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Unifying a range of topics that are currently scattered throughout the literature,
this book offers a unique and definitive review of some of the basic mathemati-
cal aspects of quantization and quantum field theory. The authors present both
elementary and more advanced subjects of quantum field theory in a mathemat-
ically consistent way, focusing on canonical commutation and anti-commutation
relations. They begin with a discussion of the mathematical structures underlying
free bosonic or fermionic fields, such as tensors, algebras, Fock spaces, and CCR
and CAR representations (including their symplectic and orthogonal invariance).
Applications of these topics to physical problems are discussed in later chapters.
Although most of the book is devoted to free quantum fields, it also contains
an exposition of two important aspects of interacting fields: the diagrammatic
method and the Euclidean approach to constructive quantum field theory. With
its in-depth coverage, this text is essential reading for graduate students and
researchers in departments of mathematics and physics.

This title, first published in 2013, has been reissued as an Open Access
publication on Cambridge Core.
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Since my high school years, I have kept in my memory the following verses:

Profesor Otto Gottlieb Schmock
Pracuje juz dziesigty rok

Nad dzietem co zadziwi¢ ma Swiat:
Der Kaiser, Gott und Proletariat.

As T checked recently, it is a somewhat distorted fragment of a poem by
Julian Tuwim from 1919. I think that it describes quite well the process of
writing our book.

Jan Derezinski

Je dédie ce livre a mon pays.

Que diront tant de Ducs et tant d’hommes guerriers
Qui sont morts d’une plaie au combat les premiers,
Et pour la France ont souffert tant de labeurs extrémes,
La voyant aujourd’hui détruire par soi-méme?
1ls se repentiront d’avoir tant travaillé,
Assailli, défendu, guerroyé, bataillé,
Pour un peuple mutin divisé de courage
Qui perd en se jouant un si bel héritage.
(Pierre de Ronsard, 1524-1585)

Christian Gérard
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Introduction

Quantum fields and quantization are concepts that come from quantum physics,
the most intriguing physical theory developed in the twentieth century. In our
work we would like to describe in a coherent and comprehensive way basic aspects
of their mathematical structure.

Most of our work is devoted to the simplest kinds of quantum fields and of
quantization. We will mostly discuss mathematical aspects of free quantum fields.
We will consider the quantization only on linear phase spaces. The reader will
see that even within such a restricted scope the subject is rich, involves many
concepts and has important applications, both to quantum theory and to pure
mathematics.

A distinguished role in our work will be played by representations of the
canonical commutation and anti-commutation relations. Let us briefly discuss the
origin and the meaning of these concepts.

Let us start with canonical commutation relations, abbreviated commonly as
the C'CR. Since the early days of quantum mechanics it has been noted that the
position operator x and the momentum operator D = —iV satisfy the following
commutation relation:

[z, D] = il. (1)

If we set a* = \/Lg(x —iD), a = \/Lg(x +1D), called the bosonic creation and
annihilation operators, we obtain

[a,a"] = 1. (2)

We easily see that (1) is equivalent to (2).

Strictly speaking, the identities (1) and (2) are ill defined because it is not
clear how to interpret the commutator of unbounded operators. Weyl proposed
replacing (1) by

elnzequ — eflqnequelnz7 n,q € R, (3)

which has a clear mathematical meaning. (1) is often called the CCR in the
Heisenberg form and (3) in the Weyl form.

It is natural to ask whether the commutation relations (1) determine the
operators  and D uniquely up to unitary equivalence. If we assume that we
are given two self-adjoint operators x and D acting irreducibly on a Hilbert
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2 Introduction

space and satisfying (3), then the answer is positive, as proven by Stone and von
Neumann.

Relations (1) and (2) involve a classical system with one degree of freedom.
One can also generalize the CCR to systems with many degrees of freedom.
Systems with a finite number of degrees of freedom appear e.g. in the quantum
mechanical description of atoms or molecules, while systems with an infinite
number of degrees of freedom are typical for quantum many-body physics and
quantum field theory.

In the case of many degrees of freedom it is often useful to use a more abstract
setting for the CCR. One can consider a family of self-adjoint operators ¢1, ¢o, . ..
satisfying the relations

(05, O] = iwjp 1, (4)

where wjj is an anti-symmetric matrix. Alternatively, one can consider the
Weyl (exponentiated) form of (4) satisfied by the so-called Weyl operators
exp (i Do Yi qﬁi), where y; are real coefficients.

A typical example of CCR with many, possibly an infinite number of, degrees
of freedom appears in the context of second quantization, where one introduces
bosonic creation and annihilation operators a;, a; satisfying an extension of (2):

7 aﬂ'{] =0,
' (5)
[ai,a;] = 57] ]1

i, a;] = [a

The Stone—von Neumann theorem can be extended to the case of regular
CCR representations for a finite-dimensional symplectic matrix wj;. Note that
in this case the relations (4) are invariant with respect to the symplectic group.
This invariance is implemented by a projective unitary representation of the
symplectic group. It can be expressed in terms of a representation of the two-
fold covering of the symplectic group — the so-called metaplectic representation.

Symplectic invariance is also a characteristic feature of classical mechanics. In
fact, one usually assumes that the phase space of a classical system is a sym-
plectic manifold and its symmetries, including the time evolution, are described
by symplectic transformations. One of the main aspects of the correspondence
principle is the fact that the symplectic invariance plays an important role both
in classical mechanics and in the context of canonical commutation relations.

The symplectic invariance of the CCR plays an important role in many prob-
lems of quantum theory and of partial differential equations. An interesting —
and historically perhaps the first — non-trivial application of this invariance is
due to Bogoliubov, who used it in the theory of superfluidity of the Bose gas;
see Bogoliubov (1947b). Since then, applications of symplectic transformations
to the study of bosonic systems often go in the physics literature under the name
Bogoliubov method.
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Introduction 3

Let us now discuss the canonical anti-commutation relations, abbreviated com-
monly as the CAR. They are closely related to the so-called Clifford relations,
which appeared in mathematics before quantum theory, in Clifford (1878). We
say that operators ¢, ..., ¢, satisfy Clifford relations if

[0i, 0j]+ = 29:51, (6)

where g¢;; is a symmetric non-degenerate matrix and [A,B]; := AB+ BA
denotes the anti-commutator of A and B. It is not difficult to show that if the
representation (6) is irreducible, then it is unique up to a unitary equivalence for
n even, and there are two inequivalent representations for n odd.

In quantum physics, CAR appeared in the description of fermions. If af, ..., a,
are fermionic creation and ay, . .., a,, fermionic annihilation operators, then they
satisfy

[ajvaﬂJr = 03 [aivaj]Jr = 07 [a;k7aj]+ = 62] 1.

If we set ¢o; 1 = af + a;, ¢o; := 1(a} — a;), then they satisfy the relations (6)
with n = 2m and g;; = J;;. Besides, the operators ¢; are then self-adjoint.

Another family of operators satisfying the CAR in quantum physics are the
Pauli matrices used in the description of spin % particles. The Dirac matrices
also satisfy Clifford relations, with g;; equal to the Minkowski metric tensor.

Clearly, the relations (6) with g;; = ¢;; are preserved by orthogonal transfor-
mations applied to (¢1,...,¢,). The orthogonal invariance of CAR is imple-
mented by a projective unitary representation. It can be also expressed in terms
of a representation of the double covering of the orthogonal group, called the
Pin group.

The orthogonal invariance of CAR relations appears in many disguises in alge-
bra, differential geometry and quantum physics. In quantum physics its appli-
cations are again often called the Bogoliubov method. A particularly interesting
application of this method can be found in the theory of superconductivity and
goes back to Bogoliubov (1958).

The notion of CCR and CAR representations is quite elementary in the case
of a finite number of degrees of freedom. It becomes much deeper for an infinite
number of degrees of freedom. In this case there exist many inequivalent CCR
and CAR representations, a fact that was not recognized before the 1950s.

The most commonly used CCR and CAR representations are the so-called Fock
representations, acting on bosonic, resp. fermionic Fock spaces. These spaces have
a distinguished vector 2 called the vacuum, killed by annihilation operators and
cyclic with respect to creation operators.

In the case of an infinite number of degrees of freedom, the symplectic or
orthogonal invariance of representations of CCR, resp. CAR becomes much more
subtle. In particular, not every symplectic, resp. orthogonal transformation is
unitarily implementable on the Fock space. The Shale, resp. Shale—Stinespring
theorem say that implementable symplectic, resp. orthogonal transformations
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4 Introduction

belong to a relatively small group Sp;(Y), resp. Oj(Y). Other interesting objects
in the case of an infinite number of degrees of freedom are the analogs of the
metaplectic and Pin representation.

CCR and CAR representations provide a convenient setting to describe various
forms of quantization. By a quantization we usually mean a map that transforms
a function on a classical phase space into an operator and has some good prop-
erties. Of course, this is not a precise definition — actually, there seems to be no
generally accepted definition of the term “quantization”. Clearly, some quanti-
zations are better and more useful than others.

We describe a number of the most important and useful quantizations. In
the case of CCR, they include the Weyl, Wick, anti-Wick, x,D- and D, -
quantizations. In the case of CAR, we discuss the anti-symmetric, Wick and
anti- Wick quantizations. Among these quantizations, the Weyl, resp. the anti-
symmetric quantization play a distinguished role, since they preserve the under-
lying symmetry of the CCR, resp. CAR — the symplectic, resp. orthogonal group.
However, they are not very useful for an infinite number of degrees of freedom, in
which case the Wick quantization is much better behaved. The =, D-quantization
is a favorite tool in the microlocal analysis of partial differential equations.

The non-uniqueness of CCR or CAR representations for an infinite number
of degrees of freedom is a motivation for adopting a purely algebraic point of
view, without considering a particular representation. This leads to the use of
operator algebras in the description of the CCR and CAR. This is easily done
in the case of the CAR, where there exists an obvious candidate for the CAR
C*-algebra corresponding to a given Euclidean space. This algebra belongs to
the well-known class of uniformly hyper-finite algebras, the so-called UHF(2°°)
algebra. We also have a natural CAR W*-algebra. It has the structure of the
well-known injective type 11y factor.

In the case of the CCR, the choice of the corresponding C*-algebra is less
obvious. The most popular choice seems to be the C*-algebra generated by the
Weyl operators, called sometimes the Weyl CCR algebra. One can, however,
argue that the Weyl CCR algebra is not very physical and that there are other
more natural choices of the C*-algebra of CCR.

Essentially all CCR and CAR representations used in practical computations
belong to the so-called quasi-free representations. They appear naturally, e.g. in
the description of thermal states of the Bose and Fermi gas. They have interesting
mathematical properties from the point of view of operator algebras. In partic-
ular, they provide interesting and physically well motivated examples of factors
of type II and III. They also give good illustrations for the Tomita—Takesaki
modular theory and for the so-called standard form of a W*-algebra.

The formalism of CCR and CAR representations gives a convenient language
for many useful aspects of quantum field theory. This is especially true in the
case of free quantum fields, where representations of the CCR and CAR con-
stitute, in one form or another, a part of the standard language. More or less
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Introduction 5

explicitly they are used in all textbooks on quantum field theory. Usually the
authors first discuss quantum fields classically. In other words, they just describe
algebraic relations satisfied by the fields without specifying their representation.
In relativistic quantum field theory these relations are usually derived from some
form of classical field equations, like the Klein—Gordon equation for bosonic fields
and the Dirac equation for fermionic fields.

In the next step a representation of CCR or CAR relations on a Hilbert space
is introduced. The choice of this representation usually depends on the dynamics
and the temperature. At the zero temperature, it is usually the Fock
representation determined by the requirement that the dynamics should be
implemented by a self-adjoint, bounded from below Hamiltonian. At positive
temperatures one usually chooses the GNS representation given by an appropri-
ate KMS state.

Another related topic is the problem of the unitary implementability of various
symmetries of a given theory, such as for example Lorentz transformations in
relativistic models. If the generator of the dynamics depends on time, one can
also ask whether there exists a time-dependent Hamiltonian that implements the
dynamics.

Models of quantum field theory that appear in realistic applications are usually
interacting, meaning that they cannot be derived from a linear transformation of
the underlying phase space. Interacting models are usually described as formal
perturbations of free ones. Various terms in perturbation expansions are graph-
ically depicted with diagrams. The diagrammatic method is a standard tool for
the perturbative computation of various physical quantities.

In the 1950s, mathematical physicists started to apply methods from spectral
theory to construct rigorously interacting quantum field theory models. After a
while, this subject became dominated by the so-called Fuclidean methods. The
main idea of these methods is to make the real time variable purely imaginary.
The Euclidean point of view is nowadays often used as the basic one, at both
zero and positive temperature.

Many concepts that we discuss in our work originated in quantum physics and
have a strong physical motivation. We believe that our work (or at least some of
its parts) can be useful in teaching some chapters of quantum physics. In fact,
we believe that the mathematical style is often better suited to explaining some
concepts of quantum theory than the style found in many physics textbooks.

Note, however, that the reader does not have to know physics at all in order to
follow and, it is hoped, to appreciate our work. In our opinion, essentially all the
concepts and results that we discuss are natural and appealing from the point
of view of pure mathematics.

We expect that the reader is familiar and comfortable with a relatively broad
spectrum of mathematics. We freely use various basic facts and concepts from
linear algebra, real analysis, the theory of operators on Hilbert spaces, operator
algebras and measure theory.
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6 Introduction

The theory of the CCR and CAR involves a large number of concepts coming
from algebra, analysis and physics. Therefore, it is not surprising that the litera-
ture about this subject is very scattered, and uses various conventions, notations
and terminology.

We have made an effort to introduce terminology and notation that is as
consistent and transparent as possible. In particular, we tried to stress close
analogies between the CCR and CAR. Therefore, we have tried to present both
formalisms in a possibly parallel way. We make an effort to present many topics in
their greatest mathematical generality. We believe that this way of presentation
is efficient, especially for mathematically mature readers.

The literature devoted to topics contained in our book is quite large. Let us
mention some of the monographs. The exposition of the C*-algebraic approach
to the CCR and CAR can be found in Bratteli-Robinson (1996). This mono-
graph also provides extensive historical remarks. One could also consult an older
monograph, Emch (1972). Modern exposition of the mathematical formalism of
second quantization can be also found e.g. in Glimm-Jaffe (1987) and Baez—
Segal-Zhou (1991). We would also like to mention the book by Neretin (1996),
which describes infinite-dimensional metaplectic and Pin groups, and review arti-
cles by Varilly-Gracia-Bondia (1992, 1994). A very comprehensive article devoted
to CAR C*-algebras was written by Araki (1987). Introductions to Clifford alge-
bras can be found in Lawson—Michelson (1989) and Trautman (2006).

The book can be naturally divided into four parts.

(1) Chapters 1, 2, 3, 4, 5 6 and 7 are mostly collections of basic mathematical
facts and definitions, which we use in the remaining part of our work. Not all
the mathematical formalism presented in these chapters is of equal impor-
tance for the main topic of work. Perhaps, most readers are advised to skip
these chapters on the first reading, consulting them when needed.

(2) Chapters 8,9, 10 and 11 are devoted to the canonical commutation relations.
We discuss in particular various kinds of quantization of bosonic systems and
the bosonic Fock representation. We describe the metaplectic group and its
various infinite-dimensional generalizations.

(3) In Chaps. 12, 13, 14, 15 and 16 we develop the theory of canonical anti-
commutation relations. It is to a large extent parallel to the previous chap-
ters devoted to the CCR. We discuss, in particular, the fermionic Fock rep-
resentation. As compared with the bosonic case, a bigger role is played by
operator algebras. We give also a brief introduction to Clifford relations for
an arbitrary signature. We discuss the Pin and Spin groups and their various
infinite-dimensional generalizations.

(4) The common theme of the remaining part of the book, that is, Chaps. 17,
18, 19, 20, 21 and 22, is the concept of quantum dynamics — one-parameter
unitary groups that describe the evolution of quantum systems. In all these
chapters we treat the bosonic and fermionic cases in a parallel way, except
for Chaps. 21 and 22, where we restrict ourselves to bosons.
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Introduction 7

In Chap. 17 we discuss quasi-free states. These usually arise as KMS states
for a physical system equipped with a free dynamics. In Chaps. 18 and 19
we study quantization of free fields, first in the abstract context, then on a
(possibly, curved) space-time. Chapters 20, 21 and 22 are devoted to inter-
acting quantum field theory. In Chap. 20 we discuss in an abstract setting
the method of Feynman diagrams. In Chap. 21 we describe the Fuclidean
method, used to construct interacting bosonic theories. In Chap. 22 we apply
Euclidean methods to construct the so-called space-cutoff P(p)s model.
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1

Vector spaces

In this chapter we fix our terminology and notation, mostly related to (real
and complex) linear algebra. We will consider only algebraic properties. Infinite-
dimensional vector spaces will not be equipped with any topology.

Let us stress that using precise terminology and notation concerning linear
algebra is very useful in describing various aspects of quantization and quantum
fields. Even though the material of this chapter is elementary, the terminology
and notation introduced in this chapter will play an important role throughout
our work. In particular we should draw the reader’s attention to the notion of
the complex conjugate space (Subsect. 1.2.3), and of the holomorphic and anti-
holomorphic subspaces (Subsect. 1.3.6).

Throughout the book K will denote either the field R or C, all vector spaces
being either real or complex, unless specified otherwise.

1.1 Elementary linear algebra

The material of this section is well known and elementary. Among other things,
we discuss four basic kinds of structures, which will serve as the starting point
for quantization:

(1
(2
(3
(

Symplectic spaces — classical phase spaces of neutral bosons,
Euclidean spaces — classical phase spaces of neutral fermions,
Charged symplectic spaces — classical phase spaces of charged bosons,

4) Unitary spaces — classical phase spaces of charged fermions.

O —

Throughout the section, Y, V1, Vs, W are vector spaces over K.

1.1.1 Vector spaces and linear operators

Definition 1.1 IfU C Y, then Span U denotes the space of finite linear combi-
nations of elements of U.

Definition 1.2 )| @& )» denotes the external direct sum of )y and ), that is,
the Cartesian product Y X Vo equipped with its vector space structure. If Yy, Vo
are subspaces of a vector space Y and Yy N Yy = {0}, then the same notation
V1 @ Vs stands for the internal direct sum of Y and Ys, that is, Yy + Vo (which
is a subspace of ).

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

1.1 Elementary linear algebra 9

Definition 1.3 L(Y, W) denotes the space of linear maps from Y to W. We set
L(Y):=L(,)Y).

Definition 1.4 LY, W), resp. L'(Y) denote the space of finite-dimensional
(or finite rank) linear operators in L(Y, W), resp. L(Y).

Definition 1.5 Let a; € L(Y;, W), i = 1,2. We say that a; C ay if Yy C Yo and
ay s the restriction of as to Vi, that is, az|y1 =a.

Definition 1.6 If a € L(Y, W), then Ker a denotes the kernel (or null space)
of a and Ran a denotes its range.

Definition 1.7 1y stands for the identity on ).

1.1.2 2 x 2 block matrices

IfY=Y, ®Y_, every r € L(Y) can be written as a 2 x 2 block matrix. The
following decomposition, possible if a is invertible, is often useful:

i a b| 1 0] |a 0 1 a ' (1.1)
e d| |ea™ 1|0 d—ca”tb] |0 1 | '
Here are some expressions for the inverse of r:
1 —a '] [at 0 1 0
—1 = 1.2
g {O 1 } { 0 (d— ca‘lb)_l} {—ca‘1 ]l] (12)

_ {(a —bd o) (c— dbla)l] _ 3

(b—actd)™t (d—catb)~!

If Y is finite-dimensional, then, using the decomposition (1.1), we obtain the
following formulas for the determinant:

detr = det adet(d — ca™'b)

(1.4)
= det cdet bdet(ac™tdb=! —1).

1.1.3 Duality

Definition 1.8 The dual of Y, denoted by V¥, is the space of linear functionals
on Y. Three kinds of notation for the action of v € Y* on y € Y will be used:

(1) the bra—ket notation (v|y) = (y|v),
(2) the simplified notation v -y =y - v,
(3) the functional notation v(y).
There is a canonical injection Y — Y*#. We have ) = Y*# iff dim) < oo.
Definition 1.9 Ify € Y, we will sometimes write |y) for the operator
KaA—|yA:=Xye ).

If v € Y*, we will sometimes write (v| instead of v.
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10 Vector spaces

As an example of this notation, suppose that y € Y and v € Y* satisfy (v|y) =
1. Then |y)(v| is the projection onto the space spanned by y along the kernel of
v.

Definition 1.10 Let (eq, ..., e,) be a basis of a finite-dimensional space Y. Then
there exists a unique basis of Y*, (eb,...,e"), called the dual basis, such that
(e'lej) = d;.

1.1.4 Annihilator
Definition 1.11 The annihilator of X C Y is defined as

M i={ved’ : (vy) =0, y e X}.
The pre-annihilator of V C V* is defined as

Van i ={y €Y : (v|ly) =0, veV}.

Note that

(X*)an = SpanX, (Van)™ = Span).

1.1.5 Transpose of an operator
Definition 1.12 If a € L(Y1,)»), then a* will denote the transpose of a, that
is, the operator in L(Yy , Vi) defined by

(a"vly) = (vlay), vE€V], yeN. (1.5)

Note that a is bijective iff a* is. We have a*# € L(Y;*,V5") and a C a**.

1.1.6 Dwual pairs
Definition 1.13 A dual pair is a pair (V,)) of vector spaces equipped with a

bilinear form
WV, D) 3 (v,y) = (vly) €K
such that

(wy) =0, veV = y=0, (1.6)
(vy) =0, y€y = v=0. (1.7)

Clearly, if (V, ) is a dual pair, then so is (¥, V). If ) is finite-dimensional and
(V,)) is a dual pair, then V is naturally isomorphic to Y*.

In general, (V,)) is a dual pair iff V can be identified with a subspace of Y*
(this automatically guarantees (1.7)) satisfying V., = {0} (this implies (1.6)).
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1.1 Elementary linear algebra 11

1.1.7 Bilinear forms
Definition 1.14 FElements of L(),Y*) will be called bilinear forms.

Let v € L(Y,Y*). Then v determines a bilinear map on Y:
YxY3y,y2) =y vy = (nilvy) €K (1.8)
Definition 1.15 We say that v is non-degenerate if Kerv = 0.
Definition 1.16 We say that r € L()) preserves the form v if
rfvr=v,ie.  (ry1) -vrys =y1 - VY2, Y1,Y2 € V.
We say that a € L(Y) infinitesimally preserves the form v if
a*v+va=0,ie (ay) vys = —y1 -vays, Yi,Y2 € V.

Remark 1.17 We will use three kinds of notation for bilinear forms:

(1) the bra—ket notation (yi|vya), going back to Dirac,
(2) the simplified notation y; - vys,
(3) the functional notation v(y1,yz).

Usually, we prefer the first two kinds of notation (both appear in (1.8)).

1.1.8 Symmetric forms
Definition 1.18 We will say that v € L(Y,Y*) is symmetric if

vCvh ile  yivyr=yo vy, Yi,y2 €.
The space of all symmetric elements of L(Y,Y*) will be denoted by Ls(Y, V" ).
Let v € Ly(Y,V*).
Definition 1.19 A subspace X C Y is called isotropic if

y1-vy2 =0,  y1,yp €X.

Definition 1.20 Let Y be a real vector space. v is called positive semi-definite
ify-vy >0 fory €Y. It is called positive definite if y - vy > 0 for y # 0.

A positive definite form is always non-degenerate.

Assume that v is non-degenerate. Using that v is symmetric and non-
degenerate we see that (v|y) =0 for all v € vy implies y = 0. Thus (v),))
is a dual pair and ) can be treated as a subspace of (v)))*. Hence, v~ !, a pri-
ori defined as a map from ) to ), can be understood as a map from v} to
(vY)*. We easily check that v~ is symmetric and non-degenerate. If v is positive

definite, then so is v~ .
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12 Vector spaces

Proposition 1.21 Let Y be finite-dimensional. Then,

(1) ve Ly, V") iff v¥ =v.
(2) If v is non-degenerate, then v) = Y*, so that v~ € Ly(Y*,Y) is a non-
degenerate symmetric form.

1.1.9 (Pseudo-)Fuclidean spaces

Definition 1.22 A couple (Y,v), where v € Ly(Y,V*) is non-degenerate, is
called a pseudo-Euclidean space. If ) is real and v is positive definite, then
(Y, v) is called a Euclidean space. In such a case we can define the norm of
y €Y, denoted by ||ly| := Sy -vy. If Y is complete for this norm, it is called a
real Hilbert space.

Let (), v) be a pseudo-Euclidean space.
Definition 1.23 If X C Y, then X'+ denotes the v-orthogonal complement of
X:
Xt ={yeYy : yvz=0, e}
Definition 1.24 A symmetric form on a real space, especially if it is positive
definite, is often called a scalar product and denoted (y1|y2) or y1 - yo. In such a

case, the orthogonal complement of X is denoted X*. For x € Y, (x| will denote
the following operator:

Yoy (aly = (zfy) e K.

If (z|x) =1, then |z){x| is the orthogonal projection onto z.
Most Euclidean spaces considered in our work will be real Hilbert spaces. Real
Hilbert spaces will be further discussed in Subsect. 2.2.2.

1.1.10 Inertia of a symmetric form

Let ) be a finite-dimensional space equipped with a symmetric form v. In the
real case we can find a basis

(1,45 ey €pt s €1 sy €q s €1y, Cr)
such that if
1,+ p,+ 1,— q,— L1 r
(eT,..elT e et T e, e
is the dual basis in Y* | then
= el P .
vej . =e", wvej_=-—e", wve; =0.

The numbers (p, ¢) do not depend on the choice of the basis. v is positive definite
iff g=r=0.

Definition 1.25 We set inert v :=p — q.
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1.1 Elementary linear algebra 13

In the complex case, we can find a basis

(61,45 €ps,€1,...,6)
such that if
(et et el e
is the dual basis in Y7, then
vej . =t ve; =0.
The number p does not depend on the choice of the basis.

Definition 1.26 We set inert v := p.

1.1.11 Group O(Y) and Lie algebra o())
Let (¥, v) be a Euclidean space and a € L(}).
Definition 1.27 We say that

a is isometric  if a*va = v,
a s orthogonal if a is isometric and bijective,
a is anti-self-adjoint if a*v = —va,
a s self-adjoint  if o’ v = va.

The set of orthogonal elements in L()) is a group for the operator composition,
denoted by O(Y). The set of anti-self-adjoint elements in L(Y), denoted by o(),

is a Lie algebra, equipped with the commutator [a,b].

Definition 1.28 If (V,v) is pseudo-Euclidean, we keep the same definitions,
except we replace isometric, orthogonal, anti-self-adjoint and self-adjoint with
pseudo-isometric, pseudo-orthogonal, anti-pseudo-self-adjoint and pseudo-self-
adjoint.

1.1.12 Anti-symmetric forms

Definition 1.29 We will say that w € L(Y,Y*) is anti-symmetric if
—w Cwh ie Yy -wyp =Y -wy, Yi,y2 €.
The space of all anti-symmetric elements of L(Y,V*) will be denoted by
L. (Y, Y%).
Let we L, (Y, V7%).
Definition 1.30 A subspace X C Y is called isotropic if
yi-wy2 =0, Y,y €A

A mazimal isotropic subspace is called Lagrangian.
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14 Vector spaces

Definition 1.31 A non-degenerate anti-symmetric bilinear form is called
symplectic.

If w is symplectic, then (w),)) is a dual pair and we can treat ) as a
subspace of (w))*. We can also define a symplectic form w™! € L, (w),Y) C
La(wY, (wY)*).

Proposition 1.32 Let Y be finite-dimensional.
(1) w is anti-symmetric iff v* = —w.
(2) An isotropic subspace X is Lagrangian iff dim X = %dim V.

(3) If w is symplectic, then wY = YV*, so that w= € L,(V*,)) is a symplectic
form.

1.1.13 Symplectic spaces

Definition 1.33 The pair (Y,w), where w is a symplectic form on Y, is called
a symplectic space.

Let (V,w) be a symplectic space.
Definition 1.34 The symplectic complement of X C Y is defined as
Xeti={yecY : ywr=0, zeX}.
Let X be a subspace of ). Note that X is isotropic iff XvL 5 X and it is
Lagrangian iff X+ = X.
Definition 1.35 We say that X is co-isotropic if X*+ C X.

If X is co-isotropic, then X' /X“+ is naturally a symplectic space.
Note that X is isotropic in Y iff X*" is co-isotropic in Y*.

1.1.14 Group Sp()) and Lie algebra sp())
Let (), w) be a symplectic space and a € L(}).
Definition 1.36 We say that
a is symplectic if a is bijective and a* wa = w,
a 1s anti-symplectic if a is bijective and a* wa = —w,
a 1s infinitesimally symplectic if o w = —wa.
The set of symplectic elements in L(Y) is a group for the operator composition

denoted by Sp(Y). The set of infinitesimally symplectic elements, denoted by
sp(Y), is a Lie algebra equipped with the commutator.

Proposition 1.37 Assume that Y is finite-dimensional and r € L(Y). Then

(1) 7€ Sp(Y) iff r* wr = w.
(2) r € Sp(Y,w) iff r* € Sp(V*,w™).
(3) r € Sp(Y) implies r— = w™lrtw.
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1.1 Elementary linear algebra 15

1.1.15 Involutions and super-spaces
Definition 1.38 ¢ € L()) is called an involution if €2 = 1.

Definition 1.39 If e € L(Y) is an involution, we set Y*¢ := Ker(1 F ¢).

Every involution determines a decomposition ) = Y @ Y~¢, the operators
%(]1 + ¢) being the projections onto Y+ along YF°.
Conversely, a decomposition Y = )y @ )V, determines an involution given by

the matrix € = E}l O]J.
Operators a € L()) commuting with e are of the form a = {aoo 0 } .

0 ail

Definition 1.40 We say that (), €) is a Zo-graded space or a super-space if €
is an involution on Y. € is often called the Zs-grading.

Definition 1.41 In the context of super-spaces one often writes Yy for Y and its
elements are called even. One writes Yy for Y™° and its elements are called odd.
Elements of Yy U Yy will be called homogeneous or pure. The operator p=0® 1
is called the parity, so that e = (—1)P. Sometimes, the parity of a homogeneous
element y € Y is denoted |y|.

Remark 1.42 The name “super-space” came into use under the influence of
super-symmetric quantum field theory. The prefiz “super” is often attached to
mean ‘Zso-graded” in various contexts; see e.g. Subsects. 3.5.9 and 6.1.4.

If Y has an additional structure, we will often assume that it is preserved by
e. For instance, we have the following terminology (see Subsect. 1.3.8):

Definition 1.43 (), ¢) is a super-Hilbert space if Y is a Hilbert space and € is
a unitary involution; it is a super-Kéhler space if ) is a Kdhler space and € is a
symplectic and orthogonal (and hence complex linear) involution.

Let (V,¢e), (W,e) be two super-spaces. The space of linear transformations
from ) to W, that is, L(Y, W), is itself naturally a super-space, with the grading
given by

LY, W) 3 r—ereec LY, W).

Written in the matrix notation, the decomposition of an element of L(Y, W) into
its even and odd parts is

[aoo am] _ {aoo 0 ] [ 0 am]
= + .
ayp ai 0 an aig 0
We can form other super-spaces in an obvious way, for example, (Y & W,
ede), (YW, e®e).
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16 Vector spaces

1.1.16 Conjugations on a symplectic space
Let (Y,w) be a symplectic space.

Definition 1.44 A map 7 € L()) is called a conjugation if it is an anti-
symplectic involution.

Let (V, X) be a dual pair of vector spaces. Define w € L(V @& X, V* @& X*) and

TeL(V®X) by
”_{i H’T_[gjﬂ' (19)

In other words, for (n1,q1), (n2,q2) € V & X we have

(m,q) -wne, @) =m-a@—n-q, T(h,qa)=(n,—q). (1.10)

Then w is a symplectic form on V @& & and 7 is a conjugation.
We can also define w™! and 7# on V* & X#. We obtain a symplectic form and

a conjugation:
0 -1 T 0
-1 _ #
w _{]l O}’ T —{0 _]1], (1.11)
or equivalently

(!171,51) 'w71($2,§2) =& wy — &y, T (iﬂlafl) = (171, *fl)~ (1-12)

We will see below that the above construction describes a general form of a
symplectic space equipped with a conjugation.

Proposition 1.45 Let 7 be a conjugation on a symplectic space Y. Then the
spaces YE7 are Lagrangian.

Proof The spaces VE are clearly isotropic. Since Y ~ Y™ & Y~ we have Y* ~
(YV7)* @ (Y~7)*, and we can write w as the matrix

0 a
b 0]’
where a : Y77 — (Y7)* and b: YT — (Y~ 7)* are injective and

a#

yr =b b* }y,,, =a.

If yr ; X, where X is isotropic, then there exists e € V7 such that y - we = 0 for
ally € Y7. Then (1 —7)e # 0 and y-w(1 — 7)e = y-a(l—7)e =0 for all y € Y7,
which contradicts the fact that a is injective. Hence Y*7 are Lagrangian. O

Proposition 1.46 Let Y be a symplectic space Y with a conjugation 7. We use
the notation of the proof of Prop. 1.45. Set

X:=Y7T, V:i=0b)".
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1.2 Complex vector spaces 17

Then (V, X) is a dual pair and b @ 1 sends bijectively Y = Y™ &Y~ 7 ontoV & X.
With this identification, w and T are given by (1.10).

If in addition the dimension of Y is finite, then V = X* and we obtain a
bijection of Y onto X* & X and of Y* onto X & X* .

Proof Clearly, V C X*. We need to show that V,, = {0}. Let « € V,,. For any
y € Y7, we have

0 = (bylz) = (y|b* z) = (y|ax),

since b* }y,r = a. This implies that ax = 0, and hence = = 0, since «a is injective.
Therefore, (V, X) is a dual pair. O

Theorem 1.47 Let Y be a finite-dimensional symplectic space. There exists a
congugation in L(Y). Consequently, there exists a vector space X such that Y is
isomorphic to X* & X.

Proof Let f; be an arbitrary non-zero vector in ). Since w is non-degenerate, we

can find a vector e; such that f;-we; = 1. f is not proportional to e;, because

w is anti-symmetric. Let Yy ={y €)Y : ywfi =ywe; =0}. Then dim)Y, =
dim Y — 2. We continue our construction in ), finding vectors fs,es etc.

In the end we set 7 = 1 on Span{fi,..., fg} and 7 = —1 on Span{ey,...,eq}.

O

1.2 Complex vector spaces

Throughout the section, Z, W are complex vector spaces.

1.2.1 Anti-linear operators

Definition 1.48 Let a be a map from Z to W. We say that it is anti-linear if
it is linear over R and ia = —ai.

Definition 1.49 Let a be anti-linear from Z to VW. The transpose of a is the
operator in L(W* | Z#) defined by
(a*vly) == (v|ay), veVy, ye. (1.13)

Note that the transpose of an anti-linear operator is also anti-linear.

1.2.2 Internal conjugations

Definition 1.50 An anti-linear map x on Z such that x> = 1 is called an (inter-
nal) conjugation. The subspace ZX :={z € Z : xz = z} is sometimes called a
real form of Z. According to an alternative terminology, ZX is called the real
subspace and Z7X :={z € Z : xz = —z} the imaginary subspace (for x).
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18 Vector spaces

Definition 1.51 Operators a € L(Z, W) satisfying a = xax will be sometimes
called real (for x).

Clearly, the space of real operators can be identified with L(ZX WX).
Sometimes, an internal conjugation will be denoted by Z instead of xz. In such
a case, if a € L(Z), we will write @ for yay.

1.2.3 Complex conjugate spaces

In this subsection we discuss the external approach to the complex conjugation.
This is a very simple and elementary subject, which, however, can be a little
confusing.

Definition 1.52 Z will denote a complex space equipped with an anti-linear
isomorphism

Z32—Z€Z. (1.14)

We will call Z the space complex conjugate to Z. We will use the convention
that the inverse of (1.14) is denoted by the same symbol, so that z =z, z € Z
and Z = Z.

In practice, one often uses one of the following two concrete realizations of the
complex conjugate space.

The first approach is the most canonical (it does not introduce additional
structure). We set Z to be equal to Z as a real vector space. The map Z 3 z
Z € Z is just the identity. One defines the multiplication by A € C on Z as

AN:=Mz, z€ Z, AeC.

In the second approach, we choose Z = Z as complex vector spaces and we
fix an internal conjugation y. Then we set Z := xz. Thus we are back in the
framework of Subsect. 1.2.2.

Definition 1.53 If a € L(Z,W), then one defines @ € L(Z,WV) by
az.=az. (1.15)

The map L(Z,W) 3> aw @€ L(Z,WV) is an anti-linear isomorphism which
allows us to identify L(Z,V) and L(Z,) as complex vector spaces.

Sometimes the notation z — Z is inconvenient for typographical reasons, and
we will denote the complex conjugation by a letter, e.g. x. Thus x : Z — Z is a
fixed anti-linear map and we write yz for Z.

In particular, if @ € L(Z;, Z,), and the conjugations Z; — Z; are denoted by
Xi, then @ = Xgaxl_l.

A typical situation when this alternative notation is more convenient is the
following. Suppose that b is an anti-linear map from Z; to Z,. Then, instead of

b, it may be more convenient to use one of the following two linear maps:

bx;' € L(Z,,25), or x2be L(2,2). (1.16)
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1.2 Complex vector spaces 19

Note that b is a conjugation on Z iff the linear map a:=bx~' € L(Z, 2Z)
satisfies

aa = 1.

1.2.4 Anti-linear functionals

If w € Z#, we let it act on Z as

(W|z) = (wl|z), z € Z.
This identifies Z# with Z . (This is a special case of (1.15) for W = C).
Definition 1.54 The anti-dual of Z is defined as
zr =2

Thus Z* is the space L(Z,C) of anti-linear functionals on Z. Several kinds of
notation for the action of w € Z* on z € Z will be used:
(1) the bra—ket notation (z|w) = (Z|w) = (w|z),
(2) the simplified notation z - w = w - Z,
(3) the functional notation w(z) .
Since Z# = E#, we see that Z** = Z##  so that Z C Z** and in the finite-

dimensional case Z = Z**.

Remark 1.55 We will consistently use the following convention. The round
brackets in a pairing of two wvectors will indicate that the expression depends
anti-linearly on the first argument and linearly on the second argument. In the
case of the angular brackets the dependence on both arguments will always be
linear, in both the real and the complex case.

1.2.5 Adjoint of an operator
Let a € L(Zl,ZZ).
Definition 1.56 We define the adjoint of a, denoted by a* € L(Z5, Zf), by
(a*wa|z1) := (walazy), we € 25, 2z € 2. (1.17)

We see that

*

a*=a" =a*, aCa™. (1.18)
Definition 1.57 Let a be an anti-linear map from Z, to Z,. The adjoint of a,
instead of by (1.17), is defined by

(z1la*ws) = (w2laz1),

or, equivalently, (a*ws|z1) = (walaz1), we € Z5, 2z € Z1.  (1.19)

Tt is an anti-linear operator from Z5 to Z; satisfying (1.18).
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20 Vector spaces

1.2.6 Anti-dual pairs

Definition 1.58 An anti-dual pair is a pair (W, Z) of complex vector spaces
equipped with a form

W, 2) 3 (w,z) — (w]z) € C
anti-linear in W and linear in Z such that

(wz) =0, weV = z=0,

(wlz) =0, z€ Z2 = w=0.

Properties of anti-dual pairs are obvious analogs of the properties of dual
pairs. For instance, if Z is finite-dimensional and (W, Z) is a dual pair, then W
is naturally isomorphic to Z*.

1.2.7 Sesquilinear forms
Definition 1.59 FElements of L(Z, Z*) will be called sesquilinear forms.

Let § € L(Z,2*). § determines a map
Z X Z5(z1,20) — (21|fza) =Z1 - Bz € C (1.20)
anti-linear in the first argument and linear in the second argument.

Definition 1.60 We say that § is non-degenerate if Ker 8 = {0}.

Definition 1.61 An operator r € L(Z) preserves 3 if

r*fr =0, 1e.  (rz1|frz) = (z1|822), 21,22 € Z.
An operator a € L(Z) infinitesimally preserves [ if

a*B+ Pa=0,1ie (az|Bz)=—(21|faz), 21,2 € Z.

Remark 1.62 Note that we adopt the so-called physicist’s convention for
sesquilinear forms. A part of the mathematical community adopts the reverse
convention: they assume sesquilinear forms to be linear in the first and anti-
linear in the second argument.

Remark 1.63 We will use three kinds of notation for sesquilinear forms:

(1) the bra—ket notation (z1|8z2), going back to Dirac,
(2) the simplified notation z; - Bz9,
(3) the functional notation B(Z1, z2).

Note that in all cases the notation indicates that the form is sesquilinear and not
bilinear: by the use of round instead of angular brackets in the first case, and by
the use of the bar in the remaining cases. Usually, we will prefer the first two
notations, both given in (1.20).
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1.2 Complex vector spaces 21

1.2.8 Hermitian forms
Let 8 € L(Z,Z%).
Definition 1.64 We will say that

0 is Hermitian if 8 C 5%, i.e. (29|821) = W, 21,29 € Z,
or equivalently (z|Bz) € R, z € Z;
0 is anti-Hermitian if 8 C —5%, i.e. (22|821) = —m7 z1,29 € Z,
or equivalently (z|8z) € iR, z € Z.

Clearly, 3 is Hermitian iff i3 is anti-Hermitian.

Definition 1.65 The space of all Hermitian elements of L(Z, Z*) will be denoted
Ly (Z,2%). Such operators are also called Hermitian forms.

If Z is finite-dimensional then § € L, (Z, Z*) iff g* = (.
Definition 1.66 A Hermitian form (3 is called positive semi-definite if (z|8z) >

0 for z € Z. It is called positive definite if (z|3z) > 0 for z # 0. A positive definite
form is also often called a scalar product.

Positive definite forms are always non-degenerate.

If 6 € Ly(Z, Z*) is non-degenerate, then (52, Z) is an anti-dual pair. Hence,
we can define 87! € Ly, (82, 2) C Ly(BZ,(BZ2)*). (Note that Z C (8Z)*.) The
form B! is non-degenerate and is positive definite iff 3 is positive definite.

1.2.9 (Pseudo-)unitary spaces
Definition 1.67 A couple (Z,7), where € L, (Z,2*) is non-degenerate, is
called a pseudo-unitary space. If 3 is positive definite, then (Z,5) is called a

unitary space. In such a case we can define the norm of z € Z denoted by ||z|| :=
 (y|By). If Z is complete for this norm, it is called a Hilbert space.

Note that the notion of a pseudo-unitary space is closely related to that of a
charged symplectic space, which is defined later, in Subsect. 1.2.11.
Let (Z,3) be a pseudo-unitary space.

Definition 1.68 If U C Z, then UL denotes the [3-orthogonal complement of
u:

ut .= {zeZ : (uB2)=0, uel}.
Definition 1.69 Let (Z,3) be a unitary, pseudo-unitary, resp. charged symplec-

tic space. Then Z has a natural unitary, pseudo-unitary, resp. charged symplectic
structure:

(z11872) := (21|Bz2).
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22 Vector spaces

Definition 1.70 A non-degenerate Hermitian form, especially if it is positive
definite, is often called a scalar product and denoted (z1|z9) or Zy - z2. In such a
case, the orthogonal complement of U is denoted U~. For w € Z, (w| will denote
the following operator:

Z3 2z (w|z:= (w|z) € C.

For example, if (w|w) = 1, then |w)(w] is the orthogonal projection onto w.
Most unitary spaces considered in our work will be (complex) Hilbert spaces.
Hilbert spaces will be further discussed in Subsect. 2.2.2.

1.2.10 Group U(Z) and Lie algebra u(Z2)
Let (Z,0) be an unitary space and a € L(Z).
Definition 1.71 We say that

a s isometric  if a*fBa = 3,
a is unitary if a is isometric and bijective,
a s self-adjoint  if a*f = Sa,
a 1s anti-self-adjoint  if a*B = —fa.

The set of unitary operators on Z is a group for the operator composition denoted
by U(Z). The space of anti-self-adjoint operators on Z, denoted by u(Z), is a
Lie algebra equipped with the usual commutator.

Let b be an anti-linear operator on Z.

Definition 1.72 We say that

b is anti-unitary if b*(6b = [ and a is bijective,
b is a conjugation if it is an anti-unitary involution.

Recall from Subsect. 1.2.3 that we sometimes use two alternative symbols for
the complex conjugation: x and the “bar”.

Clearly, b is anti-unitary iff xb: Z — Z is unitary.

If Z is a pseudo-unitary space, we can repeat Subsect. 1.2.10, replacing the
terms isometric, unitary, anti-self-adjoint and self-adjoint with pseudo-isometric,
pseudo-unitary, anti-pseudo-self-adjoint and pseudo-self-adjoint.

1.2.11 Charged symplectic spaces

Definition 1.73 Ifw is anti-Hermitian and non-degenerate, then (Z,w) is called
a charged symplectic space.

Note that the difference between a pseudo-unitary and charged symplectic
space is minor (passing from f to w = i changes a pseudo-unitary space into a
charged symplectic space). We will, however, more often use the framework of a
charged symplectic space. The terminology in this case is somewhat different.

Let (Z,w) be a charged symplectic space and a € L(Z).
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1.8 Complex structures 23

Definition 1.74 We say that

a preserves w if a*wa = w,
a anti-preserves w if a*wa = —w,
a 1s charged symplectic if a preserves w and is bijective,
a 1s charged anti-symplectic if a anti-preserves w and is bijective,

a s infinitesimally charged symplectic if a¢*w = —wa.

The set of charged symplectic operators on Z is a group for the operator com-
position denoted by ChSp(Z). The space of infinitesimally charged symplectic
operators on Z, denoted by chsp(Z), is a Lie algebra equipped with the usual
commutator.

Let a be an anti-linear operator on Z.

Definition 1.75 We say that

a preserves w if a*wa=w, or (z1|wzy) = (az|wazy),
a anti-preserves w if a*wa = —w, or (z1|wz) = —(az|wazy),
a s anti-charged symplectic if a preserves w and is bijective,
a 1s anti-charged anti-symplectic if a anti-preserves w and is bijective.

Remark 1.76 The terminology “charged symplectic space” is motivated by appli-
cations in quantum field theory: such spaces describe charged bosons.

1.3 Complex structures

When we quantize a classical system, the phase space is often naturally equipped
with more than one complex structure. Therefore, it is useful to develop this
concept in more detail.

Besides complex structures, in this section we discuss the so-called (pseudo-)
Kéhler spaces, which can be described as (pseudo-)unitary spaces treated as real
spaces.

1.3.1 Anti-involutions
Let Y be a vector space.
Definition 1.77 We say that j € L()) is an anti-involution if j> = —1.
If Y is a real vector space with an anti-involution j, then ) can be naturally
endowed with the structure of a complex space:

A +ipy = y+pjy, yeV, \LpeR (1.21)

Therefore, anti-involutions on real spaces are often called complex structures.
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24 Vector spaces

Definition 1.78 Y conwverted into a vector space over C with the multiplication
(1.21) will be denoted Y, or by (V°,j) if we need to specify the complex structure
that we use. It will be called a complex form of ).

Definition 1.79 Conversely, any complex space W can be considered as a real
vector space, called the realification of W and denoted Wrk. It is equipped with
an anti-involution j € LOWg) (the multiplication by the complex number i).

Let V1, )» be real spaces with anti-involutions ji, jo. Then

LOYVE,Ys)={ae LD, I) : aji = ja}.

1.83.2 Conjugations on a space with an anti-involution
Let Y be a vector space equipped with an anti-involution j € L(Y).

Definition 1.80 We say that x € L()) is a conjugation if it is an involution
and jx = —xj-

Recall that x determines a decomposition Y = YX @ Y~X (see Def. 1.39). Let
us write X := Y7X. Then j& = YX. The map

A+x 1T-x

yByHQQy,Q OGX@X (1.22)

is bijective. Thus Y can be identified with X & &', so that

. [o -1 1o
oo X o -1
r € L(X & X) commutes with j iff it is of the form

r::[z _b}, (1.23)

a

for a,b € L(X).
r commutes with both j and y iff

r:[g ﬂ, (1.24)

for a € L(X).

1.3.3 Complexification
Let X be a real vector space

Definition 1.81 The complexification of X, denoted by CX, is the complex

—1
vector space (X @ X)©, equipped with the anti-involution given by [?1 0 ],
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1.8 Complex structures 25

which will be denoted simply by i. CX is also equipped with the conjugation x

1
given by {O ]J . According to the convention in Subsect. 1.2.3, we will usually
write Z 1= xz, z € CX.

Note that L(CX), in the representation X @& X, consists of matrices of the
form (1.23).
Let a € L(X).

Definition 1.82 We set

ac = [g 2} . agi= [3 _Oa} . (1.25)

ac, resp. ag, is the unique (complex) linear, resp. anti-linear extension of a to
an operator on CX. Often, we simply write a instead of ac.

1.3.4 Complexification of a Euclidean space
Let (X,v) be a Euclidean space. Then the scalar product in X has two natural
extensions to CX: if w; = (x; +1iy;) € CX, i = 1,2, we can define the bilinear
form
Wy - VoW = T1 VT — Y1 - VYe 1wy vys iy v
and the sesquilinear form
(wi|w) = W1 - vews = Ty - VT2 + Y1 - VY 1Ty - vYr — iy - V.

We will more often use the latter. It makes CX into a unitary space. The canon-
ical conjugation x defined in Subsect. 1.3.3 is anti-unitary. We also see that if
r € O(X), resp. r € o(X), then r¢c € U(CX), resp. r¢c € u(CX).

Assume now that (W, (+|-)) is a unitary space and that x is a conjugation on X
in the sense of Subsect. 1.2.8. Let X' := WX as in Subsect. 1.3.2. Then X" equipped
with y;-vys := (y1|y2) is a Euclidean space. The identification of X & X ~ CX
with W as complex spaces defined in Subsect. 1.3.2 is unitary from (CX, (+]-))
to (W, (-]-)).

1.3.5 Complexification of a symplectic space

Let (X,w) be a symplectic space. Then CX can be equipped with the non-
degenerate anti-symmetric form w defined for w; = (z; +1iy;) € CX, i = 1,2, by

Wy - wewp (=T Wr2 — Y1 - wyp T - wys + iy - wa,
as well as a charged symplectic form
Wi - Wewp = T1 - Wy + Y1 - wye + 1T - wys — 1y1 - wra.

where w; = (z; +1y;), i = 1,2.
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26 Vector spaces

1.3.6 Holomorphic and anti-holomorphic subspaces
Assume that a real space ) is equipped with an anti-involution j € L()). Thus
(CY)r has two distinguished anti-involutions: the usual i, and also jc.
Definition 1.83 Set
Z:={y—ijy : ye IV}
Z will be called the holomorphic subspace of C).
Z:={y+ijy : yeV}
will be called the anti-holomorphic subspace of C) .

The corresponding projections are 1z := (1 —ijc) and Iz := L(1+ijc).
Clearly, 1=1z+1z, and CY=Z® 2. We have Z=Ker(jc —1i), Z=
Ker(jc +1), thus on Z the complex structures i and j¢ coincide, whereas on
Z they are opposite.

The canonical conjugation on C) is bijective from Z to Z, which shows that

we can treat (Z,1) as the conjugate vector space (Z,1).
Using the decomposition

CYy=Z09Z, (1.26)

il i
“lo i) T o i)

The converse construction is as follows: Let (Z,1) be a complex vector space.
Set

we can write

Re(Z®Z):={(2,2)€ZDZ : z€ Z}.

Clearly, Re(Z @ Z) is a real vector space. It can be equipped with the anti-
involution

i(2,%) = (iz,i2) = (iz, —i2).

We identify CRe(Z @ Z) with CY = Z @ Z as follows: if y; = (2;,%) € Y for
i=1,2, then

CY2y +iyp = (21 +i20,2 +iZ0) € Z B Z. (1.27)
With this identification we have
.11 0
e~y |
which shows that this is the converse construction.
Z @ Z is equipped with a conjugation

€(21,%2) := (Z2, 21)-
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1.8 Complex structures 27

Note that Re(Z @ Z) is the real subspace of Z @ Z for the conjugation e. Clearly,
under the identification (1.27), e coincides with the usual complex conjugation
on C).

Often it is convenient to identify the space Z with Re(Z @ Z) = ).

Definition 1.84 For any A # 0, we introduce an identification between a space
with an anti-involution and the corresponding holomorphic space:

1—ii
y SyHTAy:AleGZ. (1.28)
The inverse map 1s
1
2320 T 2= X(Z—I—E)Gy. (1.29)

In the literature one can find at least two special cases of these identifications:
for A =1 and for A = /2. Each one has its own advantages. Note that in the
bosonic case, we will typically use the identification 7' 5, and in the fermionic
case, the identification T} . The arguments in favor of T’ V3 will be given in Subsect.
1.3.9.

