58 x 10*, (h) Re = 2.62 x 10* and (i) Re = 2.66 x 10*.

The results emphasize that the secondary tones are related to the quasi-periodic
behaviour, with nonlinear interactions between the frequencies f; and f> that emerge from
two Hopf bifurcations. The appearance of quasi-periodic behaviour thus leads to these
various tones, which have undesirable effects in terms of noise radiation.

In figure 10(e), another frequency appears, named here f3; this frequency is
incommensurable with the previous ones and is present in figures 10(e)-10(%). This can
be related to the route to chaos, revealed when we consider the result of the phase portrait
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from the flow configuration depicted in figure 10(%) and the related L>-norm divergence
between the reference and disturbed cases shown in figure 9. The presence of this third
frequency and the evolution of flow dynamics behaviour can be associated with the
Ruelle-Takens—Newhouse route to chaos (Paul, Wahi & Verma 2011; Paul er al. 2012;
Kashinath et al. 2014) and is a possible mechanism for how additional tertiary frequencies
emerge from the present case.

4. Conclusions

In the present study, we analyse the problem of a two-dimensional direct numerical
simulation of a NACA 0012 airfoil at M = 0.3 and AoA = 3° (Ricciardi et al. 2020)
employing dynamical systems theory to track how the system evolves as the Reynolds
number increases. The problem is simulated from Re = 3.2 x 10° to Re = 2.70 x 10%,
where each simulation is started from the final state of the previous one. With this
approach, we may track the emergence of tones in the pressure spectra and relate these
to the underlying dynamics.

The results show that the increase of Reynolds number leads to chaos via
quasi-periodicity (Eckmann & Ruelle 1985). A limit cycle, emerging from a Hopf
bifurcation, becomes unstable at Re ~ 2.38 x 10*, leading to a quasi-periodic attractor
with two incommensurate frequencies, which is characterized as a torus in the phase
portrait. This leads to the emergence of secondary tones in the pressure spectra, both
on the wall and in the acoustic field, due to the nonlinear iteration between the two
incommensurate frequencies, f; and f>. A third frequency appears after a further increase
of Re, which is related to chaotic behaviour due to the exponential growth in time of
infinitesimal disturbances of an initial condition. This characterizes a transition to chaos
via the Ruelle-Takens—Newhouse route (Ruelle & Takens 1971; Newhouse, Ruelle &
Takens 1978).

This provides a theoretical basis for the emergence of secondary tones in airfoil noise
at low and moderate Reynolds numbers, which appear through the limit cycle and torus
instabilities. As these tones are still observed in experiments at Reynolds numbers much
higher than the ones studied in this work (Probsting et al. 2015), it is conjectured that the
chaotic signatures reviewed here persist at much higher Re, provided that at least one of
the airfoil boundary layers remains in a transitional state. Techniques targeting the low Re
limit cycle or torus may thus effectively reduce the tonal noise of airfoils.
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