Let us discuss an argument in favor of 7. Consider the natural projection
from CY onto Y:

CyawHw;rwﬂw;iwey. (1.30)

Then
ZozT2=2+%2€) (1.31)

is the restriction of (1.30) to Z.
Ty appears naturally in the following context. Suppose that we have a function
Z 3z F(z) € C. One often prefers to move its domain onto ) by considering

V>3(z,z)— F(Ti(z,%z)) = F(z2). (1.32)

Abusing notation, one can denote (1.32) by F(z,%). This notation is especially
common in the literature if F' is not holomorphic.

Let us assume for a moment that ) is a complex space. We can realify ), and
then complexify it, obtaining C)Yr. Denote the original imaginary unit of ) by
j- Introducing Z and identifying it with ) with help of 77 we can write

Chr=Y @Y. (1.33)

1.3.7 Operators on a space with an anti-involution

Let ) be a real space with an anti-involution j. Let Z, Z be the holomorphic
and anti-holomorphic spaces defined in Subsect. 1.3.6. Let us collect the form of
various operators on C) after the identification of CY with Z @ Z.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

28 Vector spaces

_ox] i 0] L _fio
“lx ool o i VT o i

where Z 3z ez:=2 € Z.
An operator in L(CY) is of the form

a b
c d|’
where a € L(Z), b€ L(Z,2),c€ L(Z,2),d € L(Z).
An operator in L(CY) equal to r¢ for some r € L()) is of the form

7 7]
7 pl’
where p € L(2), g € L(Z, Z).
Finally an operator L(CY) equal to r¢ for € L(Y®) (which means that [r,j] =
0) is of the form
p 0
0 p|’

1.3.8 (Pseudo-)Kdhler spaces

Let (Y, (+|-)) be a (pseudo-)unitary space. Then Vg is a (pseudo-)Euclidean space
for the scalar product

‘We have

for p € L(2).

Y2 - vy = Re(yaly1), (1.34)
a symplectic space for the symplectic form
Y2 - wyr = Im(y2|y1), (1.35)
and has an anti-involution
jy = iy. (1.36)

The name “(pseudo-)Kdahler space” is used for a unitary space treated as a
real space with the three structures (1.34), (1.35) and (1.36). Below we give a
more precise definition:

Definition 1.85 We say that a quadruple (Y, v,w,]) is a pseudo-Kéhler space
if
1

2

(1) Y is a real vector space,
(2)
(3) w is a symplectic form,
(4)
(5)

v is a non-degenerate symmetric form,

4) j is an anti-involution,

5) wj=
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1.8 Complex structures 29

If in addition v is positive definite, then we say that (Y,v,w,j) is a Kéahler
space.

Definition 1.86 If (V,v,w,]) is a (pseudo-)Kdihler space, we set

(Wily2) = y1 - vys +iy1 - wys. (1.37)

Then (Y%, (-]-)) is a (pseudo-)unitary space.

Definition 1.87 If a Kdhler space Y is complete for the norm (y - Vy)%, we say
that Y is a complete Kahler space. In other words Y equipped with (-|-) is a
Hilbert space.

Two structures out of v, w,j determine the other. This is used in the following
three definitions. In all of them ) is a real vector space, w is a symplectic form
and v is a non-degenerate symmetric form.

Definition 1.88 (1) We say that a pair (w,]) is pseudo-Kéhler if wj is symmet-
ric. If in addition wj is positive definite, then we say that (w,j) is Kéahler.

(2) We say that a pair (v,j) is pseudo-Kéahler if —vj is a symplectic form. If in
addition v is positive definite, then we say that (v,j) is Kahler.

(3) We say that a pair (v,w) is pseudo-Kihler if Ranw = Ranv and w™'v is
an anti-involution. If in addition v is positive definite, we say that (v,w) is
Kahler.

The definitions (1) and (2) have other equivalent versions, as seen from the
following theorem:

Theorem 1.89 (1) Let (Y,w) be a symplectic space. Consider the following
conditions:
(i) j*wj = w (j preserves w),
(ii) w4+ wj=0 (j € sp(}), or equivalently wj is symmetric),
(iii) j> = —1 (j is an anti-involution,).
Then any pair of the conditions (i), (ii), (i) implies the third condition and
that the pair (w,]) is pseudo-Kdhler.
(2) Let (YV,v) be a (pseudo-)Euclidean space. Consider the following conditions:
(i) j*vj=v (j is (pseudo-)isometric),
(ii) j*v+vj=0 (j € o(}), or equivalently vj is anti-symmetric),
(iii) j> = =1 (j is an anti-involution,).
Then any pair of the conditions (i), (ii), (i) implies the third condition and
that the pair (v,]) is (pseudo-)Kdhler.

1.3.9 Complexification of a (pseudo-)Kdhler space

Let (V,v,w,j) be a (pseudo-)Kéhler space. We have seen that the space CY is
equipped with
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30 Vector spaces

(1) the symmetric form w; - vcws,

(2) the Hermitian form (w;|ws) := w7 - vows,
(3) the symplectic form w; - wews, and

(

4) the charged symplectic form wy - wews,

where wy,wy € CY.

The spaces Z and Z introduced in Subsect. 1.3.6 are isotropic for both bilinear
forms v¢ and we and are mutually orthogonal for both sesquilinear forms.

Let us concentrate on the (pseudo-)unitary structure on CY given by the form
(+|-). Using the fact that j is anti-self-adjoint for v on ) we see that jc is anti-
self-adjoint for (-|-) on CY. Therefore, the projections 1z and 1z are orthogonal
projections and hence the spaces Z and Z are orthogonal for (-|-). The map T VoD
introduced in (1.29) is (pseudo-)unitary, if we interpret ) as a (pseudo-)unitary
space Y© equipped with the scalar product (1.37). This is the main reason why
the identification 7' 5 is often used, at least for bosonic systems.

The converse construction is as follows. Let Z be a (pseudo-)unitary space.
Set V := Re(Z @ Z). Recall from Subsect. 1.3.6 that Z is naturally isomorphic
to the holomorphic space for (Y, ]), where the anti-involution j is given by

j(2,2) = (iz,i2) = (iz, —iz).
Y is equipped with the symmetric form
(21,Z1) - v(22,2Z2) := 2Re(z1|22),
and the symplectic form
(21,Z1) - w(29,Z2) = 2Im(z1 | 22).

Then (Y, v,w,]) is a (pseudo-)Ké&hler space.

If we first take a (pseudo-)Kéhler space ), take its holomorphic space Z
equipped with its (pseudo-)unitary structure, and then go to the (pseudo-)Kéhler
space ) = Re(Z @ Z) constructed as above, we return to the original structure.

If Z is complete, then the topological dual }* can be identified with Re(Z @
Z) by setting

((z,2)|(W,w)) == (z|lw) + (Z[w) = 2Re(z|w).
With this identification we have

w(z,Z) = (—iz,iz).

1.8.10 Conjugations on a (pseudo-)Kdhler space

Proposition 1.90 Let (Y, v,w,j) be a Kahler space. Let 7 € L(Y) be an invo-
lution. Then the following statements are equivalent:

(1) 7 is anti-unitary on (V< (|)).
(2) T€ OV, v), Tj = —jT.

(3) 7 is anti-symplectic, Tj = —jT.
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1.8 Complex structures 31

Definition 1.91 If the conditions of Prop. 1.90 are satisfied we say that T is a
conjugation of the Kéhler space ).

Def. 1.91 is consistent with the definitions of a conjugation on a complex space,
a symplectic space and a (pseudo-)unitary space.

Assume that ) is a complete Kéhler space with a conjugation 7. Let X := )7,
which is a real Hilbert space for v. We can identify ) with X @ X by (1.22),
as in Subsect. 1.3.2. Having in mind applications to CCR representations (see
Subsect. 8.2.7), we prefer, however, to describe a more general identification. We
fix a bounded, positive and invertible operator ¢ on X'. Then the map
+ T 1-7

54 (20)7

YVoym— <(20)§j]1 y) ceXapX (1.38)

is bijective. With this identification we have

a2

(x],27) -v(zy, o)) =z -v2cag + a7 -v(2e) 2y,

(zf,27) w(zy x5 ) =af -vay —a] -vay, (zf,27)eX DX, i=1,2.

1.8.11 Real representations of the group U(1)
Let ) be a real space. Consider the group U(1) ~ R/27Z and its representation

U(l) €0 — uy € L(Y). (1.39)

Definition 1.92 Let n € {0,1,...}. A representation (1.89) is called a charge
n representation if there exists an anti-involution je, such that

ug = cos(n)1 + sin(nh)jn, 6 € U(1). (1.40)

Proposition 1.93 (1) If (1.39) is a charge 1 representation, then
wy#y, 0Fyey, 0#0€U(1), (1.41)

and the operator je, in (1.40) coincides with uy ;.
(2) If the representation (1.39) satisfies (1.41), then uy o is an anti-involution.

Proof (2) Clearly, u> = 1. Therefore, u, is diagonalizable and 3 (14 u.) are
the projections onto its eigenvalues +1. By (1.41), Ker(1 — u, ) = {0}. Therefore,
u, = —1. Now “3/2 =u, = —1. 0

Proposition 1.94 Assume that Y is either finite-dimensional or a real Hilbert
space and the representation (1.39) is orthogonal. In both cases we suppose that
the representation is strongly continuous. Then

(1) y= %3 Vo, where Y, are invariant and (1.39) restricted to Y, is a charge
n=0

n Teprgsentation.
(2) The set of vectors y € Y satisfying (1.41) equals Y.
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Proof We can complexify ) and write that ug c = €'%¢ on CY, for some operator

c. Clearly, specc C Z. Then Y, := Ran 1, _,y(c)N Y. O

Charge 1 representations are related to (pseudo-)Kéhler structures.

Proposition 1.95 Consider a charge 1 representation
ug = cos(0)1 + sin(f)jen, 6 € U(1). (1.42)

(1) If Y is a real Hilbert space and up € O(Y), 0 € U(1), then jn is a Kdhler
anti-involution.

(2) If Y is a symplectic space and uy € Sp(Y), 0 € U(1), then jo, is a pseudo-
Kahler anti-involution.

1.4 Groups and Lie algebras

In this section we fix terminology and notation concerning groups and Lie alge-
bras, mostly consisting of linear or affine transformations.
Throughout the section, ) and W denote finite-dimensional spaces.

1.4.1 General linear group and Lie algebra

Definition 1.96 GL(Y, W) denotes the set of invertible elements in L(Y, V).
The general linear group of Y is defined as GL(Y) := GL(Y, ).

SL(Y) :={re GL(Y) : detr =1}
1s its subgroup called the special linear group of ).

Definition 1.97 The general linear Lie algebra of ) is denoted gl()) and equals
L(Y) equipped with the bracket [a,b] := ab — ba.

sl(Y):={aegl(y) : Tra=0}

is its Lie sub-algebra called the special linear Lie algebra of ).

1.4.2 Homogeneous linear differential equations
Assume that R 3 ¢+ a; € gl(Y) is continuous, and ¢ > s.

Definition 1.98 We define the time-ordered exponential by the following con-
vergent series:

t oo
Texp/ audu::Z S au,au du, .. dug.

n=0¢>u, > >uy >s

For y € ), s € R, there exists a unique solution of

dtyt atYt, Y Yy ( )
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1.4 Groups and Lie algebras 33

It can be expressed in terms of the time-ordered exponential as

t
Y = Texp/ a,duy.
S

Clearly, if a; = a € gl(Y) does not depend on ¢, we can use the usual exponen-
tial instead of the time-ordered exponential:

t
Texp/ adu = ! =),

1.4.3 Affine transformations

Definition 1.99 ALY, W) will denote W x L(Y, W) acting on Y as follows:
if (w,a) € ALY, W) andy € Y, then (w,a)y := w + ay. Elements of AL(Y, W)
are called affine maps from Y to W. We set AL(Y) .= AL(Y,Y).

Definition 1.100 If G C L(Y,W), we set AG:=W x G as a subset of
AL(Y,W).

In particular, if G C L(Y) is a group, then so is AG. The multiplication in
AG(Y) is
(y2,72)(y1,71) = (Y2 + T2y1,7271).
Thus AG(Y) is an example of a semi-direct product of ) and G, determined by
the natural action of G on ), and is often denoted by ) x G.

Definition 1.101 The general affine Lie algebra of Y is agl()) =Y x L(Y)
equipped with the bracket

[(y2,a2)7 (y17a1)] = (a2y1 — a1yY2,a2a1 — a1a2)~

Definition 1.102 If g C gl(Y), then we set ag := Y x g as a subset of agl()).

Clearly, if g is a Lie algebra, then so is ag. It is an example of the semi-direct
product of ) and g, determined by the natural action of g on ), and is often
denoted by Y x g.

1.4.4 Inhomogeneous linear differential equations

Consider a continuous function R 3 ¢ +— (wy,a:) € agl(Y). Then, for y € Y, s €
R, there exists a unique solution of

d
QY Tt @y, Ys = (1.44)

It can be written as

t ¢ t
Y = / (Texp/ audu> w,dv + (Texp/ audu) . (1.45)
S v s
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34 Vector spaces

If (wy,a:) = (a,w) € agl(Y) does not depend on ¢, then (1.45) reduces to
Y = ail(e(tfs)a —Dw + elt=s)ay,
This motivates setting
el = (g7l (" — Mw,e”) € AGL(Y).
Note in particular that

ol0) = (0,e"), elw0) — (w, 1).

1.4.5 Ezxact sequences

Let m: FF— G, p: G — H be homomorphisms between groups.
Definition 1.103 By saying that

FLaotH (1.46)
is an exact sequence, we mean that Ranm = Ker p.

Often, if they are obvious from the context, 7, p are omitted from (1.46).
The one-element group is often denoted by 1. Therefore,

l1-F—-G—H-—1 (1.47)

means that F' is a normal subgroup of G and we have a natural isomorphism
H~G/F.

1.4.6 Cayley transform
Let Y be a vector space. Let r € L(Y) and r + 1 be invertible.

Definition 1.104 We define the Cayley transform of r as
o= 0 =r) (A +7)"t
Note that v + 1 is again invertible and
r=1-y)0+7)""
Hence the Cayley transform is an involution of
{a € L(Y) : r+ 1is invertible}. (1.48)

Let 1,79, 7 belong to (1.48) with r = r179. Let 71,72, be their Cayley trans-
forms. Then we have the identity

T+ =1+%)A+m%) " (T+mn). (1.49)

Suppose that ) is a finite-dimensional symplectic space. Then the Cayley
transform is a bijection of

{reSp(y) : r+ 1is invertible}
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onto
{ye€sp(y) : v+ 1Lis invertible}.

If Y is a Euclidean space, then the same is true with Sp()), sp()’) replaced
with O()), o()).

If Y is a unitary space, then the same is true with Sp()), sp()) replaced with
U@y), u(y).

1.5 Notes

Most of the material in this section is a collection of concepts and facts from
any basic linear algebra course, after a minor “cleaning up”. The need for a
particularly precise terminology in this area is especially important in differential
geometry. Therefore, in the literature such concepts as Kéhler, symplectic and
complex structures typically appear in the context of differentiable manifolds;
see e.g. Guillemin—Sternberg (1977). They are rarely considered in the (much
simpler) context of linear algebra.
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2

Operators in Hilbert spaces

In this chapter we recall basic properties of operators on topological vector
spaces. We concentrate on Hilbert spaces, which play the central role in quantum
physics.

2.1 Convergence and completeness

We start with a discussion of various topics related to convergence and complete-
ness.

2.1.1 Nets
Nets are generalizations of sequences. In this subsection we briefly recall this

useful concept.

Definition 2.1 A directed set is a set I equipped with a partial order relation
< such that for any i,j € I there exists k € I such thati <k, j <k.

We will often use the following directed set:

Definition 2.2 Let I be a set. We denote by 2L the family of finite subsets of
1. It becomes a directed set when we equip it with the inclusion.

Definition 2.3 Let S be a set. A net in S is a mapping from a directed set I to
S, denoted by {x; }icr.

Definition 2.4 A net {z;};er in a topological space S converges to x € S if for
any neighborhood N of = there exists i € I such that if i < j then x; € N'. We
will write v; — x. If S is Hausdorff, then a net in S can have at most one limit
and one can also write limx; = x.

Definition 2.5 Let X be a topological space and U C X. Then U will denote
the closure of U, which is equal to the set of limits of all convergent nets in U.

2.1.2 Functions

Definition 2.6 Let X,) be sets. Then c(X,)) is the set of all functions from
X to Y. Clearly, ¢(X,K), is a vector space over K. We often write ¢(X) for
o(X,C). f € ¢(X,K) is called finitely supported if f~ (K\{0}) is finite. c.(X,K)
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2.1 Convergence and completeness 37

denotes the space of finitely supported functions in c(X,K). If x € X, define

L z=y,

. Clearly, each element of c.(X,K) can be
0, z#uy.
written as a unique finite linear combination of {0, : x € X}. Sometimes, it
will be convenient to write x instead of d, .

3y € co(X,K) by 0, (y) :==

Definition 2.7 Let X, be topological spaces. Then C(X,Y) is the set of all
continuous functions from X to Y. Clearly, C(X,K) is a vector space over K. We
often write C(X) for C(X,C). C.(X,K) denotes the set of compactly supported
functions in C(X,K).

We will use various styles of notation to introduce a function f with domain
X, such as X 5 x +— f(z) or {f(z)},exr. Sometimes, we will simply write that
we are given a function f(x). This is possible, if we declared before that  is the
generic variable in X, or at least if it is clear from the context that x should be
understood this way. Thus x is not a concrete element of X, it is just a symbol
for which we can substitute an arbitrary element of X.

For example, the notation [a;;] is sometimes used for a matrix. Here, 7 is
understood as the generic variable in {1,...,n} and j as the generic variable
in {1,...,m}, where n, m should be clear from the context. Thus [a;;] is an
abbreviation for {1,...,n} x {1,...,m} 3 (4,7) — a; ;.

Generic variables are also used in some other situations, e.g. as a part of the
notation for integration or differentiation.

2.1.3 Topological vector spaces

Let £ be a topological vector space.
Definition 2.8 IfU C &, we will use the shorthand Span® (U) for (Span(Z/{))Cl.
Definition 2.9 A net {x;};cs in a topological vector space € is Cauchy if, for any

neighborhood N of 0, there exists i € I such that if i < j, k, then x; —xp € N.
& is complete if every Cauchy net is convergent.

Proposition 2.10 There exists a complete topological vector space containing €
as a dense subspace. If £ and & are two such complete spaces, then there exists
a unique linear homeomorphism T : & — &y such that T‘g = 1¢.

Definition 2.11 The complete vector space, described in Prop. 2.10 uniquely up
to isomorphism, is called the completion of € and denoted E°P'.

2.1.4 Infinite sums

Let € be a topological vector space and {z; };c; a family of elements of .
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38 Operators in Hilbert spaces

Definition 2.12 We say that the series > x; is convergent if the net
i€l
{Ziet, xi}]ng , 1is convergent. The limit of the above net will be denoted by
h fin

S

iel
Assume that £ is a normed space.

Definition 2.13 We say that the series > x; is absolutely convergent if the
i€l
numerical series Y ||z;|| is convergent.
iel

Proposition 2.14 (1) For every absolutely convergent series, the set
{i : x; # 0} is at most countable.

(2) Every absolutely convergent series in a Banach space is convergent.

(3) In a finite-dimensional space, a series is convergent iff it is absolutely con-
vergent.

2.1.5 Infinite products
Let {x;}icr be a family in C.

Definition 2.15 First assume that x; # 0 for all i € I. In this case, the infinite

product [ x; is called convergent if the net {H xi}]eﬂ converges to a non-
iel icJ fin
zero limit in C. The limit will be denoted by

[T+
iel

In the general case, one says that [[ z; is convergent if Iy = {i € I : x; =0} is

i€l
finite and the infinite product []| =; is convergent in the above sense. If Iy # (),
iel\I,
one sets
iel

It is easy to see that the convergence of [] x; is equivalent to the convergence
i€l
of 3" |z; — 1|. Therefore, if [] x; converges, then the set {i € I : x; # 1} is at
i€l i€l
most countable and x; — 1.

2.2 Bounded and unbounded operators
2.2.1 Normed vector spaces

Let H, K be normed spaces over K = R or C.
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2.2 Bounded and unbounded operators 39

Definition 2.16 We equip the complex conjugate space H with the norm ||®| :=
1], @ e .

Definition 2.17 B(H,K) denotes the space of bounded linear operators from
H to K. We set B(H) := B(H,H). H* := B(H,K) is the topological dual of H
and H* := B(H,K) = H? =H' is the topological anti-dual of H.

Remark 2.18 Note that the meaning of the symbol H* | resp. H* depends on
the context: if we consider H as a vector space without a topology, it will denote
the algebraic dual, resp. anti-dual. see Defs; 1.8, resp. 1.54. If H is considered
together with its topology, it will denote the topological dual, resp. anti-dual.

Definition 2.19 By saying that A is a linear operator from H to K, we will
not necessarily mean that it is defined on the whole H. We will just mean that
there exists a subspace D of H such that A € L(D,K). The space D will be called
the domain of A and denoted Dom A. The subspace Gr A := {(®,A®) : €
Dom A} C H® K is called the graph of A.

Definition 2.20 A linear operator A from H to K is closed if Gr A is closed
in H& K. It is called closable if it has a closed extension. Its minimal closed
extension is called the closure of A and denoted by A®. CI(H,K) will denote the
set of closed, densely defined operators from H to K.

Proposition 2.21 Let A € B(H,K). Then A is closable as an operator from
HP! to KP! and A°' € B(HP!, KCoPY).

Definition 2.22 Let A be an operator on H. We say that z € C belongs to the
resolvent set of A if A— 21:Dom A — H is bijective and (A — z1)~" € B(H).
The resolvent set of A is denoted by res A. The set spec A = C\res A is called the
spectrum of A.

Definition 2.23 (1) If A is an injective linear operator, then we set
Dom A~! := Ran A.
(2) If A, B are two linear operators, we set

Dom AB :={® € Dom B : B® € Dom A}.

(3) If A,B are two linear operators on H, their commutator and anti-
commutator are the operators given by

[A,B]:= AB — BA, [A,B]; := AB+ BA, on Dom AB N Dom BA.

In the case that H is a Hilbert space, sometimes we will consider [A, B],
[A, B]+ as quadratic forms on Dom A N Dom A* N Dom B N Dom B*. For
example,

(B|[A, B]T) := (A*®|BY) — (B*®|AT).
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40 Operators in Hilbert spaces

2.2.2 Scalar product spaces

Let H be a unitary space (a complex space equipped with a scalar product).
The scalar product of ®, ¥ € H will be denoted by (®|¥) or ® - . Recall that
a complete unitary space is called a complex Hilbert space, where one usually
omits the word “complex”. Note that if H is a Hilbert space, then H equipped
with the scalar product (W|®) := (¥|®) is a Hilbert space as well, and the map
H > ® — & € H is anti-unitary (see Subsect. 1.2.10). The Riesz lemma says that
H* =H is naturally isomorphic to H. Sometimes, however, other identifications
are convenient; see Subsect. 2.3.4.

In a Euclidean space (a real space equipped with a scalar product) we prefer
to denote the scalar product by (®|¥) or ® - U. Recall that a complete Euclidean
space is called a real Hilbert space. If H is a real Hilbert space, the Riesz lemma
says that H* is naturally isomorphic to H.

Remark 2.24 If we compare Def. 1.54 with this subsection, we see that Z-w
or (w|z) may stand for the pairing between vectors in two distinct spaces in an
anti-dual pair, or for the scalar product of two vectors in the same Hilbert space.

Analogously, if we compare Def. 1.8 with this subsection, we see that v-y or
(v|ly) may stand for the pairing within a dual pair, or for the scalar product in
the same real Hilbert space.

There are more such ambiguous notations, whose exact meaning depends on
the context; see e.g. Remark 2.18. These ambiguities should not cause any diffi-
culties.

Remark 2.25 As we see above, there are minor differences in the notation and
terminology between real and complex Hilbert spaces. In what follows, we often
discuss both cases at once. We then use the notation and terminology of complex
Hilbert spaces, their modification to the real case being obvious.

Definition 2.26 Let H be a real or complex Hilbert space. A family of vectors
{ei}ier is called an orthonormal system if (e;|e;) = &;;. If in addition Span®{e; :
1 € I} =H, we say that it is an orthonormal basis, or an o.n. basis for brevity.

Definition 2.27 Let 'H be a topological vector space. We say that it is a Hilbert-
izable space if there exists a scalar product on H that generates its topology and
‘H is complete in the corresponding norm.

2.2.3 Operators on Hilbert spaces

In this subsection we discuss basic definitions concerning operators on complex
and real Hilbert spaces. We try to be as close as possible to the usual terminology,
fixing, however, some of its obvious flaws (see Remark 2.30).

We start with the complex case. Let H;, Ho, H be complex Hilbert spaces. Let
A be a densely defined operator from H; to Ho.
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2.2 Bounded and unbounded operators 41

Definition 2.28 The operator A* from Hsy to Hy defined by
(@2,\111) cGrA* & ((I)Q‘Aq)l) = (\IJ1|<I)1), P, € DOHIA,

is called the adjoint of A. We set A* = A" =A%, which is an operator from Hs
to ﬁl .

Note that A* and A# are automatically closed. Moreover, A is closable iff
Dom A*, or Dom A* is dense. We then have A** = A## = Al

If A is bounded, then so are A* and A*. As an example of adjoints, consider
® € H and let us note the identities |®)* = (®| (see Def. 1.70).

Definition 2.29 (1) Densely defined operators on H satisfying A C A* are
called Hermitian.

(2) Densely defined operators from H to H satisfying A C A* are called sym-
metric.

Remark 2.30 Note that, unfortunately, in a part of the literature the word
“symmetric” is often used to denote Hermitian operators. This is an incorrect
usage.

Definition 2.31 (1) Densely defined operators on H satisfying A* = A are
called self-adjoint and those satisfying A* = —A anti-self-adjoint. The set
of bounded self-adjoint operators on H is denoted by By (H), and the set of
all self-adjoint operators on H by Cly(H).

(2) The set of bounded symmetric, resp. anti-symmetric operators from H to H
is denoted By(H,H), resp. B,(H,H). The set of all operators from H to H
satisfying A = A* | resp. A = —A* is denoted Cly(H,H), resp. Cl,(H,H).

Self-adjoint and anti-self-adjoint operators are automatically closed. Likewise,
operators in Cls(H, H) and Cl,(H, H) are automatically closed.

A is anti-self-adjoint iff 14 is self-adjoint.

Let us now consider the real case. Let H;, Ho, H be real Hilbert spaces. Let A
be a densely defined operator from H; to Hs.

Definition 2.32 The operator A" from Hy to Hy defined by
((1)2,\1/1) € GrA" & <<I)2|A(I)1> = <\111|CD1>, P, € ]:)OHIA7

is called the adjoint of A.

Note that A* is automatically closed. Moreover, A is closable iff Dom A* is
dense and we then have A## = A°l,

If A is bounded, then so is A*. As an example of adjoints, consider ® € H and
let us note the identity |®)* = (®| (see Def. 1.24).

Definition 2.33 Densely defined operators on H satisfying A C A* are called
symmetric.
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42 Operators in Hilbert spaces

Definition 2.34 Densely defined operators on H satisfying A* = A, resp.
A* = —A are called self-adjoint, resp. anti-self-adjoint. The set of bounded self-
adjoint, resp. anti-self-adjoint operators on H is denoted by Bs(H), resp. B, (H).
The set of all self-adjoint, resp. anti-self-adjoint operators on H is denoted by
Cls(H), resp. Cl,(H).

Self-adjoint and anti-self-adjoint operators are automatically closed.

2.2.4 Product of a closed and a bounded operator

Proposition 2.35 Let G € Cl(Hy,Ha), H € B(H2,H3). We define HG and
G*H* with their natural domains, as in Def. 2.23. Then HG is densely defined,
so that we can define its adjoint, and we have

(HG)" =G*H™. (2.1)
Besides, G*H* is closed.
Proof By Def. 2.23,
Dom HG = Dom G, (2.2)
DomG*H" = {® € H3 : H*® € DomG™}. (2.3)

G is densely defined. By (2.2), so is HG. It immediately follows that
(HG)* D G*H"™.
Suppose that ¥ € Dom(HG)*. This means that for some C
|(P|HG®)| < C||®|, ® € DomG.
Thus
|(H*U|GD)| < C|®|, ® <€ DomG.
Hence, H*¥ € Dom G*. Thus
(HG)* C G*H"™.

This ends the proof of (2.1). G*H* is closed as the adjoint of a densely defined
operator. O

2.2.5 Compact operators
Let Hy,Ho, H be real or complex Hilbert spaces.

Definition 2.36 We denote by Boo (H1,Ha) the space of compact operators from
Hy to Hy and set Boo(H) := Boo(H, H).
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2.2 Bounded and unbounded operators 43

Proposition 2.37 If A€ B.(H) is self-adjoint, then H has an o.n. basis
{ej}jer of eigenvectors of A for a family {\;};cr of real eigenvalues having
0 as its only possible accumulation point.

2.2.6 Hilbert—Schmidt and trace-class operators
Let Hi,Hs, H be real or complex Hilbert spaces.

Definition 2.38 A € B(H;,H2) is called Hilbert—Schmidt if TrA*A < co. The
space of Hilbert-Schmidt operators is denoted B*(Hy,Hs) and is a Hilbert space
for the scalar product Tr B*A.

Definition 2.39 If A € B(Hi,Hs), then |A] :=VA*A is called the absolute
value of A. We say that A is trace class if Tr|A| < co. The space of trace-class
operators is denoted B (Hy,Hs).

Note the following proposition:

Proposition 2.40 Let A € B'(H)and B, € B(H), with B, — B weakly. Then
Tr B, A — Tr BA.

Definition 2.41 Positive elements of B*(H) having trace 1 are called density
matrices.

Definition 2.42 If 3 > 0 is a number, H a self-adjoint operator and Tre "H <
00, then the density matriz

e‘*ﬁH/’I‘r e

is called the Gibbs density matrix for the Hamiltonian H and inverse temperature
s.
Definition 2.43 For 1 < p < oo, the p-th Schatten ideal is

BY(Hi, Hs) == {A € B(H1,H2) : Tr|A]” <oo}.

2.2.7 Fredholm determinant
Let H be a real or complex Hilbert space.
Definition 2.44 We denote by 1+ B (H) the set of operators of the form 1+ A
with A € BY(H). If H is a complex, resp. real Hilbert space, we set

Ui(H) := U(H) N (1 + B*(H)), resp. O1(H) := O(H) N (14 B*(H)).

Theorem 2.45 There exists a unique function 14+ B'(H) 3 R +— det R € C sat-
isfying the following properties:
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44 Operators in Hilbert spaces

(1) If H="H; & Hs with dimH; < o0 and R = Ry & 1, then det R = det Ry,
where det Ry is the usual determinant of the finite-dimensional operator Ry .
(2) BY(H) > A det(11+ A) is continuous in the trace norm.

Definition 2.46 det R is called the Fredholm determinant of R.
The following properties follow easily from Thm. 2.45:

Proposition 2.47 (1) det Ry Ry = det Ry det Ry, det R* = det R.
(2) Let A € B'(H). Then 1+ A is invertible iff det(1+ A) # 0.
(3) If H is a complex, resp. real Hilbert space, then

|det R| =1, for R € Uy(H), resp. det R = %1, for R € O(H).

Definition 2.48 Let A € B?(H). The regularized determinant of 1+ A is
dets (1 + A) == det((1+ A)e ). (2.4)

The regularized determinant can sometimes be used instead of the usual deter-
minant.

Proposition 2.49 Let A € B?>(H). Then 1+ A is invertible iff dets (1 + A) # 0.

2.2.8 Derivatives

For functions on a vector space, one can distinguish several kinds of deriva-
tives. In the following definition we recall the directional derivative, the Gateaux
derivative and the (most commonly used) Fréchet derivative.

Let Y be a real or complex vector space and GG be a complex-valued function
defined on a subset U of ). To define the directional derivative of G at a point
yo € U, U has to be finitely open, i.e. the intersection of U with any finite-
dimensional subspace of ) should be open (for its canonical topology).

Definition 2.50 Let Y be a real or complex normed space and G be a complez-
valued function defined on a subset U of ).

(1) Assume that U is finitely open. We say that the derivative of G in the direc-
tion of y € Y at yg ewists if

d .
y-VG(y) == &G(yo + ty)|t:0 exists.

(Here t is a real parameter if Y is real, and complex if Y is complez.)
We say that G is Gateaux differentiable at 1y if

D:={ye) : y -VG(y) exists}
is a dense linear subspace of Y and the map
D3y y-VG(y)cC

is a bounded linear functional.
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2.8 Functional calculus 45

(2) Assume that U is open. We say that G is Fréchet differentiable at y, if there
exists a bounded linear functional v such that

i G0 +9) = Glyw) —vy _
y—0 Yl

If such a functional exists, it is necessarily unique and is denoted VG (yo).

Note that if the Fréchet derivative exists, then so does the Gateaux derivative,
and they are equal.

For example, consider the function Dom H? 3 y — G(y) = (y|Hy), where H
is a positive self-adjoint operator. The set Dom H T s obviously finitely open. G
is Gateaux differentiable at yy iff yp € Dom H. It is Fréchet differentiable iff H
is bounded.

2.3 Functional calculus
2.3.1 Holomorphic functional calculus

Let H be a Banach space and A € B(H). The basic construction of the holomor-
phic functional calculus is described in the following definition:

Definition 2.51 Let f be a function on spec A that extends to a function holo-
morphic on an open neighborhood of spec A. Let v be a closed curve encircling
spec A counterclockwise and contained in the domain of f. We set

F(A) = 2% }lg/f(z)(z]l — A)~de. (2.5)

Tt is easy to see that (2.5) does not depend on the choice of the curve ~.
Let © be a subset of spec A.

Definition 2.52 The characteristic function of the set © is defined as

o (2) 1, 2€0,
O\Z) ‘=
° 0, =z € specA\O.

Suppose that © is a relatively open and closed subset of spec A. Then
the function 1g satisfies the assumptions of the holomorphic spectral
calculus.

Definition 2.53 1g(A) is called the (Riesz) spectral projection of A onto ©.
Clearly, if v encircles O, staying outside of spec A\©, then

o (A) = —— %(2]1 — ) lde, (2.6)

T omi
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46 Operators in Hilbert spaces

2.3.2 Functional calculus for normal operators

In the case of Hilbert spaces, besides the holomorphic calculus, we have another
functional calculus based on the spectral theorem, which applies to normal oper-
ators.

Let us be more precise. Let H be a real or complex Hilbert space.

Definition 2.54 An operator A on 'H is called normal if Dom A = Dom A* and
(AD|AT) = (A*D|A*T), &, ¥ € Dom A.

Self-adjoint and unitary operators are normal. In the case of normal operators
the spectral theorem can be used to extend the functional calculus to a much
larger class of functions.

Let A be a normal operator on a complex Hilbert space.

Definition 2.55 If f :spec A — C is Borel, we define f(A) by the functional
calculus for normal operators.

For normal operators we can extend the definition of spectral projections to a
much larger class of sets.

Definition 2.56 Let O be a Borel subset of spec A. The operator lg (A) is called
the spectral projection of A onto ©.

Let us now consider the functional calculus on real Hilbert spaces. Let H
be a real Hilbert space and A a normal operator on H. Then we can apply
the functional calculus to the operator Ac on CH. Note that spec Ac satisfies
spec Ac = spec Ac. If a Borel function f on spec A satisfies

f@) = f(2), (2.7)

then f(Ac) preserves H, and the formula f(A) := f(Ac)| 5, defines an operator
on H.

These conditions are satisfied, for instance, if A is a self-adjoint operator on
H and f is a real Borel function. Note that in this case f(A) is a self-adjoint
operator on H.

Let us describe another application of functional calculus on real Hilbert spaces
that we will need. Let R € O(H) be such that Ker(R + 1) = {0}. Consider the
function f(z) = 2! for t € R, where if ¢t € Z we take the principal branch of 2!,
with a cut along the negative semi-axis. Note that z' is not defined for z = —1.
However, {_;}(Rc) = 0; therefore R, is well defined. Moreover 2" satisfies (2.7),
so we can define R'. Note that B! € O(H) and R'R* = R'™*. For |t| < 1, we have
Ker(R' + 1) = {0} and (R')* = R's.

2.3.3 Spectrum of the product of operators
It is well known that if A, B € B(H), then

spec (AB)\{0} = spec (BA)\{0}.
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2.8 Functional calculus 47

This is also true if AB and BA are closed with spec (AB), spec(BA) # C;
see Hardt—Konstantinov—Mennicken (2000). We will need the following related
facts:

Proposition 2.57 (1) Let A, B be two linear operators on a Hilbert space H
such that AB and BA are closed. Let z € C such that z ¢ spec (AB) U
spec (BA). Then

A(21— BA)™' = (21 - AB)'A.

Moreover, if A, B € B(H) and f is holomorphic near spec (AB) U spec (BA),
then

Af(BA) = f(AB)A.
(2) If A€ Cl(H) and f is a bounded Borel function, then
Af(A*A) = f(AAM)A.

Proof Let ® € Dom A and (21— BA)¥ = ®. Then BAV = z¥ — & € Dom A
and ABAYU = zA¥ — AP hence AV € Dom AB and (z1 — AB)AV = A®. This
proves (1).

To prove (2) we note that A*A and AA* are self-adjoint, so the identity
Az — A*A)™ = (21— AA*)71 A for z € C\R is true by (1). It extends by the
usual argument to all bounded Borel functions. O

2.3.4 Scale of Hilbert spaces associated with a positive operator

Let ‘H be a real or complex Hilbert space.

Definition 2.58 For an operator B on 'H we will write B > 0 if it is positive
self-adjoint. If in addition 0 is not an eigenvalue of B, then we will write B > 0.

Let B > 0. Let us introduce the scale of Hilbert spaces associated with B. The
Hilbert space H will play the role of a “pivot” space.

If H is real, we will identify H#* with H, and if H is complex, we identify H*
with H, using the scalar product.

Definition 2.59 We equip Dom B~* with the scalar product (®|¥)_g :=
(B7°®|B~*W) and the norm ||B~*®||. We set

B*H := (Dom B~*)"".

Proposition 2.60 (1) B~*H = Dom B*® if s > 0 and 0 ¢ spec B.

(2) B' : Dom B~* N Dom B' — Dom B~*~" extends continuously to a unitary
map from B*H to B¥*'H.

(3) (B')"H = B*'H.
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48 Operators in Hilbert spaces

(4) If H is complex, the sesquilinear product (¥|®) on Dom B*® x Dom B~*
extends continuously to B~H x B*H and one can unitarily identify (B*H)*
with B~*H.

(5) If H is real, the bilinear product (¥|®) on Dom B* x Dom B~* extends con-
tinuously to B™*H x B*H and one can isometrically identify (B*H)* with
B™H.

Definition 2 61 If By, Bg are two positive self-adjoint operators, we write By <
By if Dom 32 C Dom B1 and

|Bf®|* < ||BZ ||, @ € Dom B; .

If 0 < By < By, then the Kato-Heinz theorem says that 0 < Bff < B§ for
a€[0,1]. If 0 < By < By, then also 0 < By < B “, for a € [0, 1]. This implies
the following fact:

Proposition 2.62 Let 0 < B; < By and —
dings

% <a< % Then the natural embed-
I, :BiH — ByH
are contractive and I =1_,.
Note also the following useful fact, which follows from the three lines theorem.

Proposition 2.63 Let B > 0 be a self-adjoint operator. Let W € Dom B. Then
{z : 0<Rez<1} 5z~ B*V

s a continuous function holomorphic in the interior of the domain and satisfying
the bound

1B* || < ]! ~F | Bw e,

2.3.5 Cy-semi-groups
Let H be a real or complex Hilbert space.
Definition 2.64 A Cy-semi-group is a one-parameter semi-group [0,00[3 t —

U(t) € B(H) continuous in the strong topology. Every Cy-semi-group U(t) has
the generator A defined by

Dom A := {<I> EH s~ limtT (UMD - @) = AD e:r:ists}.

In such a case we will write U(t) =: e'4.

The generator of a Cy-semi-group is always closed and densely defined.
The set of generators of Cy-groups in O(H) and U(H) coincides with the set
of anti-self-adjoint operators. This fact is known as Stone’s theorem.
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2.8 Functional calculus 49

Definition 2.65 If R> ¢+ U(t) is a unitary Cy-group, then the self-adjoint
generator of U(t) is the operator B defined as U(t) = e'*B.

Definition 2.66 A is a maximal dissipative operator if it is a closed densely
defined operator such that Re(®|A®P) <0 for ® € Dom A and Ran(—A + A1) =
H for some X > 0.

The Hille-Yosida theorem says that the set of generators of Cj-semi-groups
of contractions coincides with the set of maximal dissipative operators. A is
maximal accretive if —A is maximal dissipative.

2.3.6 Local Hermitian semi-groups

Let H be a real or complex Hilbert space. Clearly, if [0,00[> t — U(t) € B(H)
is a Cj-semi-group of self-adjoint contractions, then U(t) = e~*4 for A positive
self-adjoint.

The notion of local Hermitian semi-groups, due to Klein-Landau (1981a) and
Frohlich (1980), allows us to extend this construction to the case of semi-groups
of unbounded Hermitian operators. It is particularly important in the Euclidean
approach to quantum field theory, especially at positive temperatures.

Definition 2.67 Let T > 0. A local Hermitian semi-group {P(t),D; };c(o,7] 15
a family of linear operators P(t) on H and subspaces Dy of H such that

(1) Dy =H, D: D Ds ingtgngandDZO %J<TD¢, is dense in H;
<

(2) P(t) is a Hermitian linear operator with Dom P(t) = D, such that P(0) =
1, P(s)Dy CDy—s for 0 < s <t <T, and P(t)P(s) = P(t+s) on Dy for
t,s,t+s€l0,T];

(3) t— P(t) is weakly continuous, i.e. for ® € Dy the map [0,s] >t
(@, P(t)®) is continuous.

Remark 2.68 In the literature, local Hermitian semi-groups are often called
local symmetric semi-groups.
tH

)

An example of a local Hermitian semi-group is P(t) = e ', D; = Dome~
with T'= oo, if H is a self-adjoint operator on H. The following theorem shows
that all local Hermitian semi-groups are restrictions of groups of unbounded
self-adjoint operators of this form.

Theorem 2.69 Let {P(t),D;}iejo.r) be a local Hermitian semi-group on H.
Then there exists a unique self-adjoint operator H on H such that

(1) D, C Dome 1 e~tH |D1 =P(t) for0<t<T;
(2) Forany0<T'<T, U U P(s)D; is a core for H.
0<t<T’ 0<s<t
(The core of a Hermitian operator is defined in Subsect. 2.3.7). For the proof
one needs a definition and a lemma due to Widder (1934).
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50 Operators in Hilbert spaces

Definition 2.70 A continuous function r: [T1,T2] — R is OS positive if for
any n €N and ty,...,t, € R such that T\ <t; +t; <Ty the matriz [r(t; +
tj)hﬁi,jﬁn 18 positive.

Lemma 2.71 The continuous function r: [T}, To] — R is OS positive iff there
exists a positive measure v such that X +— e~ belongs to L'(R,dv) for each
te [Tl,TQ] and

T(t):/Re_Mdu()\).

Proof of Thm. 2.69. We fix 0 <t < T and ® € D; and set r(s) = || P(s/2)®||?
for s € [0, 2¢]. The function r is continuous by the weak continuity of P(s). Using
the symmetry and semi-group property we see that r is OS positive on [0, 2¢].
By Lemma 2.71, there exists a measure v on R such that r(s) = [;e™**dv (),
s € [0, 2t]. We note that

(P(s1)®|P(52)®) =r(s1 +52) = / e e 2 A dy(N), 0 < 51,80 <t (2.8)
R
For z € C, set g.()\) := e **. Since the span of {g, : 0 < s <t} is dense in
the Hilbert space L?(R,dv), we see that the map

J:L*(R,dv) 3 g, +— P(s)® € H

extends by linearity and density to a unitary map between L?(R,dv) and the
closed span of {P(s)® : s € [0,t]}. The map

2z g.(\) € L*(R,dv)

is clearly holomorphic in the strip {0 < Rez <t} and continuous up to the
boundary. Applying J, we obtain that the map s — P(s)® is the restriction
to [0,t] of a map z — ®(z) with the same properties. We define now

U(y)® := ®(iy), y €R. (2.9)

Clearly, U(y) is defined on D. We claim that U(y) extends to H as a strongly
continuous unitary group. To prove that U(y) is isometric, we use the identity

(B(21)[®(22)) = / e~ (T2 dy (),

R

which follows from (2.8) by analytic continuation. The map U (y) is clearly linear
on D, if we note that U(y)® is independent of the space D; to which ® belongs
and use that two vectors &, ¥ € D always belong to a common space D;. The
strong continuity of y — U(y) follows from the norm continuity of ®(z).

To prove the group property, we pick ® € D; and set P(s1,82) =
P(s1)P(s2)® = P(s1 + s2)® for s1, 82,81 + $2 € [0,¢]. We first analytically con-
tinue (s, 52) in $1 to P(iy1, s2) = U(y1)P(s1)® and then in sy to (iyy,iy2) =
U(y1)U(y2)®. Since P(s)® analytically continues to @®(z), we see that
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2.8 Functional calculus 51

P(s1 + s9)f analytically continues in (s1,s2) to ®(iyy +iye) =U(yr +42)f.
Therefore, U(y1)U(y2)® = U(y1 + y2)P.

We now uniquely define a self-adjoint operator H by U(y) =: e~ # . We note
that if ® € D;, then

@U@)®) = [ v,
R
hence dv(A) = d(®|1j_c 5 (H)®), which implies that ® € Dome™'#. The two
functions e "# ® and ®(iy) coincide and are the boundary values of the functions
e~ and ®(z), both holomorphic in the strip {0 < Rez < t} and continuous
up to the boundary. It follows that these two holomorphic functions coincide
everywhere and hence in particular

d(t) = P(t)® =e 1.

This shows the existence of a self-adjoint operator H satisfying (1). If Hy, Hs
are two such operators, then the same analytic continuation argument shows
that e W11 & = e~ W12 d for & € D, which implies that H; = Hy. We refer to
Klein-Landau (1981a) for the proof of (2). O

2.3.7 Essential self-adjointness
Let A be a Hermitian linear operator on a Hilbert space H, i.e. such that A C A*.

Definition 2.72 A is called essentially self-adjoint if A is self-adjoint. If the
domain D of A needs to be specified, one says that A is essentially self-adjoint
on D. If a self-adjoint operator A is the closure of A|D, one says that D is a
core for A.

Definition 2.73 If A is any operator, vectors ® € (), Dom A" satisfying for
somet >0

oo

SLALLIN

ot n!
are called analytic vectors of A.
Let us give three criteria for essential self-adjointness, all due to Nelson.
Theorem 2.74 (1) (Nelson’s commutator theorem) Let A be Hermitian and B
self-adjoint positive on H with Dom B C Dom A. Assume that
J4DJF < C(B+ 13|, [(42|BY) — (B|AD)] < C(@|(B + 1)®),
® € Dom B.

Then A is essentially self-adjoint on Dom B.

(2) (Nelson’s invariant domain theorem) Consider U; = e'4, a strongly con-

tinuous unitary group on H. Let D be a dense subspace of H such that
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52 Operators in Hilbert spaces

D C Dom A and D is invariant under U;. Then A is essentially self-adjoint
on D.

(3) (Nelson’s analytic vectors theorem) Let A be a Hermitian operator possessing
a dense space of analytic vectors. Then it is essentially self-adjoint on this
space.

A useful application of the notion of essential self-adjointness are the following
two versions of Trotter’s product formula:

Theorem 2.75 (1) Let A, B be two self-adjoint operators on H such that A+ B
with domain Dom A N Dom B is essentially self-adjoint. Then

; c . . n
elt(A+B) ! —g — lim (eltA/neltB/n) .

n—oo

(2) Suppose in addition that A, B are bounded below. Then

etA+B) g fim (e*tA/"’e*tB/"yL, t>0.

n—00 -

2.3.8 Commuting self-adjoint operators
Let Ay, As be self-adjoint operators on H.
Definition 2.76 We say that Ay and As commute if all their bounded Borel

functions commute in the usual sense. (It is enough to demand e.g. that et
commutes with elt24z for any ti,ts € R.)

If Ay, ..., A, are commuting self-adjoint operators, then for any Borel function
F on R™ we can define F(Ay,...,A,) by the self-adjoint calculus.
One can generalize this as follows. Let X be a real vector space.

Definition 2.77 We will say that
X3z (z|A) € Cly(H) (2.10)

is an X* -vector of commuting self-adjoint operators if there exists a unitary
representation X > x +— U(x) € U(H) such that, for all x € X, R >t Ul(tx)

is strongly continuous and U (tx) = el!{14),

Consider a vector of commuting self-adjoint operators (2.10). Clearly, (z1]A),
(x| A) commute for any z1,x9 € X. If F is a Borel function that depends on
a finite-dimensional subspace of X#, we can define F(A) by the self-adjoint
functional calculus.

Definition 2.78 C* vectors for (2.10) are elements of

N Dom((as]A)- (x,4)).

n=1lxzy,...,t, €X
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2.4 Polar decomposition 53

2.3.9 Conjugations adapted to a self-adjoint operator

Let H be a complex Hilbert space. Recall that 7 is a conjugation on H if it is an
anti-unitary involution.

Proposition 2.79 Let A be a self-adjoint operator on a (complex) Hilbert space
‘H. Then there exists a conjugation T such that TAT = A. We then say that T is
adapted to A.

Proof By the spectral theorem, there exists a collection {Q;, p; }icr of measure
spaces such that H = @ L*(Q;, ;) and A is unitarily equivalent to the multi-
iel

plication by a real measurable function. Then we take the standard conjugation
on @& L*(Qi, ;). U
iel

2.4 Polar decomposition

Every operator on a Hilbert space possesses a canonical decomposition into the
product of a positive operator and a partial isometry. It is called the polar decom-
position. In this section we discuss various forms and consequences of the polar
decomposition of an operator on a complex or real Hilbert space.

We will mostly consider the polar decomposition for operators that have a
trivial kernel and co-kernel. In this case the decomposition into a positive oper-
ator and a partial isometry (which in this case is a unitary, resp. orthogonal
operator) is unique, and not only canonical.

2.4.1 Polar decomposition
Let H, KC be real or complex Hilbert spaces and A € CI(H, K).
Theorem 2.80 There exist a unique positive operator |A| € CI(H) and a unique

partial isometry U € B(H,K) such that A = U|A| and Ker|A| = (RanU)*. We
have |A| := (A*A)z. Moreover one has A = |A*|U for |A*| = (AA*)z.

Definition 2.81 The decomposition A = |U|A described in Thm. 2.80 is called
the polar decomposition of A.

We will actually mostly need a special case of the polar decomposition,
described in the following proposition:

Proposition 2.82 Assume that Ker A = {0} and Ran A is dense in K. Then
there exists a unique positive operator |A| and a unique orthogonal, resp. unitary
operator U such that

A=UlA| = |A*|U. (2.11)
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54 Operators in Hilbert spaces

2.4.2 Polar decomposition of self-adjoint and
anti-self-adjoint operators

In the self-adjoint case the polar decomposition has additional properties:

Proposition 2.83 Let A be a self-adjoint operator on a real or complex Hilbert
space. Assume that Ker A = {0}. Let A = U|A| be the polar decomposition of A.
Then |A|U = U|A| and U? = 1.

Next let us consider anti-self-adjoint operators. Only the real case is interest-
ing, because in the complex case the multiplication of anti-self-adjoint operators
by the imaginary unit makes them self-adjoint. Therefore, until the end of this
subsection H will be a real Hilbert space.

Proposition 2.84 (1) Let A be an anti-self-adjoint operator on H such that
Ker A ={0}. Let A=U|A| be its polar decomposition. Then U € O(H),
U? = —1 (U is a Kdihler anti-involution) and U|A| = |A|U.

(2) Let R € O(H) such that Ker(R* — 1) = {0}. Define C = (R + R*). Then
—1<C < 1. Moreover, we have the polar decomposition %(R— R*) =
V1 —C?, where V € O(H), V? = —1 and [V,C] = 0. Finally, we have
R=C+Vy1-C2.

Proof (1) The identity A =U|A| = |A*|U implies that U = —U* since A =
—A*. Since U € O(H), we have U? = —1..

(2) Since R € O(H), we get that —1 < C' < 1. The operator 1(R— R*) is
anti-self-adjoint and has a zero kernel since Ker(R? — 1) = {0}. Moreover,

1 1 1
5(}%—1%*‘)’*5(1%—1%*):1(2]1—}32—1%’*2):]1—02. (2.12)

Applying (1), we get that V? = —T and [V, V1 — C?] = 0. Also V1 — C2[V,C] =
[V1—C2V,C] = [R,C] = 0. Since by (2.12) we know that Ker(1 — C?) = 0, this
implies that [V, C] = 0. O

Let R € O(H). Set Ha := Ker(R ¥ 1) and H; := (H_ +H,)*. Then H, is a
subspace invariant w.r.t. R and (R? — 1) |H1 has a trivial kernel. Thus Prop. 2.84
can be applied also in situations when Ker A and Ker(R* — 1) are non-trivial.

Corollary 2.85 (1) Let A be an anti-self-adjoint compact operator. Then there
exists an o.n. basis {ejx,e;}icr jes and real numbers {\;}ier with A\; >0
such that

AeH_ = >\7',67?—7 Aei_ = 7)\7j67;+, Aej =0.

(2) Let R€ O(H)N (14 Boo(H)). Then there exist an o.n. basis
{eix, fj, g1 }tier jesker and numbers {0;}icr with Im60; > 0 such that

Reiy =0;e;, Rei =0ie;r, Rfj=f;, Rgr=—g.
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2.4 Polar decomposition 55

Proof Since A preserves (Ker A)L, we can assume that Ker A = {0}. Let
A = V|A] the polar decomposition of A. Let {\;};cr be the eigenvalues of |A|
and H; = Ker(JA| — A;). Then H; is invariant under V, so V is a Kéhler anti-
involution of H;. Let (e1,--- ,e,) be an o.n. basis of the complex Hilbert space
CH;. We set ej; =ej, e;_ = Ve;, so that (e, - e q,€1—,...,€,_) is an o.n.
basis of the real Hilbert space H; and Ae;. = A\iej—, Aej_ = —A;e;4. Collecting
the above bases of H; we obtain the first statement of the corollary. O

Proposition 2.86 Let (), v,w,j) be a complete Kihler space.

(1) Let A be a self-adjoint or anti-self-adjoint operator on (Y,v) such that
Ker A ={0} and Aj=jA. Let |A|, U be as in Prop. 2.83 or Prop. 2.84
(1). Then j|A| = |Alj, Uj =jU.

(2) Let R € O(Y) such that Ker(R? — 1) = {0} and Rj = jR. Let C, V be as in
Prop. 2.84 (2). Then Vj =iV and jC = Cj.

Proof To prove (1) we use that j* = —j, since (v, ]) is Kahler, and hence [A*, ] =
0. This implies that [A*A,j] =0 and hence [|A],j] =0, [V,j] = 0. The proof of
(2) is similar. O

2.4.3 Polar decomposition of symmetric and
anti-symmetric operators

In this subsection H is a complex Hilbert space. We use the notation A* = A

defined in Subsect. 2.2.3. Recall that Cls/a(ﬁ, 'H) stands for the set of operators
A from H to H satisfying A = A* resp. A = —A*.

Proposition 2.87 Let A € Cly;,(H,H) such that Ker A = {0}. Consider
the polar decomposition A = U|A|. Then we have

UcU(H,H), UlA|=|AlU, TU =+1. (2.13)

Proof Consider the real Hilbert space Hg, that is, the realification of H. It can
be identified with the realification of . Let Ag denote the operator A understood
as an operator on Hg. It is easy to see that

(A" )r = (4Ar)",

where the superscript # is defined in the complex sense on the left and in the
real sense on the right. Therefore, A%, = +Ar. By the real case of Prop. 2.83,
resp. Prop. 2.84 (1), we obtain Ag = Ug|Agr| with Ug € O(Hg):

Ur € O(HR), U]R|A]R| = ‘AR|UR, U]l% = +1. (2.14)

Then we go back from Hg to H and H, and (2.14) becomes (2.13). O
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56 Operators in Hilbert spaces

Corollary 2.88 (1) Let A € By(H,H) be compact. Then there exists an o.n.
basis of (Ker A)*, {e;}icr, and positive numbers {\;}icr such that Ae; =
)\,67

(2) Let A € B,(H,H) be compact. Then there exists an o.n. basis of (Ker A)*,
{eit, ei_}ier, and positive numbers {\; };ic; such that Ae;, = \ie;—, Ae;_ =
7)\7 €iy.

2.5 Notes

The standard reference for operators on Hilbert spaces is the four-volume mono-
graph by Reed—Simon (1975, 1978a,b, 1980), and also the books by Kato (1976)
and by Davies (1980).

The Fredholm and regularized determinants are discussed e.g. in Simon (1979).

Thm. 2.69 about local Hermitian semi-groups is shown in Klein—Landau
(1981a) and Frohlich (1980).
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3

Tensor algebras

In this chapter we study various constructions related to the tensor product of
vector spaces. In particular, we introduce symmetric and anti-symmetric tensor
algebras, whose Hilbert space versions are called bosonic and fermionic Fock
spaces. Fock spaces are fundamental tools used to describe quantum field theories
in terms of particles.

We also discuss the notions of determinants, volume forms and Pfaffians, which
are closely related to anti-symmetric tensors.

3.1 Direct sums and tensor products

There are several non-equivalent versions of the tensor product of two infinite-
dimensional vector spaces. We will introduce two of them, which are especially
useful: the algebraic tensor product and the tensor product in the sense of Hilbert
spaces. The former will be denoted with & and the latter with ®.

There is a similar problem with the direct sum of an infinite number of vector
spaces, where we will introduce the algebraic direct sum & and the direct sum in
the sense of Hilbert spaces &.

3.1.1 Direct sums

Recall that if ), ..., ), is a finite family of vector spaces, then

S3)
1<i<n
stands for the direct sum of the spaces )V;, i = 1,...,n; see Def. 1.2. It is equal
to the Cartesian product [] J; with the obvious operations.

1<i<n
The notion of the direct sum can be generalized in several ways to the case of

an infinite family of vector spaces. One of the most useful is described below.
Let {Y; }ier be a family of vector spaces.

Definition 3.1 The algebraic direct sum of vector spaces {JV; }icr, denoted

al

&5 yi, (3.1)

iel
is the subspace of the Cartesian product [ V; consisting of families with all but
i€l
a finite number of terms equal to zero.
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58 Tensor algebras

Note that for a finite family of spaces the symbols & and % can be used
interchangeably.
If {V; }ier is a family of Hilbert spaces, then s Y; has a natural scalar product
iel

({witiert{witier) = Z(yi|wi)a

i€l

where {y; }ier, {w; }ier are elements of s Y.
i€l

Definition 3.2 The direct sum in the sense of Hilbert spaces is defined as
: cpl
& Y= (%9 yi) .
i€l i€l

3.1.2 Dzirect sums of operators
Let {Vi}icr, {W:}icr be families of vector spaces.
Definition 3.3 Ifa; € L();,W;), i € I, then their direct sum is defined as the
unique operator & a; in L (619 Vi, 619 WZ> satisfying
i€l iel el

(EB ai){yi}iel = {aiyi}ier-
i€l

Let {Vi}ier, {W;}ier be families of Hilbert spaces, and a;, i € I, be closable
operators from ); to W; with domains Dom a;. Then the operator & a; with
iel

. al . .
the domain & Dom a; is closable since
iel

@ a C(D a;)".
iel iel

Definition 3.4 The closure of ® a; € L (EIB Vi, e WZ) is denoted by the same
iel iel el

symbol & a; € Cl (@ Vi, ® WZ)
i€l il iel

Clearly, @ a; is bounded iff a; are bounded and sup ||a;|| < oo, and then
il iel

| & ai] = sup [|a;].
iel i€l
Similarly, @ a; is essentially self-adjoint on & Dom a; iff a; are essentially self-

il iel
adjoint.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

3.1 Direct sums and tensor products 59

3.1.3 Algebraic tensor product

Let Y, W be vector spaces over K. Let Z = ¢.() x W, K), that is, the space of
finite linear combinations of (y,w) € Y x W with coefficients in K (see Def 2.6).
Let Z; be the subspace of Z spanned by elements of the form

(y, w1 +w2) = (y,w1) = (y,wa), (Y1 +y2,w) = (y1,w) = (32, 0),

Ay, w) — Ay, w), (y,\w) —Xy,w), NEK, y,y1,y2 € Y, w,wy,wy € W.
Definition 3.5 The algebraic tensor product of Y and W is defined as

VOW = Z/Z.
The formula y @ w := (y,w) + Zy defines the bilinear map
YXW3 (yw) »yoweYOW,

called the tensor multiplication.

We have natural isomorphisms

YK&Y=YuK.

More generally, let );,...,), be a finite family of vector spaces. Let Z :=
¢ (V1 x -+ x Yy, K), that is, the vector space over K of finite linear combinations
of (Y1,.--,Yn) € Y1 X -+ X Y. Let Zy be the subspace of Z spanned by elements
of the form

(...,yj—&—y;,...)—(...,y,-,...)—(...,y;»,...),
(s MYy ) =AYy )y ANEK, gyl €Y i=1,...,n.
Definition 3.6 The algebraic tensor product of Yy, ..., Y, is defined as
N8V, = Z/Z.
The formula gy @ -+ @ yn = (Y1,...,Yn) + 20 defines the n-linear map
VX X VD W) 2 @ @y ENB- B,
called the tensor multiplication.

We have a natural identification
MBI EBYVs) = (M W) BV ~ Vi8I 6 ;. (3.2)
The tensor multiplication ® is associative.

Remark 3.7 Note that we can replace the set {1,...,n}, labeling the spaces );
in Def. 3.6, by any finite set I. Then we obtain the definition of & V.
i€l

If Y, W are real vector spaces, then we have the identification

CYBW) ~ CYHTW. (3.3)
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60 Tensor algebras

Clearly, if ) and W are complex spaces, then Y& W can be identified with
Yw.

If one of the spaces )Y or W is finite-dimensional then we will often write
Y ® W instead of y® W.

If ¥ and W are finite-dimensional, then () ® W)* will be identified with
W# @ Y* using the following convention: if £ € Y*, 6§ € W* then

(0 ©Ely @ w) := (fly)(0fw). (34)

(Note the reversal of the order.)

3.1.4 Tensor product in the sense of Hilbert spaces

If Y, W are Hilbert spaces, then y@é W has a unique scalar product such that

(1 @ wilya @ wa) := (y1]y2)(wi|wz), yi1,92 €Y, wi,wy €W.

Definition 3.8 We set
VoW = (Yow)e! (3.5)

and call it the tensor product of ) and W in the sense of Hilbert spaces.

If one of the spaces ) or W is finite-dimensional, then (3.5) coincides with
yiow.

The remaining part of the basic theory of the tensor product in the sense of
Hilbert spaces is analogous to that of the algebraic tensor product described in
the previous subsection.

3.1.5 Bases of tensor products

Let Y, W be finite-dimensional vector spaces. If {e;};c; is a basis of ) and
{fi}jes is a basis of W, then
{ei ® fi}jyerxs
is a basis of Y @ W.
If {e'};cs is the dual basis in Y* and {f7},¢; is the dual basis in W# then
{f @e}ynerxr

is the dual basis in (Y @ W)* ~ W# @ V*.

Suppose now that ) and W are Hilbert spaces. If {e;};c; is an o.n. basis of
Y and {fj};jecs is an o.n. basis of W, then {e; ® f;}( jjerxs is an o.n. basis of
YyeWw.
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3.1 Direct sums and tensor products 61

3.1.6 Operators in tensor products
Let Vi, Yo, Wi, Ws be vector spaces.
Definition 3.9 If a; € L(Y1, W) and as € L(YVo, Ws), then a1 ® ay is defined
as the unique operator in L() %3@, Wi & W) such that

(a1 ® az)(y1 @ y2) = a1y @ azyo.

If V1,5, Wi, W, are Hilbert spaces and ap, resp. as, are closable opera-
tors from )y to Wy, resp. from )» to W,, then a1 ® as with the domain
Dom a, & Dom asy is closable, since

al ®a; C (a1 ®ag)™.

Definition 3.10 The closure of a1 ® as € L(Y1 ® Yo, Wi @ Wh) will be denoted
by the same symbol a3 ® as € CUY; ® Yo, Wi @ Wh).

If both a; and as are non-zero, then a; ® as is bounded iff both a; and ay are
bounded, and then ||a; ® az|| = [|a1||||az]-

If both a; and ay are essentially self-adjoint, then a; ® ay is essentially self-
adjoint on Dom a, % Dom as.

3.1.7 Permutations

Let Y1,...,Y, be vector spaces.

Definition 3.11 Let S,, denote the permutation group of n elements and o € S,, .
O(0o) is defined as the unique operator in L(Y; - Q Y, Vo-1(1) & -8V, n))
such that

@(U)yl Q- QY = Yo—1(1) X ® Yo—=1(n)-

It )y,..., ), are Hilbert spaces, then ©(c) is unitary.

3.1.8 Identifications

Let Y, W be vector spaces, with W finite-dimensional. Then there exists a unique
linear map L(W,Y) — Y ® W* such that

W) (€l —y <.

If Y, W are Hilbert spaces, then there exists a unique unitary map B*(W,)) —
Y ® W such that

y)(w| —y@w.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

62 Tensor algebras

Note the identity that uses the above identification, valid for y € Y, w € W,
Be B*(W,)):

(y|Bw) = (y @ w|B).

3.1.9 Infinite tensor product of grounded Hilbert spaces

It is well known that there are problems with the definition of the tensor product
of an infinite family of Hilbert spaces. The most useful definition of such a tensor
product depends on the choice of a normalized vector in each of these spaces.

Definition 3.12 A pair (H,Q) consisting of a Hilbert space and a vector Q) € H
of norm 1 is called a grounded Hilbert space.

Let {(H;, Qi)}iel be a family of grounded Hilbert spaces. If J; C J, C I are
two finite sets, we introduce the isometric identification

Q@ His2¥V—U¥® ® e  H,.
i€Jy iGJQ\eil i€Js

Definition 3.13 The tensor product of grounded Hilbert spaces {(’Hi, Qq)}
is defined as

iel

cpl

L) = :
i?I(H“ i) U z‘?}Hl
Jeal

fin

The image of ¥ € ®J H; will be denoted by
i€

Y@ ® Q.
iel\J

Such vectors are called finite vectors. Similarly, if B € B( ® H,;), we will use the
icJ

obvious notation

B® ® 1y, €B<® HI)
iel\J iel

Clearly, if I is a finite set, then ® (H;,;) = ® H; for any family of normal-
i€l iel
ized vectors ;. Moreover, for I N I, = ) we have

® (Hi, %) ® @ (Hi, i)~ @  (Hi, ).
i€l i€l

i€l Uly

3.1.10 Infinite tensor product of vectors and operators
Theorem 3.14 Let ®; € H;, i € I, have norm 1. Set

U, =0 ¢ ® (36)
ieJ iel\J
for J €2k . Then the net {‘IIJ}JEQ{_‘ 1s convergent iff the infinite product

11(24|®;) is convergent.
iel
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3.1 Direct sums and tensor products 63
Definition 3.15 The vector li}n W ; will be denoted by ® ;.
. =
Proof of Thm. 3.14. Assume first that the net {W;};cor is convergent in
® (Hi, ). I Iy = {i € I : (9;]Q;) = 0} is infinite, then clearly li}n(\IfJ|\I!) =0
i€l

for all finite vectors W. Since finite vectors are dense this is a contradiction, since
li}n ||¥ ;|| = 1. Therefore, I is finite.

It remains to prove that the net { 11 (<I>,;|Qi)} has a non-zero limit.
Je2f

ieJ\Ip !
Clearly,
Iim¥P; = @ o, @ . (3.7)
J i€l i€I\I,

If I, C J, then

(qf,,y ® %0 © Q) = I (@),

i€ly 1€I\I €I\
i 0

which proves that the net {I_L eng, (Pi \Ql)} . is convergent in C. If the limit
/ J €24,

is 0, then, since (®;]€;) # 0 for i € I\I;, we obtain that the vector & ®;
ie\I,

is orthogonal to all finite vectors in  ® (H;,€);), which using (3.7) yields a
ieI\I,
contradiction, since li§n l¥ ;]| = 1. Therefore, the infinite product [](®;]€;) is
iel
convergent.

Conversely, assume that the infinite product [](®;|€2;) is convergent. Then
iel

D L= (24]9)] < oo
iel
Note that if J; C .J5, then
1Oy, =0 |* =2-2Re [] (®:]).
i€y \J2
Therefore, the net {¥,} ¢, is Cauchy, and hence converges in ® (H;,€;). O
in iel
Using Thm. 3.14, we immediately obtain the following theorem.
Theorem 3.16 Let A; € B(H;) be contractions. Then there exists the strong
limit of
B,] = Q AZ ® & ]17-[7: (38)

ieJ ieI\J

iff the infinite product [T (§2|A;§;) is convergent.
ier

Definition 3.17 The operator lign B will be denoted by ® A;.
e icl
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64 Tensor algebras

3.2 Tensor algebra

In this section we introduce the tensor algebra over a vector space. This concept
has two basic versions: we can consider the algebraic tensor algebra, or if the
vector space has the structure of a Hilbert space, the complete tensor algebra
(which is also a Hilbert space), called sometimes the full Fock space. Full Fock
spaces play the central role in the so-called free probability. For us, they are
mainly intermediate constructions to be used in the discussion of bosonic and
fermionic Fock spaces.

3.2.1 Full Fock space

Let Y be a vector space.

al
Definition 3.18 Let &"Y (or ¥ ) denote the n-th algebraic tensor power of
a1 0
Y. We will write ® Y := K. The algebraic tensor algebra over ) is defined as

yi= B ¥
0<n<oo

al 0
The element 1 € & Y is called the vacuum and denoted by 2. If YV is a finite-
dimensional space, we will often write ™Y instead of&) V.

%y is an associative algebra with the operation ® and the identity §2.
Assume now that ) is a Hilbert space,

Definition 3.19 We will write @"Y (or Y®") for the n-th tensor power of )
N cpl
in the sense of Hilbert spaces. Clearly, it is equal to (Q‘@ny) . We set

RY:i= @ ®”y=(?§éy)cpl.

0<n<oo

®Y s called the complete tensor algebra or the full Fock space.
We will also need notation for the finite particle full Fock space

@Y= & @Y.

0<n<oo

@)Y and @) are associative algebras with the operation ® and the identity
Q.

3.2.2 Operators dI' and I' in full Fock spaces
The definitions of this subsection have obvious algebraic counterparts. For sim-
plicity, we restrict ourselves to the Hilbert space case and assume that Y, Yy, s
are Hilbert spaces.
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3.8 Symmetric and anti-symmetric tensors 65

Definition 3.20 Let p be a linear operator from Yy to Y. Then we define
" (p) := p®" with domain %”Domp, and the operator T'(p) from Q@Y to @Y

with domain & Dom p.

By Subsects. 3.1.2 and 3.1.6 we see that if p is closable, resp. essentially self-
adjoint, then so is I'(p). T'(p) is bounded iff ||p|| < 1. T'(p) is unitary iff p is.

Definition 3.21 If h is a linear operator on ), we set

ar(h) =Y 15 ' ene 15"

Jj=1

with domain &"Dom h, and

with domain & Dom h.

Again, if h is closable, resp. essentially self-adjoint, then so is dT'(h).
Definition 3.22 The number operator and the parity operator are defined
respectively as

N :=dr'(1), (3.9)
I:=(-1)" =T(-1). (3.10)

Proposition 3.23 (1) Let h,hi,hy € B(Y), p € B(V,)1), p2 € B(Oh, Do),

lp1ls lp2|l < 1. We then have

L(p2)T(p1) = L(pap),
[dT(hy),dL (he)] = dT'([h1, ha]).

(2) Let @,¥ € @™y, he B(Y), pe B(Y,)1). Then

I'(p) @@ ¥ = (I'(p)®) @ (I'(p) V),
dr(h) @2V = (AU(A)®) ® U + & @ (dT'(h)D).

3.3 Symmetric and anti-symmetric tensors

In this section we describe symmetric, resp. anti-symmetric tensor algebras. Their
Hilbert space versions are also called bosonic, resp. fermionic Fock spaces.
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66 Tensor algebras

Unfortunately, there seems to be no uniform terminology, and especially nota-
tion, in this context in the literature. We try to introduce a coherent nota-
tion, which in particular stresses parallel properties of the symmetric and anti-
symmetric cases.

3.3.1 Fock spaces

Let Y be a vector space. Recall that in Subsect. 3.1.7, for o € S,, we defined the
operators O(a) € L(®™). Clearly,

S, 30— 0(c) € L®"Y)
is a representation of the permutation group.
Definition 3.24 We define the following operators on & Y:

@y:%E:m@

: UESn

o = % Z sgn(o)O(o).

‘oes,
We will write s/a as a subscript which can mean either s or a.

It is easy to check that ;L/a is a projection.

Definition 3.25 Introduce the following projections acting on LY:
@s/a = & o

s/a°
0<n<oo

We set

“Il‘s /a(Y) are called the algebraic symmetric, resp. anti-symmetric tensor algebras
or algebraic bosonic, resp. fermionic Fock spaces.
Al
If Y is a finite-dimensional space, we can write I'!), (V) instead of fs/&(y).

all
Elements of 111 /a(Y) consist of symmetric, resp. anti-symmetric tensors, as

expressed in the following proposition:

Proposition 3.26 Let ¥ € &"3}. Then

17

(1) Vel (V) iff O(0)T =V, 0 €S,;

(2) Tel, (V) iff ©(0)¥ =sgn(o)¥, o € S,.

Assume now that ) is a Hilbert space. Then @g"/a and O/, are orthogonal
projections.
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3.8 Symmetric and anti-symmetric tensors 67
Definition 3.27 We define

n n n al™ cpl
FQ/a(y) = s/a® Y= (Fq/a(y)> )
Al

) : cpl
L) = & 10,0 = 0,0V = (L.0) -

n=
['s/a(Y) is called the bosonic, resp. fermionic Fock space.
Note that I'y/, () itself is a Hilbert space (as a closed subspace of ®)).

Definition 3.28 We will need notation for the finite particle bosonic, resp.
fermionic Fock space:

)= & TI,0)

0<n<oo

3.3.2 Symmetric and anti-symmetric tensor products
Let U, ® e T/, (V).

Definition 3.29 We define the symmetric, resp. anti-symmetric tensor product
of ® and W:

U@, ®:=0,,0od.

al

I's/2 () is an associative algebra with the operation ®,,, and the identity Q.
Note that the set of vectors of the form

Y- QY =y Qs - s Y, (3.11)
n times n times

for y € ), spans BI]‘: ).
Definition 3.30 For brevity we will denote (3.11) by y®".

The notation ®, that we introduced is not common in the literature. Instead,
one usually prefers a different closely related operation:

Definition 3.31 The wedge product of vectors ® and ¥ is defined as

(p+q)!
plq!

alq

UAD = U@, ®, for¥el(y),®ecl (). (3.12)

The advantage of the wedge product over ®, is visible if we compare the
following identities:

YA AYn = D 8580(0) Yo(1) @ @ Yo (n)s
ocESy

Y1 Qa - Qa Yn = % ZS Sgn(g) Yo (1) ®"'®y0(n)a Yi,oo Y €V
oES,

Note that A is also associative.
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68 Tensor algebras

Definition 3.32 One often writes A"Y and NY for f‘: (V) and fa(y)

Definition 3.33 If Y is a Hilbert space, we can define ®g/, and A in I's;, (V)
in the same way, with the same properties.

3.3.3 dI' and T" operators

For brevity we restrict ourselves to the case of Hilbert spaces.

Let p be a closable operator from ) to W. Then I'"(p) maps I',, () into
(W). Hence I'(p) maps I'y/, (V) into Ty, (W).
Definition 3.34 We will use the same symbols T" (p) and T'(p) to denote the
corresponding restricted operators. T'(p) is sometimes called the second quanti-

1—‘77,

s/a

zation of p.
Let h be a closable operator on Y. Then dI'"(h) maps I'{, (V) into itself.
Hence, dI'(h) maps I's/,()) into itself.

Definition 3.35 We will use the same symbols A" (h) and dI'(h) to denote the
corresponding restricted operators. Perhaps the correct name of dI'(h) should be
the infinitesimal second quantization of h.

Note that in the context of bosonic, resp. fermionic Fock spaces the operators
T'() and dT'(+) still have the properties described in Prop. 3.23 (1). Prop. 3.23
(2) needs to be replaced by the following statement:

Proposition 3.36 Let p € B(Y, 1), h € B(Y), ¥, ® e I'in

s/a

(Y). Then

L(p) V&, @ = (T(p)P) @0 (T(p)®),
AT(h) W @, ® = (dT(h)W) @,/ ® + U @, ), (AT (h)P).

3.3.4 Identifications

Let Y be a finite-dimensional vector space. Then I'2 /a()}) can be identified with
Lo (V*,Y), which were defined in Defs. 1.18 and 1.29.

Let Y be a Hilbert space. Recall that B?(), W) denotes the space of Hilbert—
Schmidt operators from ) to W. We introduce the following symbols for the
spaces of symmetric and anti-symmetric Hilbert—Schmidt operators:

B, = {ac BF,Y) : a* =a),
B2(Y,Y) :={ac B*Y,Y) : af =—a},

where as usual one identifies Y* with ) using the Hilbert structure of . Then
the unitary map of Subsect. 3.1.8 allows us to unitarily identify rg/a(y) with
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3.8 Symmetric and anti-symmetric tensors 69

3.3.5 Bases in bosonic Fock spaces
Let Y be a finite-dimensional vector space and {e; : i =1,...,d} a basis of Y.

Definition 3.37 For k = (ki,...,kq) € N?, we set

G| =Ky + -k, K=kl kg,

ey = G?kl Qs - R ef’kd, eg =K.
Then
{eg :+ keN', [k =n} (3.13)

is a basis of T'7 ().

The dual of I'"()) can be identified with I'"(V#). Let {¢’ : i=1,...,d} be
the dual basis of Y7*.
Definition 3.38 We set ef := (e)®ki @ - @ (e1)®F1 | for k € N7,

Then

is the basis of T'? (V*) dual to (3.13).
Let Y be now a Hilbert space with an o.n. basis {e; }i¢;.

Definition 3.39 Recall that c.(I,N) denotes the set of functions I — N with all
but a finite number of values equal to zero. If k € ¢.(I,N), then the definitions
of |k|, k! and e} have obvious versions in the present context.

Then
I&|! . .
—ec; : kecc(I,N), |[kl=n
k!

is an o.n. basis of I'7 ().

3.3.6 Bases in fermionic Fock spaces

Let Y be a finite-dimensional vector space and {e; : i =1,...,d} a basis of Y.
Definition 3.40 For J = {iy, -+ ,i,} C{1,...,d} with 1 <i; <--- <14, <d,
set

ey =€ Q- Ra e, .
Then
{ej + JCA{l,....d}, #J =n} (3.14)
is a basis of T ()).
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70 Tensor algebras

The dual of I'? (Y) can be identified as above with I'? (V*).
Let {¢' : i=1,...,d} be the dual basis in Y*.

Definition 3.41 For J = {iy, - ,i,} C{1,...,d} with 1 <i; <--- <14, <d
put el = ¢l R - Dy €1

Then

{#Je’ + Jc{1,...,d}, #J =n}

is the basis of ' (V*) dual to (3.14).
Let Y be now a Hilbert space with an o.n. basis {e; : ¢ € I'}. Let us choose a
total order in the set I.

Definition 3.42 For a finite subset J of I, we define ey in an obvious way.

Then

{\/ﬁeJ JCl, ,#J:n}

is an o.n. basis of I'? ().

3.3.7 Exponential law for Fock spaces

For brevity we restrict ourselves again to the case of Hilbert spaces. Let ) and
Y> be Hilbert spaces and let j; : J; — V1 @ ) be the canonical embeddings.
We introduce an identification

U T (V) 8T (1) — T (0 & W)

as follows. Let ¥ € F:/la(yl), U, € F:/?a(yg). Then

UT, @ Wy = ) el ) w)) ®s/a (I'(J2)¥2). (3.15)

nilny!

Theorem 3.43 (1) U extends to a unitary operator from I's;, (V1) ® Iy, (I2)
to Fs/a(yl @ yz)
(2) U @ Q9 = Q.
(3) If h; € B();), then
dl'(hy @ ho)U = U (dT'(hy) @ 14 1@ dT'(hs)). (3.16)
(4) If p; € B(Y;), then

L(p1 ®p2)U = UL (p1) @ I'(p2). (3.17)
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71
Proof Let us prove (1). To simplify the notation let us restrict ourselves to the
symmetric case. Let U1 € T?1());), ¥y € T72()%). Then
L)% @ T(j2)Vy = (nljm)! SZ O(0)(j1)¥1 @T'(j2) ¥y
(S nyt+ng
_ _nilny!
- (n1+n2)!

O(a)T'(j1)V1 @ I'(j2)Ws.
[U]esnl+nz/snl XSnZ
Now the elements of the sum on the right are mutually orthogonal. Hence
2
PGy @, D)W |2 = (tnads) e Z

18(0) ¥y @ s
€S +ny/Sny XSn,
= il [0 @ Uy |12,

0
Using the concept of the tensor product of grounded Hilbert spaces, one can

easily generalize the exponential law to the case of an infinite number of Fock
spaces. In fact, let );, ¢ € I be a family of Hilbert spaces and denote by j; : Vi —
© )i the canonical embeddings. Let €; denote the vacuum in I'y/,(Y;). Then
i€l
UV, @---0V; ® ® 9

1€IN\{i1,...0n }

{ + -+ In .
(1.' . |>F(ji1)‘1’1®s"

il iy

- ®s T(ji, ) ¥,
extends to a unitary map

U: i?f (Pﬂ/a(yl)vﬂl) - F%/a (zeeal yl) .

3.3.8 Dimenston of Fock spaces
Let dim Y = d. Then it is easy to see that

dim T} (V) = (G550
dim T} (V) = gty

We have the following generating functions for the above quantities

(]_*t)i Z tn (d+n—1)!

(d— 1‘77"
n=0

(3.18)
(1+t) = Zt”d, e

n=0

Recall that we have the identifications

Ga(V1 ©Ns) ~ m&i LY, (V1) @ TL" (V). (3.19)
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72 Tensor algebras

Assume that dim ) = d;, dim ), = dy. Then comparing the dimensions of
both sides of (3.19) we obtain the following identities:

(di+ds+n—1) i d1+m71 (dy+n—m—1)!

IL'(d1+d2—1 m!(d; —1)! (n—m)!(dy —1)!?

m=0
n

(d1+ds)! Z dy!
nl(di+dy—n)!l m! dl m)! (n—m)!(dy —n+m)!"

These identities can be easily shown using the generating functions (3.18) and
the identities

(1—t)~ N (1 —t)"% = (1 —¢)~(h+d2)

(L 0B (L 1) = (1 1)),

3.3.9 Super-Fock spaces

Let (), €) be a super-space (that is, a vector space equipped with an involution;

see Subsect. 1.1.15). Then we introduce the action of the permutation group in
al M

L(é} Y) as follows:

Definition 3.44 Let o € S,,. Then ©.(o) will denote the unique linear operator
al
on& Y with the following property. Let yy,...,y, € Y be homogeneous. Then

@E(U)yl Q- QY = Sgne(a) Yo—1(1) R Yo—1(n)>»
where sgn, (o) is the sign of the permutation o restricted to the odd elements.

Definition 3.45 We define

or :=% Z O.(0).

og€eS,

Clearly, ©F is a projection on @‘9”3}
Definition 3.46 We set

() =er &'y,
W= B )

Al
If YV is a finite-dimensional space, we can write T (Y) instead of ll‘E ).
If Y is a Hilbert space, then ©} are orthogonal projections.

Definition 3.47 We define the super-Fock spaces

ryQy) =0e¢ "y,
T.(Y):= & ().

n=0
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3.4 Creation and annihilation operators 73

We extend various definitions from the context of bosonic, resp. fermionic Fock
spaces to super-spaces in an obvious way. In particular, we define the operation
®e, creation, resp. annihilation operators (generalizing the definitions of Sect.
3.4 below) and the operators T'(+) and dT'(+).

I'(Y) is naturally a super-space with the involution I'(e).

Super-Fock spaces enjoy the exponential property analogous to that described
in Thm. 3.43 for bosonic and fermionic Fock spaces. Thus if (), €), (W,¢) are
two super-Hilbert spaces, then

Teae (Y OW) =T (V) @T.(W). (3.20)

In particular, if Y =), @ ) is the decomposition into the even and odd sub-
space, we then have

Le(Y) =Ti() @ Ta(D1), (3.21)

which can be treated as an alternative definition of a super-Fock space.
We will often drop the index € in (3.21)
Note that if ¢ € L(Y) is odd, then dI'(¢)? = dI'(¢?). In the matrix notation:

2
(e B ]) = (75" ] )
cio 0 0 ciocon

This identity plays an important role in super-symmetric quantum physics.

3.4 Creation and annihilation operators

Creation and annihilation operators belong to the most useful constructions of
quantum physics. This section is devoted to their basic properties, in both the
bosonic and the fermionic case.

Throughout this section we will use the standard convention for the scalar
product in the Fock spaces. Some of the properties of creation and annihilation
operators actually look simpler on modified Fock spaces, which will be discussed
in Subsect. 3.5.7.

Throughout the section, Z, Z; and Z, are Hilbert spaces.

3.4.1 Creation and annihilation operators: abstract approach

We prepare for the definitions of the creation and annihilation operators with
two lemmas in an attract setting. We start with the bosonic case.

Lemma 3.48 Let ‘H be a Hilbert space, D C H a dense subspace, and ¢, a two
linear operators on D such that

(1) ¢,a:D — D;
(2) eCa*,acCc
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74 Tensor algebras

(3) ac — ca =1, as an operator identity on D;
(4) ca is essentially self-adjoint on D.

Then ¢, a are closable with a® = c¢*, ¢ = a*. If we write a for a®, one has

aa* —a*a =1, as a quadratic form identity on Dom(a) N Dom(a™).

Proof Since ¢ C a* and a C ¢*, ¢* and a* are densely defined, and hence ¢ and
a are closable. Moreover, since ¢ C a* we have ¢! C a°*. From now on we will
denote a', ¢! simply by a, c.

Set N := (ca)®!. Using (4), we see that N is a positive self-adjoint operator
and D is a core for N. Since

|a®|? = (®|ca®), [|c®|* = (®|ca®) + (®|®) for ® € D,
we see that Doma = Dom ¢ = Dom Nz. This implies that
a(N+1)77, ¢(N+1)"7, (N+1)"7¢, (N+1)"7a € B(H). (3.22)
Next, for @, ¥ € D, we have
|(c®|W)] = |(@]aW)] = |(N + ) ?D|(N + 1) 7aW¥)| < C|(N + )7 ||| ¥].

Since D is dense in Dom N* and in Dom a, we obtain that Dom Nt C Dom a*,

and a* | =c.

1
DomN 2
To prove that a* = ¢, it remains to prove that Dom a* = Dom N%. Note that

® € Dom N7 iff
IN(eN +1)7'®|| < Ce 7, € > 0. (3.23)

From the identity a(N + 1) = Na valid on D, we deduce first that (eN +
1)~ 'a(eN + 1 —¢) = a on D and then on Dom N, and then that

(eN+1)'a=a(eN+1—¢)"! onH, (3.24)
since both operators are bounded by (3.22). For ® € Doma* and ¥ € D, we have

|(®|N(eN + 1)~10)| = |(®|(eN + 1)~ LcaD)]

=[(®|(eN + 1)~ tacP) — (®|(eN + 1)1 0)|
(®la(eN + 1 —€)7Lew) — (®|(eN + 1)1 )|
C’H(eNJr]ll— €)"LeW| + O Y| 1
ClI(N + 1)z (eN +1 — I[N + 1)~z ¥ + C|| 2|
Ce 2|,

INIAIA

where we have used (3.24) and the fact that ® € Dom a*. Using (3.23), we obtain
that ® € Dom N%, which completes the proof that a* = ¢, and hence that ¢* = a.
The quadratic form identity on Dom a N Dom a* follows then by density from the
operator identity on D. O

The following lemma describes properties of fermionic creation and annihila-
tion operators in the abstract setting:
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3.4 Creation and annihilation operators 75
Lemma 3.49 Let ‘H be a Hilbert space, D C H a dense subspace, and ¢, a two
linear operators on D such that

(1) ¢,a:D — D;
(2) cCa*, aCcy
(3) a*> =c? =0, ac+ ca = 1 as operator identities on D.

Then ¢, a extend as bounded operators on H, ¢ = a* and ||la]| = ||c|| = 1.
Proof We obtain from (2) and (3) that
le@[* + [la®|* = @], @ € D,

and hence ¢ and a extend as bounded operators on H with a = ¢*, ¢ = a*. Next

we use

a*aa*a = a*a — (a*)*a® = a*a,
and hence ||a||* = ||a*aa*al| = ||a*a| = ||a||*. By [a,a*]; =1, ||la]| cannot be 0.
Therefore, |la]| = ||a*|] = 1. O

3.4.2 Creation and annihilation operators on Fock spaces
We consider the bosonic or fermionic Fock space I'y/,(Z).

Definition 3.50 Let w € Z. The creation operator of w, resp. the annihilation
operator of w, are defined as operators on FS/na (Z) by

c(w)¥ :=vn+ 1w ®), ¥,
®(n—1 n
a(w)¥ = Vn(w|e13" ™V v, werr (2).
Theorem 3.51 (Bosonic case) In the bosonic case, the operators c(w) and a(w)

are densely defined and closable. We denote their closures by the same symbols.
They satisfy a(w)* = c¢(w). Therefore, we will write a*(w) instead of c(w).

(1) The following quadratic form identities are valid:
[a" (w1), a™(w2)] = [a(w1), a(ws)] = 0,
la(wy), a” (ws)] = (wi|w2)1L.
(2) For U eIy (2), we Z,
la(w) @]l < [l INTE], [la*(w)¥] < Jwlll(N + 1)@,

Proof We apply Lemma 3.48 to c(w), a(w) with D = I'i*(Z) (without loss of
generality we can assume that [|w|| = 1). Then c(w)a(w) = dI'(Jw)(w|), which is
essentially self-adjoint on D.

We have

a*(w)a(w) = AT (jw)(wl), a(w)a®(w) = dT (jw)(w]) + [w]*1.
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Using that |w)(w| < [|w]]*1 on Z, we get
4 (j)(wl) < ol N,

which implies (2). O

Theorem 3.52 (Fermionic case) In the fermionic case, the operators c(w) and
a(w) are densely defined and bounded. We denote their closures by the same
symbols. They satisfy a(w)* = c(w). Therefore, we will write a*(w) instead of
c(w).

(1) The following operator identities are valid:

[a" (w1), a*(w2)]4 = [a(w:), a(w)]s =0,
[a(ws), a”(wa)]1 = (wiws)1.
(2) fla(w)ll = lla* (w)[| = fJw]-

Proof We apply Lemma 3.49 to c(w), a(w) with D = I'it(Z) (without loss of
generality we can assume that ||w]] = 1). O

Proposition 3.53 Ifp € B(Z,,2,) and h € Cl(Z), one has

(1) a(w)T'(p) = T(p)a(p*wsz), T(p)a*(wi) = a*(pw1)T(p),
(2) [dL(R), a(w)] = —a(h*w), [dT(h), a*(w)] = a*(hw),

the last two identities being quadratic form identities on aIl‘s/a(Dom h).

For further reference we note the following obvious facts:
{Werly,.(2) : a(w)¥ =0, we Z}=CQ, (3.25)

Span®! {iﬁoa*(wi)fl, wy,...,w, € Z, n=0,1,.. } =Ty.(2). (3.26)

Remark 3.54 The notation for creation and annihilation operators introduced
in this section is typical for the mathematically oriented literature. In the physical
literature it is common to assume that the one-particle space has a distinguished
0.n. basis {e;}jes. One writes a; and a; instead of a*(e;) and a(e;), j € J.
Clearly, every vector w € Z can then be written as ) ;. ; wje;, and we have
the following dictionary between “mathematician’s” and “physicist’s” notations:

_ Lk
= E wjaj,

JjEJ
(w) =) _w;a;. (3.27)
jeJ
Note that the latter notation is heavier and depends on the choice of a basis,

but has a useful advantage: it does not hide the anti-linearity of the annihilation
operator.
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3.4 Creation and annihilation operators 7

Sometimes, instead of choosing an o.n. basis of Z it is more natural to assume
that Z = L*(Q,dq) for some measure space (Q,dq). Clearly, w € Z can be rep-
resented as a function Q 3 q — w(q). One introduces “operator-valued distribu-
tions” Q 3 q +— ay, a,, which are then “smeared out” with test functions to obtain
creation and annihilation operators:

a'(w) = [ wloada,
a(w) = /maqdq. (3.28)

(3.28) can be viewed as a generalization of (3.27).

The following operator seems to have no name, but is useful, especially on
fermionic Fock spaces:

Definition 3.55 Set
A= (—1)NWV=D/2, (3.29)
The following property is valid in both the bosonic and the fermionic case:

Aa*(2)A = —Ia*(z) = a*(2)1,
(3.30)
Aa(z)A = Ia(z) = —a(z)1,

where I denotes the parity operator. In the fermionic case, (3.30) allows the
conversion of the anti-commutation relations into commutation relations:

[Aa*(z1)A, a*(22)] = [Aa(z1)A, a(z)] = 0,

[Aa*(21)A, a(z9)] = I(22]21).

3.4.3 Exzponential law for creation and annihilation operators

Let Nj, I;, A; be the operators on I'y/,(Z;) defined as in (3.9), (3.10) and (3.29).
Recall that the unitary operator U : T/, (21) ® Ts/a(22) — T/a(21 @ 22) was
defined in Thm. 3.43.

The exponential law for creation and annihilation operators is slightly different
in the bosonic and fermionic cases:

Proposition 3.56 Let (wy,wq) € Z1 & Z5.
(1) In the bosonic case we have
a*(wy,we)U =U(a*(wy) @ 1+ 1® a*(w2)),
a(wy, w)U =Ul(a(w) @ T+ 1® a(ws)).
(2) In the fermionic case, we have

a*(wy,we)U =U(a*(wy) @ T+ I} @ a*(ws)),
a(wy,w)U =U(a(wy) @ 14+ I @ a(ws)).
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78 Tensor algebras

Proposition 3.57 (1) IU =UL ® I,
(2) AU = U(A ® Ay)(—1)M1&N2,
(3) In the fermionic case,

Aa*(wy,w))A U =U(a*(un); @ Iy + 1 ® a*(wq)I2),

Aa(wy,w)A U =U(—a(w)[; @ [, — 1® a(ws)I).

Proof We use
NU=U(N; @ 1+ 1® Ny),
%N(N -1) = %Nl(]\ﬁ -1)+ %N2(N2 — 1) + N1 No,
(=DM EY (a(w) @ 1)(-1)M & = a(w) @ L. o

3.4.4 Multiple creation and annihilation operators

Let ® € T (Z).

Definition 3.58 We define the operator of creation of ® with the domain
rfin (2) as

s/a

a*(@)V = +/(n+1)- - (n+m)® e, ¥, el (2).

s/a

a*(®) is a densely defined closable operator. We denote its closure by the same
symbol.

Definition 3.59 We set
a(®) := (a™(®))".
a(®) is called the operator of annihilation of .
For wy,...,w, € Z we have
a* (W1 Og/a -+ Rg/a W) = a™(wy) - -~ a* (wy,),
a(w1 ®g/a -+ Og/a Wi ) = a(wy) - -~ alwy).
Note that in the fermionic case we have
a(Aw; @, -+ @a W) = alwr) - alwy,),
where A was defined in (3.29).

3.5 Multi-linear symmetric and anti-symmetric forms

We continue to discuss symmetric and anti-symmetric tensors. In this section
we will look at them mostly as multi-linear functions. This leads to somewhat
different notational conventions.

Let Y be a real or complex vector space.
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3.5 Multi-linear symmetric and anti-symmetric forms 79

3.5.1 Polynomials
Let ¥ € %;L/a(y). Then ¥ determines the function

Vi X x VF S (v1,..0,0,) = Y(or, ..o, 0,)
(3.31)
= <U1 ®s/a ®s/a U"|\IJ> e K.

Definition 3.60 The space “fs/a(y) will often be denoted by Polg,, (V*), if we
want to stress the interpretation of its elements given by (3.31). (Pol stands
for “poly-linear” or “a polynomial”.) It will be called the symmetric, resp. anti-
symmetric tensor algebra written in the polynomial notation.

More generally, if Y = Yy @ Y1 is a super-space, the super-tensor algebra Il‘( V)
will be also sometimes denoted by Pol. (V*). Clearly,

Pol, (V*) ~ Pol, (V) & Pol, (V] ). (3.32)

Thus an element of Pol.(V*) is a polynomial in commuting variables from Y
and in anti-commuting variables from Y .
We will often drop the subscript € in (3.32).

(oo}
In the symmetric case we can make yet another identification. Let ¥ = >~ ¥,
n=0
with ¥,, € Pol} (V*).

Definition 3.61 We introduce the function called the polynomial function asso-
ciated with W:
VEsue W)=Y (0" |T,). (3.33)
n=0

Note that if we know the function (3.33), we have full knowledge of ¥ €
Pols(V*).

In the following proposition ¥, ® € Pols()*) are interpreted as polynomial
functions and v € Y*:

Proposition 3.62 (1) T'(p)¥(v) = ¥(p*v).
(2) ¥ ®s ®(v) =¥(v)P(v).

Motivated by Prop. 3.62, we will often replace ¥ ®; ® with ¥ - ®. We will
often do the same in the anti-symmetric case as well.

In (3.31), v1,...,v, are elements of Y*. In (3.33) and in Prop. 3.62, v has the
same meaning. Sometimes, however, we will write ¥(v) without having in mind
a concrete v € Y*. We will treat the symbol v as the “generic variable in J*”;
see Subsect. 2.1.2.

In the anti-symmetric case we do not have an analog of (3.33). Nevertheless,
following the common usage of theoretical physics, one often calls elements of
Pol? (¥*) “polynomials in non-commuting variables from Y*”. This suggests
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80 Tensor algebras

the notation W(v) instead of ¥(vy,...,v,). In this context v is just the name
of the generic variable in )*. Similarly, motivated by Prop. 3.62 (1), we will
write ¥(p* v) instead of I'(p)¥(v). This point of view will be further developed
in Chap. 7.

3.5.2 Multiplication and differentiation operators

As mentioned above, we will use the letter v as the name of the generic variable
in Y*. This symbol will appear in the multiplication and derivative operators
that we define below.

Definition 3.63 Fory € ), the operator of multiplication by y is defined by
Yy()¥ 1=y Qg/n ¥, W e Poly/, (V7).

We will often write y-v instead of y(v).
More generally, if ® € Poly,(V*), ®(v) will denote the operator of multipli-
cation by ®

D)V = & ®/, V.

Definition 3.64 For w € Y*, the derivative in the direction of w is defined by
w(V, )V = n(w|@1®" V¥, ¥ e Poll, (V). (3.34)

We will often write w-V, instead of w(V,).
More generally, if ® € Poly/,(Y), we define the derivative ®(V,). For ®
Pol}}, (¥), it acts on ¥ € Pol{), (V") as

BV =n(n—1)---(n—m+1)(®e1®" ™y, (3.35)

Then we extend this definition by linearity.

Note that in the symmetric case the differentiation operator defined above is
the usual differentiation of polynomials. In particular, w(V,) in (3.34) coincides
with the directional derivative Def. 2.50.

The operators of multiplication and differentiation are essentially equivalent
to the creation and annihilation operators. We will discuss this equivalence in
Subsect. 3.5.7.

In the following propositions y,y1,y2 € Y, w,w;,ws € Y* and @,V €
Poly/a ).

Proposition 3.65 (Symmetric case)

(1)
(2)
3)
(4)

=T
=
—
<
=

\_/“@
—
e
=
Il

~ S ~
S
—
<
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V]
—~
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4
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3.5 Multi-linear symmetric and anti-symmetric forms 81

Proposition 3.66 (Anti-symmetric case)

(1) [y1(v); 2 (0)]+ =0, [w1(Vy), w2 (V)] =0,

(2) [w(Vy),y(v)]+ = (wy)1,

3) w(Vy)¥ @a @ = (w(V,)¥) @a &+ (IV) @, (wV,)P),

(4) w(V,) = 3 (=1) 1107V @ (w] @ 1 =)% op Pol (V*).

i=1

Proposition 3.67 Let p,h € L()). In both the symmetric and the anti-
symmetric case we have

(1) T(p)y(v) = py(v)I'(p),  w(Vy)I'(p) = L(p)p* w(Vy),
(2) [dF( )7y( )] hy( ) [dL(R), w(Vy)] = —h* w(V,),

U e Pols/dl (Y*) can be treated as an n-linear function on (Y*)™. Let us denote
the generic variable of the j-th V* by v;. We can write an identity

V¥ =(Vy, +--+V,, )7, (3.36)

where on the left we use the functional notation, and on the right we treat ¥ as
a function depending on n separate variables. (3.36) should be compared with
(4) of Props. 3.65 and 3.66. Note that in the anti-symmetric case one has to
remember that V,, anti-commutes with the operator of multiplication by v;,
hence the alternating sign.

3.5.3 Right derivative

Definition 3.68 In the anti-symmetric case the derivative defined in Def. 3.64
should actually be called the left derivative. One can also introduce another oper-
ator with the name of the right derivative. For w € Y* | the right derivative in
the direction of w acts on ¥ € Pol} (V*) as

w(%v)\ll =l V2R (w|W.

More generally, if ® € Pol,()), we can define the right derivative @(%L) For
® € Pol' (V) and U € Pol, (V*), it is given by

(V)T =n(n—1)(n—m-+ 11" "™ (|, (3.37)
Note that we need to invert the order (compare with Prop. 3.67 (3)):
— — —
Dy (V,)D2(V,)¥ = (D ®, P1)(V,)T. (3.38)
Here is the relation between the left and right derivative:

(V)T = (—1)""(V,)T, & € Pol”(V), ¥ € Pol’ (V*).
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82 Tensor algebras

3.5.4 FExzponential law in the polynomial notation

The exponential law described in Subsect. 3.3.7 is not the only convention used
in the context of the tensor product of symmetric and anti-symmetric tensor
algebras. In fact, there exists another convention that avoids the complicated
multiplier involving the square roots of factorials. This convention is commonly
used in the “algebraic case” (when we are not interested in the Hilbert space
structure).

Let V1, Vs be two vector spaces. Let j; : Vi — V1 © s, i = 1,2, be the canon-
ical embeddings.

Definition 3.69

ymed . Pols/a(yf ) %POIS/a(J};) - POIS/a (@ 22)")

is defined as the unique linear map such that if ¥y € Polz/la(yf), Uy €
Polgl/‘za(y;‘ ), then (in the tensor notation)
Umedw; @ Wy = (T(j1) V1) @g/a (T(j2)P2). (3.39)

We will use v; as the generic variables in Y7, i =1,2. In the “polynomial
notation”, ¥ := U=edg, @ U, will be simply written as

U(v) = Vi (v1) @g/a Pa(va), v=(v1,v2). (3.40)

Often, we will even omit ®/, between the factors. Note that in the symmetric
case, if we use the “polynomial interpretation”, the exponential law is just the
usual multiplication of polynomials in two separate variables, which is consistent
with the notation (3.40).

Clearly, the identities (3.16) and (3.17) hold with U replaced with U™°4.

Proposition 3.70 (1) (Symmetric case)
(Y1, 92) (U™ = U (y1 (1) © 1+ 1@ y2(v2)),
(wy, w2)(vv)UmOd = pmed (w1 (V) @ T4+ 1@ w2 (V,,)).
(2) (Anti-symmetric case)

(Y1, y2) (0)U™d = U0 (yy (v1) @ N+ 11 @ ya(v2)),
(w1, w2 ) (Vo )U™0 = U™ (wy (V) @ D+ [; @ wa(Vy,)).

3.5.5 Holomorphic continuation of polynomials
Let Y be a real vector space. The identification (3.3) leads to the following

isomorphism:

CTy/a (V) = Ty/a(CY). (3.41)
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3.5 Multi-linear symmetric and anti-symmetric forms 83

In the polynomial notation this isomorphism is written as
CPoly, (Y*) =~ Poly/, (CY*).

Note that in the polynomial interpretation W € CPol],,(J*) is a complex
multi-linear function on }*, whereas the corresponding ¥¢ € Poly/,(CY*) is
a multi-linear function on CY*, which restricted to Y* equals V.

Definition 3.71 The polynomial W¢ will be called the holomorphic extension of
v,

(Of course, instead of polynomials one can consider more general holomorphic
functions.)

3.5.6 Polynomials on complex spaces

Let Z be a complex vector space. Recall that Zr denotes its realification. We
can distinguish four basic families of polynomials related to Z:

Definition 3.72 (1) Elements of Pol;,(Z2r) are called real-valued polynomials.
(2) Elements of CPols;,(2r) are called complex-valued polynomials.

(3) Elements of Poly;,(Z) are called holomorphic polynomials.

(4) Elements of Poly;,(Z) are called anti-holomorphic polynomials.

As sets, Zg, Z and Z can be identified. With these identifications, CPol, /a(2R)
is the largest family — it contains the other three.

Let us use the notation and results from Subsect. 1.3.6. In particular, we
recall the space Re(Z @ Z) = {(z,?) Dz € Z}, whose complexification can be
identified with Z @ Z. We have the obvious map (which according to Def. 1.84
is called T71)

Zr 3z (2,Z) € Re(Z B 2). (3.42)
Its complexification is
CZr 22 +izg+— (21 +i2,21 +iZs) € Z2® Z. (3.43)
With these identifications, we have

Poly/,(Zr) ~ Pol, (Re(Z2® Z)) ,
(CPOL/H(ZR) ~ POls/a((CZ]R) ~ POls/d(Z @2) ~ POL/3<Z) ® POIS/&(z)

In the last line, we first used (3.41), then (3.43), and finally the exponential law.
In the symmetric case, the polynomial functions corresponding to all four
cases of Def. 3.72 can be viewed as functions on the same space Zr. By allowing
convergent series, we can also consider more general functions, in particular
holomorphic and anti-holomorphic functions on Z, with obvious definitions.
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84 Tensor algebras

3.5.7 Modified Fock spaces

Let Z be a Hilbert space. Recall that the scalar product in the Fock spaceI'y;,(Z)
is inherited from the scalar product in the tensor algebra ®Z. This choice has
some disadvantages. Instead, many authors adopt a different convention, which
we will describe in this subsection.

Recall that N denotes the number operator on I'y/, (Z).

Definition 3.73 Let us set Ff}‘;d(Z) := Domv/ N! equipped with the scalar prod-
uct (U] P)moa := (V|NI®). We introduce also the unitary operator

Jeske} 1 1mo
Ly/a(2) 3 0 TN = ﬁqf e Iid(2). (3.44)

Sometimes we will write U™°4 for T™odW

The operators dT'(h) and I'(p) keep the same form after conjugation by 7™°9.
If {e;}icr is an o.n. basis of Z, then

1 -
{ =€ ke (Nl)ﬁn}
k!

is an o.n. basis of '™°4(Z), and

{GJS JEQéH}

is an o.n. basis of I'"°4(Z), where e; and e, are defined in Subsects. 3.3.5 and
3.3.6.

Often we will consider the “polynomial notation” for ILb /a(Z), where Z is a
Hilbert space. In this case, it is convenient to use elements of the topological
dual of Z| instead of the algebraic dual, as arguments of the polynomial. The
topological dual of Z is identified with Z. Thus the polynomial notation for
I'y/4(2) will be Pol,(Z). Clearly, Pol/,(Z) is dense in T2%(Z).

The generic variable of Z will be often denoted z. Thus an element of Pol,/, (Z)
in the polynomial notation will be written as ¥(z). If w € Z, then the correspond-
ing multiplication and differentiation operators are w(z) and w(Vz). They are
related to the creation and annihilation operators as

TmOda(w)(TmOd)71 @(V;), Tmoda* (w)(Tmod)fl _ w(?) (345)

If Z,, 2, are Hilbert spaces, then the map U™°? defined in Def. 3.69 extends
to a unitary map from F:}‘;d(Zl) ® I’g}‘;d (Z3) to F;’}gd(Zl @ Z,). It is related to

the map U : T/, (21) @ T5/4(22) — T5/a(21 © 2) defined in Subsect. 3.3.7 by
Umod _ TmodU(Tlmod ® T2mod)71,

where Tmed Tmed Tmod gre the unitary identifications of the corresponding Fock
and modified Fock spaces; see (3.44).
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3.6 Volume forms, determinant and Pfaffian 85

3.6 Volume forms, determinant and Pfaffian

In this section we recall some well-known concepts related to anti-symmetric ten-
sors, such as volume forms, the determinant of a matrix and the Pfaffian of an
anti-symmetric matrix. They are usually introduced in a coordinate-dependent
fashion. In our presentation, we try to stress the coordinate-independent
approach based on the anti-symmetric tensor algebra.

3.6.1 Volume forms

Let X be a (real or complex) d-dimensional space. A special role is played by
the space AYX# of anti-symmetric d-forms on X, which is one-dimensional.

Definition 3.74 A non-zero element of N*X* will be called a volume form on
X. If the name of the generic variable in X is x, then a volume form on X will
be often denoted by dz.

Suppose that we choose a basis (eg,...,eq) in X. Let (e!,...,e?) be the dual
basis in X*. Then we have a distinguished volume form on X defined by

E=elA--- el (3.46)
(Note the reverse order and the use of A and not of ®,.) We have

(Zler ®a « - ®a eq) = 1.

Definition 3.75 If X is a Fuclidean, resp. unitary space of dimension d, then
we say that a volume form = is compatible with its Euclidean, resp. unitary
structure if there exists an o.n. basis of X (ey,...,eq) such that

E=el A€l

If &;, i =1,2, are vector spaces with volume forms Z;, then on X; & X» we
take the volume form =5 A Z;. (Note again the reverse order and the use of A
and not of ®,.)

Definition 3.76 If we use the notation dx; for =;, we will often write dxoday
for dxoy N dxy.

Definition 3.77 If = is a distinguished volume form on X, then we have a
distinguished volume form Z4ua!

on X* determined by
<E|Edual> =d.
If in coordinates Z is given by (3.46), then

gdual — o) AL A ey

Note that (Eval)dual — = We will often use ¢ as the generic variable of X#, and
then the dual volume form on X* will be denoted by d¢.
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86 Tensor algebras

3.6.2 Hodge star operator
Let d = dim X. Let us fix a volume form = € T¢(X*) = Pol?(X) on X.

Definition 3.78 The Hodge star operator is defined as the map
0 : Pol,(X") — Pol, (X)
by

(DOT) := (U@, ©[F), WePoll(X*), @ePoll "(X7).

1
(d—mn)
Note that 6 maps Pol” (X#) onto Pol? " (X). We will see in Subsect. 7.1.7 that
the Hodge star operator can be viewed as an analog of the Fourier transforma-
tion.

Let us fix a basis (e1,...,eq) of X such that Z=e? A---Ael. Let o € Sy be
a permutation and 0 < n < d. Then

0 e17(1) Ra - Pa ea(n) - sgn(cr) ea(d) g+ Ba ea(nJrl).

3.6.3 Liouville volume forms

Let (), w) be a symplectic space of dimension 2d. Note that w € L, (Y, Y*) ~

2 %).
Definition 3.79 Y possesses a distinguished volume form called the Liouville
form,
:Liouv P l /\d w (3 47)
= = . .

Recall that Y*# is equipped with the symplectic form w~!. Thus it possesses
its own Liouville form % A% w~l. Tt is easy to see that it equals the volume form
dual to EFiouy, ‘

3.6.4 Liouville volume forms on X* & X

Assume that X is a vector space of dimension d. Consider ) = X* & X with its
canonical symplectic form (1.9). If we choose an arbitrary basis ej,...,e; of X
and e', ..., e? is the dual basis, then one can use the wedge product to write the
canonical symplectic form as

d
w= Zei Ne'. (3.48)
i=1

Hence the Liouville form on X* @ X is

e Ne' Arreghet =eg A Aeg ANeb A---Ael. (3.49)
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3.6 Volume forms, determinant and Pfaffian 87

Proposition 3.80 Choose an arbitrary volume form = on X. Then the Liouville
volume form on Y is equal to mdual A =

Proof We choose a basis of X and the dual basis of X* as above. Now for any
volume form = on X there exists A # 0 such that

(1]

=X Ao A€, sdual — A=le AL Aey. O

The symplectic form w™' on Y* = X @ X* can be also written as (3.48).
Hence the Liouville form on Y* can be written as (3.49).

Recall that often the symbols dz is used for a fixed volume form on X', and its
dual form on X* is denoted by d{. Then the symbol dxd¢ denotes the Liouville
volume form on X#* @ X and on X @ X*.

83.6.5 Densities and Lebesgue measures
Let X be a real d-dimensional vector space.

Definition 3.81 An element of AN°X# /{1,—1} will be called a density on X.
The density associated with a volume form Z will be denoted by |E|. Thus |Z| =
{E,-E}. If |E| is a density on X, we define the corresponding dual density on
X* by |E|dual — ‘Edual

Clearly, the set of volume forms compatible with a Euclidean structure is a
density.

Recall from Def. 3.74 that if the generic variable of X is denoted z, then dx
denotes a fixed volume form on &'. Thus, according to Def. 3.81, the correspond-
ing density should be denoted by |dz|.

Definition 3.82 By a Lebesgue measure on X we mean a non-zero translation
inwvariant Borel measure on X finite on compact sets.

If |Z| is a density on X, then |Z| induces a Lebesgue measure p on X' by setting
p(Vier,. . ea)) = [(Eler @a - @a ea)l,

where V(ey,...,eq) = {Zle tie; : t; €10, 1]} is the parallelepiped with edges
e1,...,eq. Conversely a Lebesgue measure on X yields a unique density on X.
Therefore, we will often identify the concepts of a Lebesgue measure and a den-
sity.

The integral w.r.t. a Lebesgue measure is called a Lebesgue integral. If F is a
function on X, its Lebesgue integral is denoted [ F'(z)dx (although, according to
Def. 3.81, the notation | F(z)|dz| would be more appropriate, since a Lebesgue
integral depends only on the density |dz|, and not on the volume form dz). For
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88 Tensor algebras

further reference let us list elementary properties of a Lebesgue integral:

/cp(vm)f(x)dx =0, ® € CPolZ! (X*);
[ farnae= [ s ye
/f(mx)dx = (detm) ™" /f(;v)dac, m € L(X). (3.50)

3.6.6 Determinants

Definition 3.83 If a = [a;;] is a d x d matriz, one defines its determinant as

d
det(a) := Z sgn(o) Ha,;(,m.
i=1

og€ESy

It is possible to give a manifestly coordinate-independent definition of the
determinant. Let X be a d-dimensional vector space over K.

Definition 3.84 Fora € L(X), its determinant is defined as the unique number
det a satisfying

F(a)|/\dX =: det all.

Clearly, this definition is possible, because I'(a) sends A’X into itself. If
(€1,...,eq) is a basis of X and (e!,...,e?) its dual basis, then deta coincides
with the determinant of the matrix [(e’|ae;)].

Proposition 3.85 (1) If X is real and a € L(X), then det a = det ac.
(2) If a,b € L(X), then det ab = det a det b.

(3) If a; € L(X,), i = 1,2, then det(a; @ az) = det a; det as.

(4) If a € L(X), then deta = deta”.

3.6.7 Determinant of a bilinear form
Now let X be a finite-dimensional vector space equipped with a density |=|.

Definition 3.86 If ( € L(X,X*), we define the determinant of ¢ w.r.t. the
density |Z| as the unique number det ¢ satisfying

[(¢*)Z = det ¢ 24l (3.51)

(Note that the above definition does not depend on the sign of Z.)

If (eq,...,eq) is a basis of X such that Z=e? A--- Ael, then det ( is equal to
the determinant of the matrix [(e;, Ce;)].

If |Z| is compatible with a Euclidean scalar product v, then the determinant
of ¢ w.r.t. |Z| is equal to the determinant of the operator v=1( € L(X).
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3.6 Volume forms, determinant and Pfaffian 89

3.6.8 Orientations of vector spaces

Let X be a finite-dimensional real vector space.

Definition 3.87 Two bases of X are said to be equivalent if the determinant of
the matriz of the change of basis is positive. An orientation of X is the choice of
one of two equivalence classes of bases. Bases in this class are called compatible
with the orientation. A space equipped with an orientation is called oriented.

Sometimes it is useful to have the concept of an orientation also on a complex
vector space. Its definition is identical to that on the real vector space. The only
difference is that on a complex vector space the set of orientations is not made
of two elements but is homeomorphic to a circle.

3.6.9 Volume forms on complex spaces

Let Z be a complex space of dimension d equipped with a complex volume form
denoted by Z. On Z we have the volume form = defined by (Z|¥) = (Z]|¥),
U eT4(Z). We will also need Z " = (—1)244-DZ. We will usually denote Z
by dz and = by dz. If e',...,e? is a basis of Z# and dz =e? A --- Ae! then
dz=e' n---nel.

On Z @ Z we have a distinguished volume form given by

. J=rev
d=
=

i AE=i"9dz Adz. (3.52)

We claim that the restriction of i~¢dz A dz to Re(Z @ Z) is a real volume form.
This can be seen by noting that the canonical conjugation

z@ZB (31722)H6(51,22) = (3272’1) E?@Z

fixes Re(Z @ Z) and transforms i~?dz A dz into its complex conjugate.

Recall that the realification of Z is denoted Zg. It is a real 2d-dimensional
space. Zg has a distinguished real volume form obtained by pulling back i~?dz A
dz from Re(Z @ Z) to Zg by the transformation

Zr 32+ (2,Z) €Re(Z @ 2), (3.53)

(which we encountered before, e.g. in (3.42)). The Lebesgue measure obtained
from this volume form will be adopted as the standard measure on Z. Thus, a
typical notation for the Lebesgue integral of a function Z € z +— F(z) will be

/ F(2)i"%dz A dz. (3.54)

Let us give an argument for why i~?dZ A dz is a natural choice for the distin-
guished volume form on a complex vector space. Assume that Z is a unitary space
and that dz is compatible with its structure (see Subsect. 3.6.5). We have seen
in Subsect. 1.3.9 that Re(Z @ Z) is equipped with a Euclidean scalar product
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90 Tensor algebras

and with a symplectic form. We claim that i~%dZ A dz is compatible with these
two structures. To see this, note that if (el,...,ed) is an o.n. basis in 2% ~ Z,
then

i—ddzdz =i %' A AT At A Ae!

1 1

_ ete —ieltiet A . A eldet 4 —ieltie?

= ST N ST N p S e
and (elg] , 715\1/5151 s ed\‘/gd , 7165/51?1 ) is both an o.n. and a symplectic basis
in Re(Z @ 2).

Remark 3.88 The following remark may sound academic, but actually it is
related to a true computational nuisance — factors of \/2 in various formulas,
which are often difficult to keep track of.

We saw that the volume form i~?dZ Adz is compatible with the natural
Euclidean structure on Re(Z @ Z). Its pullback to Zg, however, is not com-
patible with the usual Fuclidean structure on Zg, that is, with the real scalar
product ReZy - zo. To see this, note that the map (3.53) is not orthogonal. (3.53)
becomes orthogonal only after we multiply it by \/Li A wvolume form compatible
with the Euclidean structure of Zg is (2i)~¢dz A dz.

One can say that when we consider integrals on Z, we actually view them
as integrals on Re(Z @ Z), where the integrand has been pulled back from Z
onto Re(Z ® Z) by (3.53). Therefore, when normalizing the Lebesque measure
in (8.54), we prefer the convention adapted to Re(Z @ Z) rather than to Z.

3.6.10 Pfaffians

Definition 3.89 Let d € N. We denote by Pairy; the set of pairings of
{1,...,2d}, i.e. the set of partitions of {1,...,2d} into pairs.

A pairing can be uniquely written as
((ilvjl)a (i27j2)a ORI (ida.jd))a

where i < jp and iy < iy < --- < 14, and we can identify Pairyy; with the subset
of permutations

Pairyg = {0 € Soq : 0(2i —1) <0(2i), 0(2i—1)<o(2i+1), 1<i<d}.

It is easy to see that Pairs,; has % elements.

Definition 3.90 If { = [(;;] is a 2d x 2d anti-symmetric matric, one defines its
Pfaffian by

d
Pf(() = Z Sgn(U)HCﬁ(Qi—l),a(Qi)'
-1

o€Pairgy
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It is possible to give a manifestly coordinate-independent definition of the
Pfaffian. Now let ) be a (real or complex) vector space of dimension 2d, equipped
with the volume form =.

Definition 3.91 For ¢ € L,(V*,Y) ~T2()), its Pfaffian w.r.t. = is defined by

PE(C) 1= (@IS, (3.55)

An alternative definition is
A =: dPf(¢)zdmal, (3.56)
If (e!,...,e%?) is a basis of * such that = = e2? A --- A e!, then Pf(¢) coincides

with the Pfaffian of the matrix [(e’|Ce’)].
Proposition 3.92 (1) If ¢ € L,(Y*,Y), r € L(Y), then
Pf(r¢r*) = PL(¢) det r.

(2) Let ¢; € Lo (V! , Vi), i=1,2. Then

pf ({COI ! }) = PI(¢1)PE(C2),

G
where the Pfaffian on the Lh.s. is computed w.r.t. =1 N\ Zs.
(3) For ¢ € Ly(Y*,)), one has
Pf(()* = det,

where det a is computed w.r.t. the density |E41|.
(4) Let X be a finite-dimensional vector space equipped with a volume form =
and let us equip Y = X* ® X with the volume form 2 A=, Let a € L(X),

0 a”
so that [ } € L.(V*,Y). Then

—a 0
#
Pf({o ¢ ])zdeta.
—a 0

3.7 Notes

The tensor product of Hilbert spaces is studied e.g. in the monograph by Reed—
Simon (1980). The notions of Fock spaces and second quantization were originally
introduced by Fock (1932). Mathematical expressions can be found e.g. in Reed—
Simon (1980), Simon (1974), Bratteli-Robinson (1996) and Glimm-Jaffe (1987).
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4
Analysis in L*(R?)

In this chapter we describe basic properties of operators acting on L?(R?). After
a preliminary Sect. 4.1, we will study the Weyl commutation relations and prove
the famous Stone-von Neumann uniqueness theorem. Then we define the so-
called x, D-quantization, with position to the left and the momentum to the
right. We will compare it to the D, z-quantization, which uses the reverse order of
position and momentum. The Weyl-Wigner quantization, in some sense superior
to the z, D- and D, z-quantizations, will be introduced in Chap. 8, which can be
viewed as a continuation of the present chapter.

4.1 Distributions and the Fourier transformation

Throughout this section, X" is a real vector space of dimension d with a Lebesgue
measure dr. As in Subsect. 3.6.5, the dual space X* is then equipped with a
canonical Lebesgue measure, which we denote d¢. If additionally X" is equipped
with a FEuclidean structure, we take dx to be the unique compatible Lebesgue
measure (see Subsect. 3.6.5).

4.1.1 Dastributions
Let €2 be an open subset of X.

Definition 4.1 C>(Q) denotes the space of smooth functions compactly sup-
ported in Q. We equip C°(Q) with the usual topology and rename it D(£).
D'(2) denotes its topological dual. Elements of D'(Q) are called distributions.

A large class of distributions in D’(£) is given by functions f € L| () with
the action on ® € C°(Q) given by

(f18) = [ f@)ds, (4.1)

We will use the integral notation on the r.h.s. of (4.1) also in the case of distribu-
tions that do not belong to L{. (2). Here are some examples with Q = X = R:

loc

/ S()D(t)dt := B(0),

/ (¢ 10 (1)t 5= lim / (£ + i) D(1)dt.
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4.1 Distributions and the Fourier transformation 93

4.1.2 Pullback of distributions
Let x : ©; — Qy be a diffeomorphism between two open sets Q; C R?, i = 1,2.
Definition 4.2 One defines the pullback x* : D'(Qy) — D' () by

/X# f(x)®(2z1)day = /f(.l?g)(b ox M (xy)|det VX! (x9)|dze, ® € D().

Clearly, if f € L{ (), then x* f(21) = f o x(x1).

loc
The pullback of distributions can be generalized to a large class of transforma-

tions between sets of different dimension. Let ©; € R% , i = 1,2, be two open sets
and 7 : Q1 — Q9 a submersion, that is, a smooth map whose derivative is every-
where surjective. We can find an open set Q3 C R ~% and a diffeomorphism
X : Q1 — Qo x Q3 such that

TQ, OX =T, (4.2)
where 7, is the projection onto . We then define the map 7# : D'(y) —
D'(Q) as

=X (fel),

where we consider f ® 1 as an element of D’'(2y X Q3). One can show that 7# is
independent on the choice of x satisfying (4.2).

Definition 4.3 The map 7" : D'(Qy) — D'(Q) is also called the pullback of
distributions.

In particular, if f € Ll (), then

loc

/T#f(xl)é(xl)dxl = /fOT(.’El)CD(l'l)del. (4.3)

We will use the notation of the r.h.s. of (4.3) also for the pullback of distributions
that do not belong to Li (€). For instance,

loc

/ )@= 3 |7(s) " a(s).

7(s)=0
4.1.8 Schwartz functions and distributions
Definition 4.4 The space of Schwartz functions on X is defined as
S(X):={¥eC>®X) : [|2°ViU(2)]’dz < o0, «,f€N'}. (4.4)

(In the definition we use an identification of X with R?. Tt is clear that S(X)
does not depend on this identification.)

Remark 4.5 The definition (4.4) is equivalent to

S(X)={T eC>®@X) : [2°VIV(z)| <cap, o, BeN} (4.5)
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94 Analysis in L? (R?)

The definition (4.5) is more common in the literature, even though one can argue
that (4.4) is more natural.

Definition 4.6 On S(X) we introduce semi-norms

W= ( [ e V2@ az)

which make it into a Fréchet space. S8'(X) denotes its topological dual.

Note that we have continuous inclusions

D(X) c S(X) c L*(X) c S'(X) c D'(X).

4.1.4 Derivatives

Let f be a complex function on X. Recall from the real case of Def. 2.50 (1) that
the derivative of f at xy € X in the direction q € X is defined by

GV () = e +0)], (16)

Proposition 4.7 The derivative of a C' function at a point is a complex linear
functional on X, that is, V. f(xy) € CX?* .

Definition 4.8 If f € C?(X,R), its Hessian at ¥y € X is denoted V;(,;Q)f(xo) €
Ly(X,X*) and defined by
2
(2 =
@V f(@o)a = g

If ¢ € Ly(X*,X), then V,-(V, denotes the corresponding differential operator:
Vo (Ve f(wo) = Tr (V) f(2).

If X is a FEuclidean space with the scalar product denoted by x - xo, then
V.V, =V2=A, stands for the Laplacian.

flxo+tiqn +t2(12)|t]:f,2:0a q,q € X.

4.1.5 Complex derivatives
Let Z be a complex vector space. Let f be a complex function on Z.

Definition 4.9 The holomorphic, resp. anti-holomorphic derivative of f at zy €
Z in the direction of w € Z, resp. W € Z is defined by

W f(20) = Bk (e ) 1 (o i) |,
wV=f () = %% (f (20 + tw) +if (20 +itw)) |, _,-

Proposition 4.10 The holomorphic, resp. anti-holomorphic derivative of a
C' function at a point is a linear, resp. anti-linear functional on Z, that is,
V.[f(20) € 2%, resp. V=f(z) € Z .
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4.1 Distributions and the Fourier transformation 95

Recall from the complex case of Def. 2.50 (1) that f possesses a (complex)
derivative at zp in the direction of w if there exists the limit

u—0 u

where u is a complex parameter.

Definition 4.11 Assume that Z is finite-dimensional and let U C Z be an open
set. We say that f : U — C is holomorphic in U if it possesses a complex deriva-
tive at each zy € U.

Proposition 4.12 A function f:U — C is holomorphic iff f € LL (U) and

loc
Vzf =0 in U in the distribution sense. Then (4.7) equals w-V, f(2p).
We consider also the realification of Z, denoted Zg, where the multiplication
by i is denoted by j.
Let V¥ denote the usual (real) derivative on Zg. We can express the holomor-
phic and anti-holomorphic derivative in terms of the real derivative:

w-V, = % (w-V]E — i(jw)~VH5) ,

wW-Vz = % (w-VE +i(jw)-VE),

w-V, + Vs = w-VE. (4.8)

(On the left w is treated as an element of Z and on the right w as a real vector
in ZR.)

Note that if we make the identification Zg > w +— (w,w) € Z @ Z, as in (1.31),
then (4.8) can be written as V, + V- = VE.

4.1.6 Position and momentum operators
Definition 4.13 Forn e X* and ¢ € X we set

(n-z¥)(x) ;== na¥(z), Dom nx:= {\IJ cL*(X): /|77'x|2|\11(9:)\2dx < oo} ,
(¢-DY)(z) := —i¢-V¥(x), Dom ¢-D := {\If cL*(X): /|q-Vw\I/(a:)|2dx<oo}.

n-x and q¢-D are called respectively position and momentum operators and are
self-adjoint operators.

Remark 4.14 In the formulas above the symbol x is used with as many as three
different meanings:

(1) as an element of the space X, e.g. in U(x) or in n-x on the right of :=;
(2) as the name of the “generic variable in X7; e.g. in dz or V,;
(3) as a vector of self-adjoint operators, e.g. in n-x on the left of :=.
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96 Analysis in L? (R?)

This ambiguous usage of the same symbol, although sometimes confusing, seems
to be difficult to avoid and is often employed. Sometimes one tries to differentiate
the third meaning by decorating x in some way, e.g. writing .

Proposition 4.15 The Schwartz space S(X) is the largest subspace of L*(X)
contained in the domain of position and momentum operators and preserved by
all the operators n-x and q-D.

The operator n-x and ¢-D, viewed as operators on S(X), satisfy the so-called
Heisenberg commutation relations:

[m-w,me-z] = [q1-D,q2-D] =0,  [n-w,q-D] = in-ql. (4.9)

Definition 4.16 The algebra of differential operators with polynomial coeffi-
cients will be denoted CCRP*' (X* @ X).

Elements of CCRP®!/(X# @ X) act naturally on S(X). By duality, they also act
on §'(X).

Remark 4.17 In Subsect. 8.3.1 we will define a more general class of algebras,
denoted CCRpOl(y), where Y is a symplectic space.

Remark 4.18 The algebra CCRP®/(X* @ X) is sometimes called the Weyl alge-
bra. However, we prefer to use this name for a different class of algebras; see
Subsect. 8.3.5.

4.1.7 Fourier transformation

Definition 4.19 We denote by Coo (X) the Banach space of continuous functions
on X tending to 0 at co.

Definition 4.20 For f € L'(X) the Fourier transform of f, denoted either Ff
or f, is given by the formula

f©) = [ e a

It is well known that F extends to a unique bounded operator from L?(X, dz)
to L2(X*,d¢), where d€ is the dual Lebesgue measure on X'#.

The Riemann-Lebesgue lemma says that if f € L'(X), then f € Coo (X*#).

(27T)_%.7: is unitary, and we have the Fourier inversion formula

f(z) = (2m)~ / f(e)einag.

The space S(X) is mapped by F continuously onto S(X*#). F can be extended
to a unique continuous linear map from S’(X’) onto S'(X*).
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4.1 Distributions and the Fourier transformation 97

4.1.8 Gaussian integrals
Let v € Ly(X, X*") be positive definite. Let n € CX*. Then

1

(2%)_% /e_%m"’a’“"‘”dx = (det v)"Tertv N, (4.10)

Note that the determinant det v is defined w.r.t. the Lebesgue measure dx (see
Subsect. 3.6.6). In particular, if f(x) = e"TTVT then
F(&) = (2m)% (detv)~Fe 367 '€ (4.11)
If v € Ly(X, X*) is not necessarily positive definite and n € X#, then
lim (2#)_%/ e T VI Qg | det y|_%eﬂinert vemrmv i, (4.12)
lz|<R

R—oo
In particular, if g(x) = eF?Ve then
9(€) = (2m)Fetm et (detv) " FemHEV L,

We will sometimes abuse the notation and write det(—iv)~7 for
|det1/|*%efﬂinerty.

4.1.9 Gaussian integrals for complex variables

Let Z be a complex space of dimension d. Recall from Subsect. 3.6.9 that the
integral of a function Z 3 z +— F(z) over Z is interpreted as the integral of the
pullback of F' by

Z32+ (2,Z) ERe(Z® 2)

on the space Re(Z @ Z), and i~?dzdz is used as the standard volume form.
Let us translate formula (4.10) into the context of complex variables. Let
0 € Ly(Z,Z*) be positive definite, and wy,wy € Z*. Then

(2mi)~¢ / e TP WI T 2z, — (det B)Le™ P T2 (4.13)

where det (3 is computed w.r.t. the volume form dz.

Let us explain the proof of (4.13). As mentioned above, the integral in (4.13)
is interpreted as an integral on the real vector space Re(Z @ Z). We choose
any scalar product on Z compatible with dz. Note from Subsect. 3.6.9 that
the volume form i~?dzdz is compatible with the Euclidean scalar product on
Re(Z @ Z). We identify 3 with an element of L(Z) using the unitary structure
of Z. Then, setting

v=1(2,%), m=2d, dv=i"%dzdz,
03 _ = =
vi= g0l ¢ = (wy,wy) € CRe(Z® Z) ~CRe(Z @ 2)*,
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98 Analysis in L? (R?)

we see that (4.13) reduces to (4.10). To compute the determinant of v as an
operator on Re(Z @ Z), we use that

detv = det ve = det fdet § = det fdet 5 = det 32,

since = 3*. Then (4.13) follows from (4.10).

4.1.10 Convolution operators

Definition 4.21 If f € S§'(X), ¥ € S§(X), then their convolution product f x ¥
is defined by

fx¥(x /fx—xl U(zy)de.
We have
F(f V) = (FHFY).
Recall that D = %V@. is a vector of commuting self-adjoint operators. Note that
FDF~! = ¢ where ¢ is the operator of multiplication by ¢ € X* on L*(X*).
Note the identities
FD)U(@) = (2m)" [ e () w(y)dedy
(2m)~ /f —2)¥(y)dy, feSXx*).
If v € Ly(X*, X), then
e T De VDo (z) = o3 Ve Ve (z) (4.14)
= (27r)_%(det u)_% /e_%(‘”_““)'”71<”’_"71)\Il(331)dm1.
As a consequence, we obtain the following identity for ¥ € CPoly(X):
(27‘(‘)7% /\I/(x)efé’”'”dx = | det 1/|7% (e%’v"fI Ve \IJ) (0). (4.15)
As an example of (4.14) let us note

e e Dey (g, €) = (2mt) ™! / =) D (g, € )da d

Let us write the analog of (4.14) on a complex space Z of dimension d, for
feL(Z,2Z%) and 8 > 0:

eV IVEW(Z, 2) = (2mi) "% (det B) / eI (7, 2 )dZ dy. (4.16)
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4.1 Distributions and the Fourier transformation 99

4.1.11 Sesquilinear forms on S(X)

Definition 4.22 A € B(L2 (X)) is called an S-type operator if it is given by an
integral kernel in S(X x X), that is, there exists A(-,-) € S(X X X) such that

A¥(a) i= [ Alw.)¥()dy.
The set of S-type operators is denoted CCRS (X* @& X).

Definition 4.23 Continuous linear functionals on CCR®(X* & X) are called
S'-type forms. Their space is denoted by CCR® (X* & X).

Clearly, elements of CCRS'(X# @ X) are represented by distributions in
S'(X @ X). We have the obvious pairing for B € CCR® (X* @ X) and A €
CCRS (X% @ X):

B(A) ://B(x,y)A(x7y)dxdy.
Let
CCR®(X* @ X)> A B(A) e C (4.17)
be an S’-type form. Clearly, for any ¥, U, € S(X), the operator |¥y)(¥|
belongs to CCRS (X# & X). Thus we obtain a sesquilinear form
S(X) x S(X) 3 (¥1,¥y) — B(|¥,)(¥4]) € C. (4.18)

We can interpret (4.18) as the action of B¥, on Wy, where B is a continuous
linear map from S(X) to S’(X). Thus (4.18) can be written as (U1|B¥,). We
call it the “operator notation for (4.18)”, and we will use it henceforth.

We can write

CCRS(X* ® X) C B(L*(X)) c CCRS (X* @ X).
Theorem 4.24 (The Schwartz kernel theorem) B is a continuous linear trans-

formation from S(X) to S'(X) iff B belongs to CCRS/(X# @ X), that is, iff there
exists a distribution B(-,-) € S'(X & X) such that

(\Ifl |B\IJQ) = / \111 (ml)B(xl s xg)\:[lg (I'Q)dxldl'Q, \Ifl s \IJQ S S(X)
Definition 4.25 The distribution B(-,-) € §'(X & X) is called the distributional
kernel of the transformation B.

Definition 4.26 We define the adjoint form B* by (V,|B*Wy) = (¥9|BY,). If
By or B are continuous operators on S(X), then we can define By o By as an
element of CCRS (X* & X) by

(\Ijl‘BQ O Bl\pg) = (\Ifl‘Bg(Blll’)), or (\I/1|B2 e} quIQ) = (BS\IJ|B1\I/)
In particular this is possible if By or By € CCRPOI(X# o X).
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100 Analysis in L? (R?)

4.1.12 Hilbert—Schmidt and trace-class operators on L*(X)

Note that B € B2(L?(X)) iff the distributional kernel of B belongs to L?(X &
X). Moreover, if By, By € B?(L*(X)), then

TI‘BTBQ :/Bl(xg,xl)Bg(arl,xg)dxldxg.

Consider a trace-class operator B € B!(L*(X)). On the formal level we have
the formula

TrB :/B(x,m)dx.

The following theorem gives some of many possible rigorous versions of the above
identity:

Theorem 4.27 (1) If B e CCRS(X* @ X), then
TrB = /B(z,x)d:z:.
(2) Fiz an arbitrary Euclidean structure on X. If B € BY(L*(X)) then
TrB = Eli\rr(l)(Zw/e)% /e*?IT(Il*I:’)?B(xl,xg)dxldxg.

Proof (1) is left to the reader. To prove (2) we set P, := e~50° Note that
0<P.<1 and w — lirréR = 1. By Subsect. 2.2.6, we know that TrB =

hII(l] Tr(P.B) = lim Tr(P, )2 BP,5). By (4.14), P, has the kernel

e—0
(2me) e 2 (rrmm2)”,
and P, /3 BP, /5 has kernel B x T, where T¢ (71, 29) = (ﬂe)*de*%m*zg). Now B %
T. € S(X @ X), and by (1) we get

1 2 _ 1 2

Tr(P.)»BP,.)y) = (ﬂe)fd/ef?(zﬂ“) @) B(gy, a9)day dayda.

Next we use (4.14) and the fact that e~ iD%e=0" = ¢=5D” to perform the inte-

gral in z, which yields

Tr(P./yBP,)5) = (2me) ¢ /e—%m—WB(xl,xQ)dxlde. O

4.2 Weyl operators

As in the previous section, X is a finite-dimensional real vector space with the
Lebesgue measure dzx.

The Heisenberg commutation relations (4.9) involve two unbounded operators:
position and momentum. This makes them problematic as rigorous statements.
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4.2 Weyl operators 101

In the early period of quantum mechanics Weyl noticed that for many purposes it
is preferable to replace the Heisenberg commutation relations by relations involv-
ing the unitary groups generated by the position and momentum, since then
called the Weyl commutation relations. These relations involve only bounded
operators, hence their meaning is clear. On the formal level they are equivalent
to the Heisenberg relations.

Linear combinations of the position and the momentum are self-adjoint. Their
exponentials are often called Weyl operators. They are very useful in quantum
mechanics.

One of the central results of mathematical foundations of quantum mechanics
is the Stone—von Neumann theorem, which says that the properties of the position
and momentum, up to a unitary equivalence, are essentially determined by the
Weyl relations.

4.2.1 Definition of Weyl operators
Let us consider the one-parameter unitary groups on L?(X)
X* 5l e U(L*(X)),
X3qm P eU(L*(X))
generated by the position and the momentum operators.

Theorem 4.28 Let n € A%, g € X. We have the so-called Weyl commutation
relations,

em-:zceI(I'D — e—lﬂ'quI'Dem‘-T/. (419)

The operator n-x + q-D is essentially self-adjoint on S(X). For ¥ € L*(X) we
have

STt ED)y () = e ITITY (1 4 g). (4.20)
Moreover, the following identities are true:
ellrataeD) — e%’"‘qei”'“ei‘{‘D = e_%’”'qeiq'Def”'gz (4.21)
— NG D ot — oka-DginwotaD
Proof Clearly, we have
1P (z) = V(x + q).

This easily implies (4.19).
Define

P42
U (t) = ezt K qelt" Jseltq D7
or

Ut)¥(z) = e%t277'Q+itn‘m\I/(a: +tq).
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102 Analysis in L? (R?)

We compute
U ()Y =i(nx + ¢D)U(t)¥, ¥ e S(X).
Clearly, it ¥ € S(X), then U(t)¥ € S(X) for all ¢. Therefore, by Nelson’s invari-
ant domain theorem, Thm. 2.74 (2),
U(t) _ eit(r]'.z'+q~D)

and S(X) is a core of n-x + ¢-D. This implies (4.20).
The identities (4.21) follow from (4.20). O

Theorem 4.29 If B € B(LZ(X)) commutes with all operators in

{ee, 1P peXxt, ge X}, (4.22)
then B is proportional to identity. In other words, the set (4.22) is irreducible in
B(L2 (X)) .

Proof L% (X), identified with multiplication operators in L?(X), is a maximal
Abelian algebra in B(LQ(X )) By the Fourier transformation, linear combina-
tions of operators of the form €% are #-weakly dense in L*>(X). Hence if B
commutes with all operators % it has to be of the form f(z) with f € L°°(X).

We have ¢'4? f(z)e P = f(z + q). Hence if f(x) commutes with ¢'¢"?, then
f(x+q) = f(z). If this is the case for all ¢ € X, f has to be constant. O

Theorem 4.30 Let ¥ € L*(X). Then ¥ € S(X) iff
Xt QXD (n,q) — (V|71 W) (4.23)
belongs to S(X* @ X).

Proof (4.23) is a partial Fourier transform of the function X & X 3 (z,q) —
W(x)¥(z +q). Thus (4.23) belongs to S(X* @ X) iff ¥(x)¥(x + q) belongs to
S(X @ X), which is equivalent to ¥ € S(X). O

4.2.2 Quantum Fourier transform

Operators can be represented as an integral of €7 %¢el¢"P  This fact resembles the
Fourier transformation; therefore we call it the quantum Fourier transformation.

The following proposition will be used in our analysis of the x, D and Weyl
quantizations:

Proposition 4.31 (1) Let w € L'(X* & X). Then the operator
(2m)~¢ / w(n, q)e e’ dndg (4.24)

belongs to Boo(L?(X)) and is bounded by (27)~¢|w]|; .
(2) Let B € BY(L?(X)). Then the function
w(n,q) = Tr Be 1P e711 (4.25)

belongs to Coo(X* ® X) and is bounded by Tr|B].
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4.2 Weyl operators 103
(3) If B € BYL*(X)) and w is defined by (4.25), then

B=(2m)"" /w(n,q)ei”'”‘“eiq'andq, (4.26)

as a quadratic form identity on S(X).
(4) If, moreover, w € L*(X* @ X), then (4.26) is an operator identity on L*(X).

Remark 4.32 Note that (4.26) follows from the following formal identity:
Trel” et P = (27r)d(5(77)(5(q).

Proof (1) Let w,, € S(X* & X) be a sequence such that w,, — w in L' (X* & X)
and

B, = (277)_d/wn (n,q)ei”'xeiq'andq.

Then the integral kernel of B,, belongs to S(X), hence B,, is Hilbert—Schmidt.
Besides, B, — B in B(LQ(X)); therefore B is compact as the norm limit of
compact operators.

(2) The map X* @& X > (n,q) — e 0"Pe™* € B(L*(X)) is continuous for the
weak topology and e 4"Pe~1"% tends weakly to 0 when (1, q) — oo. This easily
implies that w € Coo (X" @ X).

(3) Let us fix ¥ € S(X). It is enough to show that

(¥15) = (2x)* [ wn,o)(Ule e W)y (4.27)

For B of finite rank, (4.27) follows by a direct computation. Let us extend it
to B of trace class.
From (2) we know that the map

BY(L*(X)) 2 B w € Coo (X" @ X)

is continuous. Clearly, (n,q)+— (¥]e"%e?"P W) belongs to S(X* & X). The
maps

BYL*(X)) > B — (¥|BY),
Coo(X* ©X) 3w — (27) 71 /w(n,q)(\I/|ei7"weiq'D\If)d77dq

are continuous. Hence we can extend (4.27) to an arbitrary B € B(L*(X)) by

density.
(4) Clearly, if we L'(X* @ X), the r.h.s. of (4.26) is a norm convergent
integral. O

Proposition 4.33 Let us equip X with a FEuclidean structure. Let Py :=
|®0)(®g|, where @y € L?(X) is given by
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104 Analysis in L? (R?)

Then

(1) Py = Pg,

(2) m Pyer f( =By [ f(2)dz, for f € L'(X),
(3) Py = (271' dfeffn —Lg’+ilg- 1 aln oig- Dd?]dq
(4) Span!{e 7P @y, n € X g € X} = L*(X).

Proof (1) is immediate, since [®f|=1. To prove (3), we note that
e~ Pre=14 P hag the kernel e ¥’ e‘”’we_%(“‘nz, which belongs to
S(X @ X). Hence, by Thm. 4.27,

—in-z _—iqg- _d _ 1,2 L2 124 i,
Tr(Pye ""e Py =x 2/e eI gy (0Ha) g — o~ F T Fa g

Then we apply Prop. 4.31. (2) and (4) are left to the reader. O

4.2.83 Stone—von Neumann theorem

Theorem 4.34 (Stone-von Neumann theorem) Suppose that X is a finite-
dimensional vector space and we are given a pair of strongly continuous unitary
representations of the Abelian groups X* and X on a Hilbert space H,

X" 5n V() e UH),
X 3q—T(q) e UMH),

satisfying the Weyl commutation relations
V(T (q) = e ""T(q)V (n).
Then there exists a Hilbert space IC and a unitary operator
U:L*(X)@K —H
such that
V(U = Ue"* @ 1,

T(qQ)U = Ue? @ l.

Proof Step 1. Clearly, the groups V(n) and T'(¢) can be written as
Vi) =e"?,  T(q) =",
for some vectors of self-adjoint operators on H, & and D. We can define

Py = (27r)—‘1/e—%ffz—%q2+%n-fzeinieiqﬁdndq

= (27r)*d/e*i*"2*% 2*%77“1(31(1'[7ei’"i”dndq, (4.28)
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4.2 Weyl operators 105

and I := Ran Fy. The definition of F} is suggested by Prop. 4.33. The identities
of Prop. 4.33 are true for Py defined in (4.28), since they only rely on the Weyl
commutation relations. Hence we get

Py =P = PZ,
TPy f(i)P) = P, /f(x)dx, feLl(x). (4.29)
Step 2. Let
Ud @V :=rTer Oi)U, for ® € S(X), ¥ € K.
(Note that, by (4.29), f € L2(X) implies e*%" f(:z)PO € B(H).) We have
(Ud) @ Uy |[UDy @ Uy) = 77 (U] cpl( VB (7))
(W Poe” B (8)Ds () R W)

- <\If1|%>/¢1< s (),

by (4.29). Hence U uniquely extends to an isometry from L?(X) ® K into H.
Step 3. We prove that U intertwines the Weyl commutation relations. To this
end, using (4.29), we first obtain

=T

Q1D py = ¢=17 -4’ Py (4.30)
Thus, for ¥ € IC,
R S U
Hence
d1IPUD @ W = nieltDer® O(F)W
= nfer(@+a)’ O (7 + q)ei‘l'f)\ll
P O(F4q) ¥ =U 1P URD.
It is easier to check that U intertwines the position operators:
MU @ W =TT et U(7)D = U D @ T,
Step 4. Finally, let us show that U is surJectlve Clearly, if ¥ € IC, then U®y ®
VU = U, where we recall that &y =7~ Te~77 . Hence K C RanU. Thus, using

Prop. 4.33 (3) and the intertwining property of U, it is enough to show that the
span of

{ei"'jeiq'D\Il :neEX?, geX, VeK} (4.31)

is dense in H. i

Let Z€H and f(n,q) := (Ele"Tel"PE). Assume that = is orthogonal to
(4.31). Then

0= (""ei7/~.’i‘ iq~ﬁP e—in L —ig-D

(2m) dqu1d771f(771,(h)

=),
=
1
IT

- =Sma+ilem —n-a)—ign
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106 Analysis in L? (R?)

By the properties of the Fourier transformation, f(n,q) =0 a.e. (almost every-
where). But (n,q) — f(n,q) is a continuous function and f(0,0) = ||Z|*. So
==0. O

4.3 x, D-quantization

As in both previous sections, X is a finite-dimensional real vector space with the
Lebesgue measure dz.

Looking at operators on L?(X) as a quantization of classical symbols, that is,
of functions on the classical phase space X @ X* | has a long tradition in quantum
physics. In mathematics the usefulness of this point of view seems to have been
discovered much later. Apparently, among pure mathematicians this started with
a paper of Kohn—Nirenberg (1965). The calculus of pseudo-differential operators
introduced in that paper proved to be very successful in the study of partial
differential equations and originated a branch of mathematics called microlocal
analysis.

In this section we discuss the two most naive kinds of quantizations, com-
monly used in the context of partial differential equations — the x, D, and D, z-
quantizations. Other kinds of quantization, in particular the Weyl quantization,
will be discussed later in Chap. 8.

We will start with a discussion of quantization of polynomial symbols, where
certain properties have elementary algebraic proofs. (Actually, these proofs
generalize to the case where the symbols depend polynomially only on, say,
momenta.) The definition of the x, D- and D, z-quantizations has a natural gen-
eralization to a much larger class of symbols, that of tempered distributions,
which we will consider in the following subsection.

4.3.1 Quantization of polynomial symbols

Recall that CCRP°!(X# @ X) denotes the algebra of operators on S(X) generated
by x and D.

Clearly, if f € CPols(X), then f(z) is well defined as an operator on S(X).
Such operators form a commutative sub-algebra in CCRP (X* @ X).

Likewise, if g € CPols(X*), then g(D) is well defined as an operator on S(X).
Such operators form another commutative algebra in CCRP!(X# @ X).

Definition 4.35 We define the x, D-quantization, resp. the D, z-quantization
as the maps

CPoly(X @ X*) 3 b — Op™” (b) € CCRPN(X* @ X),
CPol (X ® X*) 3 b+ Op”*(b) € CCR™'(X* @ X),
as follows: if b(x, &) = f(x)g(§), f € CPoly(X), g € CPoly(X*), we set

Op™” (b) := f(x)g(D), (4.32)
Op”*(b) := g(D) f (). (4.33)
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4.3 z, D-quantization 107

We extend the definition to CPolg(X @ X*) by linearity.

We will treat the ordering x, D as the standard one. Instead of Op”” (b) one
often uses the notation b(z, D).

Remark 4.36 The x, D-quantization is sometimes called the Kohn—Nirenberg
quantization.

Definition 4.37 The maps inverse to (4.32) and (4.33) are denoted

CCR™ (X" & X) 5 B siy” € CPol (X & X*), (4.34)
CORP!(X* @ X) 3 B 55" € CPol, (X & %), (4.35)

and the polynomaials s%’D and sg"r are called the x, D- and D, z-symbols of the
operator B.
Theorem 4.38 (1) If b € CPoly(X & X*), then

Op™? (b)* = Op”-*(b). (4.36)

(2) If b_,b, € CPoly(X ® X*), and Op”"(b_) = Op™" (by), then

b+ (xv 6) = eiDI De b ((E, 5)

(27r)*d / e—i@—z1)-(§=&1)p (z1,&)dx1dE; . (4.37)

(3) If by, by € CPoly(X @ X*) then Op™ (b))Op“? (by) = Op™ P (b), for

b(z, &) = ePr Praby (21,6 )ba (22, 6)

T =Ty =X,

S=86&=¢
— (2m)~ / Ty (1€ by (21, €)dar Ay (4.38)

The operator P+ P< in (4.87) and the similar operator in (4.38) are under-
stood as the sums of differential operators. In the case of this theorem, the
sum is finite, because we deal with polynomial symbols.

The integral formulas in (4.37) and (4.38) should be understood in the
sense of oscillatory integrals.
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108 Analysis in L? (R?)

Proof To prove (4.37) it is sufficient to consider monomials. By a simple com-
binatorial argument,

(m-x)- (mn-z)(q1-D) - (g D)

min(n,m)

Z Z Z (i a5, ) - (Wi -a5,)

i <--<ip  distinct ji,....5

X H (¢i-D) H (ni-z)

ie{l,...om I\{j1,-...jr } ie{l,...,n\{i1,....ix }
min(n,m) 1
= OpD’“( Y. VeV (@€)  (gn ) (mew) - (i w))
k=0 ’

(4.38) follows easily from (4.37). In fact, it is enough to assume that b;(x, &) =
fi(2)gi (§). Set a(xz,£) = fo(x)g1(£). Then

Op” " (b1)Op™” (ba) = f1(x)Op”** (a)g2 (D)
= fi(z)0p"” (b)g2(D) = b(z, D),

where

b(x,8) =e Ve Vea(n,§), bz, &) = fi(x)b(x,&)g (&)
O

Formulas (4.37) and (4.38) follow also (in a much larger generality) from inte-
gral formulas considered in the next subsection.

The following formula is a version of Wick’s theorem. 1t follows from (4.38).
We will see similar theorems later on for other quantizations.

Theorem 4.39 Let by,...,b,,b € CPoly(X ® X*) and
b(x, D) = by (x,D) b, (x, D).
Then

b(a.&) = exp (13 DD, Jbu(a1,60) - buln. &),

i<j

4.3.2 Quantization of distributional symbols

Recall that CCRS/(X # @ X) denotes the family of operators (or, actually,
quadratic forms on S(X)) whose distributional kernels belong to §'(X x X).
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4.3 z, D-quantization 109

Definition 4.40 Ifb € S'(X @& X*), then we define Op®” (b) and Op”-*(b) as
the elements of CCRS (X* @ X)) whose distributional kernels are

Op™" (B) @1, 22) = (2m)™" | blay, )77 4de,
X

0P (a2 = (2m) [ ban et (430)
Xt
Theorem 4.41 (1) For b€ CPoly(X & X*) C §'(X & X*), the above defin-
ition coincides with (4.32) and (4.33).
(2) The maps

S(X®X*) 3 b Op™P(b) € CCRS (X" @ X),
S (X @ X*) > b OpP7(b) € CCRY (X* & X)

are bijective. Denote their inverses (symbols) as in (4.34) and (4.35). Then
for B € Op(S'(X ® X*)) we have

20 (z,€) = /X Bla,x — y)e €vdy,

576 = [ Blatyaje oy, (4.40)

(3) The formulas (4.36) and (4.37) are true.

(4) The formula (4.38) is true, for instance, if either by € §'(X @ X*) and by €
CPoly(X @ X*), or the other way around.

(5) (4.38) is also true if the Fourier transforms of by and by belong to
LYX* @ X).

(6) We have b(x, D) € B2(L*(X)) iff b € L*(X & X*). Moreover,

Trb(z, D)*a(x, D) = (2r)~¢ /X@X# b(z,E)a(x,£)dzde, a,be L*(X ©X7).

Proof (2) follows from (4.39) by the inversion of the Fourier transform. (4.37)
follows by combining the first formula of (4.39) with the second formula of
(4.40). O

Example 4.42 Fixz a Fuclidean structure in X. Let Py be the orthogonal projec-
tion onto the normalized vector &y = 7~ Te~z%" (as in Prop. 4.33). The integral
kernel of Py is

1.2 2

Py(z,y) = T re vt TRV

Its x, D- and D, x-symbols are

Sgo’m (1‘, 5) = 2%67%12 7%§2+11.§'
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110 Analysis in L? (R?)

4.4 Notes

An exposition of the theory of distributions can be found e.g. in Schwartz (1966)
and Gelfand—Vilenkin (1964).

The Stone-von Neumann theorem was announced by Stone in 1930, but the
first published proof was given by von Neumann (1931). Proofs can be found in
Emch (1972) and Bratteli-Robinson (1996).

The z, D— and D, x— quantization goes back to a paper by Kohn—Nirenberg
(1965).
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5

Measures

The first section of this chapter is devoted to a review of basic definitions of meas-
ure theory. Among other topics, we recall basic properties of positivity preserving
operators, which provide tools useful in constructive quantum field theory.

The rest of this chapter is devoted to measures on infinite-dimensional Hilbert
spaces. It is well known that there are no Borel translation invariant measures
on infinite-dimensional vector spaces. However, one can define useful measures
on such spaces which are not translation invariant. In particular, the notion
of a Gaussian measure has a natural generalization to the infinite-dimensional
case.

Measures on an infinite-dimensional Hilbert space X is quite a subtle topic. A
naive approach to this subject leads to the notion of a weak distribution, which
is a family of measures on finite-dimensional subspaces satisfying a natural com-
patibility condition. It is natural to ask whether a weak distribution is generated
by a measure on X'. In general, the answer is negative. In order to obtain such a
measure, one has to consider a larger measure space containing X'. Many choices
of such a larger space are possible. A class of such choices that we describe
in detail are Hilbert spaces BX for a self-adjoint operator B satisfying certain
conditions.

Measures on Hilbert spaces play an important role in probability theory and
quantum field theory. One of them is the Wiener measure, used to describe
Brownian motion. There are also natural representations of the Fock space as
the L? space with respect to a Gaussian measure: the so-called real-wave and
complex-wave CCR representations, which we will consider in Chap. 9.

Note that for most practical purposes many subtleties of measures in infinite
dimensions can be ignored. In applications, an important role is played by such
concepts as LP spaces, the integral, the positivity a.e., etc. It is important that
there exists an underlying measure space, so that we can use tools of measure
theory. However, which measure space we actually take is irrelevant. Therefore,
the choice of the operator B mentioned above is usually not important for appli-
cations.

5.1 General measure theory

In this section we recall basic concepts and facts of measure and integration
theory.
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112 Measures

5.1.1 o-algebras

Let @ be a set. Let 2¢ denote the family of its subsets. Let us introduce some
useful kinds of subfamilies of 29.

Definition 5.1 Let R C 29.
(1) We say that R is aring if A,B€R = A\B, AUB €.
(2) R is a o-ring if it is a ring and Ay, As,... € R = |J A, € R

n=1
Definition 5.2 Let & C 29.

(1) & is an algebra if it is a ring and Q) € 6.
(2) 6 is a o-algebra if it is a o-ring and an algebra.

Definition 5.3 If T C 29, then there exists the smallest ring, o-ring, algebra
and o-algebra containing . It is called the ring, o-ring, algebra, resp. o-algebra
generated by ¥.

Definition 5.4 If (Q;,S;), i = 1,2, are spaces equipped with o-algebras, we say
that F : Q1 — Qo is measurable if for any A € Gy, F71(A) € &,.

5.1.2 Measures
Let (Q, &) be a space equipped with a o-algebra.

Definition 5.5 A finite complex measure is a function
SG3A— u(A)eC
such that pu(0) =0 and for any Ay, Ag,...€ &, AiNA; =0,i+# 7],

Udi=4 = ) =3 m4), (5.1)

where the above sum is absolutely convergent. A finite real, resp. finite positive
measure on (Q,S) has the same definition, except that we replace C with R,
resp. [0,00][. In the case of a positive measure we usually drop the word positive.
(In this case the requirement of the absolute convergence of the series in (5.1) is
automatically satisfied, and hence can be dropped from the definition).

We say that a positive finite measure p is a probability measure if u(Q) = 1.

In the positive case Def. 5.5 has a well-known generalization that allows the
measure to take infinite values.

Definition 5.6 A (positive) measure, is a function

S 3 A pu(A) €0, 0]
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5.1 General measure theory 113

such that p(0) = 0 and for any Ay, As,...€ &, AiNA; =0,1i# j,

o0

Jai=4 = ua) =3 ni4). (5.2)

Such a triple (Q, S, u) is often called a measure space. If in addition u is a
probability measure, (Q,S, 1) is called a probability space.

A measure space (Q,6, ) is complete if B C A with A€ & and p(A) =0
implies B € &. If (Q, S, 11) is a measure space, one sets
6Cp1 = {B € QQ : 3A1,A2 € S with A1 C B - Ag, ,U,(Az\Al) = O},
P (B) 5= (A,

Then (Q,&! uP!) is a complete measure space called the completion of
(Q, 6, 1). It admits more measurable sets and functions and therefore is more
convenient for the theory of integration.

5.1.3 Pre-measures

Generalizing Def. 5.6 to the real or complex case poses problems because the
series in (5.1) could be divergent. In this case, one of the possible solutions is to
use the concept of a pre-measure, which is defined only on a ring, takes finite
values and is conditionally o-additive.

Let (Q,fR) be a space equipped with a ring.

Definition 5.7 A complex pre-measure on (Q,R) is a function
Ro>A—v(A)eC

such that v(0) = 0 and for any Ay, Ay, ... € S, AiNA; =0, i#j,

o

Il
—_

J

where the above sum is absolutely convergent. A real, resp. positive pre-measure
on (Q,MR) has the same definition, except that we replace C with R, resp. [0, co].

The following well-known theorem allows us to extend in a canonical way a
positive pre-measure to a positive measure.

Theorem 5.8 Suppose that (Q,R) is a space with a ring and v : R — [0, 00| is
a positive pre-measure. Let S be a o-algebra containing R. Then

u(A) = sup{V(B) : BeER, BC A}, A€, (5.4)

is a measure on & extending v. If & coincides with the o-algebra generated by
R, then p is the unique measure on & extending v.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

114 Measures

5.1.4 Borel measures and pre-measures
Let @ be a topological space. The following two families of subsets of @ play a

distinguished role in measure theory:

Definition 5.9 (1) The o-algebra generated by the family of open sets of Q will
be called the Borel o-algebra of @ and denoted B(Q).

(2) The ring that consists of pre-compact Borel sets in Q will be denoted R(Q).
(We say that a set is pre-compact if its closure is compact).

Definition 5.10 A complex, real, resp. positive Borel pre-measure on @) is a
complez, real resp. positive pre-measure on (Q, R(Q)). Meas(Q) will denote the
space of complex Borel pre-measures.

Definition 5.11 p is a positive Borel measure on @ if it is a measure on

(Q,B(Q)) that is finite on K(Q) and
1(A) =sup{u(B) : B€ &(Q), BC A}, AecB(Q). (5.5)
Meas™ (Q) will denote the space of positive Borel measures on Q.

Note that every positive Borel pre-measure possesses a unique extension to a
Borel measure. Conversely, every positive Borel measure restricted to £(Q) is a
positive Borel pre-measure.

Definition 5.12 Let p be a complex Borel pre-measure on Q. The total variation
of p is the positive Borel measure |u| defined for A € B(Q) by

[ (A) = SUPZ (A7)l

where the supremum is taken over all families Ay, As, - -+ € R(Q) such that A; N
A; =0,i# jand A; C A. Meas'(Q) will denote the space of finite complex Borel
pre-measures on @ equipped with the norm |u|(Q), which makes it into a Banach
space.

5.1.5 Integral
Let (Q, &) be a space with a o-algebra.
Definition 5.13 Let M (Q, &), resp. M(Q, &) denote the set of S-measurable

functions with values in [0, 0o[, resp. C.

Let (@, S, 1) be a measure space.
We will often abbreviate (Q,S) to @ and (Q, &, u) to (Q, p).

Definition 5.14 Let N (Q, 1), denote the subset of M(Q) consisting of functions
vanishing outside of a set of measure zero. We set My (Q, ) :== M4 (Q)/N(Q, )
and M(Q, p) == M(Q)/N(Q, n).
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5.1 General measure theory 115

Definition 5.15 For f e M, (Q), in a standard way we define its integral,
which is an element of [0,00] and is denoted

/ Fdu. (5.6)

Clearly, (5.6) does not change if we add to f a function vanishing outside a set
of measure zero, hence it makes sense to write [ fdu also for f € M, (Q, ).

5.1.6 L? spaces
Definition 5.16 For f € M, (Q) we define

esssup f := inf {supf’Q\N . Ne6, p(N)= 0}. (5.7)

Clearly, (5.7) does not change if we add to f a function vanishing outside a set
of measure zero, hence it makes sense to write esssup f also for f € M, (Q, i).

Definition 5.17 For 1 <p<oo and f € M(Q, ), we set

191 = (f irpan) ™"

[flloo := ess supl|f].

We also introduce in the standard way the Banach spaces LP(Q, ) C M(Q, ).
For f € L*(Q, p), we define its integral, denoted by [ fdpu.

If ¢ is used as the generic variable in @, then instead of (5.6) one can write
[ f(g)dp(q). Often, especially if @ is a finite-dimensional vector space and p is
a Lebesgue measure on Q, we will write [ f(g)dg for (5.6).

If the measure p is obvious from the context, we will often drop p from our

notation and we will write L (Q), M (Q) etc. for LP(Q, u), M(Q, 1),
Let 1 <p,g< oo, pl+qt=1.1f f,g € M(Q), the Hélder’s inequality says

1 glle < W £llpllglly,

Definition 5.18 We will write L' (Q) for L?(Q) N M, (Q).

Definition 5.19 Let g € M(Q). We say that g is strictly positive (w.r.t. u),
and we write g >0, if g >0 and u ({q : g(q) =0}) = 0.

Proposition 5.20 Let g € LP(Q), 1 <p,g< o0, p ' +¢q7 ' =1.

(1) g >0 iff

/Q fgdu>0, feLl(Q) (5.8)
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116 Measures
(2) g>0iff
/Qfgdu >0, feLl(Q), f£0.

If the measure is finite, then ¢ > p implies L1(Q) C L?(Q).

5.1.7 Operators on L spaces
In this subsection we recall properties of linear operators on L spaces.

Let p; be a measure on (Q;,5;), i =1,2.
Definition 5.21 T € B(L*(Q1), L*(Q2)) is called

(1) positivity preserving if f >0 = Tf >0,
(2) positivity improving if f >0, f#0 = Tf > 0.

Note that T is positivity preserving (resp. improving) iff 7 is.
Let us assume in addition that p;, ¢ = 1,2, are probability measures.

Definition 5.22 T € B(L*(Q1),L*(Q2)) is called hyper-contractive if T is a
contraction and there ewists p > 2 such that T is bounded from L?*(Q) into

LP(Q2)-

Let 1 be a probability measure on (@, S). Clearly, the constant function 1
belongs to L?(Q).

Definition 5.23 T B(L2 (Q)) is doubly Markovian if T' is positivity preserving
and Tl =T*1=1.
We recall some classic results.

Proposition 5.24 A doubly Markovian map T extends to a contraction on
LP(Q) for all1 < p < 0.

Theorem 5.25 (Perron-Frobenius) Let H be a bounded below self-adjoint
operator on L*(Q), such that e ' is positivity preserving for t >0 and E =
inf spec(H) is an eigenvalue. Then the following are equivalent:

(1) inf spec(H) is a simple eigenvalue with a strictly positive eigenvector.
e """ 4s positivity improving for all t > 0.
2 G itivity 1 ‘ Ut>0

5.1.8 Conditional expectations

Let 4 be a measure on (Q,S). Let &, be a sub-o-algebra of &. Let o denote
the restriction of the measure p to Gy.

For 1 <p < oo, elements of LP(Q, i) that are Gp-measurable form a closed
subspace of LP(Q, ) that can be identified with LP(Q, uo)-
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5.1 General measure theory 117

Definition 5.26 We denote by Es, the orthogonal projection from L*(Q, )
onto the subspace L*(Q, j10). Es, is called the conditional expectation w.r.t. &g.

The following properties are well known.

Proposition 5.27 Let u be a probability measure.

(1) Es, extends to a contraction on LP(Q, p) for all 1 < p < co.
(2) Es, extends to an operator from M, (Q,S) to M, (Q,Sy).

(3) If g € L>(Q, p) is Sg-measurable, then Es,(9f) = gEs, (f) whenever both
sides are defined.

(4) If o : R — R is convex and positive, then

¢(Ee, [) < Es, (¢(f)) ae.

(5) If &y C & are two sub-o-algebras of &, then Fs, < Egs, .
(6) Let {S, }nen be an increasing sequence of sub-o-algebras of & such that &

is generated by |J &,,. Then
neN

s — lim Eg, =1, in L’ (Q,u), 1 <p < 0.

n—00

(7) Let F € LY(Q, ) with F >0 a.e. and set dup = (fQ Fd,u)_leu. Denote
by Ego the conditional expectation for the measure pp. Then

BL, () = .

5.1.9 Convergence in measure

Let (Q, ) be a probability space. In this subsection we review various notions
of convergence for nets of functions on a probability space.

Definition 5.28 The topology of convergence in measure on M (Q) is defined by
the following family V (€,0) of neighborhoods of 0:

V(ed)={re M@ : u{a : /(@) >e}) <a}.

It is a metric topology for the distance

o0

d(f,9) =Y 2"u({q : 1f(@—g(@)]>27"}).

n=0
The following proposition is immediate:
Proposition 5.29 If f, — f a.e. then f, — [ in measure.

We also recall the useful notion of the equi-integrability.
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118 Measures
Definition 5.30 A family {fi}icr in M(Q) is equi-integrable if

lim sup /Q il oer () = 0.

n—+00 ;o1

The following two results are well-known:

Proposition 5.31 Let {f;};er belong to M(Q). Then the following hold:

(1) If f :=sup|fi| is in L*(Q), then {fi}ier is equi-integrable.
i€l

(2) Ifsup | fillp < oo for some p > 1, then {fi}icr is equi-integrable.
iel

Theorem 5.32 (Lebesgue—Vitali theorem) Let 1 < p < oo, (fn)nen belong to
LP(Q) and f € M(Q). Then the following are equivalent:

(1) feLP(Q) and f, — f in LP(Q).

2) (I |p)neN is equi-integrable and f, — [ in measure.

5.1.10 Measure preserving transformations

Let p be a probability measure on (Q,&). Clearly, L*>°(Q) is a commutative
W*-algebra equipped with a faithful normal state, which we also denote by p,
that is,

u(f) = / fdp feI®Q).

(See Subsect. 6.2.7 for the terminology on W*-algebras.) Conversely, every com-
mutative W*-algebra equipped with a faithful normal state can be represented
as L>°(Q) for some probability space (Q,S, p). However, in general there may
be many non-isomorphic choices of probability spaces that lead to the same
W*-algebra and state.

Clearly, if r is a measure preserving bijection on @, then r, f := f o 7~! defines
an isometry on L?(Q) for all 1 < p < oo. In the case of p = oo, it is in addition a
o-continuous *-automorphism of the commutative W*-algebra L>°(Q) preserving
the state u. However, if we are given a o-continuous *-automorphism of L™ (Q),
we have no guarantee that there exists an underlying bijection of ). Therefore,
in the following proposition we do not insist on the existence of an underlying
bijection for x-automorphisms of L>(Q).

Proposition 5.33 (1) A x-automorphism of L*°(Q) that preserves the state p
extends to an isometry of LP(Q) for all 1 < p < +o0.
(2) Let Rt U(t) be a group of x-automorphisms of L>(Q) preserving the
state . Then the following statements are equivalent:
(i) For some 1 <p<oo and all f € L’(Q), Rot—U(t)f € LP(Q) is
norm continuous.
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5.1 General measure theory 119

(ii) For all f € L>®(Q), R t+— U(t)f is continuous in measure.

(iii) For all 1 <p<oo and fe€L’(Q), Rot—U(t)f € LP(Q) is norm
continuous.

(iv) For all f € L*(Q), Rt +— U(t)f is o-weakly continuous.

Proof Let T be a s-automorphism of M(Q) as in (1). Clearly, T preserves the
L? norm of simple functions for all 1 < p < co. Therefore, T is an isometry of LP
for 1 < p < oo. Then using that || f|lcc = [[m(f)|lB(z2(@)) if m(f) is the operator
of multiplication by f, we obtain also that T is an isometry of L>(Q).

We now prove (2). Since [ |f|Pdp > e’ u({|f] > €}), we obtain that (i)=-(ii).
Let us prove that (ii)=-(iii). Using (1) it suffices by density to show that

}Lm0/|U(t)f—f|pdu: 0, for f € L. (5.9)
We write
J10®F - tPau < n (U@ - 512 P 21 + o

Choosing first € and then ¢ small enough we obtain (5.9). To complete the proof

of the lemma it suffices to prove that (iii) = (iv) = (i). Since fQ fUt)gdp =

fQ U(—t)fgdu for g € L, f € L', we see that (iii) = (iv). Using that ||U(t)g —

gll3 = 2|lg||* — 2Re fQ U(t)ggdp for g € L*°, we obtain by a density argument

that (iv) = (i). O
5.1.11 Relative continuity

Let p be a measure on (Q, S).

Proposition 5.34 Let F € M, (Q). Then
63A—v(4) = /llAqu (5.10)
18 a measure.

Definition 5.35 The measure (5.10) is called the measure with the density F'
w.r.t. the measure p and is denoted v = Fu. We will also write g—; = F.
Proposition 5.36 (1) For F,G measurable functions we have
F =G p-a.e.= Fu=Gpu.

(2) If Fu is o-finite, then the converse implication is also true.
Definition 5.37 Let v be a measure on (Q,S). v is called continuous w.r.t. u
(or p-continuous), if

wW(N)=0=v(N)=0, NeF.

Theorem 5.38 (Radon-Nikodym theorem) Let i be o-finite. Let v be a measure
on (Q,8). Then the following conditions are equivalent:
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(1) there exists a positive measurable function F such that v = Fp.

(2) v is p-continuous. The function F is called the Radon-Nikodym derivative

of v w.r.t. p and denoted by d—Z

Note that, in the notation of Def. 5.35, the map

LWQWBfH(%QZfef@w)

is unitary.

5.1.12 Moments of a measure
Let u be a probability measure on (Q, S).
Proposition 5.39 Let f: Q — R be a measurable function. Let

C(t) = /eitfdu, teR.

(1) fe N LPQ) iff C(t) € C*(R), and then

peN

[ = iy G000

(2) Assume that C(t) extends holomorphically to {|Imz| < Ry}. Then for all
Im 2| < Ry, e/ € LY(Q) and

C(z) = /eizvfd/i.

Proof Let us first prove (1). The = part is immediate by differentiating under
the integral sign. It remains to prove <. It suffices to prove that f € L?"(Q)
for all n € N by induction on n. For ® € L?(Q), f® € L?*(Q) iff ® € Domm(f),
where m(f) denotes the operator of multiplication by f on L?(Q). This is equiv-
alent to ||(e'f — 1)®||> < Ct? for |t| < 1. If @ = 1, we get

n@”—maﬁzéu—aﬁ_gwmﬂ
=2C(0) — C(t) — C(—t) = O(t*),

since C(t) is C?, and hence f € L*(Q). Assume now that f € L*"(Q). We then
have

d2n 2 2n it
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5.2 Finite measures on real Hilbert spaces 121

Applying the above remark to ® = 2", we get
I = = [t - et
=2CP"(0) — P (t) — CCM (—t) = O(F),

since C(t) is C?"*2. Hence f € L*"2(Q).
To prove (2), it clearly suffices to show that e*#/ € L1(Q) for all 0 < R < Ry.
By Cauchy’s inequalities, we get for all 0 < R < Ry

|C"(0)] < CrR™"nl,

and hence

/f27ldu < CRR 2n( )'

/ 1P < ( / ) ( / )" < CaR T Vanl/@n )L

Using Stirling’s formula, we see that v2n!\/(2n + 2)! ~ (2n + 1)!, and hence
/|f|2"“du < CRR™nHD (2 4 1)L,

From these bounds, by expanding the exponential, we deduce that e*/ € L1(Q)
for all R < Ry O

5.2 Finite measures on real Hilbert spaces

In this section we describe the basic theory of probability measures on real
Hilbert spaces.

Throughout this section, X will be a real separable Hilbert space. For x1,xs €
X we denote their scalar product by a1 - .

5.2.1 Cylinder sets and cylinder functions

Let YV be a closed subspace of X'. Recall that Py, denotes the orthogonal projec-
tion on ). Recall also that 2B()) stands for the o-algebra of Borel sets in ). We
will write B for B(X).

Definition 5.40 Fin(X) will denote the family of finite-dimensional subspaces
of X. For Y € Fin(X) and A C Y, the set

Pyl (A):={zeX : Pyzec A}

is called the cylinder set of base A. Denote by BY the o-algebra of cylinder sets
of bases in B(Y).
By:= () 27
YeFin(X)
is the algebra of all cylinder sets.

Clearly, B C B2 if Y, C ).
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Proposition 5.41 B is the o-algebra generated by By .

Definition 5.42 We say that F : X — C is based on Y € Fin(X) if it is meas-
urable w.r.t. BY. F is called a cylinder function if it is based on ) for some
Y € Fin(X).

Each cylinder function is of the form F(x) = Fy(Pyz) for some measurable
function Fy on Y.

5.2.2 Finite-dimensional distributions of a measure

Until the end of this section we fix a probability measure p on (X, B).

Definition 5.43 If Y € Fin(X), we define the probability measure py on
(Y, B(Y)) by

uy(A) = u(Py'(4), AeBY).

The collection {py : Y € Fin(X)} is called the set of finite-dimensional distri-
butions of the measure p.

Finite-dimensional distributions satisfy the following compatibility condition:
Myl(A):Myz (Pil(A)ﬂy2>7 AE%(J}1>7 Vi C s (5'11)

Proposition 5.44 The set of finite-dimensional distributions uniquely deter-
maines the measure ji on the whole B.

Proof Finite-dimensional distributions uniquely determine y on By But By
generates ‘B. O

5.2.3 Characteristic functional of a measure

Recall that X* denotes the space dual to X'. Even though there exists a canonical
identification of X and X*, it is sometimes convenient to distinguish between X’
and X7 .

Definition 5.45 For £ € X* | we set

€)= [ o).

The function i : X* — C s called the characteristic functional of u, or the
Fourier transform of pu.

Proposition 5.46 The characteristic functional of u satisfies the following three

conditions:
(1) 4(0) =1,
N
(2) X & —&)ziz; =20, § X, 2 €C,
ij=1
(3) X* 3 & (&) € C is sequentially continuous for the weak topology of X* .
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5.2 Finite measures on real Hilbert spaces 123

The condition (2) above is called positive definiteness.

Proposition 5.47 The characteristic functional i uniquely determines the
measure .

Proof The restriction of i to Y* for Y € Fin(X) is the Fourier transform of
1y, so fi determines the finite-dimensional distributions of x. By Prop. 5.44 this
determines pu. 0O

5.2.4 Moment functions

Proposition 5.48 Let py > 0. Assume that for all £ € X* | the function x +—
& - x belongs to LPY (X, du). Then, for 0 < p < pg, there exists C such that

w«waAmemmsmmw (5.12)

Proof For e > 0, set

€)= [ 16 ape I duo)
X
For n € N, set

A, ={eX : 4,(¢ <n},
Apei={6€ Xt : ~,(6) <n}.

Clearly, v,.c(&) /" (&) when € — 0, hence A, = (.., An.c. Since £ — v, (&)
is norm continuous, 4, . is closed and so is A, as an intersection of closed sets.
Finally X* =, cny An-

Since X* has a non-empty interior, there exists by the Baire property a set
A, with a non-empty interior. Let £ € X#, § > 0 such that B(&,d) C A,,. If
[IE]l < 9, we write £ =& + &1, & =& — & € A,,. Using that

ca<C S J6 -l lg ol

pP1+p2=p

and the Holder inequality, we obtain that

which proves (5.12). O

Definition 5.49 Assume that the conditions of Prop. 5.48 are satisfied. The
moment functions of order 1 < p < py of the measure p are the maps

@wWMH%@wﬁH?AﬁﬂW%&@M@-
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Moment functions are well defined by the Holder inequality.
The following proposition follows directly from Props. 5.39 and 5.48:

Proposition 5.50 (1) The moment functions o, are multi-linear symmetric
functionals on X* .

(2)
lop (&1s - G < Cl& - 16 l- (5.13)

(3) o admits moments of all orders iff its characteristic functional i is weakly
infinitely differentiable. We then have

ty=w=t,=0

. e
op(&,...,&) = (1)pmﬂ(; tifi)

By Prop. 5.50 and the Riesz theorem, if the assumptions of Prop. 5.48 hold
with n = 1, then there exists ¢ € & such that

£~q:/X(£-x)d,u(a:), £e Xt

Definition 5.51 The vector q is called the mean of the measure p.

Again by Prop. 5.50, if assumptions of Prop. 5.48 hold with n = 2 and ¢ is the
mean of y, there exists a bounded positive A € B(X) such that

fl'A€2Z/X(&'(QS—Q))(@'(J?—Q))dM(z), 1,6 € X7,

Definition 5.52 The operator A is called the covariance of the measure p.

Proposition 5.53 Assume that the measure p has mean zero and

/HwHMM<m.
X

Then the covariance A of p is trace-class and

A= [ Jolfdnte)
X

Proof 1t suffices to let n — oo in the equality

Zei - Ae; :/ Z(x -e;)?dp(z),
i=1 X =1

where (e;);en is an o.n. basis of X. O
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5.2 Finite measures on real Hilbert spaces 125

5.2.5 Density of exponentials
Theorem 5.54 Let D be a dense subspace of X*. Then the space
Span{e*” : ¢ € D}
is dense in L*(X).
Proof Let G € L?(X) such that

/ "G (x)du(z) =0, £€€D. (5.14)

x

Without loss of generality we can assume that G is real-valued. Let
Bi={zeX : Gx)>0}, Bp={zeX : G(z) <0}

We can define the finite measures
()= [ 1o, @6()dua). m(4) = = [ 1o, @)6()du(a),

where A € B. From (5.14), we deduce that

/ e dpu (x) = / ¢ dpy(z), € €D. (5.15)
X X

D is a dense subspace of X*. Hence it is weakly sequentially dense in X#.
Since the characteristic functional of a measure is sequentially continuous for
the weak topology, (5.15) extends to all £ € X*. So py and ps have the same
characteristic functionals, and hence are identical, i.e. pg (4) = pa(A) for all A €
B. But p;(A) = ;i (AN B;), i =1,2, and By N By = ). Hence, u; = ps = 0. This
implies that G(x) = 0 p-a.e., and hence G = 0. O

5.2.6 Density of continuous polynomzials
Let D be a subspace of X*.

Definition 5.55 Functions on X of the form (§; - x)--- (&, - x), for&i,...,&, €
D, are called monomials based on D. Finite linear combinations (with complex
coefficients) of monomials based on D are called polynomials based on D.

Note that polynomials based on X'# are continuous functions. Therefore, they
are sometimes called continuous polynomials.

If the measure p admits moments of all orders, then all continuous polyno-
mials belong to L?(X). The following theorem gives a sufficient condition for the
density of continuous polynomials in L?(X).

Theorem 5.56 Let D C X* be a dense subspace of X* . Assume that for all
& € D there exists R(§) > 0 such that the function

Rotr a(tg) € C
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extends holomorphically to |Imt| < R(E). Then polynomials based on D are dense
in L?(X).

Proof Let G € L?>(X) be a vector orthogonal to all polynomials based on D.
Without loss of generality we can assume that G is real-valued. We then have

/ G(x)(§ - x)"du(x) =0, £€€D, neN.

X

Let us fix £ € D and let 2R < R(£). Then by Prop. 5.39 we know that e?#1¢] ¢
L' (Q) and

"\ (1R¢ - x)k
/ G(z)e T dp(x) = lim G(x)z%dﬂ(:@).

k=1

We can exchange sum and integral, since the integrand in the r.h.s. is less than
Ga)fele) < §<|G<x>|2 +e*tleel) € L1 ().
We obtain hence that
/ G2)e B dpu(a) = 0,
and, by differentiating w.r.t. R,
/ G(2)e €7 (¢ - gy du(z) = 0, n € N.

Arguing as above with G(z) replaced by G(x)e'®¢* we obtain

/G(x)eiRg'zeiRg'l'du(x) =0.
Hence, repeating this argument, we obtain
/G(m)eime'””du(x) =0, meN
If we choose m € N and 2R < R() such that mR = 1, we finally obtain

/G(ac)eif"”du(x) =0, {£e€D.

Applying Thm. 5.54, we obtain that G = 0. O

5.3 Weak distributions and the Minlos—Sazonov theorem

Throughout this section, X" is a separable real Hilbert space.

Suppose that we have a compatible family of measures on finite-dimensional
subspaces of X. We can ask whether this family comes from a measure on a
certain measure space. Often, there is no such a measure on X itself. However,
if we enlarge X', usually in a non-unique way, then such a measure may exist.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

5.8 Weak distributions and the Minlos—Sazonov theorem 127

5.3.1 Weak distributions

Definition 5.57 A collection ju, = {py : Y € Fin(X)} is called a weak distri-
bution or a generalized measure if, for each Y € Fin(X'), uy is a Borel probability
measure on ), and these measures satisfy the compatibility condition (5.11).

Note that cylinder functions can be “integrated” w.r.t. a weak distribution pi..
In fact, we can set

/qu* ::/Fyduy, (5.16)
X Y

where F(x) = Fy(Pyz). Because of the compatibility condition (5.11), the r.h.s.
of (5.16) is independent of the choice of Y on which F is based.

For each Y € Fin(&X) and 1 < p < oo, we can define the space L? (), uy). For
Y1 C Ys, we have natural isometric embeddings

LP (D, py, ) € LP (Do, py, )

Definition 5.58 The generalized L” space associated with a generalized measure
s is defined as the inductive limit of the spaces LP (Y, uy), that is,

cpl
Lp(Xv.u*) = ( U Lp(y7uy)> :

YEFin(X)

5.3.2 Weak distributions generated by a measure

Definition 5.59 Let 11 be a measure on (X,B). A weak distribution p, = {py :
ye Fin(X)} 1s said to be generated by u if it is the set of finite-dimensional
distributions of p.

The following necessary and sufficient condition for this to happen is given in
Skorokhod (1974):

Theorem 5.60 A weak distribution p. is generated by a probability measure

ilf

Jim (swp [ (o)) =0, (5.17)
O NYeFin(X) JY

5.3.3 Characteristic functionals of weak distributions

The following proposition coincides with the famous Bochner theorem if X is
finite-dimensional:

Proposition 5.61 Let F : X — C be a function satisfying the following condi-
tions:
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(1) F(0) =1,
(2) Z F(fl_gj)zlzzoy 517"'7€7l€‘)(7 Zl)"'7Z7Z€(C7

i,j=1

(3) Y3 & F(&) € Cis continuous for all Y € Fin(X).

Then there exists a weak distribution {uy : Ye Fin(X)} such that, for any
Y € Fin(X),

Fg) = /y e duy(y), €€ Y. (5.18)

Note that the functions X 3 x — ¢'¢'* are cylinder functions, hence the integral
in the r.h.s. of (5.18) is well defined.

Definition 5.62 A function F satisfying (1), (2) and (3) of Prop. 5.61 will be
called a weak characteristic functional.

Proof of Prop. 5.61. For any Y € Fin(X), the restriction of F' to ) satisfies the
hypotheses of Bochner’s theorem (see Reed—Simon (1978b)). Hence there exists
a probability measure puy on ) such that (5.18) holds. It remains to check the
compatibility condition (5.11). To check this, it suffices to show that, if Y; C Vs,
for each bounded continuous function G' on ), one has

Go Pyl d[},y2 = / de,yl . (519)
Ve Vi

This is clearly satisfied for G(y) = !¢V for ¢ € Y;. Next we can find a bounded
sequence (G),) of finite linear combinations of e'¢* for ¢ € ), which converges
a.e. to G, from which (5.19) follows. O

5.3.4 Minlos—Sazonov theorem

Theorem 5.63 (Minlos-Sazonov theorem) Let F': X* — C be a weak charac-

teristic functional. Then the following are equivalent:
(1) F is the characteristic functional of a probability measure p on (X,B).

(2) There exists a positive trace-class operator S on X such that X > £ — F(§) €
C is continuous if we equip X with the norm ||¢||s = (€]S€)z.

Proof (1)=(2). Assume that F' is the characteristic functional of a measure .
Note that

[F(&) = F(&)P =2Re(1 — F(& — &)). (5.20)
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5.8 Weak distributions and the Minlos—Sazonov theorem 129

Now, for R > 0,
Re(l — F(¢)) = /X (1 - cos(é - 2)) du(x)
1
<5 _@orawez) )
2 Jiei<r el R
where we used 1 — cos6 < inf(%- 6” 2). Since fHT\I<R |z]|?dp(z) < oo, we obtain

from Prop. 5.53 that there ex1sts a trace-class operator A such that

/ (€ 2)2du(z) = € - AgE.
[z||<R

Re(l — F(£)) < & Ap€ + 2u({||z| > R})-

Now let € > 0. Fixing R, > 0 such that 2u({||z]| > R.}) < ¢, and then taking
S, = 2¢ L Ap,, we prove that for any € > 0 there exists a trace class Se such that
(£]S5:€) < 1 implies

This yields

Re(1—F(§)) <e.

Now let ¢, — 0. Let S; be positive trace-class operators such that Re(l —
F(£)) < e if (£]Sk€) < 1. We pick a sequence (\) > 0 such that >, A\ Tr Sy <
00. Then S = )7, A Sy is trace-class. Moreover, if ({|S€) < A, then (£]Si€) < 1,
and hence Re(1 — F(§)) < .

(1)<=(2). Since F satisfies the conditions of Prop. 5.61, we can construct from
F' a weak distribution { uy Y eFin(X )} To construct a measure from the

weak distribution, we will use Thm. 5.60.
Let us fix § > 0. Let € be such that (£]S¢) < e implies Re(1 — F(§)) < 4. Since
Re(1— F(£)) < 2, we clearly have

2
Re(1—F(£)) <6+ ~(¢|S¢).
Let Y € Fin(X), @ > 0, dim Y = d. By (4.10), for y € Y we have
e—Falul® — (270)- / i1 =€ g,
and hence
/(1 _e—%““y”z)d,uy(y) - (zm)—ﬂ/ o za lEN? ( F(f))d{

Y

- (2m)—%d/ e 7w € Re(1 — F(€))de
Yy

< (Qﬂa)*%d/ ez llEl’ (5 + gg : Sﬁ)d{
hY% €

=5+ Q%Tr PySPy

<s+2%Tr 8,
€
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using (4.15). Next we have
Loy —LlaR?
1—em2t il > (1 —em 2 F ) Mg oo (Jly),

which yields
—LUt 2\~ —la Y 2
/yﬂlR,oo[(lyH)dMy(y) < (1—emTof) l/y(l—e 2 ) dpy (y)
< _ —LaR*\—1 g .
<(1—e 2% <5+2€TIS>

Fixing first § > 0, then a > 0, and then letting R — oo, we see that condition
(5.17) is satisfied. This completes the proof of the theorem. O

5.3.5 Measures on enlarged spaces

Using the Minlos—Sazonov theorem, it is possible to realize many weak charac-
teristic functionals on X (and even on a dense subspace of X') as characteristic
functionals of measures on a larger Hilbert space.

In the theorem below the Hilbert space Bz X is defined as in Subsect. 2.3.4.
We follow the usual convention for scales of real Hilbert spaces: X'# is identified
with X, but (BT X)* is identified with B~7 X using the scalar product on X.

Theorem 5.64 Let F: X — C be a weak characteristic functional continuous
for the norm of X. Let B > 0 be a self-adjoint operator on X such that B~ is
trace-class. Then there exists a Borel probability measure up on the Hilbert space
BT X such that

F(¢) = /B%Xeig'””duw), £eBTX.

Proof Since B~! is trace-class, B is bounded away from zero, and hence
B~rX =Dom B¥ C X. Let Fg be the restriction of the functional F' to B I X.

Clearly, F is continuous if we equip B~z X with the norm (£|B~'¢) 3=

W e

1
(£€)%. Hence Fp is a weak characteristic functional on B~7 X.
B! can be restricted to B~7 X. Interpreted in this way, it will be denoted
B! ‘B,%X. It is then unitarily equivalent to B~' as an operator on X. Indeed,

B %X — B_%X, BT : B X — X are unitary and

B7Y ., =B BB
BTTX

Hence, if B~! is trace-class, then so is B! ’B,%X. Therefore, we can apply now
Thm. 5.63, which implies that Fp is the characteristic functional of a Borel
probability measure pp on the dual (B*;’X)#. By Prop. 2.60, (Bfé’X)# can be

identified with B* X. This completes the proof of the theorem. O

Remark 5.65 Sometimes the functional F is not continuous for the topology of
X, but for a certain norm (£|A€)7, where A > 0 is a self-adjoint operator on X.
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This case can be easily reduced to the case A = 1 by replacing X by A=t X. The
condition on B becomes that B~% AB™% is trace-class on X.

Remark 5.66 Note that we still use the notation x for the generic variable in
the enlarged space BT X.

5.3.6 Comparison of enlarged spaces

Proposition 5.67 Let F' be as in Thm. 5.64 and let B; >0, i = 1,2, be two
self-adjoint operators on X. Assume that Bfl 18 trace-class and By < By. Then

1
B{l 1s trace-class. Let 1; be the associated probability measures on B X. Then
i i
B} X is a Borel subset of B; X and

L 1
MQ(C):Ml(CﬂBfX), CE%(B;X)
For the proof we will use the following lemmas:
Lemma 5.68 Let X be a real Hilbert space and A € B(X). Then Ran A € B(X).

Proof We use the polar decomposition A = U|A| of A, where U is a partial isom-
etry. It is clear that partial isometries map Borel sets onto Borel sets. Therefore,
it suffices to show that Ran|A| is Borel. By the spectral theorem,

Ran |A| = {x € X, sup, ey H(‘A| +n_1)_19€HX < OO}
—1\— 1
U, 0 {re o] <o}

meNneN

This proves that Ran|A| € B(X). ad

Proof of Prop. 5.67. Bl%X equals ABQ%X, where A = B%B;% € B(BQ'%X).
Hence, by Lemma 5.68, Bf X € B(B] X).

Recall from Subsect. 2.3.4 that we have a natural embeddmg 1: B X — B X.
Its adjoint is an embedding I* : B ¥ X — B, ¥ X. Both B, ¥ X and By ¥ X are
embedded in X. Thus, for £ € B, ? X treated as an element of X , We can write
I*¢=¢.

Define a measure fiz on ‘B(Bé X) by

fi2(C) = i (I7'C) = i (CN By X), C € B(B;X).
For { € B;%X, we have

/L eii{hzzdﬂg(l'z) _ . efig'““d,ul(ih) — /L eiil#g'ZIdﬂl(aﬁ)
B

Ix BZX BZX

SFEO=FO) = [, ).

ZQX
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This implies that the characteristic functionals of iy and ps are equal. Hence
o = jio. This completes the proof of the proposition. O

5.4 Gaussian measures on real Hilbert spaces

Let X be a real Hilbert space. We would like to discuss Gaussian measures on
real Hilbert spaces and the corresponding L? spaces. This section has a natural
continuation in Sect. 9.3, where we discuss the real-wave representation of CCR.

5.4.1 Gaussian measures

Proposition 5.69 Let A be a positive self-adjoint operator on X and q be a
bounded linear functional on A T X.

(1) The function
Dom A 3 & s F(§) = 07848 (5.21)

is a weak characteristic functional.
(2) It is the characteristic functional of a probability measure p on X iff A is
trace-class.

Proof (1) To prove the conditions of Prop. 5.61 we can assume that X is finite-
dimensional. Setting X} = Ker A, we decompose X as X1 ® X> and ¢ = (¢1, ¢2).
Let Ag be A restricted to X,. Using (4.10) we see that F' is the Fourier transform
of the probability measure du = dp; ® dps for

dpy (»Tl) = 5($1 - fh)d!El,
dpia (ws) = (2m)~F4m Y2 det Ay Tem b =) A7 (12 m0) g

(2) Let us prove <. We have
Re(1 — F(£)) = (1 e 646) e H45(1 — cos(g - )
< 56 AE+ g€

Since ¢ is bounded on A~7 X we obtain that |Re(1 — F(£))| < C¢ - A¢. By (5.20)
this proves the continuity of F for the norm given by A, which is trace-class. So
we can apply the Minlos—Sazonov theorem.

Let us now prove =. Let us assume that F' is the characteristic functional of a
measure y. By translating the measure p we can assume that ¢ = 0. Splitting X’
as Ker A @ Ker A+, we may assume that A is non-degenerate. If A is not compact,
we can find a sequence (&, ),en such that w — nh_}ngo &, =0 and n]LII;O & AL, =

A #£ 0. This contradicts the weak continuity of F'. Hence A is a compact operator.
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5.4 Gaussian measures on real Hilbert spaces 133

Now let (€;);en be an o.n. basis of eigenvectors of A for the eigenvalues (\;);en.
Let Y, = Span{ey,...,e,}, P, be the orthogonal projection on ), and A, =
P, AP, . Let p, denote the measure py, on YV,, y, the generic variable on ),
and dy, the Lebesgue measure on ). By (4.10), we know that

u L -
dptn (ya) = (2m) 7 det A, Te™ 30 A 0 dy, .
Hence, for € > 0,

/efﬂpﬂuzdu(gj):/ et P, () = TT(1 +ex)7t.
X i=1

n

Now

1=1lim lim [ e #IP7IPqu(z) = 1im JT(1 +eX) 7.
eNOn—oo [y 'u AN ];[

This implies that [[;Z, (1 +e);) < oo for small enough e >0, and hence the
series Z?; A; is convergent and A is trace-class. O

Definition 5.70 The measure defined in Prop. 5.69 will be called the Gaussian
measure on X of mean ¢ and covariance A and will be denoted by

Co(zy — al)e*%(z2 —12)4;" (o2 ~92) Az, day, (5.22)
or, if Ker A =0, by
Cerlr=a) A~ (r=a) gg, (5.23)
Note that C'in (5.22) and (5.23) has the meaning of the “normalizing constant”
that makes (5.22) a probability measure.

Remark 5.71 Prop. 5.69 provides an example of a weak distribution on X which
is not generated by a probability measure on X.

5.4.2 Gaussian measures on enlarged spaces

In this subsection we consider the case of a covariance for which (5.21) is only a
weak characteristic functional.
Let A be a positive self-adjoint operator on X. Consider the function

Xo&— e n8AE, (5.24)
It is a weak characteristic functional. It is not a characteristic functional of a
measure unless A is trace-class.

Definition 5.72 The generalized measure given by the weak characteristic
functional (5.24) will be called the generalized Gaussian measure on X with
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134 Measures

covariance A. We will denote by
L2(X,e 274 7 dy)

the corresponding L? space. We will call it the Gaussian L? space over X' with
covariance A.

If B is a positive self-adjoint operator B on X such that B T AB™T is trace-
class, then L2(X,ef*4 "' #dz) is naturally isomorphic to L2(B* X, dug), where

/L T dup(z) = e 24 ce BTN,
BT X
Note that there is no canonical choice of the operator B.

Definition 5.73 Following (5.23), the measure pup will often be denoted
Cerr 4 2y,

(Note that this notation hides the dependence on B, which plays only an
auxiliary technical role.)

Consider in particular the case of covariance 1. L?(X, ez’ dz) can be realized
as an L? space over X iff X is finite-dimensional. L? (X, e’ dx) is then equal
to L*(X, (27) t%e~+*"dz), where d = dim X and dz is the Lebesgue measure
on X compatible with the Euclidean structure.

Remark 5.74 (5.24) is a weak characteristic functional even if the positive
operator A has a mon-zero kernel. If this is the case, then the corresponding
Gaussian L* space can be identified with L? (Xl,efé’“'Alflxldxl), where X :=
(Ker A)L, Ay is the restriction of A to X and xy is the generic variable of X .

5.4.3 Exponential law for Gaussian spaces

In this subsection, for simplicity we restrict ourselves to covariance 1.

Proposition 5.75 Let Xy, X5 be two real Hilbert spaces. Set X := X1 ® Xs.
Then the map

U : CPol(X)) ® CPol(X;) — CPol(X)
P1 (1’1) X PQ(QEQ) — P(.’El)P(.’Eg)

extends to a unitary map
UL (X, e ™ day) @ L2(Xy, e 7% day) — LA(X, e 2" dx).

Proof Let us choose two operators B;, B such that B; ! is trace-class on
1
X;, and use L?(B? X;,dugp,) as representatives for L2(Xi,e*§’”?da:i). Then the
1 L
map U extends to a unitary map from L?(B{ Xy, dup, ) ® L*(B Xy, dug,) into
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5.4 Gaussian measures on real Hilbert spaces 135

L2(B* X,dug) for B = B, & B,. We have

2 1

/1 T dpp () = e FUTEG = eTE
BT X

which shows that L2(B* X, dug) is a representative of L2(X, e~ 7% dz). O

5.4.4 Polynomials in Gaussian spaces
Let A, B be positive operators with B~ *AB™7 trace-class. We identify
L2(X, e oA v dy) with L2(B* X, dug).

Proposition 5.76 Polynomials based on B~ X are dense in LQ(X,e_%"’2 dz).

Proof Clearly, for ¢ € BT X , the function

. 2
Cot— /:I/B(t§> = / ) e—u‘f»z:dMB(x) _ e—fjf.AE
B X

is entire. Hence the statement follows from Thm. 5.56. O

Clearly, we have the inclusion B 'X C A" X. If we regard B7 X as the under-
lying space, then only polynomials based on B~% X are continuous functions.
Those based on A~z X do not have to be continuous. However, they are LP
integrable, as the following proposition shows.

Proposition 5.77 Polynomials based on A2 X belong to () LP(BTX,dug)

1<p<oo
and, for & € A"T X, we have
[, € ap dun(e) <o,
BTX
n Qn' n N
[y (€ aP dun(o) = 2o(e- A (5.25)
BT X n:

Proof Using Prop. 5.50, we obtain (5.25) for £ € Bz X.
Using (5.25), we see that if (&,)nen is a sequence in B~rX converg-
ing to some £ € X, then the sequence of functions (&, -z)™ is Cauchy in
N L’(B?X,dup). Hence we can define the function

1<p<oo

(&-2)™ = lim (&, -2)™,

n—00

which belongs to () LP(BzX,dug). O

1<p<oo
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5.4.5 Relative continuity of Gaussian measures

Let A;, i =1,2, be two bounded positive operators on X. For simplicity we

assume that A; >0, i.e. Ker A; = {0}. Let B~! be trace-class. Consider the

Gaussian measures j; with the covariances A;, ¢ = 1,2, on the space B TX.

Theorem 5.78 (Feldmann-Hajek theorem) The measures py and po are abso-
_r _1

lutely continuous w.r.t. one another iff A} > AsA; * — 1 € B?(X).

Let us now discuss the Radon-Nikodym derivative 3:3 (z) under the hypoth-

eses of Thm. 5.78. For simplicity we assume that A; = 1 and denote Ay by A,
w1 by p and po by fi. It is easy to obtain the corresponding statements in the

general case by replacing X by A;%X (see Subsect. 11.4.6).
Proposition 5.79 Assume that 1 — A € B>(X). Then the following hold:

(1) Let {m, }nen be an increasing sequence of finite rank orthogonal projections
in X withs —limm, = 1. Set

FE,(z) := (det W,LAm,,)_%e%W'ﬂn (1-A"Y)r, ¥ néeN.

Then {F,}nen converges in LI(B%X,du) to a positive function F with
[ Fdp=1.
(2) If 1 — A € B(X), then

F(z) = (det A)~Fer® (=47,

(3) One has j—/‘j(x) = F(x).

Remark 5.80 Statement (3) of Prop. 5.79 shows that F is independent
on the choice of {m,}. Note also that x+ xz-(1— A=)z is continuous on
B%X, hence x — e (1=A7)7 s meqsurable on B%X, although not integrable if
1—- A ¢ BY(X). Therefore, a convenient notation for F is

F(z) = Cepr(1-47)z

where C' is the “normalizing constant”, as in Def. 5.70.

The proof of this theorem will be given later on; see Subsect. 11.4.6.

5.5 Gaussian measures on complex Hilbert spaces

Let Z be a separable (complex) Hilbert space. We denote by z; - z2 the scalar
product of z1, 29 € Z.

We will discuss Gaussian L? spaces of anti-holomorphic functions on Z. This
section has a natural continuation in Sect. 9.2, where we discuss the complex-
wave representation of CCR.
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5.5 Gaussian measures on complex Hilbert spaces 137

5.5.1 Holomorphic and anti-holomorphic functions

Recall from Subsect. 3.5.6 that inside the space of all complex polynomials
CPol(Zr) we have the subspace Pol(Z ) resp. Pol(Z) of holomorphic, resp. anti-
holomorphic polynomials spanned by H w; - z, resp. H w; - Z, for w; € Z.

The following definition generahzesliche notion of a holomorphlc function to

an arbitrary dimension.

Definition 5.81 A function F : Z — C is holomorphic, resp. anti-holomorphic
if its restriction to any finite-dimensional complex subspace of Z is holomorphic,
resp. anti-holomorphic.

5.5.2 Measures on complex Hilbert spaces

Recall from Subsect. 3.6.9 that, in the context of the integration, a complex space
Z is often identified with Re(Z @ Z) by the map

Z52+ (2,%Z) €Re(Z® 2). (5.26)
This suggests adoption of the following convention for characteristic functionals

on complex spaces:

Definition 5.82 If pu is a Borel probability measure on Z, its characteristic
functional is defined by

Z 35w — ,&(w) = / e—?iReﬁ~zdﬂ(2) :/ e—iﬁ‘z—iw‘zfdu(z).
Z Z

5.5.3 Gaussian measures on complex spaces

Now let A > 0 be a trace-class self-adjoint operator on Z. There exists a unique
measure p on Z such that

f(w) =e AV e Z. (5.27)

This follows from Prop. 5.69, if we consider Z as the real Hilbert space Zg
equipped with the scalar product Rez; - 22

Definition 5.83 The measure y defined by (5.27) will be denoted Ce==4 ' *dzdz
and called the Gaussian measure of covariance A.

Let Z be finite-dimensional of complex dimension d with a fixed (complex)
volume form dz. By Subsect. 4.1.9, we then have

Ce ™47 2dzdz = det A1 (271) %o 74 dzdz. (5.28)

(The notation i~?dzdz is explained in Subsect. 3.6.9.)
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Definition 584 We denote by Li(Z,Ce 4 s dzdz),  resp.
LA(Z,Ce 747" dzdz) the closure in L2(Zg,Ce 74 '2dzdz) of Pol(Z),
resp. Pol(Z).

Theorem 5.85 The space L% (Z, Ce 747" 2dzdz), resp. Li(Z, Ce 74" 2dzdz)
coincides with the space of holomorphic, resp. anti-holomorphic functions in

L2(Zg,Ce 47 2dzdz).

Proof 1Tt suffices to consider the holomorphic case.

Let Y C Z be a finite-dimensional complex subspace. If GG is a function on
Z, let G|y be its restriction to V. Let F € L%(Z,Ce*Z'A_IZdEdz), and (P,) a
sequence in Pol(Z) converging to F in L2(Zp,Ce =4 2dzdz). If Y is finite-
dimensional then (P, )y converges to Fy in LZ(yR,Ce_?Aflszdz), hence in
D'(YVr). By Prop. 4.12 it follows that Fy is holomorphic.

Conversely, let F € L2(Zg,Ce >4 '*dzdz) be a holomorphic function, and
assume that F' is orthogonal to all holomorphic polynomials. Let (e;);en be an
o.n. basis of eigenvectors of A for the eigenvalues (););en. We fix d and restrict
F to Span{ey, ..., eq}. If we identify C? with Span{e;,...,e;s} by the map

d
(Zl,..., Z

we are reduced to considering a holomorphic function G on C?, which is orthog-

ej,

onal to all holomorphic polynomials for the measure (27i)~Ye~%*dzdz.
For i = (ny,...,nq) € N© we recall that 71! :=mn;!...ng!, 0" = orr ... ol
From Cauchy’s formula, we get

—

"G0) = —— G(rief ... ryelf i750ip 746, ... d6,.
=G(0) (2m) /[0 2 (e, mad™) II &5y by !

If C(n) =

+ o0 _p2 .
Jo T r#nitlem dr, we obtain

I e

Jj=1

C(n)d" G(0) = 2~ /G e ﬁl " 0T (2im)~d3dz.
Hence, if G € L*(CY, (2ir) 9e~7*dzdz) is holomorphic and orthogonal to the
holomorphic polynomials, we have 97 G(0) = 0 for all 7i and hence G(z) = 0.
This implies that the restriction of F' to Span{es,...,e;} is equal to 0 for all
d. In particular, F' is orthogonal to all real polynomials generated by Re(g; - 2)
and Im(e; - z). Since these polynomials are dense in LZ(ZR,e*E'A_lZdEdz), we
have F' = 0. a

5.5.4 Generalized Gaussian measures on complex spaces

We now extend Def. 5.84 to generalized Gaussian measures that cannot be real-
ized as measures on Z. For simplicity, we assume that the covariance of the
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5.5 Gaussian measures on complex Hilbert spaces 139

measure is given by the scalar product of the underlying (complex) Hilbert
space.

Definition 5.86 Denote by L2(Z,e 7 *dzdz), resp. LA(Z,e"7*dzdz) the clo-
sure in L2(Zg, e 7*dzdz) of the space of holomorphic, resp. anti-holomorphic
polynomials on Z. The space LZ(Z,e~7*dzdz), resp. L&(Z,e > *dzdz) will be
called the holomorphic, resp. anti-holomorphic Gaussian L? space with covari-
ance 1.

Proposition 5.87 Let B >0 be an operator such that B~ is trace-class.
Identify L2 (Zg, e =*dzdz) with L2(B? Zg,Ce >*dzdz) in the usual way. Then
L%(Z,e_?'zldzdz), resp. LA(Z,e72dzdz) coincide with LZ(B* Z,Ce™7*dzdz),
resp. LA(B* Z,Ce™7*dzdz).

5.5.5 Isomorphism with modified Fock spaces
Recall the modified Fock space I'™°4(Z), defined as the completion of I (Z) with
. o 1
the scalar product glven‘lf)y (@) pmoa(z) = (@\W\I/)FS(Z);Moreover, we recall
from Subsect. 3.5.1 that ['(Z) can be identified with Poly(Z), which is dense in
L%(Z,e 7*dzdz). It turns out that this identification extends to a unitary map:
Theorem 5.88 The map

al

0.(2) 3 @ — &() € Pol,(Z)

given by
O(z) = (:®"[®)
n=0
extends by continuity to a unitary map
med(2) 5 @ () € LA(Z,e 7 *dzdz). (5.29)

The proof of the above theorem for dim Z = 1 follows immediately from the
following simple computation:

Lemma 5.89 Let 2 € C. Then

(2771)_1/e_g'zsz"’dsz:n!(Snvm. (5.30)
o

Proof We identify C with R?. In the polar coordinates z = rel?, the Lh.s. of
(5.30) equals

27 e .
ﬂ/ﬂ dgb/o dreld(m=—n)gmintlo=r (5.31)
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For n # m the integral w.r.t. ¢ yields zero. For n = m we get

1 >~ 2m+1 —r? > om —r? 2
— r e " dr = r*Me™" dr = ml.
2 /o 0

Alternatively, we can rewrite (5.30) as
. o —1 —ZFez —izl—iFt - . ) L —|t)?
oy o (2) /e FEeTITE dzdz|t:0 ="Moo ore It ’t:(]
= nldym. O

Proof of Thm. 5.88. For notational simplicity assume that dim Z < co. Let
(e1,...,e,) be an o.n. basis of Z. Recall that {e; : k€ N"} is an o.n. basis of
rmed(Z), where

k
e?l®s"'®se®kn7

Cp = n

1
Vi
ez = and k! = k! k,!. The vector e is mapped onto the polynomial

1 = _
I (e; - 2)%.

6;(7) = \/ﬁizl

Using Lemma 5.89 we see that {e;(-) : keN"} form an omn. basis of
L4(Z,Ce 72 dzdz). 0

The following proposition is an illustration of the formalism of Gaussian com-
plex spaces.

Proposition 5.90 Let F € L%(Z,e"7*dzdz). Then
F(z) = /F(E)e?'z“ Ce **dzdz, 2z € Z.

Proof The integral on the r.h.s. is well defined, since Z — e“** belongs to
L%(Z,e 7*dzdz). By density and linearity it suffices to check the identity for
monomials. We have

P
P — — P
/ II(e; - 2)" e Ce " *dzdz = / I 9} exp (z “Zo + Ztiei E)
z zi=l i=1

X Ce_?'zdidzhzo

p
. _
= 7:1:'[1 d;" exp ( E tie; - z0> |t:0

i=1

(62‘ . 20>m.

I
e

This completes the proof of the proposition. O
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5.6 Notes 141

5.6 Notes

General measure theory is studied e.g. in the monographs by Halmos (1950) and
Bauer (1968).

Properties of positivity preserving maps are discussed e.g. in Reed—Simon
(1978Db).

The notion of equi-integrability and the Lebesgue—Vitali theorem can be found
in Kallenberg (1997). Measures on Hilbert spaces is the subject of a monograph
by Skorokhod (1974). The proof of Prop. 5.41 can be found e.g. in Chap. 1.1 of
Skorokhod (1974).

The Feldman-Hajek theorem about relative continuity of Gaussian measures
was proved independently by Feldman (1958) and Hajek (1958).
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6
Algebras

In this chapter we recall basic definitions related to algebras, especially C*- and
W*-algebras.

Operator algebras are often used in mathematical formulations of quantum
theory to describe observables of quantum systems. This is especially useful if
we consider infinitely extended systems. They are also convenient to express the
Finstein causality properties of relativistic quantum fields.

It is also common to express canonical commutation and anti-commutation
relations in terms of algebras. This is especially natural in the case of the CAR.
In fact, we will use algebras to treat the CAR in a representation-independent
way in Chap. 14. Algebras are less useful in the case of the CCR. We will discuss
various choices of CCR algebras in Sect. 8.3.

The theory of W*-algebras, including elements of the modular theory, will be
especially needed in Chap. 17, devoted to quasi-free states.

6.1 Algebras
6.1.1 Associative algebras

Let 2 be a vector space over K = C or R.
Definition 6.1 2 is called an algebra over K if it is equipped with a multiplica-
tion satisfying

A(B+C)=AB+ AC, (B+C)A=BA+CA,

(aB)(AB) = (aA)(BB), a,B €K, AB,C e

If in addition
A(BC)=(AB)C, A,B,C e,

then we say that it is an associative algebra.
Unless indicated otherwise, by an algebra we will mean an associative algebra.

Definition 6.2 A subspace J of an algebra U is called a (two-sided) ideal of 2
if Ac A and B € J implies AB,BA € 7J.

If 7 is an ideal of 2, then 2/J is naturally an algebra.
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6.1 Algebras 143

Definition 6.3 An algebra 2 is called simple if 2 has no ideals except for
{0} and itself, and A #K with the multiplication given by AB =0 for all
A, Be.

For every subset T of an algebra 2 there exists the smallest ideal containing

z.

Definition 6.4 This ideal is called the ideal generated by T and is denoted by
3(%).

Definition 6.5 If 2, B are algebras, then a linear map 7 : A — B satisfy-
ing m(A1As) = w(A1)m(As) is called a homomorphism. [t is called an anti-
homomorphism if (A1 Ay) = w(A2)7(Ar). (In the well-known way, we also
define isomorphisms, automorphisms etc.)

6.1.2 x-algebras

Definition 6.6 We say that an algebra 2 is a x-algebra if it is equipped with an
anti-linear involution A > A — A* € A such that (AB)* = B*A*.

Let 2 be a x-algebra. If J is a x-invariant ideal of 2, then 2/J is naturally a
x-algebra.

Definition 6.7 If2A, B are x-algebras, then a homomorphism 7 : A — B satisfy-
ing m(A*) = w(A)* is called a *-homomorphism. (We also define x-isomorphisms,
s-automorphisms etc.) Aut(2) will denote the group of *-automorphisms

of .

6.1.3 Algebras generated by symbols and relations

Suppose that A is a set.

Recall that c.(A,K) denotes the vector space over K consisting of finite lin-
ear combinations of elements indexed by the set A. We adopt the convention
that the element of c.(A,K) corresponding to A € A is denoted simply by
A. Recall also that %y denotes the algebraic tensor algebra over the vector
space ).

Definition 6.8 (1) The unital universal algebra over K with generators A is
defined as

QL(A, ]1) = % Ce (A7 K)7

where we write Ay Ay -+ A, instead of Ay Ay ®---® A, A1,..., A, € A
and the unit element is denoted by 1.

(2) The universal unital x-algebra with generators A is the x-algebra
(AU A* D) equipped with the involution x such that (AjAg---Ap)* =
Ax o ASAT, 1=17.
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144 Algebras

Definition 6.9 (1) Let R C A(A, 1). The unital algebra with generators A and
relations R =0, R € R, is defined as A(A, 1)/I(R).

(2) Let R C A(AUA*, 1) be x-invariant. The unital x-algebra with generators
A and relations R =0, R € R, is defined as A(AU A*, 1)/T(R).

6.1.4 Super-algebras

Recall from Subsect. 1.1.15 that (), €) is a super-space if ) is a vector space and
€ € L(Y) satisfies €2 = 1. We then have a decomposition Y =)y @), into its
even and odd subspace.

Definition 6.10 (2, «) is called a super-algebra if 2 is an algebra and « is an
involutive automorphism of 2.

We then have a decomposition A =2y @2, into even and odd subspace.
Clearly, for pure elements A, B € 2 of parity |A|, resp. |B|, the parity of AB
is |A| + |B.

Note that 2, is a sub-algebra of 2.

Definition 6.11 We say that a super-algebra 2 is super-commutative iff AB =
(—1)AIBIAB.

Below we give two typical examples of associative super-algebras:
Example 6.12 (1) Let (), €) be a super-space. Then L(Y) equipped with the
involution

a(A) = eAe (6.1)

is a super-algebra. It will be denoted gl(Y,€).
(2) dli (Y) equipped with @ is a super-commutative super-algebra (see Subsect.
3.3.9).

6.2 C*- and W*-algebras

In this section we recall basic terminology from the theory of C*- and
W*-algebras.

6.2.1 Banach algebras

Definition 6.13 An algebra 2 is called a normed algebra if it is equipped with
a norm || - || satisfying

[AB| < [lA[l}B]l, A, B €2

It is called a Banach algebra if it is complete in this norm.
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6.2 C*- and W*-algebras 145

6.2.2 C*-algebras

Definition 6.14 We say that 2 is a C*-algebra if it is a complex Banach
x-algebra satisfying

1A] = 1Al [|AAll = [|A]°, A€ (6.2)

Definition 6.15 Let 2 be a complex normed %-algebra (not necessarily com-
plete). We say that its norm is a C*-norm if it satisfies (6.2).

Clearly, the completion of an algebra equipped with a C*-norm is a C'*-algebra.
If H is a Hilbert space, then B(H) equipped with the Hermitian conjugation
and the operator norm is a C*-algebra.

Definition 6.16 A norm closed x-sub-algebra of B(H) is called a concrete
C*-algebra.

Clearly, every concrete C*-algebra is a C*-algebra. Conversely, every
C*-algebra is *-isomorphic to a concrete C*-algebra.

Any x-homomorphism, resp. *-isomorphism between two C*-algebras is a con-
traction, resp. isometry.

Definition 6.17 We define the set of positive elements of 2 as the set of self-
adjoint elements with spectrum in [0, o[, or equivalently, of elements of the form
A*A. The set of positive elements of A is denoted 2, .

Definition 6.18 Let 2l be a C*-algebra. A C*-dynamics on 2 is a one-parameter
group R > t — 7t € Aut(2d) such that for each A € A the map t — 7' (A) is con-
tinuous. Such a pair (A, 7) is called a C*-dynamical system.

6.2.3 Representations of C*-algebras
Let ‘H be a Hilbert space and A C B(H).
Definition 6.19 The commutant of 2 is defined as

A= {BeB(H) : AB=DBA, Ac}.

Let 2 C B(H) be a =-algebra.

Definition 6.20 2 is called irreducible if the only closed subspaces of H invari-
ant under A are {0} and H, or equivalently if A" = C1. A is called non-degenerate
if AH is dense in H.

Let 2 be a C*-algebra.

Definition 6.21 (H, ) is a representation of 2 if H is a Hilbert space and w is
a x-homomorphism of A into B(H). 7 is called faithful if Kerm = {0}.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

146 Algebras

(Faithful in this context is the synonym of injective.) Since Kerr is a closed
two-sided ideal of 2, any non-trivial representation of a simple C*-algebra is
faithful. Actually, a stronger statement is true: a C*-algebra is simple iff all its
representations are faithful.

Let (H,7) be a representation of a C*-algebra 2.

Definition 6.22 A closed subspace H1 C H is invariant if m(A)Hy C Hy for all
A €A (Hy,m) is a sub-representation of (H, ) if Hi is an invariant subspace
of H and m = 7r|H1 .
Definition 6.23 We say that (H,n) is the direct sum of (H;,m) and (Ha,m2)
if H="Hy @ Hy and (H;,m;) are sub-representations of (H, ).

Note that if H; is invariant, then so is Hy := Hi-. (H, ) is then the direct
sum of (Hy,m1), (Ha,m2), with m = 7T|Hl, Ty 1= W‘m.
Definition 6.24 We say that a representation (H, ) of a C*-algebra is irre-
ducible if w() is irreducible. Equivalently ()" = C1, or m has no non-trivial
sub-representations.

Definition 6.25 The representation (H,m) is called non-degenerate if w(2) is
non-degenerate.

Definition 6.26 The representation (H, ) is called factorial if () N7 (A)" =
C1.
Let £ C H.

Definition 6.27 (1) & is called cyclic for m if {m(A) P : A€ A, ® € E} is dense
n H.
(2) & is called separating for 7 if

T(A)P =0, P& = A=0.

Clearly, if (H,n) is irreducible, all non-zero vectors in H are cyclic.

6.2.4 Intertwiners and unitary equivalence
Let (Hi,m1), (H2,m) be two representations of a C*-algebra 2.
Definition 6.28 An operator B € B(H1, H2) intertwines m and my if

Bm (A) = WQ(A)B, Ae

If m and m have an intertwiner in U(Hi,Hs), they are called unitarily
equivalent.

The following theorem can be called Schur’s lemma for C*-algebras:
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6.2 C*- and W*-algebras 147

Theorem 6.29 If (Hy,m), (Ha,m) are irreducible, then the set of intertwiners
equals either {0} or {\U : X € C} for some U € U(H1,Ha).

Proof 1f B intertwines m; and my, B* intertwines 7y and 71, hence B*B € 1 (1)’

and BB* € my(21)". By irreducibility, B*B = A\ 1, BB* = X1 for some A\, Ay €
R. Now
M1 = BB*BB* = B\yB* = M\ 1. (6.3)

If Ay =0, then B = 0, and hence \y = 0. Hence (6.3) implies that A\; = Ay, which
means that B = AU for some U € U(H1,Hsz). If By and Bs are two intertwiners,
then a similar argument shows that B; Bj is proportional to identity. This means
that Bj is proportional to Bs. O

6.2.5 States
Let 2 be a C*-algebra.

Definition 6.30 A linear functional on 2 is called positive if it maps positive
elements to positive numbers.

A positive linear functional is automatically continuous.
Definition 6.31 A positive linear functional is called a state if its norm is 1.

In the case of a unital C*-algebra it is equivalent to requiring that w(1) = 1.

Definition 6.32 A state w is called faithful if w(A) =0 and A € A, implies
A=0.

Definition 6.33 A state w is called tracial if
w(AB) =w(BA), A, Bel

6.2.6 GNS representations
Let (H, ) be a s-representation of 2, 0 a normalized vector in H. Then
w(A) = (Qm(A)Q) (6.4)
defines a state on 2.
Definition 6.34 If (6.4) is true, we say that Q is a vector representative of w.

Definition 6.35 (H,7,Q)) is called a cyclic xrepresentation if (H,w) is a
x-representation and ) is a cyclic vector.

Theorem 6.36 (Gelfand-Najmark-Segal theorem) Let w be a state on 2. Then
there exists a cyclic x-representation (H,, 7., Q) such that Q, is a vector rep-
resentative of w. Such a representation is unique up to a unitary equivalence.
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148 Algebras

Definition 6.37 The cyclic x-representation described in Thm. 6.36 is called
the GNS representation (for Gelfand-Najmark—Segal) associated with w.

6.2.7 W*-algebras

Definition 6.38 We say that M is a W*-algebra if it is a C*-algebra such
that there exists a Banach space whose dual is isomorphic to 9 as a Banach
space. This Banach space is unique up to an isometry. It is called the pre-dual
of M and is denoted M, . The topology on M given by the functionals from M,
(the x-weak topology in the terminology of Banach spaces) is called the o-weak
topology. Functionals in 9, are called normal functionals.

It follows from the general theory of Banach spaces that 91, coincides with
the space of all o-weakly continuous functionals on 1.

Definition 6.39 The set
{BedM : AB=BA, AN}

is called the center of M. A W*-algebra with a trivial center is called a factor.

Two-sided o-weakly closed ideals J of a W*-algebra 9t have a simple form:
they are equal to J = 9ME, for a projection E in the center of 91. Clearly, all
two-sided o-weakly closed ideals of a factor are trivial.

If w is a o-weakly continuous state, then the map =, given by the GNS
representation is o-weakly continuous.

Definition 6.40 Let 9 be a W*-algebra. A W*-dynamics on 9 is a one-
parameter group R >t — 7t € Aut(9M) such that for each A € M the map t —
7Y (A) is o-weakly continuous. Such a pair (I, 7) is called a W*-dynamical sys-
tem.

6.2.8 Von Neumann algebras

Let H be a Hilbert space. Then B(H) is a W*-algebra, since it is the dual of
B (H) (the space of trace-class operators on H). Thus B*(H) is the pre-dual
of B('H) and the topology on B(H) given by functionals in B! (H) is its o-weak
topology.

Definition 6.41 FEvery C*-sub-algebra of B(H) closed w.r.t. the o-weak topology
is called a concrete W*-algebra. If in addition it contains 1y, then it is called a
von Neumann algebra.

Clearly, all concrete W*-algebras are W*-algebras. Conversely, a W *-algebra
is isomorphic to a von Neumann algebra.
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Definition 6.42 Let M; C B(H;), i =1,2. Let p: My — My be an isomor-
phism. We say that p is spatially implementable if there exists U € U(Hy,Hs)
such that p(A) = UAU*, A€ M,.

If A C B(H) is #-invariant, then 2’ is a von Neumann algebra.

An equivalent characterization of a von Neumann algebra is given by von Neu-
mann’s double commutant theorem, stating that a x-algebra 9 is a von Neumann
algebra iff

m =m".

The von Neumann density theorem says that if 2 C B(H) is a non-degenerate
x-algebra, then 2 is dense in 21" in the weak, strong, strong*, o-weak, o-strong
and o-strong® topologies.

The Kaplansky density theorem says that if A C B(H) is a x-algebra, then the
unit ball of 2 is o-weakly dense in the unit ball of 21”.

Let 9 C B(H) be a von Neumann algebra, and A a closed densely defined
operator on H. Let A = U|A|, where U is a partial isometry, be its polar
decomposition.

Definition 6.43 A is called affiliated to 9 if the operators U and 1 (|Al)
belong to M for all Borel sets A C R.

Clearly, a von Neumann algebra 9 C B(H) is a factor iff M NI’ = Clly, or
equivalently, (M UM')” = B(H). Below we give a more elaborate criterion for
being a factor.

Proposition 6.44 Let 9 C B(H) be a von Neumann algebra. Suppose that
(1) Q € H is a cyclic vector for (MUM')";

(2) There exists a set £ C (MUM')"” such that {(VeH : AV =0, Aec £} =
CcQ.

Then M is a factor.

Proof Suppose that 9 is not a factor and € is cyclic for (9T U 9)”. Then there

exists an orthogonal projection P € M NI’ different from 0 and 1. If PQ =0,

then (1 — P)(M UM )"Q = (UM’ (1— P)Q = (IMUM')"Q. Hence 2 is not

cyclic for (MU M')”. Therefore, P # 0. Likewise, we show that (1 — P)Q # 0.
Now let £ be as in (2). Then since P € 9t N MM’ one has

A(61P+CQ(]17P))Q:O, AE,S, C1,Co e C.

But for ¢; # ¢y, the vector (¢; P + ¢ (1 — P)) © is not proportional to Q. O

6.2.9 UHF algebras

In this subsection we describe an example of a C*-algebra which plays an impor-
tant role in mathematical physics, and in particular in the theory of CAR.
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150 Algebras

For any n = 1,2, ..., we introduce the identifications

B(@"C*)3 A= AR 1 € B(®@"T!1C?).
Definition 6.45 Define
UHF,(2%) : U B(®"C?), UHF(2%°) := UHF,(2°)".

UHF(2%) is called the uniformly hyper-finite C*-algebra of type 2°°.

6.2.10 Hyper-finite type 11, factor

We continue to consider the C*-algebra UHF(2°°) introduced in the last subsec-
tion. On B(®"C?) we have a tracial state

trA :=27"Tr A.
This state extends to a state on the whole UHF(2%°). Let (m;, Hir, r) be the
GNS representation given by the state tr on UHF(2).
Definition 6.46 The W*-algebra

HF := 7, (UHF(2*))". (6.5)
is called the hyper-finite type I factor.
Clearly,

tr(A) = (Qtr |AQtr)

defines a tracial state on HF.

6.2.11 Conditional expectations

Let 91 be a unital C*-sub-algebra of a C*-algebra 9. We assume that the unit
of M is contained in MN.

Definition 6.47 We say that E : 9T — N is N-linear if A € M, B € N implies
E(AB) = E(A)B, E(BA) = BE(A).
We say that E is a conditional expectation if

(1) A >0 implies E(A) >0,
(2) E is N-linear,
(3) E(1) =1.

Proposition 6.48 Let w be a normal tracial faithful state on a W*-algebra 9.
Then there exists a unique conditional expectation from M with range equal to
N such that w(A) = w(E(A)).
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6.3 Tensor products of algebras

Let A8 be algebras. Then AL B is naturally an algebra. If in addition A,B are
x-algebras, then so is AL B.

One can define natural tensor products also in the category of C*- and W*-
algebras. The definitions of these constructions are given in this section.

6.3.1 Tensor product of C*-algebras

Let 2,2 be C*-algebras. We choose an arbitrary injective x-representation (H, )
of 2 and (K, p) of B. Then A& B has an obvious %-representation in B(H @ K).
It equips 2% B with a C* norm. It can be shown that this norm does not depend
on the representations (H,7) and (K, p).

Definition 6.49 The C*-algebra
AR B = (A V)P,

is called the minimal C*-tensor product of 2 and B.

6.3.2 Tensor product of W*-algebras

Let 9,9 be W*-algebras. We choose an arbitrary injective o-continuous
«-representation (H, ) of M and (K, p) of N. Then MEMN has an obvious
k-representation in B(H ® K). Let X denote the Banach space of linear func-
tionals on M &N given by density matrices in B'(H ® K). One can show that
X does not depend on the choice of representations (H, ) and (K, p).

Definition 6.50 We set
MRN = X7,

and call it the W*-tensor product of M and 1.

Clearly, Mo N is o-weakly dense in 9 ® . We extend the multiplication
from MEHN to M N by the o-weak continuity. One can check that 9T @ 9 is
a Wt-algebra.

Remark 6.51 According to our convention, the meaning of ® between two alge-
bras depends on the context. It depends on whether we treat the algebras as C*-
or W*-algebras.

6.4 Modular theory

In this section we give a concise resumé of the modular theory. The modular
theory is one of the most interesting parts of the theory of operator algebras. It
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152 Algebras

sheds light on the structure of general W*-algebras. It plays an important role in
applications of operator algebras to quantum statistical physics. Key concepts of
the modular theory include the modular automorphism and conjugation due to
Tomita—Takesaki, KMS states and standard forms introduced by Araki, Connes
and Haagerup.

6.4.1 Standard representations
Let H be a Hilbert space.

Definition 6.52 A self-dual cone H™ is a subset of H with the property
T={PeH : (®|V)>0, PeH'}.
Let 9t be a W*-algebra.

Definition 6.53 A quadruple (H,7,J,H") is a standard representation of a
W*-algebra MM if m : M — B(H) is a faithful o-weakly continuous representation,
J is a conjugation on H and H' is a self-dual cone in H with the following
properties:

(1) Jr(M)J = 7(M)',

(2) Jrn(A)J = 7w(A)* for A in the center of M,
(3) J® = <I)f0T<I>€H+

(4) m(A)Jr(A)HT C HT for A € M.

Every W*-algebra admits a unique (up to unitary equivalence) standard rep-
resentation.
The standard representation has several important properties.

Theorem 6.54 (1) For every o-weakly continuous state w on M there exists a
unique vector Q € H such that w(A) = (QAQ).
(2) For every x-automorphism 7 of M there exists a unique U € U(H) such that

n(r(A)) =Ur(A)U*, UH' CcH'.

(3) If Rt 7' is a W*-dynamics on I, there exists a unique self-adjoint
operator L on H such that

m(T'(A)) = e“’LW(A)e_itL, e HT c Ht. (6.6)

Definition 6.55 The operator L that appears in (6.6) is called the standard
t

Liouvillean of the W* dynamics t — 7°.
Definition 6.56 Given a standard representation (H,w,J,H"), we also
have the right representation m, : MM — B(H) given by m, (A) := Jr(A)J. Note
that m. (M) = w(M)'. We will often write m for ™ and call it the left
representation.
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6.4 Modular theory 153

6.4.2 Tomita—Takesaki theory

Let 9 be a W*-algebra, (H, ) a faithful o-weakly continuous representation of
M and Q a cyclic and separating vector for m(91).

Definition 6.57 Define the operator Sy with domain 7(9M)Q by
Som(A)Q :=7(A")Q, Ae M.

One can show that Sy is closable.
Definition 6.58 S is defined as the closure of Sy .

For further reference let us note the following proposition, which follows by
the von Neumann density theorem:

Proposition 6.59 If A C M is a x-algebra weakly dense in MM, then {AQ : A €
A} is an essential domain for S.

Definition 6.60 The modular operator A and modular conjugation J are
defined by the polar decomposition:

S =:JA?.

Definition 6.61 The natural positive cone is defined by
HY = {m(A)Jr(A)Q : Aem}.

Theorem 6.62 (H,nw,J,H") is a standard representation of M. Given (H,7),
1t is the unique standard representation such that € H™.

6.4.3 KMS states

Let (9, 7) be a W*-dynamical system. Consider 5 > 0 (having the interpretation
of the inverse temperature). Let w be a normal state on 901.

Definition 6.63 w is called a (7, 3)-KMS state if for all A, B € I there exists
a function Fa p(z) holomorphic in the strip Is ={z€C : 0<Imz <},
bounded and continuous on its closure, such that the KMS boundary condition
holds:

Fap(t)=w(AT'(B)), Fap(t+if) =w(r'(B)A), teR. (6.7)

Below we quote a number of properties of KMS states.

Proposition 6.64 (1) One has |Fa 5(2)| < ||All||B||, uniformly on Ig'.

(2) A KMS state is T -invariant. ‘

(3) Let A be a *-algebra weakly dense in MM and T-invariant. If (6.7) holds for
all A, B € A, then it holds for all A, B € 9.
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154 Algebras

Proposition 6.65 A KMS state on a factor is faithful.

Definition 6.66 If 9 C B(H) and ® € H, we say that ® is a (1, 3)-KMS vector
if (|- ®) is a (1,8)-KMS state.

6.4.4 Type I factors: irreducible representation

Definition 6.67 Algebras isomorphic to B(H), where H is a Hilbert space, are
called type 1 factors.

Such algebras are the most elementary W*-algebras. In this and the next
subsection we describe various concepts of the theory of W*-algebras as applied
to type I factors.

The space of o-weakly continuous functionals on B(H) (the pre-dual of B(H))
can be identified with B! (H) (trace-class operators) by the formula

Y(A) =TryA, ~€ B'(H), Ac B(H). (6.8)
In particular, o-weakly continuous states are determined by density matrices. A
state given by a density matrix v is faithful iff Kery = {0}.
Proposition 6.68 (1) Every x-automorphism of B(H) is of the form

T(A) = UAU* (6.9)

for some U € U(H). If Uy, Uy € U(H) satisfy (6.9), then there exists p € C
with |p| =1 such that Uy = pUs.
(2) Every W*-dynamics R >t — 7, on B(H) is of the form

7i(A) = el Ae™ (6.10)

for some self-adjoint H. If Hy is another self-adjoint operator satisfying
(6.10), then there exists ¢ € R such that Hy = H + c.

Definition 6.69 In the context of (6.9) we say that U implements 7. In the
context of (6.10) we say that H is a Hamiltonian of {7 }icp.

A state given by (6.8) is invariant w.r.t. the W*-dynamics (6.10) iff H com-
mutes with .

There exists a (3, 7)-KMS state iff Tre™?# < oo, and then it has the density
matrix e /Tre=FH

6.4.5 Type I factors: representation on Hilbert—Schmaidt operators
Clearly, the representation of B(H) on H is not in the standard form. To con-
struct a standard form of B(H), consider the Hilbert space of Hilbert—Schmidt
operators on ‘H, denoted B?(H).
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Definition 6.70 We introduce two injective representations:

B(H) > A— m(A) € B(B*(H)), m(A)B:=AB, B € B?(H);
B(H) 5> A n(A) € B(B*(H)), m(A)B = BA*, Be B (H). (041
We set Jy B := B*, B € B2(H).
With the above notation, Jym(A)Jy = m (A) and
(B*(H),m, Ju, BL(H))

is a standard representation of B(H).
If a state on B(H) is given by a density matrix v € B} (H), then its standard
vector representative is vz € B2 (H). If 7 € Aut (B(H)) is implemented by W

U(H), then its standard implementation is m(W)m,(W). If the W*-dynamics
t — 7' has a Hamiltonian H, then its standard Liouvillean is m(H) — . (H).

6.5 Non-commutative probability spaces

Throughout the section, R is a W*-algebra and w a normal faithful tracial state
on ‘R.
The two most important examples of such a pair (R, w) are as follows:

Example 6.71 (1) Let (Q,6,u) be a set with a o-algebra and a probability
measure. Then taking R = L*°(Q, u) and

w(F)=/Qqu, Fe L™(Q,p),

we obtain an example of a W*-algebra with a normal tracial state.
(2) The algebra HE with the state tr, described in Subsect. 6.2.10, is another
example.

Recall that the triple (@, S, ) of Example 6.71 (1) is called a probability
space. Therefore, some authors call a couple consisting of a W*-algebra and a
normal tracial faithful state a non-commutative probability space. In any case,
this section is in many ways analogous to parts of Sect. 5.1, where (commutative)
probability spaces were considered.

6.5.1 Measurable operators

Let us start with an abstract construction of measurable operators.

Definition 6.72 The measure topology on the W*-algebra R is given by the
family V(e,0) of neighborhoods of 0 defined for e,§ > 0 as

Vie,0) ={AeR : |[AP| <e, w(l—P) <,
for some orthogonal projection P € R}.
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156 Algebras

M(R) denotes the completion of R for the measure topology. Elements of M(R)
are called (abstract) measurable operators.

Let us now assume that R is isometrically embedded in B(H).

Definition 6.73 A closed densely defined operator on H is called a (concrete)
measurable operator iff it is affiliated to R and

i w1 (14]) =0

It can be shown that one can identify M (9R) with the set of concrete measur-
able operators on H. Thus M(R) becomes a subset of CI(H).

Proposition 6.74 Let A,B € M(R). Then A+ B and AB are closable.
(A+ B)! and (AB)® belong again to M(R) and do not depend on the rep-
resentation of *R.

Using the above proposition, we endow M(R) with the structure of a
x-algebra. One extends w to the subset M, (R) of positive operators in M(R)
by setting

w(A) == lim w(A(1+eA)™") € [0, +oc].

e—0*

6.5.2 Non-commutative LP spaces

Definition 6.75 For 1 < p < oo one sets
LP(R,w) :={Ae MR) : w(|4]) <},

equipped with the norm ||Al|, = w(|A|p)l/p.

For p = o0 one sets L°(R,w) := R, and ||A]|~ = ||A]-

We will often drop w from LP(R,w), where it does not cause confusion. The
spaces LP(R) are Banach spaces with R as a dense subspace.

Note that if A € L' (R), then 9 > B — w(AB) € C is a normal functional of
norm [|Afl; = w(|A[). This defines an isometric identification between L' (9R) and
R., the space of normal functionals on fR.

Let (Hy,m,, ) be the GNS representation for the state w. Then L?(R) can
be unitarily identified with the space H,,, as an extension of the map

R>A— AQ, € H,,. (6.12)

We have L7(R) C LP(R) if ¢ > p.

Proposition 6.76 (1) For A€ LP(R), 1 < p < oo, one has ||Al, = ||A*]|,. In
particular, A — A* is anti-unitary on L*(R).
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(2) The non-commutative Holder’s inequality holds: for all 1 < r,p,q < oo with
pt+qt=r"' if Ac L?(R), B € LY(NR), then AB € L' (R) and

IABl < [| Al | Bllq- (6.13)
(3) IAll, =sup{w(AB) : BER, ||B|, <1}, p'+q ' =1 p>1L

Definition 6.77 An element A of LP(R) is positive if it is positive as an
unbounded operator on H. We denote by L% (R) the set of positive elements

of L (R).
For all 1 <p < oo, R, is dense in L% () and the sets L (R) are closed in
LP(%R).
Lemma 6.78 (1) A€ R, iff w(AB) >0, Be R, .
(2) Ae Ll (R) iff w(AB) > 0, B e L' (R).

6.5.3 Operators between non-commutative LP spaces

Let (R;,w;), i = 1,2, be two W*-algebras with normal tracial faithful states.
Definition 6.79 T € B(L*(R1), L*(Re)) is called

(1) positivity preserving if A >0 = TA >0,
(2) hyper-contractive if T is a contraction and there exists p > 2 such that T is
bounded from L*(FR1) to L*(Ra).

Using Lemma 6.78 we see as in the commutative case that T is positivity
preserving iff 7™ is.

Let (R,w) be a W*-algebra with a normal tracial faithful state.
Definition 6.80 T ¢ B(L2 (9‘{)) is called doubly Markovian if it is positivity
preserving and T1=T*1 = 1.

Theorem 6.81 A doubly Markovian map T extends to a contraction on LP (2R)
forall 1 < p < oco.

Proof Using that 7 < ||T'||s1 and the fact that T is positivity preserving,
we obtain that T is a contraction on L°°(R). Applying Prop. 6.76 (3) and
the above result to T*, we see that T is a contraction on L'(R,w). By the
non-commutative version of Stein’s interpolation theorem (see Prop. 3 of Gross
(1972)), this extends to all 1 < p < c0. g

6.5.4 Conditional expectations on non-commutative spaces

Let PR be a W*-sub-algebra of R. Let w; be the restriction of w to M. Clearly,
LP (MR, w) injects isometrically into LP (R, w).
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158 Algebras

Definition 6.82 Denote by Ex, the orthogonal projection from L*(R,w) onto
L2 (ERl , W1 ) .

Proposition 6.83 (1) Ex, uniquely extends to a contraction from LP(R) into
LP(Ry) for all 1 < p < 0.

(2) Ewm, is doubly Markovian.

(3) Let Ac LP(R), B€ LY{(Ry), p~t +qt =1. Then

Em, (AB) = Ex, (A)B,  Bw, (BA) = BEg, (A).

(4) Ewm, considered as an operator on L (R) =R is the unique conditional
expectation onto Ry described in Prop. 6.48, that is, satisfying

w(A) = w(B(4)), Acmn.

6.6 Notes

A comprehensive reference to operator algebras is the three-volume monograph
of Takesaki. In particular, Takesaki (1979) contains basics and Takesaki (2003)
contains the modular theory. Another useful reference, aimed at applications in
mathematical physics, is the two-volume monograph of Bratteli-Robinson (1987,
1996). In particular, proofs of the properties of KMS states of Subsect. 6.4.2 can
be found in Bratteli-Robinson (1996).

Non-commutative probability spaces are analyzed in Takesaki (2003), following
Segal (1953a,b), Kunze (1958) and Wilde (1974).
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7

Anti-symmetric calculus

In almost every respect there exists a strong analogy between symmetric and
anti-symmetric tensors, between bosons and fermions. It is often convenient to
stress this analogy in terminology and notation.

Symmetric tensors over a vector space can be treated as polynomial functions
on its dual. Such functions can be multiplied, differentiated and integrated, and
we can change their variables.

There exists a similar language in the case of anti-symmetric tensors. It has
been developed mostly by Berezin, hence it is sometimes called the Berezin
calculus. 1t is often used by physicists, because it allows them to treat bosons
and fermions within the same formalism.

Anti-symmetric calculus has a great appeal — it often allows us to express the
analogy between the bosonic and fermionic cases in an elegant way. On the other
hand, readers who see it for the first time can find it quite confusing and strange.
Therefore, we devote this chapter to a presentation of elements of anti-symmetric
calculus.

Note that the main goal of this chapter is to present a certain intriguing
notation. Essentially no new concepts of independent importance are introduced
here. Therefore, a reader in a hurry can probably skip this chapter on the first
reading.

This chapter can be viewed as a continuation of Chap. 3, and especially of Sect.
3.6. In particular, we will use the anti-symmetric multiplication, differentiation
and the Hodge star introduced already in Chap. 3.

7.1 Basic anti-symmetric calculus

Let Y be a vector space over K of dimension m. Let v denote the generic variable
in Y* and y the generic variable in ). We remind the reader that I'7 () denotes
the n-th anti-symmetric tensor power of ).

7.1.1 Functional notation

Recall from Subsect. 3.5.1 that U € I'7()) can be considered as a multi-linear
anti-symmetric form

y# X o0 X y# =Y (U17--'7U") — \I/(Uh...,vn) = <\II|'U1 Qa - Qa 'Un>- (71)
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160 Anti-symmetric calculus

When we want to stress the meaning of an anti-symmetric tensor as a multi-linear
form, we often write Pol} (V*) instead of T (Y).

Definition 7.1 It is convenient to write U(v) for (7.1), where v stands for the

generic name of the variable in Y* and not for an individual element of Y*. We
will call it the functional notation.

(We mentioned this notation already in Subsect. 3.5.1).

Sometimes we will consider a vector space with a different name, and then we
will change the generic name of its dual variable used in the functional notation.
For instance, ® € Pol,();), resp. ¥ € Pol, (V) @ )»), in the functional notation
will be written as ®(v;), resp. (v, vs).

Remark 7.2 Note that the same symbols have a different meaning in (7.1) and
in the functional notation. In (7.1), v; stands for an “individual element of Y* 7.
In the functional notation, v; is the “name of the generic variable”.

7.1.2 Change of variables in anti-symmetric polynomzials

Let Y1,)s be two finite-dimensional vector spaces. As mentioned above, vy, v9
will denote the generic variables in ) and y,j .

Consider r € L(Y1,)2) and ¥ € Pol} (V7). Then I'(r)¥, understood as a
multi-linear functional, acts as

VX x V3 (vg,.0,00) = D) (vy, .. 0y0,) = O(0rF oy, .. 1P 0y,). (7.2)

Definition 7.3 The functional notation for T'(r)¥ is (I'(r)¥)(ve) or, as sug-
gested by (7.2), U(r* vy).

For example, let

JY-=Ye)y

7.3
y—=yody, (73)

so that j# (v, v2) = v1 + v9. Then the two possible functional notations for I'(j) ¥
are (I'(j)¥)(vy,v2) or ¥(vy + vg).

7.1.3 Multiplication and differentiation operators

Definition 7.4 If Uy, Uy € T, (), then ¥y ®, Yy will be denoted simply by
Uy - Uy, if we consider ¥y, Uy as elements of Pol, (V*). The functional notation
will be either ¥y - Wa(v) or Uy (v)P¥s(v).

Recall that in Subsect. 3.5.2 we defined multiplication and differentiation oper-
ators. For ¥ € Pol! (V*) they are given by

y()¥ =y ®, ¥, ye,
w(V)W o= nfw| @ 15" V0, we Y.
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7.1 Basic anti-symmetric calculus 161

Therefore, v can be given the meaning of a )#-vector of anti-commuting oper-
ators on Pol, (Y*). Similarly, V, is a Y-vector of anti-commuting operators on
Pol, (V*).

Let (e1,...,e,) be a basis in ) and (e!,...,e™) be the corresponding dual
basis in Y*. The following operator on Pol, (V* & Y*) is clearly independent of
the choice of the basis:

vy - Vg, = Z ei(v1)e' (V).
i=1

As an exercise in anti-symmetric calculus, it is instructive to check the follow-
ing analog of Taylor’s formula:

Proposition 7.5 Let ¥ € Pol, (V*). Then

\I’(’Ul + 1)2) = GUI.V"Z \IJ(’UQ).

Note that (vy - V,, )P =0 for p > dim ), so the exponential is well defined.
Proof of Prop. 7.5. Let

00
0 1
= L .
J2 [ﬂ] []J €LY, Y®Y)
Then ej, = j. This implies that T'(j) = e ()T (4, ). If we fix a basis (e1, ..., ep,)
of Y, then d = Y |e; © 0)(0 @ ¢|. Hence,

i=1

dr'(d) = i a*(e; ©0)a(0 @ ¢

€; (’Ul)ei (VUQ) = v1 - Vy,,

i=
m
i=1

where we have used the functional notation for creation and annihilation
operators:

a*(e; ®0) =e;(v1), a(0@e) =e'(V,,).
But

L)Y (v1,v2) = V(1 +v2), [(j2)¥(vr,v2) = ¥(v2). U

7.1.4 Berezin integrals

Recall that in Subsects. 3.5.2 and 3.5.3 we defined the left and right differen-
tiation. Even though it sounds a little strange, the right differentiation will be
renamed as integration.
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162 Anti-symmetric calculus

Let us be more precise. Let ); be a subspace of ) of dimension m; . Its generic
variable will be denoted v;. Fix a volume form on Yy, that is, let =Z; € Pol]"' ())
be a non-zero form.

Definition 7.6 The partial right Berezin integral over ) of ¥ € Pol, (Y*) is
defined as

/ B()doy = 21 (V) (o). (7.4)

Note that (7.4) depends only on (¥/V;)* ~ Vi, where the superscript an
stands for the annihilator (see Def. 1.11). T
element of Pol, (J5™").

In particular, if we take a volume form = on ), i.e. a non-zero element of
Pol" (), then the right Berezin integral over )

/ W(v)dv = (Z|0) (7.5)

hus the Berezin integral produces an

yields a number.

Let Y =Y @ )». The generic variable on Y* =Y} &Yy is denoted v =
(v1,v2). Fix volume forms Z; € Pol}"" ();). Equip Y* with the volume form
2 = E3 A E;. The corresponding Berezin integrals are denoted [ - dv;, and [ - dv.
Then we have the following version of the Fubini theorem:

/\I/(v)dv - / (/\I/(vl,vg)dm) dvs. (7.6)

Thus, we can omit the parentheses and denote (7.6) by f f U (v, v9)dvydos.

Definition 7.7 Apart from the right Berezin integral one considers the partial
left Berezin integral over Y. For U € Pol (Y*), the left and right integrals are
related to one another by

/dvllll(v) = (—1)"”1”/\I!(v)dv1.

In particular, we have the left Berezin integral over ):

/dv\II(v) ~ (1) /\I'(v)dv.
The following identities are easy to check for ¥ € Pol, (Y*):

/cb(vv)xp(v)dv =0, ® € Pol=' (Y);
/\Il(v +w)dv = /\Il(v)dv7 w e Y*;
/\If(mv)dv = (detm) /\Il(v)dv7 m € L(Y"). (7.7)

Remark 7.8 The identities of (7.7) are essentially the same as their analogs
in the case of the usual integral described in (3.50) except for one important
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7.1 Basic anti-symmetric calculus 163

difference: the determinant in the formula for the change of variables has the
opposite power.

This is related to another difference between the Berezin and the usual integral.
In the Berezin integral, such as (7.5), the natural meaning of the symbol dv is
a fized volume form on Y. In the usual integral, in the analogous situation, its
meaning would be a volume form (or actually the corresponding density) on Y* .

Remark 7.9 In the definition of the Berezin integral it does not matter whether
the space Y is real or complex. However, if we want to have a closer analogy with
the usual integral, we should assume that it is real. In this case, we can allow
U € CPol, (V") in (7.4), so that we can integrate complex polynomials.

7.1.5 Berezin calculus in coordinates

So far, our presentation of anti-symmetric calculus has been coordinate-free. In
most of the literature, it is introduced in a different way. One assumes from
the very beginning that coordinates have been chosen and all definitions are
coordinate-dependent. This approach has its advantages; in particular, it is a
convenient way to check various identities. In this subsection we describe the
anti-symmetric calculus in coordinates.

Definition 7.10 vy, ..., v, denote symbols satisfying the relations
ViVj = —U;V;. (78)
They are called Grassmann or anti-commuting variables. If I = {i,...,,} with
1< < <ip <m, we set T1 v; :=v;, -+ v, .
i€l

The space of expressions

Z ar M v, ar €K
Ic{1l,....m} iel
is an algebra naturally isomorphic to Pol, (K™).

Remark 7.11 Recall that in Remark 7.2 we distinguished two meanings of sym-
bols vy, vy . ... The same symbols are used in Def. 7.10 with a third meaning. They
stand for anti-commuting variables in K™ (generators of the algebra Pol, (K™)).
The first meaning was as individual vectors in Y* ; see e.g. (7.1) and (7.12). The
second was as the generic variables in V7 ; see (7.2).

Definition 7.12 Let I C {1,...,m}. We denote by sgn(I) the signature of
(T, s lpsipt1s- -, im), where

T={ir, .. i}, I¢=1{1,...omN\{ir, .. iy} = {ips1s - im )},

with 17 < -+ <y and ipp1 < - <y
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164 Anti-symmetric calculus

Definition 7.13 The Hodge star operator is defined as
Ovi, -+ - v, = sgn(l) vi,, Vi, .0, (7.9)
where {iy, ... iy} and sgn(I) are as in Def. 7.12.

Definition 7.14 For i=1,...,m, v; will denote not only an element of
Pol,, (K™), but also the operator of left multiplication by v; acting on Pol, (K™).
These operators clearly satisfy the relations (7.8). We consider also the partial
derivatives V,, satisfying the relations

[vviavt',,]+ =0, [vvnvj]Jr = 6ij'
The action of the partial derivatives on the variables is given by
vv,1 = 0, VUL’U]‘ = 5,]

We introduce also the Berezin integral w.r.t. the variable v;. Its notation con-
sists of two symbols: [ and dv;. The rules of manipulating with dv; are

d’UZ‘d’Uj = —ded’Ui, d’Ui’U]' = —Ujd’l]i.

The rules of evaluating the integrals are

/dlli = 07 /’Uid’Uj = 6@']’-

For example, if o € 5,,, then

0’ lfp <m,
/vg(l) " U () At - duy = {sgn(U), if p=m.

Now let Y be a vector space of dimension m. If we fix a basis (ey, ..., e, ) of
Y, we can identify ) and Y* with K™, and hence Pol,(}*) and Pol,()) with
Pol, (K™ ). We see that v; coincide with e;(v), V,, with €/(V,), and the Hodge
star defined in (7.9) coincides with the Hodge star defined in Subsect. 3.6.2. If
we use the volume form €™ A --- Ae! on Y, then

/\I/(v)dv = /\I'(vl,...,vm)dvm -+ -doy,
/dU\II(U) = /dv7r1, ~~~dU1\I/(Ul,...,Um).

7.1.6 Differential operators and convolutions

The Hodge star operator transforms differentiation into convolution:

Theorem 7.15 Let ¥, ® € Pol, (V*). Then

(O)(V,)®(v) = (—1)" / dw¥ (w)®(v + w).

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

7.1 Basic anti-symmetric calculus 165

If dim Y is even, then the formula simplifies to
OT)(V,)P(v) = /\Il(w)fb(v + w)dw.

Proof We fix a basis (e1,...,e,) of Y and use the anti-symmetric calculus in
coordinates. Without loss of generality we can assume that ®(v) = v; - - - v, and
U(v) = ][ v;. Then, using the notation of Def. 7.12,

jeJ
U(w)P(v+w) = Z sgn(/) I w; I w; 11 Vg (7.10)
jeJ i€l ke{l,..n}\I
Ic{1,...n}
The Berezin integral
/dw\I!(w)CI)(v + w) (7.11)

is non-zero only if J = {j1,...,jp,n+1,...,m}. The only term on the r.h.s. of
(7.10) giving a non-zero contribution corresponds to I = {j,+1,...,7, }. We have

fdwm dwl Sgn(ijrla"'7jnajla"'ajpvn+]-a"'»m)
X Wy, "'U]jp

= (_1)m Sgn(jp+l7'"7jn7j17"~7jpvn+ 17"'1m)

X SgN(f1y .oy Jpy 1 M, )Y

*Wpy1 Wiy e wjp+l U wjn Ujl o U.jp

On the other hand, using that

Q\I](y) = Sgn(jla"'aj1)7n+ 17"'7m7jp+1a"'aj7l)yj71, "'yjp+1

and

<I)(11) :Sgn(jp+1,~--,jn,j17~-~,jp,n+ ]‘7"'7m)7‘}jp+l Cr U4, Vg ..'Ujp7
we get

(eq/)(vﬂ)\l/(v) = sgn(j]’H-l?'"7jn7j17"'7jp7n+ 17"'am)
ngn(jla' "jp7n+ 1)"'amajp+17"'7jn)vjl Ty, -

This proves the first statement of the theorem. If m is even, then the left and
right Berezin integrals coincide, which proves the second statement. O

7.1.7 Anti-symmetric exponential
Definition 7.16 The anti-symmetric exponential of ® € Pol, (V*) is defined as

oo

SHOESY %@n (v).

n=0

(Note that the series terminates after a finite number of terms.)
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166 Anti-symmetric calculus

If at least one of the terms ®;, ®, is even, then
e () = eP1e?2 (v).

The following propositions justify the analogy between the Hodge star operator
and the Fourier transform.

Let ) be a vector space equipped with the volume form Z=. Let us equip J*

with the volume form =Zdual,

Proposition 7.17 Let ¥ € Pol,(V*). Then
ou(y) = (-1 [ dv)-e,
V(o) = (1) [ dypuy) e,
In particular, if m is even, then
0¥ (y) = /\Il(v) -e"du,
U(v) = /Q\I/(y) -V dy.

Proof We use the anti-symmetric calculus in coordinates and assume that
U(v) =v; - -v,. We have

s m .
e7/3/:ezi:17" Yi — E .H Vi Y

This yields
/dv‘lf(v)e“'y = /dvm coodvgvr U Vpt  Yprl U YU

= /dvm e dU1U1 o UmYm ot Yp+1 = (_l)mym o Up+1 = Q‘I’(y)

The second identity can be proved similarly, using that dy = dy; ---dy,,. O

7.1.8 Anti-symmetric Gaussians
Let ¢ € Pol2(V*) ~ L, (V*, ).
Definition 7.18 The functional notation for

YV x V¥ 3 (v1,v2) — v1-Cug (7.12)

will be either ((v) or, more often, v - Cv. The functional notation for e will be
either e (v) or e’"V.

The following proposition should be compared to (4.11) and (4.14), the corres-
ponding identities for the usual Gaussians.
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7.2 Operators and anti-symmetric calculus 167

Proposition 7.19 Let Y be a vector space of even dimension equipped with a
volume form. Then

(1) (6e79)(y) = [ e¥erv<vdv = PE(()erv < v,
(2) eV Vep(0) = PHQ) [ b(u -t w)dw, @ € Pol, (7).
(3) [erv<rdv = PE(C).

Proof Let us consider ¢ as an element of L,(Y*,)). Let us equip ) with a
Euclidean structure v compatible with the volume form = and note that (v is
an anti-self-adjoint operator on ). Applying Corollary 2.85, we can find a basis
(e1,...,e2,) of Y such that

m

(= Zm (leai—1){e2i| — le2i){e2i-1]) - (7.13)

Note that

We can rewrite (7.13) as
1 m
5= ; G

where (; = p;e9;_1 - €a;. Since C? =0 and ;¢ = ¢;¢;, we have

Now
011 G = (ﬁ ,ui> g te el
i€l 1 iele
This yields feC = Pf(oe%cil. By Prop. 7.17, we know that
Get0) = / it (7.14)

The two exponentials in the integral commute since they are both of even degree,
and the function on the Lh.s. is an even function of y, which proves that (7.14)
equals [e¥ver? "V dy.

(2) follows from (1) and statement (1) of Thm. 7.15 for ¥(v) = ez?<?,

(3) follows from (2) for ® = 1. O

7.2 Operators and anti-symmetric calculus

Throughout the section & is a vector space with dim X = d. Anti-symmetric
calculus is especially useful in the context of the space X & X*. This space has
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168 Anti-symmetric calculus

an even dimension and a natural volume form, which is helpful in the context of
anti-symmetric calculus. We will see that the space Pol, (X & X*) is well suited
to describe linear operators on I', (X*) = Pol, (X).

7.2.1 Berezin integral on X & X*

In Subsect. 1.1.16, and then in Subsect. 3.6.4, we considered symplectic spaces
of the form X* & X and X & X*. They can be viewed as dual to one another.
The canonical symplectic form on X* @& X is denoted by w. Consequently, the
canonical symplectic form on X @ X* is denoted by w~!. The corresponding
Liouville forms are defined as % A% w, resp. % A w1 If we choose a volume
form = on X and the volume form Z"*! on X#, then the Liouville volume forms
on both X* @ X and X @ X* are 2"l A Z.

The generic variable of X will be denoted by = and of X* by £. The cor-
responding Berezin integrals will be denoted by [ -dz, resp. [-d¢. Hence the
Berezin integral of ® € Pol, (X @ X*) w.r.t. the Liouville volume form will be
denoted by

/@(w,f)d{dx.

If we fix a basis (eq,...,eq) of X and if (e!,...,e?) is the dual basis of X#,
then the symplectic form w on X* @ X and w™" on X & X* is

d
Zei Ae'. (7.15)
i=1

The volume forms on X, resp. X* are e? A---Ael, resp. e; A --- A eq, which,
inside Berezin, integrals, is written as dz? - - - da!, resp. d&; - - - d&,.

Definition 7.20 We will use the following shorthand functional notation:
d

vo&i=Y 2= (z)-ei(€)

i=1

- *%(fﬂ,i)'w’l(%f)a
d
Ve Ve =V, V¢ = Zei(v-T) €' (V)

i=1
1
- §(V.’L‘a V{)w(vla V£)7
where we have used various notational conventions to express the same object.
As an application we have the following proposition:

Proposition 7.21

etVJwV{cI)(x’f) :td/ef,’l(f—f’)(m—x/)q)(x/’f/)dx/dg/.
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7.2 Operators and anti-symmetric calculus 169

Proof By (7.15), Pf(w™!) = 1. Hence the proposition follows from Prop. 7.19
applied to ¢ = tw™!. O

7.2.2 Operators on the space of anti-symmetric polynomszials
Let B € L(Pola(/'\,’)).

Definition 7.22 The Bargmann kernel of B is an element of Pol, (X & X*),

denoted BB, obtained from TBf by the following identification:

L(Pol, (X)) ~ Pol, (X) @ Pol, (X)*
~ Pol,(X) ® Pol,(X*) ~ Pol, (X ¢ X*). (7.16)
In the first identification we use the identification of L(V) with V @ V* described
in Subsect. 3.1.8. The second involves the identification of Pol,(X)* with

Pol, (X*); see (3.4). The third is the exponential law for anti-symmetric ten-
sor algebras; see Subsect. 3.5.4.

Note that B2 is the fermionic analog of the Bargmann kernel of an operator
introduced in Def. 9.51.

Let us compute the Bargmann kernel in a basis. Recall that we have the
following notation: for I = {iy,...,i,} C{1,...,d} with i} < -+ <',,

€ =€ €, e = 6:
In the functional notation these are written as
er(§)i=e;, (&) e, (&), e'(z):=e"(x) - e" ().

We saw in Subsect. 3.3.6 that {e; : I C {1,...,d}} is a basis of Pol, (X)*, and
{#Ile! . I c{1,...,d}} is the dual basis of Pol, (X). Clearly, B € L(Pol, (X))

can be written in terms of its matrix elements as

B= Z By y#1e") ey,

I.JCc{l,....d}

for
By ;= #Jes|Be’).

Thus

1 1
——B—— = > BryV#Ie (e
Nt VNI 1,Jc{1,..,d}

Therefore, the identification (7.16) leads to the formula

B¥(z,0)= > BryJ/#Il (x

1
VEI

(7.17)

7\
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170 Anti-symmetric calculus

Recall that ©F denotes the projection onto Pol® (X @ X*) (see Def. 3.24).
Recall also that in Subsect. 3.5.7 we introduced the following notation: if ® €
Pol, (X*), ¥ € Pol,(&X), then we write

1
\If, mod -

Vg Vo

Theorem 7.23 (1) Let B € L(Pol, (X)), 0 < k < d. Then

Tr BO; = ﬁ / (- &) BP (x, €)dadg,

\IImOd -

TrB = / et BB (g, €)dade.

(2) Let ® € Pol,(X*), ¥ € Pol,(X). Then

@1649) = oy [ P @) (dads

(®|T) = / et gmed () pmed (£)dade.

Proof Using the basis of X and X*, we can write

LA S | IORRICE

#K=d—kicK

A B )

= > @ a©d Brov#le @) es(€)
1,J

#K=d—kicK

1
— (7.18)

In the integral of (7.18), only the terms of degree (d,d) contribute. Therefore,
we can replace (7.18) by

Z H e'(x) - ei(f)BJ,JGI(QT) ez (&).
#I=Fkicle

. d .
Since el -e; = [[ e'(z) - e;(&) and [[ e’ -e; =€l el e ---eq, we get

i€l i=1
g [ @O B @ e = Y By
#T=k

= Tr(BOF).

This proves the first statement of (1). The second follows by taking the sum over
1<k<d.

(2) follows from (1) by noting that if B = [¥)(®|, then BB (x,¢) = ¥™mod(z) .
®med(¢) and Tr|W) (@] = (®|T). O
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7.2 Operators and anti-symmetric calculus 171

7.2.8 Integral kernel of an operator

Let B € L(Pol,(X)). It is easy to see that there exists a unique B(:,-) €
Pol, (X @ X) such that for ¥ € Pol, (X)

BU(r) = / B(z,y)U(y)dy,

where we use y as the generic variable in the second copy of X

Definition 7.24 We will call B(x,y) the integral kernel of B (w.r.t. the volume
form =).

Clearly, if X is real, the integral kernel introduced in the above definition is
the fermionic analog of the usual integral kernel, such as in Thm. 4.24.

7.2.4 x,V,-quantization

Definition 7.25 We define the x, V -quantization, resp. the V, , z-quantization
as the maps

Pol, (X ® X*) 3 b+ Op"V* (b) € L(Pol, (X)),
Pol, (X @ X*) 2 b+ OpY*"(b) € L(Pol, (X)),

defined as follows: Let by € Pol,(X), by € Pol,(X*). Then for b(z,§) =
by (z)b2 (&) we set

Op” Y (b) := by (z)b2(V),
and for b(x,&) = ba(€)by (x) we set
Op™ V= (b) := by (V, )by ().

We extend the definition to Pol, (X @& X*) by linearity.

If X is real, the (fermionic) V,,z- and z, V,-quantizations introduced above
are parallel to the (bosonic) D, z- and x, D-quantizations discussed in Subsect.
4.3.1. If X is complex, they essentially coincide with the fermionic Wick and
anti-Wick quantizations, which will be discussed in Subsect. 13.3.1.

Theorem 7.26 Assume that d is even.

(1) Letb € Pol, (X @ X*). Then the integral kernels of the quantizations of b are
0p ™+ )(avy) = [ b €)=,

Op¥+ (b) (2, y) = / by, €)1 de.
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172 Anti-symmetric calculus

(2) If by ,b_ € Pol, (X ® X*) and Op™ V" (by) = Op¥=""(b_), then
b+ (I,g) = eVI-Vg b—(aj7€)
— /b,(xl,51)e(£’fl)'<z’“>dx1d£1.
(3) If by, by € Pol, (X @ X*) and Op” Y« (b))Op™ Ve (by) = Op”™ Ve (b), then
b(x, &) = V2 Verby (z1,&1)by (2, &) E——
s =8=¢
= [ by (o, s, )k

Proof We will give a proof of (1) for the z, V,-quantization. We can assume
that b(z,£) = by (x)ba(€). Then using Thm. 7.15 and Prop. 7.17, we obtain

by (2)b2(V., )0 () = / by (2)0 s () Wz + y)dy
- / by (2)b () U (z + y)dedy
- / b1 ()b (€)e )€ T (y)dedy. 0

7.3 Notes
The material of this chapter is based on the work of Berezin (1966, 1983).
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8

Canonical commutation relations

Throughout this chapter (), w) is a pre-symplectic space, that is, ) is a real
vector space equipped with an anti-symmetric form w. From the point of view of
classical mechanics, ) will have the interpretation of the dual of a phase space,
or, as we will say for brevity, of a dual phase space. Note that for quantum
mechanics dual phase spaces seem more fundamental that phase spaces.

In this chapter we introduce the concept of a representation of the canonical
commutation relations (a CCR representation). According to a naive definition,
a CCR representation is a linear map

Y3y—¢"(y) (8.1)
with values in self-adjoint operators on a certain Hilbert space satisfying
(97 (Y1), " (y2)] = iy -wy2 1. (8:2)

We will call (8.2) the canonical commutation relations in the Heisenberg form.
They are unfortunately problematic, because one needs to supply them with the
precise meaning of the commutator of unbounded operators on the left hand
side.

Weyl proposed replacing (8.2) with the relations satisfied by the operators
el?” (¥) These operators are bounded, and therefore one does not need to discuss
domain questions. In our definition of CCR representations we will use the canon-
ical commutation relations in the Weyl form (8.4). Under additional regularity
assumptions they imply the CCR in the Heisenberg form.

We will introduce two kinds of CCR representations. The usual definition is
appropriate to describe neutral bosons. In the case of charged bosons a somewhat
different formalism is used, which we introduce under the name “charged CCR
representations’. Charged CCR representations can be viewed as special cases
of (neutral) CCR representations, where the dual phase space ) is complex and
a somewhat different notation is used.

8.1 CCR representations
8.1.1 Definition of a CCR representation

Let H be a Hilbert space. Recall that U(H) denotes the set of unitary operators
on H.
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174 Canonical commutation relations

Definition 8.1 A representation of the canonical commutation relations or a
CCR representation over (), w) in H is a map

Yoy—WT(y) e UCH) (8.3)
satisfying
W™ (y1)W™ (y2) = e 5“7 (yy + ). (8.4)
W™ (y) is then called the Weyl operator corresponding to y € ).
Remark 8.2 The superscript w is an example of the “name” of a given CCR
representation. It is attached to W, which is the generic symbol for “Weyl oper-

ators”. Later on the same superscript will be attached to other generic symbols,
e.g. field operators ¢.

Remark 8.3 Sometimes we will call (8.3) mneutral CCR representa-
tions, to distinguish them from charged CCR representations introduced in
Def. 8.35.

Proposition 8.4 Consider a CCR representation (8.3). Let y,y1,y2 € Y,
t1,to € R. Then

Wﬂ*(y) = Wﬂ(_y)v wr (0) = ]la
W7 (ty) W™ (tay) = W™ ((t1 +t2)y),
W7 (y )W (y2) = e 2 WT ()W (y1). (85)
Definition 8.5 A CCR representation (8.3) is called regular if

Rt W7 (ty) € U(H) is strongly continuous for any y € Y. (8.6)

8.1.2 CCR representations over a direct sum

CCR representations can be easily tensored with one another:

Proposition 8.6 If
YVizy = Wiy) eUMH), i=1,2, (8.7)
are two CCR representations, then
V@Yo 3 (yr1,92) = Why) @ W (ya) € U(H1 @ Ha)

is also a CCR representation.

8.1.3 Cyclicity and irreducibility

Consider a CCR representation (8.3). The following concepts are parallel to the
analogous concepts in the representation theory of groups or C*-algebras:
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8.1 CCR representations 175

Definition 8.7 We say that a subset £ C 'H is cyclic for (8.3) ifSpan{W” (y)V
U e&, ye Y} is dense in H. We say that ¥y € H is cyclic for (8.3) if {Wy} is
cyclic for (8.3).

Definition 8.8 We say that the CCR representation (8.3) is irreducible if
the only closed subspaces of H invariant under the W™ (y) for y € Y are {0}
and H.

Proposition 8.9 (1) A CCR representation is irreducible iff B € B(H) and
(W™ (y), B] =0 for all y € Y implies that B is proportional to identity.

(2) In the case of an irreducible representation, all non-zero vectors in H are
cyclic.

8.1.4 Characteristic functions of CCR representations

Definition 8.10 We say that ) 5 y — G(y) € C is a characteristic function if
foray,....,a, €C,y1,...,yn €Y and n € N we have

S @ayGl—y; +y;)el 0 > 0, (8.8)

ij=1

Note that for any CCR representation y — W(y) € U(H) and any vector ¥ €
H

G(y) = (YW (y)¥) (8.9)

is a characteristic function. We will see that every characteristic function comes
from a certain CCR representation and a cyclic vector, as in (8.9).

Until the end of this subsection we assume that y — G(y) is a characteristic
function. Set Hy = ¢.(),C), as in Def. 2.6, that is, Hy is the vector space of
finitely supported functions on ). Equip it with the sesquilinear form (-|-) defined
by

(8,10,,) = eF¥ 2 G(—yy + ).

It follows from (8.8) that (-|-) is semi-positive definite. Let N be the space of
vectors in & € Hy such that (£]€) = 0. Set H := (Ho/N)PL.
For any y € Y we define a linear operator Wy (y) on Hy by

Wo(y)(sm = e%y'wy] Oy +y-

The operator Wy (y) preserves the form (-|-), hence it preserves N. Therefore, it
defines a linear operator W (y) on Hy /N by

W(y)E :=Wo(y)§+N, &€ Hy.

W (y) extends to a unitary operator on H. We set ¥ := §; + N
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Proposition 8.11 Consider the family of operators
Yoy~ W(y) € U(H) (8.10)
constructed above from a characteristic function y — G(y).

(1) (8.10) is a CCR representation, U is a cyclic vector and G(y) = (V|W (y)¥).
(2) The following conditions are equivalent:

(i) (8.10) is regular.

(ii) R > ¢ — G(y1 + ty2) is continuous for any yi,ys € .

8.1.5 Intertwining operators

Let

Yoy— Why) € UHy), (8.11)

YVoy— W (y) € U(H,) (8.12)
be CCR representations over the same pre-symplectic space ).
Definition 8.12 We say that an operator A € B(H,, Hz) intertwines (8.11) and
(8.12) iff

AW (y) = W2 (A, ye .

We say that (8.11) and (8.12) are unitarily equivalent if there exists U €
U(H1,Hs) intertwining (8.11) and (8.12).

The proof of the following proposition is essentially identical to the proof of
Thm. 6.29:

Proposition 8.13 If the representations (8.11) and (8.12) are irreducible, then
the set of operators intertwining them is either {0} or {\U : X € C} for some
UeUH).

8.1.6 Schrédinger representation

Let X be a finite-dimensional real vector space. Equip X* @& X with its canonical
symplectic form. It follows from Thms. 4.28 and 4.29 that the map

X* @ X5 (n,q) — TP e U(L2(X)) (8.13)
is an irreducible regular CCR representation.

Definition 8.14 (8.13) is called the Schrodinger representation over X* @& X.

Conversely let (), w) be a finite-dimensional symplectic space and

YVoy—W(y) € U(H) (8.14)
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be a regular CCR representation. By Thm. 1.47, there exists a space X such
that ) can be identified with X* @ X as symplectic spaces. Thus we can rewrite

(8.14) as
X*P DX S (n,q) = W(n.q)
satisfying
W, q)W (2, 2) = =271 90W (g 4y, g1 + ).
The maps

X" 30— W(n,0),
X 3q—W(0,q)

are strongly continuous unitary groups satisfying
W (n,0)W(0,q) = e "W (0,q)W (1, 0).
The following theorem is a corollary to the Stone—von Neumann theorem:

Theorem 8.15 Under the above stated assumptions, there exists a Hilbert space
K and a unitary operator U : L*(X) @ K — H such that

W(n,q)U = Um0 D) @ 1.
The representation is irreducible iff KK = C.
Proof 1t suffices to use Thm. 4.34 and the identities

W(n,q) — e—%n.qW(,rI’O)W(O’q)) ei(7]~:t+q~D) — e—;—nqein'meiqD.

The following corollary follows directly from Thm. 4.29 and Prop. 8.13:

Corollary 8.16 Suppose that Y is a finite-dimensional symplectic space. Let
Yoy W;(y) eUH), i =1,2, be two regular irreducible CCR representa-
tions. Then there exists U € U(Hy,Hs), unique up to a phase factor, such that
UWi(y) = Wa(y)U.

8.1.7 Weighted Schrodinger representations

Suppose that X is a finite-dimensional vector space with a Lebesgue measure dz.
Fix m € L} (X) such that m # 0 a.e.. Define the measure du(z) = |m/|*(z)dz.
Then

L*(X,dp) 2 U+ UV :=m¥ € L*(X,dx)

is a unitary operator. If in addition m € L?(X), then U1 = m.
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The following theorem is obvious:
Theorem 8.17
X*D XD (777(]) — U*elnz+ig-Drr
— eir}-a:+iq<D+m71(:zc)q-Vm(:zc) c U(L2 (X, du))

is a regular irreducible CCR representation.

Remark 8.18 If V(z) := im~!(z)Am(z) is sufficiently regular, then we can

define the Schréodinger operator H := —; A+ V(x). If m € L*(X), then we have
Hm = 0.
The operator H in the L*(X,du) representation looks like

1
U*HU = 50— m ™ (z)Vm(z)-V.

It is called the Dirichlet form corresponding to H. If m € L?(X), then 1 is its
eigenstate with the eigenvalue 0.

8.1.8 Examples of non-regular CCR representations

In most applications to quantum physics, CCR representations are regular. How-
ever, non-regular representations are also useful. In this subsection we describe
a couple of examples of non-regular CCR representations.

Recall that, for a set I, [>(I) denotes the Hilbert space of square summable
families of complex numbers indexed by 1.

Example 8.19 Consider the Hilbert space 12()) and the following operators:
W) f () = e (a4 ). (8.15)
Then
Y3ym— Wiy) eUQ)) (8.16)

1s a CCR representation.
Note that R >t +— W(ty) is not strongly continuous for non-zero y € ).
Hence (8.16) is non-regular.

Example 8.20 Let X be a real vector space (of any dimension). Recall that
X* @ X is naturally a symplectic space. On I?(X) define the following operators:

V(n)f(z) :=e"" f(z), neXx*;
T(q)f(x) :== f(x —q), qeX.
Then
X* DX (1,9) — V()T(g)er" € U(IX(X)) (8.17)

is a CCR representation.
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Note that R 5 t — T(tq) is not strongly continuous for non-zero ¢ € X. Hence
(8.17) is non-reqular.

8.1.9 Bogoliubov transformations
Let
Yoy W(y) € U(H) (8.18)

be a CCR representation.

Recall that Y* denotes the space of linear functionals on Y, and Sp()’) the
group of symplectic transformations of ). Let v € Y*, r € Sp()). Clearly, the
map

Voy— W' (y) =" W(ry) € U(H) (8.19)

is a CCR representation.

Definition 8.21 (8.19) can be called the Bogoliubov transformation of (8.18)
by (v,r). Alternatively, if r = 1, it can be called the Bogoliubov translation by
v or, if v =0, the Bogoliubov rotation by r.

The pairs (v,r) that appear in (8.19) are naturally interpreted as elements
of the group Y* x Sp(Y), the semi-direct product of Y* and Sp()), with the
product given by

(va,m2)(v1,71) := (r] v2 + v1,7271).

Note that Y* x Sp()) can be viewed as a subgroup of the affine group Y* x
Sp(Y*) = ASp(Y*), with the homomorphic embedding

YV x Sp(Y) 3 (v,7) — (r* Lo, r* 7)) € ASp(Y*).
Proposition 8.22 (1) If (v,r1), (v2,19) € YV* x Sp(Y), then

(W ,m><“w‘2>(y) = W) (),

(2) The set of (v,r) € Y* x Sp(Y) such that (8.19) is unitarily equivalent to
(8.18) is a subgroup of Y* x Sp(Y) containing wY x {1} C Y* x {1}.

(3) (8.19) is regular iff (8.18) is.

(4) (8.19) is irreducible iff (8.18) is.

Proof To see that for v € w) (8.19) and (8.18) are equivalent, we note

W l(y) = W(w™ o)W (y)W(-w™ o). m

Proposition 8.23 Let Y be finite-dimensional and w symplectic. Then

(1) (8.18) and (8.19) are unitarily equivalent for any (v,r) € Y* x Sp(Y).
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(2) Let Op(-) and Op”")(-) denote the Weyl quantization w.r.t. (8.18) and
(8.19) respectively. (See (8.42) later on for the definition of the Weyl quan-
tization.) For b e S (V*), set

b (w) =b(rfw+wv), wer.

Then Op'*) (b) = Op (b"7)).

8.2 Field operators

Throughout the section, (J,w) is a pre-symplectic space and we are given a
regular CCR representation

Yoy—W"(y) € UMH). (8.20)

8.2.1 Definition of field operators

By regularity and (8.6), R > ¢ — W™ (ty) is a strongly continuous unitary group.
By Stone’s theorem, for any y € ), we can define its self-adjoint generator

T . d T
07 (y) == =W (t)],

In other words, €¢” (¥) = W7 (y).

Definition 8.24 ¢™ (y) will be called the field operator corresponding to y € V.
(Sometimes the name Segal field operator is used.)

Theorem 8.25 Let y,y1,y2 € V.
(1) W7 (y) leaves invariant Dom ¢ (y1) and
(@7 (), W (y1)] = yr-wy W7 (1) (8.21)

(2) ¢ (ty) = td™ (y), t € R.
(3) One has Dom ¢™ (y;) N Dom ¢™ (y2) C Dom ¢™ (y1 + y2) and

¢"(y1 +32) = " (Y1) + 0" (y2), on Dom¢” (y1) N Dom ¢™ (y2).  (8.22)
(4) In the sense of quadratic forms on Dom ¢™ (y;) N Dom ¢™ (y2), we have
[0 (y1), ¢" (y2)] = iy1-wy2 1. (8:23)
Proof (8.21) follows immediately from differentiating in ¢ the identity

W™ (ty)W™ (1) = W7 (y) )W™ (ty)e 01,
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8.2 Field operators 181

To obtain (8.22), we note that, for ¥ € Dom ¢™ (y1) N Dom ¢™ (y2 ),
W (g + ) — D)W = e EEICR T (1 ) (W (tys) — 1) W
eI (W (1) — 1) W
1! (e—%tzwyz — 1w
= 10V + i0() .

By differentiating the identity
(Ww (tl o )\Ill |W7r (t2y2)\1}2) — e—itl tayr-wy2 (Wﬂ (t2y2)\111 ‘Ww (tlyl)\p2)
w.r.t. t; and ¢y, and setting t; = to = 0, we obtain (8.23). O

Sometimes it is convenient to introduce CCR representations with help of
field operators, as described in the following proposition. We recall that Cly, (H)
denotes the set of self-adjoint operators on H.

Proposition 8.26 Let Y 3y +— ¢"(y) € Cly(H) be a map such that

(1) ¢7(ty) = 16" (y), t € R;
(2) €97 W)eld” (12) = o=y wh26l0" 1412) gy 4y € Y,

ThenY >y — W7 (y) :=e¢" W) is a reqular CCR representation, and ¢ (y) are
the corresponding Segal field operators.

Remark 8.27 Let X C Y be an isotropic subspace. Then the field operators
@™ (q) with ¢ € X commute with one another. Hence

?"(q), g € X,

is an X* -vector of commuting self-adjoint operators (see Def. 2.77). If f is a
cylindrical Borel function on X*, then the operator f(¢™) is well defined by the
functional calculus.

8.2.2 Common domain of field operators

Definition 8.28 The Schwartz space for the CCR representation (8.20) is
defined as the intersection of Dom ¢™ (y1) -+ " (yn) for yi,...,yn €Y. It is
denoted H>" and has the structure of a topological vector space with semi-norms
167 (y1) -~ &7 (ya ) ¥

Clearly, polynomials in ¢™ (y) act as operators on H>™.

Theorem 8.29 Let Y be finite-dimensional. Then

(1) H>™ is dense in H.

(2) If w =0, then H®>™ coincides with the space of C* vectors for the vector of
commuting self-adjoint operators ¢ .

(3) Ifw is non-degenerate, then U € H™ iff the function Y > y +— (¥|W™ (y)¥)
belongs to S(Y).
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(4) If Y = X* ® X and (8.20) is the Schrédinger representation in L*(X), then
HoT equals S(X).

Proof (2) is obvious. (3) follows from Thms. 8.15 and 4.30. (4) follows from
Thm. 4.15.

Let us prove (1). Set )y = Kerw. Let )y C Y be a complementary space to
Yo- Y1 is symplectic, hence we can assume that, for some space X, )} = X* $ X
with the canonical symplectic form. By Thm. 8.15, there exists a unitary map
U:L*(X)®K — H such that

WT(y1) = UW(y) @ U™, y1 € W1,

where W(y) denote the Weyl operators in the Schrodinger representation. Now
we know from (3) that U S(X)& K is contained in the Schwartz space for ) 3
Y1 = W (y1).

Using that ), and ), are orthogonal for w and Thm. 4.29, we obtain that
UW™ (yo)U = 1@ W™ (yq) for yo € Wy, where Yy 3 yo — W™ (yo) € U(K) is a
CCR representation. By (2), the corresponding Schwartz space K™ is dense
in K. Thus U S(X)& K™ C H>7 is dense in H. O

If Y has an arbitrary dimension, then Thm. 8.29 is still useful, because it can
be applied to finite-dimensional subspaces of ). In particular, Thm. 8.29 implies
that for an arbitrary symplectic space ), the spaces Dom ¢™ (y1) N Dom ¢™ (y5)
considered in Thm. 8.25 are dense in H.

8.2.3 Non-self-adjoint fields

As in Subsect. 1.3.5, we can equip C) with the anti-symmetric form wc.

Definition 8.30 For w = y; + iys, y1,y2 € YV, we define the field operator
¢"(w) := ¢" (y1) + 19" (y2) with domain Dom ¢™ (y) N Dom ¢™ (y2).
Proposition 8.31 (1) Forw =y, +iy2, y1,y2 € ),
@™ (w) is closed on Dom ¢” (y1) N Dom ¢” (y2).
(2) For wy,wy € CY, A\, Xg €C,
" (Mwr + Aowz) =A@ (wi) + A2¢" (w2) on Dom ¢” (wy) N Dom ¢" (w).
(3) For wy,wy € CY,
[@" (w1), @™ (we)] = iw;-wecws 1 as a quadratic form on
Dom ¢™ (w1) N Dom ¢ (w3).
Proof By Thm. 8.25, we have, for ¥ € Dom ¢" (y;) N Dom ¢™ (y),

197 (1 + ig2) P[P = (167 (y1) U I* + 167 () 1* — yr-wys | 2] (8.24)
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We know that ¢™(y;) and ¢"(y2) are self-adjoint, hence closed. Therefore,
Dom ¢™ (y;) and Dom ¢" (y2) are complete in the graph norms. Hence so is
Dom ¢™ (y1) N Dom ¢™ (y2) in the intersection norm. This proves (1). (2) is imme-
diate and (3) follows immediately from Thm. 8.25 (4). a

8.2.4 CCR over a Kdhler space

In this subsection we assume that w is symplectic. We fix a CCR representation
(8.20). We use the notation and results of Subsects. 1.3.6, 1.3.8 and 1.3.9.

The following proposition shows that choosing a sufficiently large subspace of
commuting field operators that annihilate a certain vector is equivalent to fixing
a Kéhler structure in (Y, w).

Proposition 8.32 Suppose that Z is a complex subspace of CY such that
1H)Cy=2aZ,

(2) 21,72 € Z implies ¢7(Z1)¢" (Z2) = ¢7 (Z2)9™ (1) (or, equivalently, Z is
isotropic for we).

Then there exists a unique pseudo-Kdhler anti-involution j on (Y,w) such that
Z={y—iy : ye}. (8.25)

If in addition
(3) there exists a non-zero L € H such that 2 € Dom ¢™ (Z) and ¢ (Z)2 =0,
z € Z, then j is Kdhler.

Proof By (1), each y € Y can be written uniquely as y = z, + Z,. Clearly, z,
depends linearly on y. We have i(2z, —y) =i(22z, — y). Hence jy :=i(2z, — y)
defines j € L()), and (8.25) is true.

(2) implies

0 = (y1 +ijyr)we(yz +ijy2)
= yr-wyz — (jy1)-w(iyz) +1(Gyr)wy2 + y1-wjys).

Hence

y1-wys — (jy1)-w(jyz) = (jy1)-wye +y1-wjye = 0,

which shows that j is symplectic and infinitesimally symplectic, hence pseudo-
Kahler.
Then we compute using (3):

0= [y +ijy)Q?
= (206" (v)*Q) + (2s™ (jy)*Q) —i(Ql[¢" (v), o" W)IQ) > —ywijy.
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Motivated in part by the above proposition, let us fix j, a pseudo-Kéhler anti-
involution on (Y,w). Recall that the space Z given by (8.25) is called the holo-
morphic subspace of CY (see Subsect. 1.3.6).

Definition 8.33 We define the (abstract) creation and annihilation operators
associated with j by

a™*(z) = ¢" (), a"(2):=¢"(Z), z€Z.

By Prop. 831, if z=y —ijy € Z, then a"(z) = ¢" (y) + 19" (jy), a"*(2) =
o™ (y) — 19" (jy) are closed operators on Dom ¢™ (y) N Dom ¢ (jy).

Proposition 8.34 (1) One has ¢" (2,Z) = a™*(2) +a" (2), z € Z.
(2)

[a™(21),a™ (22)] =0, [a"(21),a" (22)] =0,
[a™(z1),a™*(22)] = Z1 - 221, 21,22 € Z.

Proof (1) is immediate, since (z,%) = (z,0) + (0,%). The first line of (2) follows
from the fact that Z, Z are isotropic for we (see Subsect. 1.3.9). To prove the
second line we write

[a" (21), a™" (22)] = [¢" (71), ¢" (22)] = iZTwe 22 1

= —iz1 - jenl =71 - 21,
using Subsect. 1.3.9 and the fact that joczo = iz9, since 29 € Z. O

Note that in the case of a Fock representation, considered in Chap. 9, the space
Y has a natural Kahler structure. The abstract creation and annihilation opera-
tors defined in Def. 8.33 coincide then with the usual creation and annihilation
operators.

If the space ) is equipped with a charge 1 symmetry, then we have a natural
pseudo-Kéhler structure (see Subsect. 1.3.11). The corresponding creation and
annihilation operators are then called charged field operators. However, in this
case we prefer to use a slightly different formalism, which is described in the next
subsection.

8.2.5 Charged CCR representations

CCR representations, as defined in Def. 8.1, are used mainly to describe neutral
bosons. Therefore, sometimes we will call them neutral CCR representations.
In the context of charged bosons one uses another formalism described in the
following definition.

Definition 8.35 Let (V,w) be a charged pre-symplectic space, that is, a complex
vector space equipped with an anti-Hermitian form denoted (yi|wys), y1,y2 € Y
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(see Subsect. 1.2.11). Let H be a Hilbert space. We say that a map
Y3y—14T(y) € Cl(H)
is a charged CCR representation if there exists a reqular CCR representation of
(YR, Re (+|w-))
Yoy Wr(y) = W e UH) (8.26)
such that

1

V" (y) 7

(0" (y) +i¢" (iy)), y€ V.

Proposition 8.36 Suppose that Y > y+— ¢™ (y) is a charged CCR representa-
tion. Let y,y1,y2 € Y. We have:

(1) ¥™(\y) = A" (y), A € C.
(2) On Dom ™ (y1) N Dom ™ (y2) we have Y™ (y1 + yo) = ™ (v1) + V7 (y2)-
(3) In the sense of quadratic forms, we have the identities

[ (1), "™ (y2)] = [7 (1), 7 (y2)] = O,

(7 (1), ™" (y2)] = i(y1 |wy2) 1.

By definition, a charged CCR representation determines the neutral CCR rep-
resentation (8.26) on the symplectic space (Vr, Re(|w-)) with the fields given by

¢ww:=§3www+w”@»,yey. (8.27)

In addition, (Vg, Re(+|w-)) is equipped with a charge 1 symmetry
U(1) 30— e’ € Sp(Ya).

Conversely, charged CCR representations arise when the underlying symplectic
space of a (neutral) CCR representation is equipped with a charge 1 symmetry.
Let us make this precise. Suppose that (), w) is a symplectic space and

YVoy—e®W e UK)
is a regular neutral CCR representation. Suppose that
U(1) 360 +— up = cos 01 + sinbja, € Sp(Y)

is a charge 1 symmetry. We know from Prop. 1.94 (2) that j., is a pseudo-Kéhler
anti-involution. Set

U () = = (&7 (4) + 16" Gany)), 7 (y) =

72 (" (y) —i0" (Geny)), y € V.

Sl
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186 Canonical commutation relations

Then we obtain a charged CCR representation over Y© with the complex struc-
ture given by jen, and the anti-Hermitian form

(y1lwye) = y1-wys — iy1-Wiewy2, Y1,y2 € V.

We can look at this construction as follows. By the standard procedure
described in the previous subsection, we introduce the holomorphic subspace
for jen, that is,

Zch = {y - ijchy Yy S y} - (Cy
Introduce the creation and annihilation operators associated with j.y:
acy(2) == ¢" (), ag(2):=¢""(2), 2z € Za.

We have a natural identification of the space Z., with Y:
1
Yoy z=—(1-—ij. € Z. 8.28
Y \/5( jen)y € Za (8.28)
Then
VT (y) = ag,(2), P (y) = ag (2).

8.2.6 CCR over a symplectic space with conjugation

Let X be a real vector space. Let V be a subspace of X'*. Consider the space
V@& X equipped with its canonical pre-symplectic form w. Clearly, it is also
equipped with a conjugation

T(m,q) = (n,—q), (n,q) €eVIX.
Let

VO X3 (nq) - e UMH)

be a regular CCR representation.

Definition 8.37 The (abstract) position and momentum operators are X- and
X* -vectors of commuting self-adjoint operators defined by

n'xﬂ- = ¢7T(7770)7 n S V7
q-D" :=9¢"(0,q9), q€&X.

A natural conjugation on the symplectic space ) is available in the case of the
Schrédinger representation. In this case the operators defined in Def. 8.37 are
the usual momentum and position operators.

Recall that for the Schrodinger representation the symplectic space is finite-
dimensional. One often considers a conjugation on an infinite-dimensional sym-
plectic space. This is the case for the real-wave representation (see Sect. 9.3),
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8.2 Field operators 187

which to some extent can be viewed as a generalization of the Schrodinger
representation to infinite dimensions. However, besides a conjugation, the real-
wave representation requires an additional structure: ) needs to be a Kahler
space. CCR relations over a Kahler space with a conjugation are discussed in
the following subsection.

8.2.7 CCR over a Kdhler space with conjugation
Suppose that X is a real Hilbert space and ¢ > 0 is an operator on X. Set

Vi= (207X @ (20)7 X,

which is a symplectic space with a conjugation. (Note that (20)*%)( can be
viewed as the space dual to (2¢)7 X). Consider a regular CCR representation

(207X @ (20)7X 3 (n,q) — 9" 1) € U(H).

Let ™ and D™ be the position and momentum operators introduced in Def. 8.37.
We introduce the following definition:

Definition 8.38 Forw € Cc™7 X we define Schrodinger-type creation and anni-
hilation operators

1
al (w) := Fu- 2" —icw- D™, al, (w):= 5@ <" +icw- D"

By Subsect. 8.2.3, a7, (w) and a7} (w) are closed and the adjoints of each

sch sch
other on their natural domains.

Proposition 8.39 (1) Forn e C(2¢) 1 X, g € C(2¢)2 X, we have
* T (= i 1 T —1— T* [ —
U " = a’;rch(n) + asch(n)7 q- D" = E(a’sch(c 1q) - a’sch(c lq)) (829>
(2) For wy,wy € CX,

[agch (wl )’ a’gc);l (’wz )] = wp - CWw2 ]17

(8.30)
[a';rch (wl )’ agch (wQ )] = [agc*lcl (wl )7 az;rc)il (wQ )] = 0.

It is easy to interpret Schrodinger-type creation and annihilation operators in
terms of an appropriate Kéhler structure on ) with a conjugation, following the
terminology of Subsect. 1.3.10. Let us equip Y = (2¢) 2 X & (2¢)z X with the

anti-involution
. [0 —=(2¢)7!
T 0 |

Clearly, the pair j,w is Kéhler. The corresponding scalar product of (1;,q;) € Y,
1=1,2,1s

(. q1) - (2, q2) = m-2em + q1+(2¢) o (8.31)
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188 Canonical commutation relations

Let us consider the map

1— i
Ce X dwe 2= el

(w,0) = (%w ficw> € C. (8.32)

(8.32) is unitary onto Z, the holomorphic subspace of C) associated with j. Then
we have

af (w) = a”(2), aly(w) =a""(2),
where a™*(z), resp. a™(z), are the creation, resp. annihilation operators associ-
ated with the anti-involution j, as in Subsect. 8.2.4.
In what follows we drop the superscript . A standard choice of ¢ is ¢ = 1, for

which
. [0 i1
T= o1 0 |

and leads to the formulas

1 1
a:ch(w) = §w cx—iw- D7 asch(w) = §EIE+1ED,

1
w-x = aly, (W) + asen (W), w- D = 5(_a:ch(w) + asen(w)), w e CA.

This choice is the most convenient in the context of the real-wave representation,
which will be described later.

In another choice, which is often found in the literature, one takes ¢ = %]1
and multiplies ase, (w) and a’, (w) by V2 to keep the commutation relation
[asch (w1 ), aly, (w2)] = Wy - wa, which leads to the formulas

1 i 1 1
ar,(w)=—w-z——w-D, an(w)=—wW- -2+ —w-D,
‘cl( ) \/§ \/5 1( ) B \/§
1 1
w~x:—(a:Ch(w)+asch(ﬁ)), w-D=—— (—a;"ch(w)Jrasch(E)), w e CX.
\/5 iv2

This choice is more symmetric, but leads to the appearance of ugly square roots
of 2; therefore we will not use it.

8.3 CCR algebras

In some approaches to quantum physics the initial step consists in choosing a
x-algebra, usually a C™*- or W*-algebra, which is supposed to describe observables
of a system. Only after choosing a state (or a family of states) and making the
corresponding GNS construction, we obtain a representation of this x-algebra
in a Hilbert space. This philosophy allows us to study a quantum system in a
representation-independent fashion.

Many authors try to apply this approach to bosonic systems. This raises the
question whether one can associate with a given pre-symplectic space (Y, w)
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8.8 CCR algebras 189

a natural and useful x-algebra describing the canonical commutation relations
over ).

The analogous question has a rather satisfactory answer in the fermionic case.
In particular, there exists an obvious choice of a C*-algebra describing the CAR
over a given Euclidean space. It turns out, however, that in the bosonic case
the situation is much more complicated, since for a given pre-symplectic space
several natural choices of CCR algebra are possible.

This question is discussed in this section. Throughout this section, (Y, w) is
a pre-symplectic space and we discuss various x-algebras associated with ). We
will see that each choice has its drawbacks. In the literature, the most popular
choice seems to be the Weyl CCR algebra, which we discuss in Subsect. 8.3.5.
One can, however, argue that, at least in the case of regular representations, it is
more natural to use what we call the regular CCR algebra discussed in Subsect.
8.3.4. Some authors prefer to use the polynomial CCR algebra, discussed in
Subsect. 8.3.1, which is purely algebraic and is not a C*-algebra.

Unfortunately, the C*-algebraic approach to bosonic systems has some serious
problems. Many authors apply it in the case of free dynamics (given by Bogoliu-
bov automorphisms). In the case of physically interesting interacting dynamics,
the C*-algebraic approach is not easy to apply. In fact, in the case of bosonic
systems with infinite-dimensional phase spaces it is usually difficult to find a
natural C*-algebra preserved by a non-trivial dynamics. Sometimes, in such a
case one can apply W*-algebras, which we do not discuss here.

In the approach to canonical commutation relations discussed in this book, the
central role is played by CCR representations, as defined in Def. 8.1. We view
various CCR algebras introduced in this section more as academic curiosities
than as basic tools. Therefore, the reader in a hurry may skip this section on the
first reading.

8.3.1 Polynomial CCR x-algebras

In this subsection we discuss the polynomial CCR *-algebra over ). Note that for
non-zero w we cannot represent CCRP°!()) as an algebra of bounded operators
on a Hilbert space. The usefulness of this x-algebra for rigorous mathematical
physics is rather limited.

Definition 8.40 The polynomial CCR -algebra over ), denoted by CCRP°/(Y),
is defined to be the unital complex x-algebra generated by elements ¢(y), y € Y,
with relations

d(\y) = Ap(y), AER, d(y1 +y2) = d(y1) + d(y2),
o*(y) = d(y), d(y1)d(y2) — d(y2)d(y1) = iy1-wy2 1.

Let us describe basic properties of CCRP' ().
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190 Canonical commutation relations

Proposition 8.41 (1) Let r € ASp(Y). Then there exists a wunique x*-
isomorphism 7 : CCRP®()) — CCRP°(Y) such that #(¢(y)) = d(ry), y € V.

(2) Let Y1 be a subspace of Y. Then CCRpOl(yl) is naturally embedded in
CCRP°N(Y), such that, for y € Yy, ¢(y) in the sense of CCRPY(V)) coin-
cide with ¢(y) in the sense of CCRP°N(Y). If moreover Yy # Y, then
CCRP'())) # CCRPY(Y).

Definition 8.42 7 defined in Prop. 8.41 is called the Bogoliubov automorphism
of CCRP°/() corresponding to 7.

Proposition 8.43 Let H be a Hilbert space and let Y >y — ¢ W) € U(H) be

a reqular CCR representation. Recall that H*™ denotes the Schwartz space for a
given reqular CCR representation, and was defined in Def. 8.28. Then there exists
a unique x-representation 7 : CCRP® (V) — L(H*™) such that 7(¢(y)) = ¢™ ().

8.3.2 Stone—von Neumann CCR algebras

In this subsection we always assume that (),w) is a finite-dimensional pre-
symplectic space. We set ) := Kerw C ). In this case there exists a natural
candidate for a CCR algebra suggested by the Stone-von Neumann theorem
(Thm. 8.15), which implies the following proposition:

Proposition 8.44 (1) Let9M; C B(H;), i = 1,2, be von Neumann algebras with
distinguished unitary elements W;(y) depending o-weakly continuously on
y €Y. Let 3; be the centers of M;. Assume that
(i) Wi(y)W, (ZUZ) = e VR Wiy +y2), Y1,y €V
(ii) Span{W TR y} is o-weakly dense in IM;;
(iii) 3, are x-isomorphic to L>(YV§);
( ) i 31,-
Then there exists a unique o-weakly continuous *-isomorphism p : My — My
such that

p(Wi(y)) =Wa(y), yed.

Moreover, there exists a unitary operator U : Hy — Ha such that p(-) =U - U*.
If Ui, i = 1,2, are two such operators, then U;Us € 31 and Uy Uy € 3.

(2) Identify Y with Yy @ X* & X and w with the canonical symplectic form
on X* ® X extended by zero on Yy. Let v denote the generic variable in
Y and the corresponding multiplication operator. Then the von Neumann
algebra

L>(V}) ® B(L*(X)) C B(L*(V§ @ X)) (8.33)

and the family of its elements W (y) := e!wovtne+aD) oy — (yo n q) € Yy @
X* @ X, satisfy the requirements of (1). (® used in (8.33) is the tensor
multiplication in the category of W*-algebras; see Subsect. 6.3.2.)
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8.8 CCR algebras 191

Prop. 8.44 suggests the following definition:

Definition 8.45 A Stone-von Neumann CCR algebra over ) is defined as a von
Neumann algebra M with distinguished unitary elements W (y), y € Y, satisfying
the conditions of Prop. 8.44. It is denoted CCR()) and the Hilbert space it acts
on is denoted Hy.

Prop. 8.44 shows that CCR()) is defined uniquely up to a spatially imple-
mentable #-isomorphism. Clearly, if w =0, then CCR(Y) ~ L>®(Y*). If w is
symplectic, then CCR(Y) = B(Hy).

Definition 8.46 Let y € Y. The corresponding abstract field operator ¢(y) is
defined as the self-adjoint operator on Hy such that W (y) = e'¢W),

Note that the operators ¢(y) are affiliated to CCR(Y).

Note also that the definition of the Stone—von Neumann CCR algebra is sim-
pler if w is symplectic — we can then drop (iii) and (iv) from Prop. 8.44.

The following proposition is an analog of Prop. 8.41 about polynomial CCR
x-algebras. But whereas Prop. 8.41 was a trivial algebraic fact, Prop. 8.47 is
somewhat deeper.

Proposition 8.47 (1) Let r € ASp(Y). Then there exists a unique spatially
implementable x-isomorphism 7 : CCR(Y) — CCR(Y) such that #(W (y)) =
W(ry), y € Y.

(2) Let Y1 C Y. Then there is a unique embedding of CCR(Yy) in CCR(Y), such
that, for y € Y1, W(y) in the sense of CCR())) coincide with W (y) in the
sense of CCR(Y). If moreover Yy # ), then CCR())) # CCR(D).

Definition 8.48 7 defined in Prop. 8.47 is called the Bogoliubov automorphism
of CCR(Y) corresponding to r.

Here is yet another reformulation of the Stone-von Neumann theorem (see
Thm. 8.15):

Theorem 8.49 Let (Y, w) be symplectic. Let Y 3y — W7 (y) € U(H) be a reg-
ular CCR representation. Then there exists a unique o-weakly continuous -
representation m : CCR(Y) — B(H) such that #(W(y)) = W™ (y), y € Y. More-
over, T is isometric and

m(CCRY) = {W"(y) : yeV}".

If in addition the representation is irreducible, then there also exists a unitary
operator U : H — Hy, unique up to a phase factor, such that w(-) =U - U*.

8.3.3 S- and S’'-type operators

In this subsection we fix a finite-dimensional symplectic space (), w) and con-
sider the von Neumann algebra CCR(Y) = B(Hy). We will describe an abstract
version of the constructions described in Subsect. 4.1.11.
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192 Canonical commutation relations

Definition 8.50 ¥ € Hy is called an S-type vector if the function

Y3y (V[W(y)¥)
belongs to S()). The abstract Schwartz space for ) is defined as the set of S-type
vectors. It is denoted H.

Clearly, ¢(y), y € ), leaves H> invariant. Thus we can define a family of
semi-norms

HOOBW’_)||¢(y1>...¢(yn)q]||’ yla"'ayney7

which equip H> with the structure of a Fréchet space.

Definition 8.51 H™°° is defined as the topological dual to H™. It is called the
abstract S’ space for ).

Note that CCRP°/()) can be represented as an algebra of linear operators on
H™>, as well as on H~°°.

Definition 8.52 A € CCR()) is called an S-type operator iff it is trace-class
and the function

Y3y Tr AW (y)

belongs to S(Y). The set of S-type operators is denoted CCR‘S(J}).

Clearly, CCR® () is a x-algebra. It is equipped with a topology by the family
of semi-norms

CCR®(Y) 3 A [Tro(yi) - d(ya)Al, 1,--- yn € V-

Definition 8.53 Continuous linear functionals on CCR® (V) are called S'-type
forms over ). Their space is denoted by CCR® ().

Let
CCR%(Y)3 A— B(A) e C (8.34)

be an §'-type form. Clearly, for any Uy, Uy € H, the operator |¥5)(¥; | belongs
to CCR®(Y). Thus, (8.34) defines a continuous sesquilinear form on H>:

H> X H® 5 (U1, Uz) = B(|¥:)(¥]) € C.

In what follows we will use the “operator notation”, writing (¥, |BW¥,) instead of
B (|¥5)(¥,]). Thus bounded operators can be viewed as elements of CCR® ()),
so that we have

CCRS(Y) € CCR(Y) C CCRS (V).

As in Subsect. 4.1.11, we define the adjoint form B* by (U;|B*¥,) =
(U2|BYy). If By or B extend as continuous operators on H*, then we can
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define By o By as an element of CCR®’ (Y) by
(\Dl‘BQ o Bl\I/Q) = (\I/1|BQ(Bl‘I/)), or (\I/1|BQ (@) Bl\IJQ) = (B;\IJ|Bl\IJ)

In particular this is possible if By or By € CCRDOl(J}).

If Y~ X* @ X and we consider the Schrodinger representation on L?(X),
then CCR®()) coincides with the set of operators whose integral kernel is in
S(X x X). CCRY ()V) consists then of forms whose distributional kernel is in
S'(X x X), which were considered already in Subsect. 4.1.11.

8.3.4 Regular CCR algebras

Until the end of this section, (), w) is a pre-symplectic space of arbitrary dimen-
sion. Recall that Fin()) denotes the set of finite-dimensional subspaces of ).
In this subsection we introduce the notion of the regular CCR, C*-algebra over
Y. In the literature, it is rarely used. Weyl CCR C*-algebras are more common.
Nevertheless, it is a natural construction. Its use was advocated by I. E. Segal.
Let Y1,V € Fin(Y) and Y, C V». We can define their Stone—von Neumann
CCR algebras, as in Def. 8.45. By Prop. 8.47, we have a natural embedding,

CCR();) C CCR(D).

We can define the algebraic regular CCR x-algebra as the inductive limit of
Stone-von Neumann CCR algebras:

Definition 8.54 We set

CCRIE(Y):== |J CCRO). (8.35)
Y1 €Fin(Y)
Clearly, CCR:{S (V) is a *-algebra equipped with a C*-norm.

Definition 8.55 We define the regular CCR C*-algebra over )V as

CCR™ () := (CCRreg(y))d.

alg

Clearly, CCR™®(Y) is a generalization of the Stone—von Neumann algebra
CCR(Y) from Def. 8.45.
We have an obvious extension of Prop. 8.47:

Proposition 8.56 (1) Let r € ASp(Y). Then there exists a wunique -
isomorphism ¢ : CCR™®()) — CCR™®(Y) such that #(W(y)) = W(ry),
yey.

(2) Let Yy C Y. Then CCR™®())) is naturally embedded in CCR'™® (). If more-
over Yy #£ Y, then CCR™®(),) # CCR'% ().
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Proof Let us give a proof of (2). Working in the Schrodinger representation
we see that [|[W(y1) — W(ys)| = 2 if 41 # yo. Hence, if y € Y\), then W(y) &
CCR™ (). O

Definition 8.57 7 defined in Prop. 8.56 is called the Bogoliubov automorphism
of CCR™®()) corresponding to r.

The following proposition is an extension of Thm. 8.49:

Proposition 8.58 Suppose that w is symplectic. Let Y > yr— W™ (y) € U(H)
be a reqular CCR representation. Then there exists a unique x-representation
m: CCR™8(Y) — B(H) such that #(W(y)) =W"(y), y €Y, and which, for
Vi € Fin(Y), is o-weakly continuous on the sub-algebras CCR(Y;) C CCR™®(Y).

Moreover, m is isometric.

Proof We use the fact that if w is symplectic then we can restrict the union in
(8.35) to run over finite-dimensional symplectic subspaces of ). O

8.3.5 Weyl CCR algebra

In this subsection we introduce the notion of the Weyl CCR C*-algebra over ).
This is the C*-algebra generated by elements satisfying the Weyl CCR relations
over ). Mathematical physicists use Weyl CCR algebras often in their description
of bosonic systems.

Note that Weyl CCR algebras can be viewed as non-commutative generaliza-
tions of algebras of almost periodic functions. Indeed, CCRZYgeyl(y) consists of
almost periodic functions on ) if w = 0.

Let us start with the definition of algebraic Weyl CCR algebras.

Definition 8.59 CCRggyl()}) is defined as the x-algebra generated by the ele-
ments W(y), y € Y, with relations

W(y)* = W(=y), Wy)W(ys) =e 2“2 W(y + 1), 51,92 € V.

Let Y5 yr— W™ (y) € U(H™) be a CCR representation. Clearly, there exists
a unique unital *-isomorphism 7 : CCR;Y;”I(JJ) — B(H™) such that 7(W(y)) =
W7 (y).

Let R(Y) be the class of CCR representations over ). R()) is non-empty. In
fact, we always have the (non-regular) CCR representation Y 3y — Wd(y) €
U(I*(Y)) defined in (8.15). It yields a corresponding faithful representation 7 :

CCRY™Y(Y) — B(2(D)).

alg

Definition 8.60 For A € CCR:Y;YI())) we set

[|A]l := sup{Hﬂ(A)H = R(y)} (8.36)
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8.8 CCR algebras 195
The Weyl CCR C*-algebra is defined as

CCR\Veyl (y) = (CCRWCyl (y))Cpl .

alg

Clearly, || - || defined in (8.36) is a C*-norm and CCRV*¥!())) is a C*-algebra.

Proposition 8.61 (1) Let r € ASp(Y). Then there exists a unique
s-isomorphism 7 : CCRV (V) — CCRY (Y)  such that #(W(y)) =
W(ry), y € Y.

(2) Let Y1 € Y. Then CCRY (D)) is naturally embedded in CCRVY'(Y). If
moreover Yy # Y, then CCRWEyl(yl) + CCRW“yl(y).

(3) If Y # {0}, then CCRVY(Y) is non-separable.

Proof (1) and (2) are obvious analogs of Prop. 8.41. (3) follows from the fact
that y; # yo implies |[W(y1) — W{(y2)|| = 2. O

Definition 8.62 7 defined in Prop. 8.61 is called the Bogoliubov automorphism
of CCRV*¥!()) corresponding to 7.

Let us give an analog of Prop. 8.43:
Proposition 8.63 Let Y >y — W7 (y) € U(H) be a CCR representation. Then
there exists a unique x-homomorphism

7 : CCRY (V) — B(H)

such that #(W(y)) = W™ (y).

If w is symplectic, the algebra CCRWEyl(:))) enjoys especially good proper-
ties. In particular, there is no need to consider the norms given by all possible
representations, since all of them are equal.

Theorem 8.64 Let w be symplectic. Then
(1) For A€ CCRY™(Y), Al = = (A)].

(2) Every representation w described in Thm. 8.63 is isometric.
(3) CCRYYN (V) is simple.

Proof Let us prove (2).
For y € Y we define R(y) € U(I*(Y)) by setting

(R () = flz+y), felQ).

Let ) be the Pontryagin dual of ) (the space of characters on the group ) with
values in {z € C: |z| =1}). Let F:1*()) — L*()) be the (unitary) Fourier
transformation. Then FR(y)F* = R(y), where R(y) € U(L*(Y)) is defined by

(R(y)g)(x) = x)g(x), g€L*Y), x €.
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196 Canonical commutation relations

Consider now a CCR representation
YVoy—WT(y) € UCH).

On the Hilbert space H ® (?()) ~ I>(), H) we introduce the unitary operator U

defined by
Ud(z) = W™ (2)®(z), ®ecl?(V,H), z€).
Note that
UW™(y)® R(y) U =10 Wi(y). (8.37)
Now

HZ )\in(yi)H = HZ NW™ (y:) ® R(y:)
= [ AW ) © R

= 51611; HZ AW (yi)x (yi)

S|
HS

D> AW (y)

First we applied (8.37). Next we used that F is unitary. Then we used that the set
of characters x, (y) := e 1wy for ¢ € ) is dense in ), since w is non-degenerate.

Finally we noted that
W (yi)e % = WT ()W ()W (—x).

(2) immediately implies (1).
By Subsect. 6.2.3, (2) implies (3). O

8.4 Weyl-Wigner quantization

The Weyl-Wigner quantization has a long and complicated history. It also has
many names.

It was first proposed by Weyl in 1927 in his book on group theory in quantum
mechanics (Weyl (1931)). Hence it is commonly called the Weyl quantization.

Wigner was the first who considered its inverse, at least in the case of an oper-
ator of the form |¥)(U[; see Wigner (1932b). Hence the name Wigner function
is commonly used to denote the inverse of the Weyl quantization.

Apparently, for some time the link between the Weyl quantization and the
Wigner function was not understood. This link seems to have been clarified only
in the late 1940s by Moyal (1949). Moyal also found a version of the formula
(8.41). The non-commutative operation * defined by b := by * by as in (8.41) is
often called the Moyal star. Moyal also found the identity (8.44).
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8.4 Weyl-Wigner quantization 197

Our terminology, “the Weyl-Wigner quantization” and “the Weyl-Wigner
symbol”, is thus a compromise between the names “Weyl quantization” and
“Wigner function”. In the literature, one can also find the name Weyl-Wigner—
Moyal quantization.

One can argue that the Weyl-Wigner quantization is the most important kind
of quantization. It is certainly the most canonical quantization — its definition
depends only on the symplectic structure of the phase space. It is, however, not
so useful if the phase space has infinite-dimension.

Historically, Weyl introduced this quantization in the context of the
Schrédinger representation, which hides the symplectic invariance of this con-
cept. Therefore, in our presentation we start from manifestly symplectically
invariant definitions, which involve a regular CCR representation. The case of
the Schrédinger representation is discussed later, in Subsect. 8.4.3.

8.4.1 Quantization of polynomial symbols

In this subsection we will consider the Weyl-Wigner quantization only for poly-
nomial symbols. More general symbols will be considered in the following sub-
sections. (In the subsequent subsections we will, however, restrict ourselves to
finite-dimensional symplectic spaces ).

Suppose that (), w) is an arbitrary pre-symplectic space. Let

YVoym—e®W e UK) (8.38)

be a regular CCR representation. Let H* denote the abstract Schwartz space for
this representation introduced in Def. 8.28. Recall that CCR?°'()) denotes the
polynomial CCR algebra over ), which can be treated as an algebra of operators
on H>.

Definition 8.65 Let yi,...,y, € Y. We can treat these as polynomials on )*
and take their product y, - - -y, € Poli (V*). We define
1
Op(y1 -+ 9n) = — > &)+ S(Yon)- (8:39)

‘€S,

The map extends uniquely to a linear bijective map

CPoly(Y*) 3 b +— Op(b) € CCRP!(Y). (8.40)

Theorem 8.66 (1) Op(b)* = Op(b), for b € CPoly(Y*).
(2) If y € CY, then
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198 Canonical commutation relations

More generally, let X be an isotropic subspace in Y* , so that the operators
o(y), y € X commute with one another. Then, for f € CPoly(X), Op(f)
coincides with f(¢) defined by the functional calculus.

(3) If b1, by € CPol(Y*), then Op(b1)Op(bs) = Op(b) for

b(v) = exp (_%Dm ‘wD,, )bl (v1)ba(v2) ’

(4) If b € CPols(V*) and y € CY, then

5 (9(5)Op(b) + Op(B)6(y) = Op(yh).

(8.41)

v=v]=vy "

Remark 8.67 We refer to Remark 8.27 for the notation used in (2). The r.h.s.
of (3) can be interpreted as a finite sum of differential operators.

The following theorem is a version of the Wick theorem adapted to the Weyl-
Wigner quantization.

Theorem 8.68 If b, by,...,b, € CPoly(Y*) and
Op(b) = Op(b1) - - - Op(by),
then

b(v) = exp (% STV, -wVU])bl (v1)---by (U”)’v:m:--:vn )

i<j

8.4.2 Quantization of distributional symbols

In this subsection we assume that the form w is symplectic and ) is finite-
dimensional. We set 2d = dim ). Denote by dy the Liouville measure on )
defined in Subsect. 3.6.3. The dual space V* is equipped with the symplectic
form w~! and the dual measure dv.

Consider a regular irreducible CCR representation (8.38). In this subsection
we extend the Weyl-Wigner quantization to S'(J*).

Recall that for b e S'(Y*) the Fourier transform of b, denoted b e S'(),
satisfies

b(v) = (2m)~ % /y b(y)e'dy, veY*.

Definition 8.69 If be S'(V*), then Op(b) € CCRS (V) is defined by the
formula

(0, |0p(b) ¥, = (27) / () (T2 W (4) T2 dy (8.42)

(2r) 2d// )T W (y)Ts)e " Vdydo, Wy, Uy € H™.
y#
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8.4 Weyl-Wigner quantization 199

Recall that H> is the space of S-type vectors for the representation (8.38).
We know from Thm. 8.29 that if ¥, Wy € H*, then V5> y — (\D1|W(y)\112) is
a Schwartz function. Therefore, the integral (8.42) is well defined.

The following theorem extends some of statements of Thm. 8.66 to the case
of distributional symbols:

Theorem 8.70 (1) If b € CPols(Y*), then the definition (8.39) coincides with
(8.42). A

(2) W(y) = Op(e¥")). More generally, if X is an isotropic subspace of Y, and
fes X)) cS'(YV") is a measurable function, then Op(f) coincides with
f(@) defined by the functional calculus.

(3) Op(b)* = Op(b).

(4) If by € CPols(V*), b2, b € S'(¥*) and Op(by)Op(be) = Op(b), then

b(v) := exp (_%Dvl ‘wDy, ) bi (v1)b2 (v2)

V=UV1=V2

= / /ezi(val)'”_l(”7”2)171(vl)b2(v2)dv1dvz.

V# Y#
(5) Forve Y*, W(—w tv)Op(b)W (w=tv) = Op(b(- — v)).
(6) The map

S'(V*) 2 b Op(b) € CCR (V) (8.43)

1s bijective.

(7) Op(b) € BX(H) iff b e L2(V*), and

Tr Op(b)*Op(a) = (27)~" / Ma()dv, abe [2VF).  (844)

Proof To prove (1), it is enough to consider yy € Y and b(v) = (yo - v)",

because such polynomials span CPolg(Y*#). The Fourier transform of b is b =
(2m)24i" (yo-V,, )" 6. Hence

Op(b) = (=1)" (50 Vy)" W(W)],,_, = 6(0)"-

(2) follows from the spectral theorem and (3) is immediate.
To prove (4), set

b() (Ul s ’Ug) = ef%D“l WDy by (’Ul)bg (’1)2).

Clearly,

Do (y1,2) = €TV V2 b(yy )b(ys).

Moreover,
b(v) = by(v,v) = (2m) =1 fl;(yl,yg)ei(y”y?)'”dyldyg

= (2m) 74 [ by (y1 )b (y ) e~ 7V w2l 1 502) 0 Ay dyy.
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200 Canonical commutation relations

Hence
Op(b) = (2m) ™ // b (y1)ba (y2)e™ 2 B2 W (y1 + yo)dyr dys

= (2m)~" // b1 (y1)ba (2 )W (1) W (y2)dy1 dye
= Op(bl)Op(bg)

To prove the last two items of the theorem it is convenient to use the
Schrédinger representation, considered in the next subsection. O

Definition 8.71 The inverse of (8.43) will be called the Weyl-Wigner sym-
bol. If B e CCR® (Y), its Weyl Wigner symbol will be denoted by sp €
S'(Y*).

8.4.3 Weyl-Wigner quantization in the Schrédinger
representation

Let X be a finite-dimensional real vector space. Consider the Schrédinger repre-
sentation

X © X5 () - D) € U(L2(X)).
Remark 8.72 In the Schrédinger representation one often writes b (x, D)
instead of Op(b).
Theorem 8.73 (1) Let be S'(X @ X*). The distributional kernel of B =

Op(b) can be computed as follows:

B(z,y) = (21)~ / b(%ﬂ’ g)ei“’—y)'fdg. (8.45)

(2) Let B € CCRS/(X# ® X). The symbol of B can be obtained from its distri-
butional kernel by the formula

sp(z,€) = /B(gc + %,x - %)e_ié'ydy.

(3) The relationship between the x, D-symbol and the Weyl-Wigner symbol is as
follows: If Op™ P (b, ) = Op(b), then

by (w,€) = e Peb(, )
= ﬂ*d/6*12(17-%1%(5*51)b(xl’gl)dxld&.
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8.4 Weyl-Wigner quantization 201

(4) If Op(b) = Op(b1)Op(bs), then
b(z,€)

i
= exp E(Df] Dy, — D¢, Dy, )bl (z1,&1)b2(22,62) o=z = o

§=6=&
= / eHlrmr ) (=) (e =) (=80 b (21, & )by (22, & )day d€y dzadEs.

Proof Let us prove (1). It is enough to check (8.45) for b(z, €) := ¢! +7¢) We
know that

Op(b) = W (1), q) = e17+aD) = einaglaDezne,
which has the integral kernel
B(z,y) = (Qﬁ)fd/ e (+y) gia-EHil(r—y) q ¢
Xt
Properties (2), (3), (4) then follow from (1). O

Example 8.74 Let I be the operator considered in Example 4.42 (the orthog-
onal projection onto 7~ Te~t*" ). Then

sp, (2,€) = 2%e™ =€,

8.4.4 Parity operator
Let (Y, w) be a symplectic space of dimension 2d. Consider a regular irreducible
CCR representation (8.38). Let d, denote the delta function at v € Y*.

Definition 8.75 Define the parity operator
I :=Op(n?&). (8.46)

Theorem 8.76 (1) I is self-adjoint and I* = 1.
(2) IOp(b)I = Op(by), where by(v) = b(—v).
(3) In the Schridinger representation,

IV (z) = U(—x). (8.47)
Proof Let us show (3) first. The distributional kernel of I in the Schrédinger

representation is

Ha) =2 [ 5(1 2 ¢)e v eag

= 2,d5(x42ry =0(z+vy).

This proves(3).
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202 Canonical commutation relations

In the case of the Schrodinger representation, (1) and (2) follow immediately
from (3). But every regular irreducible CCR representation is equivalent to the
Schrédinger representation. O

Definition 8.77 Define the parity operator centered at v as

I, == Op(n?s,) = W(—w o) IW (w1 v), veY’.

Theorem 8.78 (1) I, is self-adjoint and I? = 1.
(2) I,0p(b)I, = Op(b,), where b, (w) = b(2v — w).
(3) In the Schridinger representation,

L ¥(x) = =0 W (2 — ). (8.48)

a1
The following theorem is an analog of Prop. 4.31.

Theorem 8.79 (1) Ifb e L' (Y*), then Op(b) is a compact operator. In terms
of an absolutely norm convergent integral, we can write

Op(b) =n 1 / I,b(v)dv. (8.49)
Hence,
IOp®) || < 7 |Ib]]s.- (8.50)
(2) If B € B'(H), then sp € Cxo(Y*) and
sp(v) = 2¢TrI, B. (8.51)
Hence
lsp(v)| < 27Tx|BJ.

Proof Clearly, b= [ b(v)d,dv. Therefore, (8.49) follows from I, = Op(7?4,).
(8.49) implies (8.50).

Let b€ L'(V*). Let b, € L*(Y*) N L' (Y*) such that b, — b in L*(Y*). By
Thm. 8.70 (6), the operators Op(b,) are Hilbert—-Schmidt and hence compact.
By (8.50), we have Op(b,) — Op(b) in norm. Therefore, b is compact.

Let us prove (2). Let a € L> N L' and let B be trace-class. Then B is also
Hilbert—Schmidt. Using first Thm. 8.70 (7), then (8.49), and finally the trace-
class property of B, we obtain

(2m) 4 /@SB (v)dv = TrOp(a)*B = ﬂ*dTr(/Tv)L,de>
= (2m) ¢ / a(v)2'Tr1, Bdv.

This proves the identity (8.51) for almost all v.
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8.5 General coherent vectors 203

Using the fact that v +— I, is strongly continuous and B is trace-class we see
that v — 2¢TrI, B is continuous. Using w — lim I, =0 and Prop. 2.40, we

llvf|—o0

conclude that lim 2¢TrI, B = 0. O

vl —o0

Remark 8.80 The Weyl-Wigner symbol of a quantum state can be measured.
The first such experiment involved the motional degrees of freedom of an ion and
was performed by Leibfried et al. (1996).

In the case of a light mode this was first done in a simple and elegant experi-
ment by Wddkiewicz, Radzewicz, Banaszek and Krasiriski (described in Banaszek
et al. (1999)). A mode of a laser light was trapped between two mirrors. By apply-
ing an external source of light its state was “translated” in the phase space. The
parity was measured by counting the number of scattered photons. Then the for-
mula (8.51) was used to compute the Weyl-Wigner symbol of a given quantum
state.

8.5 General coherent vectors

By translating a fixed normalized vector with Weyl operators we obtain a family
of vectors parametrized by the phase space. These vectors will be called coherent
vectors. The family of coherent vectors has properties similar in some respects
to those of an o.n. basis.

Coherent vectors can be used to define two kinds of quantizations. These two
quantizations go under various names. We use the names proposed by Berezin
(1966): the covariant and contravariant quantizations. These two quantizations
are often used in applications.

In the literature the name “coherent vector” (or “coherent state”) usually has
a narrower meaning, of a Gaussian vector translated in phase space. Up to a
phase factor, Gaussian coherent vectors can be also defined as eigenvectors of
the annihilation operator. The covariant, resp. contravariant quantization w.r.t.
Gaussian coherent vectors are also known as the Wick, resp. anti- Wick quanti-
zation. (Other names are used as well.)

In this section we describe the properties of general coherent vectors. We also
discuss the covariant and contravariant quantization related to a given family of
coherent vectors.

Gaussian coherent vectors, as well as Wick and anti-Wick quantizations, will
be discussed in Chap. 9 about the Fock representation.

Throughout this section ) is a finite-dimensional symplectic space of dimen-
sion 2d. Y > y+— W(y) € U(H) is an irreducible regular CCR representation.
U, € H is a fixed normalized vector and Py :=|¥;)(¥y| is the corresponding
orthogonal projection.
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8.5.1 Coherent states transformation

Definition 8.81 The family of coherent vectors associated with the vector ¥y
is defined by

U, = W(—w )T, veY.
The orthogonal projection onto W,,, called the coherent state, will be denoted

P, :=W(—w ') PW(w ), veY*.

Remark 8.82 One often assumes that, for any y € Y, Yo € Dom ¢(y) and
(Wolo(y)¥o) = 0.
This assumption implies that ¥, € Dom ¢(y) and
(Vo) ¥,) =vy, veY’.

Thus U, is localized in the phase space around v € Y*. Note, however, that we
will not use the above assumption in this section.

Definition 8.83 The coherent states transform of ® € H is defined as
Vs v TP (v) = (2m) 77 (T, |®).

The coherent state transform is sometimes also called the FBI transform, for
Fourier, Bros and Iagolnitzer.

Example 8.84 Assume for the moment that Y =X* ®X and H=
L*(X). Consider the Schridinger representation X* © X 3 (n, q) s (17 +0D) ¢
U(L*(X)). Fiz a normalized vector ¥ € L*(X). Let (q,n) € Y = X & X*. The
coherent vectors and states are then given by

Wign) (@) = P () = R (@ - g),
Py (1,22) = Wlay = q) Ty — g)el 1727,

Theorem 8.85 (1)
(2m)~? /Pvdv =1, as a weak integral. (8.52)

(2) If ® € H, then T"B1® € L2(V*) N Coo (V*) and
ITFBL® [l = (@[l [|T7P@)o < (27)7F

D). (8.53)

In particular, T¥B! is an isometry from H into L*(Y*).
(3) The FBI transformation intertwines the representation W with a certain
representation of CCR on L*(Y*):

eiy.(%vwau)TFBI = TFBIW(y)v yey.
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Proof To prove (1) we use the Schrodinger representation. Let ® € L?(X). Then

| @1Py @0

XpXx#

/ // (x1)Po (1 — q)\Ifo (29 — q)€' i1 “’“'"@(xg)darldxgdqdn

Xex# X

) / / 2 Wo(z — )T (& — @) (x)dadg = (2m)" 0] g

The first statement from (2) follows immediately from (1), the second
from the definition of T¥B! and the fact that W(y) tends weakly to 0 when
y — 00.

To prove (3) we compute

(T"P'W (y) @) (v) = (Q0|W(w_lv)W(y)¢)
— 7YV (\IJO|W(W71(U + wy))@)
_ eZUbel(.uy (\I/U|W( )CI)) _ (el’l}( v—wD, >TFBI<I))( )

O

8.5.2 Contravariant quantization

Recall that Meas()*) denotes the space of complex Borel pre-measures on
YV#. The subspace of Meas()*) consisting of finite Borel measures is denoted
Meas' (V#). If b € L. .(V*), then du = bdv belongs to Meas(Y*) and ||u|l; =
||b]|1. In such a case, u is absolutely continuous w.r.t. the Lebesgue measure dv
and b is its Radon-Nikodym derivative w.r.t. dv. Thus L (Y*), resp. L'(Y*)
can be viewed as subspaces of Meas()* ), resp. Meas' (#). In such a case, we
will abuse notation and write simply b € Meas(Y*).

Actually, we will abuse the notation even further. We will write bdv instead
of dp even if p € Meas(Y*) is not absolutely continuous w.r.t. the Lebesgue
measure dv. Thus b will denote the “Radon—Nikodym derivative of y w.r.t. dv”,
even if strictly speaking such a derivative does not exist.

By smearing out coherent states with a classical symbol we obtain the so-called
contravariant quantization. In the following proposition we describe properties
of the contravariant quantization. Note in particular that positive symbols cor-
respond to positive operators.

Proposition 8.86 Let b € L>®(Y*) + Meas' (V*). Then the formula

(B|Op*t () D) = (27) / (|2, ®)b(v)dv (8.54)
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defines Op*(b) € B(H). We have
10p* (0)| < (2m)~“[Ibll1, b € Meas' (V*), (8.55)
10D B)I] < [1blloc be L*(V). (8.56)

Definition 8.87 Op‘'(b) € B(H) defined in (8.54) is called the contravariant
quantization of b.

Proof of Prop. 8.86. 1f b € Meas' (V*), then the integral on the r.h.s. of (8.54)
is finite and we obtain (8.55).
If b € L*>®(Y*), we can write

Op° (b) = T8 p(v)TFBL, (8.57)

where on the r.h.s. b(v) has the meaning of a multiplication operator on L?()*),
and we obtain (8.56).
In the general case, we can write

b="by+ by, by L"), b €Meas' (Y*), (8.58)
and set
Op“ (b) := Op°*(by) + Op°(by). (8.59)

It is easy to see that (8.59) does not depend on the decomposition (8.58). O

Proposition 8.88 (1) Op(1) = 1.
(2) Op (b)* = Op™ ().
(3) If v e Y*, then

W(—w')0p (D)W (w ™ v) = Op° (b(- — v)).
(4) If b € L>=(Y*) is real-valued, then
essinfb < Op“'(b) < esssupb. (8.60)

(5) Letb > 0. Then Op*(b) > 0. Moreover, b € Meas' (V*) iff Op**(b) € B'(H),
and

Tr Op™ (b) = (27)~ / b(v)do. (8.61)

(6) If b € Meas' (V*), then Op® (b) € B'(H) and (8.61) is true.
(7) Suppose that b € L (V*) + Meas' (V*), where L (V*) denotes the set of
be L>®(YV*) such that | llim b(v) = 0. Then Op®* (b) is compact.
V|— 00

Proof (3) follows from W (—w ™) P, W (w™tv) = P, ,. (8.60) follows immedi-
ately from (8.57).
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We will now prove (5). Let b be positive. Let {e; };cr be an o.n. basis of H. By
Fubini’s theorem, we get

Tr Op°'(b) = Z(eﬂOp“’(b)ei) = (2m) ¢ /Zb(v)(eAPI,ei)dv

iel iel
= (277)_d/b(v)TrPUdv = (ZW)_d/b(v)dv,

which proves (5).

To show (6) we use (5) and the decomposition b = by + iby — by — iby, where
bi € Meas' and b; > 0. Finally, if b = by + u for by € LE(V*), p € Meas' (V*),
we write b, = g (|v|)b0 + 11, so that b, € Meas' (Y*), Op“(b,) € B'(H), and
|0p™ (b, — b)|| < |Ibn — b]lso — O when n — oco. This proves (7). O

Definition 8.89 If the map

L= (Y*) + Meas' (V*) 3 b+ Op'(b) € B(H)

is injective, then its inverse is called the contravariant symbol. For B € B(H),
its contravariant symbol will be denoted 5.

8.5.3 Covariant quantization

In this subsection we describe the covariant quantization, which in a sense is the
operation dual to the contravariant quantization. Strictly speaking, the operation
that has a natural definition and good properties is not the covariant quantization
but the covariant symbol of an operator.

Definition 8.90 Let B € B(H). Then we define its covariant symbol by
s% (v) :==TrP,B
= (W(—w™0)¥|BW (—w™'0)¥y), ve Y.

Theorem 8.91 (1) s§* =1, s%. =s%.
(2) If B € B(H), B, := W(—w 'v)BW (w~ 1), then

sp, =sp (- —v).
(3) If B € B(H), then sly € C(Y*)NL>(Y*) and

15 1o < 1Bl (5.62)
(4) Let B> 0. Then s > 0. Moreover, B € B'(H) iff s € L'(Y*), and

TrB = (277)_d/sCBV(v)dv. (8.63)

(5) If B € B'(H), then s € L'(V*) and (8.63) is true.
(6) If B is compact, then s§ € Coo(P?).
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Proof (1) and (2) are immediate. Let us show (3). It is easy to see that the
inequality (8.62) is true. Moreover

v W(w ') BW(—w ') € B(H)

is strongly continuous. Hence v +— sp(v) is continuous. To prove (6), we note
that ¥, goes weakly to zero as |v| — oo. Hence, for compact B, sp(v) — 0 as
[v] — 0.

To show (4), we use (8.52) and apply the trace to the identity

B:(Zw)’d/ B*P,B*dv.
V#

The interchange of trace and integral is justified by Fubini’s theorem. To prove
(5), we note that, if B € B'(H), we can decompose it as B = By +iBy — B3 —
iBy, with B; > 0, B; € Bt (H) (]

Definition 8.92 If the map
B(H)> B—sy e C(Y")NL>®(")

s injective, then its inverse will be called the covariant quantization. If b is a
function on Y* | its covariant quantization will be denoted Op® (b).

8.5.4 Connections between various quantizations

In this subsection we show how to pass between the covariant, Weyl-Wigner
and contravariant quantizations. Note that there is a preferred direction: from
contravariant to Weyl-Wigner, and then from Weyl-Wigner to covariant. Going
back is less natural.

Let w € Y*. Let us compute various symbols of P,,:

sp, (0) = [(Wu— | W0)I%,
SPy (U) = 2d(\1}w7v |I\ijfv)a
sp (v) = 2m)?8(v — w).

The functions described in the following proposition will be used in formulas
connecting various quantizations:

Proposition 8.93 Set

ki(v) == (2m)"4sp, (v) = 7~ (Wo |1, Ty), (8.64)
ka(v) := (2m) ™15 (v) = (2m) (Vo[ W0) . (8.65)
Then ks is an even function in Coo(V*), k1 € LY (V*) N Coo (V) and

oo () = / o (w0 — )y (w)dao. (8.66)
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Proof Assume first that Uy € H>. (Recall that H*> is defined in Def. 8.28.)
Then sp, € S(Y*) and using (8.49) we have

Py=n"1 /sP0 (w)I, dw
as a norm convergent integral. Next, by (8.51),

sp,(w —v) = 2°Tr(I,_, Py)
= 29Ty (1, P,).

Hence,

() = TR =7 T [ s (@)L Pudu

= (27T)_d/spn (w)sp, (w —v)dw.

If ¥y € H, we choose a sequence (¥,,) of normalized vectors in H>, such that
W, — ¥ when n — co. Then sp, — sp, in L*(Y*), and 53 — 53 in Coo (V7).
(8.66) holds for ¥,,. By letting n — oo, it also holds for . O

Define the integral operator
KU (v):= /k1 (v —w)¥(w)dw. (8.67)
Then the identity (8.66) means that
K*K9(v) = /k‘2 (v —w)¥(w)dw,

where K* is the adjoint w.r.t. the scalar product of L*(Y*).

Theorem 8.94 We have the following identities between various symbols of an
operator B, valid for example if s&& € L*(V*):

sp(v) = [sG(w)ki (v —w)dw, orsp = KsS,
s (v) = [sp(w)ki(w —v)dw, or sy = K*sp,

s (v) = [ s (w)kso(w — v)dw, or sy = K*Ks§.

8.5.5 Gausstan coherent vectors

Let us consider the Schréodinger representation on L?(X) and fix a Euclidean
metric on X. Consider the normalized Gaussian vector

U0y (2) = whe 37" (8.68)
The corresponding coherent vectors are

\I/(qw) (:C) = ﬂf%eiﬁ%*%qﬂfé(lfqv , (q7 77) c X ® X# . (869)
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In the literature, when one speaks about coherent states, one usually has in
mind (8.69). They are also called Gaussian or Glauber’s coherent states. We will
say more about them in the next chapter, because they appear naturally in the
context of the Fock representation; see Chap. 9.

The covariant, resp. contravariant quantization for Gaussian coherent states
coincides with the so-called Wick, resp. anti-Wick quantization, which will be
discussed in Sect. 9.4. The corresponding integral kernels k;, ko introduced in
(8.64) and (8.65), and the corresponding operators K and K*K are

ky(xz, &) =7 de=®" =8 K = K* = ¢ #(DI+D¢)

ko (2,€) = (2m)~le—Fo =3¢ KK — o EDIEDY),

Thus in the Schrodinger representation one can distinguish five most natural
quantizations. Their respective relations are nicely described by the following
diagram, sometimes called the Berezin diagram:

anti-Wick

quantization

2 2
J{e*%(D,:JrD&)

D, - ez DaDs Weyl-Wigner erDaDe x, D-

quantization — quantization — quantization

J(674L<D3+D§>

Wick

quantization

8.6 Notes

The relations
IRURIN D e—iQ'fieiQ'Dein'ff, n,qgeR (8.70)

were first stated by Weyl (1931). The proof of the Stone-von Neumann theo-
rem can be found in von Neumann (1931); see also Emch (1972) and Bratteli—
Robinson (1996). The canonical commutation relations for systems with many
degrees of freedom were used by Dirac (1927) to describe quantized electromag-
netic field.

We sketched the early history of the Weyl-Wigner(~Moyal) quantization in
the introduction, with basic references Weyl (1931), Wigner (1932b) and Moyal
(1949). In pure mathematics it became well known quite late. It was recognized
in the so-called microlocal analysis — a powerful approach to the study of partial
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differential equations; see especially Hormander (1985). It is also very useful in
closely related semi-classical analysis; see e.g. Robert (1987).

The fact that the Weyl-Wigner quantization of the delta function is propor-
tional to the parity operator was discovered only in the 1970s by Grossman
(1976).

The Weyl CCR algebra was studied by, among others, Manuceau (1968) and
Slawny (1971). Thm. 8.64 comes from Slawny (1971); see also Bratteli-Robinson
(1996).

The original and still the most common meaning of the term “coherent state” is
what we call a “Gaussian coherent state”. These were first studied by Schrodinger
(1926). They were extensively applied in quantum optics by Glauber (1963), for
which he was awarded the Nobel Prize. Glauber introduced the name “coherent
state” and, together with Cahill, studied quantizations based on coherent states
in Cahill-Glauber (1969).

Various forms of quantization involving a family of general coherent states, in
particular the covariant and contravariant quantizations, were studied by Berezin
(1966). For a discussion of quantization see also Berezin-Shubin (1991) and Fol-
land (1989).

The concept of coherent states has been generalized even further to the context
of a rather general Lie group with a distinguished subgroup by Perelomov (1972).

The name “FBI transformation” comes from Fourier—-Bros—Iagolnitzer. The
FBI transformation was used by Iagolnitzer (1975) to study microlocal properties
of distributions.
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9
CCR on Fock space

This chapter is devoted to the study of the Fock representation of the canonical
commutation relations. This representation is used as the basic tool in quan-
tum many-body theory and quantum field theory. Unlike the Schrodinger CCR
representation, it allows us to consider phase spaces of infinite dimension.

Throughout this chapter, Z is a Hilbert space. This space will be called the
one-particle space. The Fock CCR representation will act in the bosonic Fock
space I's(Z).

As in Sect. 1.3, we introduce the space

Y=Re(Z®2Z):={(2,2) : z€ Z},

which will serve as the dual phase space of our system. It will be equipped with
the structure of a Kéhler space consisting of the anti-involution j, the Euclidean
scalar product - and the symplectic form w:

i(2,2) = (i, 12), (9-1)
(2,2) - (w, W) := 2Re(z|w),
(2,2)-w(w, @) = 2Im(z|w) = —(2,%) - j(w, ).

In principle, we can identify Z with ) by

2320 —(:+3) eV, 9.4)

V2

but we choose not to do so.
CY is identified with Z @ Z by the map

CYy > (zl,il) +i(22,22) — (Zl + 29,21 — 122) € Z@E
The complexifications of (9.1), (9.2) and (9.3) are

jc(zl,zg) = (iZl, —122)
(21,22) ¢ (w1, W2) = (21|w1) + (w2|22), (9.5)

(21, %) we(wy, ) = %((z1|w1) = (ws])). (9.6)

V*, the space dual to ), is canonically identified with Re(Z @ Z) by using the
scalar product (9.2), and CY* is identified with Z @ Z.
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9.1 Fock CCR representation 213

9.1 Fock CCR representation
9.1.1 Field operators on Fock spaces
Consider the bosonic Fock space I's(Z). Recall that, for z € Z, a*(z), resp. a(z)
denote the corresponding creation, resp. annihilation operators.
Definition 9.1 For w = (21,%,) € 2@ Z we define the unbounded operator
d(w) = a*(z1) + a(z) with domain T (Z).

Proposition 9.2 (1) Forw € Z® Z, T''"(Z2) is an invariant subspace of entire
analytic vectors for ¢(w).

(2) The operators ¢(y) for y € Re(Z @ Z) are essentially self-adjoint. We will
still denote by ¢(y) their closures.

(3) The operators ¢(w) for w € Z @ Z are closable. We will still denote by ¢(w)
their closures.

(4) The map Z® Z 3> w +— ¢(w) is C-linear on T'i"(Z).

(5) For wy,wy € CY, we have

[B(wr), ¢(w2)] = iwr-wewy T on TE(Z). (9.7)
(6) If w =y + iy with y1,y2 € Y, then Dom ¢(w) = Dom ¢(y1 ) N Dom p(yz).
Proof Let ¥ € T'"(Z). From Thm. 3.51 we obtain
() @[] < [[w][|(N + )2 w|.
By induction on n we obtain then that

n n n)lyL
p(w)™ || < Juwl|" [|(LFH2) 5 . (9.8)

This proves (1).

Now (2) follows from Nelson’s commutator theorem; see Thm. 2.74 (1).

To prove (3) note that ¢(w) C d(w)*. So ¢(w) is closable.

(4) and (5) follow by direct computation. (6) follows from (5) by repeating the
argument of the proof of Prop. 8.31. O

Corollary 9.3 Let z € Z. Then a(z), a*(z) are closable. Denoting their closures
with the same symbols, for y = (z,Z), we have

@*(2) = 5 (6l) ~ 16G0),  alz) = 3 (6(s) +36(iw)).
Doma*(z) = Doma(z) = Dom ¢(y) N Dom ¢(jy).

Remark 9.4 We have seen in Subsect. 1.3.9 that the map (9.4) is unitary. Using
this identification, one can parametrize field operators by vectors of Z instead of
vectors of ¥ = Re(Z ® Z). This leads to the definition
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214 CCR on Fock space

which is commonly found in the literature. In most of our work we will try to
avoid this definition.

9.1.2 Weyl operators on Fock spaces
Theorem 9.5 (1) If wy,wy € CY and ¥ € T2 (Z), then the relationship
ei(,b(w. )eigb(u;z),lj _ e—%wl ‘wews eid)(uu +w2)\I, (99)

holds, where the exponentials are defined in terms of the power series and
all the series involved in (9.9) are absolutely convergent.

(2) Set
W(y) =€V, yey.
Then the map
Y5y W(y) e UT,(2) (9.10)

is a reqular irreducible CCR representation, if we equip Y with the symplectic
form w defined in (9.3).
3) If pe U(2), (2,2) € Y, we have

L(p)W(z,%2) = W(pz, p2)I'(p).
(4) The map (9.10) is strongly continuous if we equip Y with the norm topology.

Definition 9.6 (9.10) is called the Fock CCR representation on I'y(Z).

Proof To prove (1), we use the Baker—Campbell formula, which says the fol-
lowing: if A, B are operators such that [A, B] commutes with A and B,
then

eteB = erl4BlpAtB (9.11)

as an identity between formal power series. We apply this formula to A = ig(wy ),
B = ig(wy), using (9.7). We use (9.8) to prove the norm convergence of the series
appearing in (9.11).

Let us now prove (2). For y1,12 € Re(Z @ Z), both sides of (9.9) extend to
unitary operators, so (9.9) is valid on the whole space I's(Z). Therefore, (9.10)
is a CCR representation. Since W (y) = e*(%)| this representation is regular.

Let us prove that it is irreducible. Let P be an orthogonal projection acting
on I'y(Z) such that [P, W (y)] =0 for all y € Re(Z @ Z). Then [P, ¢(y)] =0 on
Ifin(Z) for all y € Re(Z @ Z), and hence [P, a*(2)] = [P,a(z)] =0 for all z € Z.
It follows that a(z)PQ = 0. Hence, by (3.25), P2 = 0 or P2 = Q. By (3.26) and
the fact that [P, a*(z)] = 0, we obtain that P =0 or P = 1.

To prove (4), we first see using the CCR that it suffices to prove the continuity
of (9.10) at y = 0. Now, for ¥ € T'i"(Z) we have

W () = )W) < [l6(x) ¥ < [lyllII(N + 1)z w|. .
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9.1 Fock CCR representation 215
Recall that we defined the parity operator as I := (—1)" in (3.10). If ) is
finite-dimensional, we defined the parity operator as I := Op(n?d,) in (8.46).

Proposition 9.7 In the finite-dimensional case, the definitions of the parity
operator of (3.10) and of (8.46) coincide.

9.1.3 Ezxponentials of creation and annihilation operators
Theorem 9.8 Let z € Z.

(1) The operators e?(*%) are essentially self-adjoint on T (Z).
(2) e* *) and e**) are closable operators on T (2) and their closures have the
domains

Dom e* *) = Dom €*(*) = Dom 7%
(3) In the sense of quadratic forms, we can write
W (—iz,iz) = e 777" (02, (9.12)
(4)
(QUW (2,2)Q) = e 777 (9.13)

Proof (1) Using the exponential law in Prop. 3.56, it suffices to consider the
case when dimZ = 1. For z € Z, we consider the unique conjugation 7 such that
7z = z and introduce the associated real-wave representation defined in Thm.
9.20. This allows us to identify I's(Z) with L2(R, (2r)~Te~ 2% dz), Ti*(Z) with
the space of polynomials, and ¢(z,z) with the operator of multiplication by ax
for some o € R. Then (1) is equivalent to the fact that the space of polynomials
is dense in L*(R,dpu) for dp = (27)~% (1 + e®*)2e*"/2dz, which is well known.
(2) We have

Hence e* *) and ¢*(*) are closable on I'i*(Z). Next we use the Baker-Campbell
formula (9.11) on T'i"(2) to get

ea(z)ea*(z) _ e%?‘zed)(z,?% ea*(z)ea(z) — e—%?ze(b(z,?).
Thus, for ¥ € T (2),
le”" DU = 57 e AR, et NP = 7T e g

Then we apply (1).
(3) follows from (9.11) and implies (4). a
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216 CCR on Fock space

9.1.4 Gaussian coherent vectors on Fock spaces
Let z € Z.

Definition 9.9 We define

Q, = W(-iz,iz)Q —e 777" () :e_%mz (9.14)

The vectors 2, will be called Glauber’s or Gaussian coherent vectors. Let P, be
the orthogonal projection onto €2, , so that

P. = W(—iz,i2)|Q)(QW (iz, —i%).

Note that (—iz,iZ) = —w~!(Z, 2). Hence, in the notation of Sect. 8.5, Q2. equals
Uz, for ¥y = Q. Gaussian coherent vectors are eigenvectors of annihilation
operators. Besides, one can say that ). is localized in phase space around (z, z).
This is expressed in the following proposition:

Proposition 9.10 Let w,z € Z. Then a(w)Q), = (w|2)2,. Therefore,

(Q:]a"(w)2:) = (2[w),
(Q2:]a(w)$2.) = (w]2),
(Q |p(w, @), ) = 2Re(z|w) = (2,2) - (w,W).

9.2 CCR on anti-holomorphic Gaussian L* spaces

Let Z be a separable Hilbert space. We will use z as the generic variable in Z.

Recall that if dim Z < oo, then (2i)~¢dzdz is the volume form on Zg and
(27i)~%e~**dzdz defines the Gaussian measure for the covariance 1, which is a
probability measure on Zg. We can also define the corresponding Hilbert space
of anti-holomorphic functions, denoted L4 (Z, (27i)~Ye~**dzdz). Thus if F,G €
L%(Z, (2mi)~%e"7*dzdz2), then their scalar product is given by

(F|G) = (2mi)~¢ / FE)G(Z)e " dzdz=.

Recall from Subsect. 5.5.4 that this Hilbert space has a natural generalization
to the case of an arbitrary dimension, denoted L%(?, e **dzdz) and called the
anti-holomorphic Gaussian L? space over the space Z.

The bosonic Fock space I's(Z) is naturally isomorphic to L(Z,e **dzdz).
This makes it possible to interpret Fock CCR representations in terms of oper-
ators acting on anti-holomorphic Gaussian L? spaces.

This section can be viewed as a continuation of Sect. 5.5 on Gaussian measures
on complex Hilbert spaces.
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9.2 CCR on anti-holomorphic Gaussian L? spaces 217

9.2.1 Bosonic complex-wave representation
Theorem 9.11 (1) The map TV : FS(Z) — L4(Z,e77*dzdz) given by

Ty Z L®n |\I/

n= 0
— FTHQLW), W eTL(2),

is unitary. (In the second line we use Gaussian coherent vectors €..)
(2) For w € Z we have

TVQ =1,
TVa*(w) =w- 2TV,
TVa(w) =w -VzT,
(T T(p)W)(2) = T W(p'Z), pe B(Z), ¥ely(2).
(3) We have a regular irreducible CCR representation
Re(Z @ Z) 3 (w, @) — W7V ¢ U(LA(Z,e 7 *dzdz2)). (9.15)
(4) The CCR representation (9.15) is equivalent to the Fock representation:
Tev i (W) — (i THTV)pew e 2

(5) (9.15) acts on F € LL4(Z,e **dzdz) as follows:
TV P(z) = U FITU Rz 4 w),  w e Z.

Proof (1) follows from Thm. 5.88. (2)—(4) follow immediately from Thm. 5.88
and Subsect. 3.5.2. To prove (5) we use the Baker-Campbell-Hausdorff formula.
O

Definition 9.12 Following Segal, we will call TV ¥ the complex-wave transform
of U. (It is also sometimes called the Bargmann or Bargmann—Segal transform
of ¥ € T'\(Z). Berezin calls it the generating functional of U.)

(9.15) will be called the complex-wave CCR, representation. (It is also called
the Bargmann or Bargmann—Segal representation. )

9.2.2 Coherent vectors in the complex-wave representation

Let w € Z. The complex-wave transform of the Gaussian coherent vector €2, is

T°vQ,, (2) _ ef,%ﬁu oZw

As an exercise in the complex-wave representation let us calculate the scalar
product of two such vectors:

\—d —Lwy P =L wy P42 @ +Fwe —|2]? 35
(O [0) = (i) [ e b e F o g

_ e—%—|w1 > =Llws |* +w1 we
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218 CCR on Fock space

Definition 9.13 Let dimc Z = d be finite. The Gaussian FBI transform is the
map TV : T(Z) — L*(Re(Z @ Z)) defined by

Re(Z® 2) > (2, 2) — TVBIW(Z, 2) i= (2m) F (] D). (9.16)

Clearly, the Gaussian FBI transform is a special case of the FBI transform
defined in Subsect. 8.5.1, where we put ¥, = Q.

By (9.16), in the finite-dimensional case we have the following simple relation-
ship between the Gaussian FBI transformation and the complex-wave transfor-
mation:

4
2

TN (2,7) = (2m)7e 7 " TV U (Z). (9.17)

This gives the following alternative proof of the unitarity of T°%:
(W |Wy) =i™? / T¥BIW, (7, 2)TY B, (7, 2)dzd2 (9.18)

= (Qwi)*d/e*%‘zlzTcwl(z)e*%*lzlzTCwQ(z)dzdz (9.19)
= (T[T W) (7 -7 azaz)-

In (9.18) we used that i~?dZzdz is the canonical measure on the symplectic space
Re(Z @ Z) and that T"B! is isometric; see (8.53).

9.3 CCR on real Gaussian L? spaces

If the complex dimension of Z is finite and equals the real dimension of X,
then the Fock representation on I'y(Z) is unitarily equivalent to the Schrodinger
representation on L?(X). In order to describe this equivalence, one needs to fix
a conjugation on the Kihler space Re(Z @ Z), which allows us to separate field
operators into “momentum” and “position” operators. In addition, one needs
to fix a Euclidean structure on X, which allows us to distinguish the Gaussian
vector that is mapped to the Fock vacuum.

In the case of an infinite dimension we do not have a Schrédinger representa-
tion, since there is no Lebesgue measure on infinite-dimensional vector spaces.
However, in this case we have the so-called real-wave representations, which can
serve as a substitute for Schrédinger representations. Real-wave representations
will be the main topic of this section. They are CCR representations acting on
real Gaussian L? spaces. They are unitarily equivalent to Fock representations.

Throughout this section, X is a real Hilbert space and ¢ € By(X) is invertible
and positive. x will be used as the generic variable in X.

Recall that if dim X < oo, then (27)~ 7 (det¢)"7e~77¢ “dz is a probability
measure on X. Thus we can define the corresponding Hilbert space

L*(x, (271')_% (det c)_%e_%‘”'cfl'”dx).
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9.8 CCR on real Gaussian L% spaces 219

As described in Def. 5.72; this can be generalized to the case of an arbitrary
dimension, and then it is called the Gaussian L? space for the covariance ¢ and
denoted

L2 (X, e 77 "dyz). (9.20)

In this section we describe the real-wave representation acting on (9.20).
This section can be viewed as a continuation of Sect. 5.4 on Gaussian measures
on real Hilbert spaces.

9.3.1 Real-wave CCR representation
Let n,q € X. We set

N Try =12,

1 i -
gDy i=q- (TVT + %C*Ix), as operators on LQ(X,e*%I'C l’”da:).

Theorem 9.14 (1) The operator 1 - Tyy + q - Dyy is essentially self-adjoint on
CPols(X).
(2) The map

X®XS(n,q)— T tePn) ¢ ULA(X, e 7" “dz)) (9.21)

is an irreducible reqular CCR representation.
(3) For F € L2(X,e %% '*dz) one has

ei(7l"17rw +q‘Drw)F(x) _ e%q~(’//+ %(zflq)eiw"(’rﬁ»%(:71q)F(m + q)
Proof We consider the one-parameter group
UL F(z) = et b gt s ke 0 B 4 1), te R

Let D := Span{e””, w € CX}. From Subsect. 5.2.5, we know that D is dense
in LQ(X,e_%”"“flmdx). Clearly, D is invariant under U, and U, is a strongly
continuous group of isometries of D, hence it extends to a strongly continuous
unitary group. D is included in the domain of its generator, which equals
7 Zrw + ¢ - Dy on D. By Nelson’s invariant domain theorem, Thm. 2.74 (2),
we obtain that 7 -, + ¢ - Dy is essentially self-adjoint on D.

To show the essential self-adjointness on CPols(X), we note that D is in the
closure of CPoly(X) for the graph norm: in fact, for w € CX, the series
io (w-z)"
— n!

converges to e”* for the graph norm of 7z, + ¢ - Dyy. This proves (1) and
(3). (2) follows immediately from (3). O

Definition 9.15 The CCR representation (9.21) is called the real-wave repre-
sentation of covariance c.
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220 CCR on Fock space

Note that the operators .., D,, are examples of abstract position and
momentum operators considered in Subsect. 8.2.6.
We equip X @ X with the complex structure

j= [200 (23)1} 7 (9.22)

which is Kahler. Thus X & X becomes a Kéahler space with a conjugation.
Therefore, as in Subsect. 8.2.7, for w € CX we can introduce the associated
Schrodinger-type creation and annihilation operators:

Apy (W) =W - cVy, aly(w) =w- -2 —w-cV,.
Proposition 9.16 Let w,w;,ws € CX.

(1) The operators ayy (w) and al, (w) are closable on CPols(X).
(2) We have

[arw (w1), af, (w2)] = (wi |cws)T,
[@rw (w1), Qe (w2)] = [af, (wr), af, (w2)] = 0.
(3) F e L3(X,c 17¢ '*dg) satisfies
apw (W)F =0, weCXx,
iff F is proportional to 1.

Proof (1) follows from Prop. 8.31 and (2) is a special case of (8.30).
Let F be such that a,y (w)F =0 for w € CX and (F|1) = 0. In particular, for
each G € CPoly(X),

(@, (w)G|F) = 0.

n
Clearly, the span of vectors of the form TII a}, (w;)1 equals the space of polyno-
i=1

mials in CPol(X) of degree greater than 1. So F is orthogonal to CPol(X), and
hence F' = 0, which proves (3). O

The usual choice is ¢ = 1, which leads to the complex structure
1
j= 0 —31 .
21 0

Remark 9.17 The advantage of the real-wave representation is the fact that we
can make an identification

L2(X,e—§:r~c’lxdx) ~ L2(Q7M)

for an L? space over some true measure space (Q,&,p). There is no unique
choice of the measure space (Q, S, ), especially in the case of an infinite-
dimensional X, but it essentially does not matter which one we take. A class
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9.8 CCR on real Gaussian L% spaces 221

of possible choices is described in Subsect. 5.4.2: we can set QQ = B%X, where
B >0 is an operator on X with B~ trace-class, but there are many others;
see the discussion in Simon (1974). Therefore, the real-wave representation is
sometimes called the QQ-space representation of the bosonic Fock space.

9.3.2 Real-wave CCR representation in finite dimension

If the dimension of X is finite, then the real-wave representation is a special case
of a weighted Schrodinger representation with

m(z) = (2r) "7 (det¢) " Te 1T T, (9.23)

(9.23) is the pointwise positive ground state of
H=-A+ ix e lr — %Trc_l.
The Dirichlet form for (9.23) in the Hilbert space
L? (X, (2m)~ 7 (det c)*%e’%f'c_lxda:) equals
—A+z-c1V,.
The unitary operator
L2 (X, (27) "7 (det c)—%e—%”"”’lmdx) S F s T"F = m(2)F € L*(X)

intertwines the Schrodinger and the real-wave representations:

el(?]'w+Q‘D)TSC}l — TSChel(’U‘ﬂfrw +¢-Dyy) )

9.3.3 Wick transformation

The real-wave representation on L?(X ,e_%“"”fl‘”dx) is unitarily equivalent to
the Fock representation on I's(¢=2 CX). This follows by a general argument from
Prop. 9.16 and the fact that polynomials are dense; see Subsect. 5.2.6.

In this subsection we will construct an explicit unitary transformation that
intertwines the real-wave representation and the Fock representation.

Definition 9.18 For F € CPoly(X), we define
Fr=ar

I'w

(F)1 € CPols(X).
The map F +— :F: is called the Wick transformation w.r.t. the covariance c.

The following proposition shows how one can compute : G :.

Proposition 9.19 (1) For G € CPoly(X), one has
Gx): =e 7V Ve Gla) = e%‘”'(l""G(—ch,)e_%‘”"rlm. (9.24)
(2) For G(x) € CPols(X), one has

G(z) = ez Ve eVs :G(x): e_%m'(lm:G:(cvw)e%m'( .
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222 CCR on Fock space

Proof Let w € CX. The following operator identities are valid on CPol,(X):

ary(w)=w-z—w-cV,

_ L .c 1 .c Loty _ 1.1,
—e 7V eVy (w.x)ezvl. cVy _ ez L(_w . cvz)e grc T

This yields, for G € CPoly(X), the operator identity

o (G) _ e—%vn eV, G(x)egv«,.cv, _ e%awc’lzG(_ch)e—%mc’l:t-

w
By applying it to the polynomial 1, we obtain

Gri=al (Gl =e 7V Ve G =er™C TG(—cV,)e TN P

which proves (1). Clearly, (2) follows from (1). O

Note that the space CPoly(X) can be identified with Pol,(CX) (by analytic
continuation/restriction; see Subsect. 3.5.6). Let z denote the generic variable in
CX. The following theorem is immediate:

Theorem 9.20 (1) The map
Poly(CX) 5 F — :F: € CPol,(X)
extends to a unitary map
LA(CX,e "¢ *dzdz) > F  F: € L2 (X, e 77 "dz). (9.25)
(2) (9.25) intertwines the complez-wave and real-wave CCR representations:
(0TI Py = gilal () tan (). p 0 pe L2(CX,e "¢ *dzdz), w € CX.
(3) Forw e CX, we have

w - x —LYw.cw
W T — QW QT W CW (926)

Remark 9.21 (9.26) is often used as the definition of the Wick transformation.

Using Subsect. 9.2.1, we can unitarily identify the real-wave representation
on L2(X,e~77¢ '*dz) and the Fock representation on I'(¢~*CX). This is
described in the next theorem.

Theorem 9.22 Set
T (¢ 2CX) 3 ® — T™d = TV d: € LA(X,e 7" “da). (9.27)
Then

(1) T™ is unitary.
(2) T is the unique bounded linear map such that

TV =1, and TV el (WHaln) — ghnarwpry =) o cITX.
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9.3 CCR on real Gaussian L? spaces 223
(3) T™ is the unique bounded linear map such that

V=1, and T™ I a*(w;) = I are (W)T™, w; € ¢ ICX.
i=1 -

Remark 9.23 In the case of a single variable, that is, X =R, and ¢ =1, the
Wick transformation for monomials is the same as the Gram-Schmidt orthog-
onalization procedure with the weight e 5", The polynomials :x™: are rescaled
Hermite polynomials. More precisely, if one adopts the following definition of
Hermite polynomials:

2 ¢
GQItit = ZEHn(m)v
n=0
then

= \/ian(%)

9.3.4 Integrals of polynomials with a Gaussian weight

In this subsection, for simplicity, we assume that ¢ = 1.

In physics one often computes integrals of a polynomial times the Gaussian
weight. The Wick transformation helps to perform such an integral, as is seen
from (9.29):

Theorem 9.24 Let F' € CPoly(X). Then
/ Fz)e " dz = (e%vi F) (0), (9.28)
X

/ F(z):e " dz = F(0). (9.29)
X

Proof We can assume that X is of finite dimension. Recall the identity (4.14):
etViF(y) = (2m)" ¢ / e =) P(z)da. (9.30)

In (9.30) we set y = 0, which proves (9.28).
To prove (9.29) we use (9.28) and Prop. 9.19. O

Note that the r.h.s. of (9.28) can be expanded in a finite sum and leads to the
well-known sum over all possible “pairings”. This is the simplest version of what
is usually called the Wick theorem.

A more complicated version of the Wick theorem is given below. It has a well-

known graphical interpretation in terms of diagrams, which we will discuss in
Chap. 20.
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224 CCR on Fock space

Theorem 9.25 Let F,...,F, € CPoly(X). Then

By (x):- By (x): (9.31)
= :exp (Z Vw,,V;L.j)Fl (x1)---F, (x”)|x:zlz---:x,, .
(2m)~ % / Fy(2):- - F, () 7" da (9.32)

= exp (Z Ve, V%>F1 (x1)---F, (33")|0:I1:.__:z” .

i<j

Proof To prove (9.31), we write
Fy(x):e By (x):

e Vi Fi(z1) e Ve F, (z,)]

=g =-=ax,
— @b (Vo 4ok Vi, ) =5 V3 = V2, Fy(z1)- "Fn(mn)|z:x1:-..:.@n .
In the last step we used that
Vaf(z,.o,w) = (Vo + Vo ) (e saa)|
(9.32) follows from (9.31) and (9.29). O

9.3.5 Operators in the real-wave representation

Definition 9.26 For an operator a on X, we will write
Ly (a) =TT (ac)T™7,
where we recall that ac denotes the extension of a to CX.

Suppose that ¢ > 0 is an operator on &'. Clearly,
Poele) s L2(X, 0 da) — T2( X 035 vd)

is a unitary operator. Therefore, in what follows we will stick to the covariance
1.

Recall from Remark 9.17 that L2 (X, e 77’ dx) can be interpreted as L*(Q, )
for some measure space (@, ). Let F' be a bounded Borel function on @. Then
one can define F(zyy), which is a bounded operator on L2(X, e~ %% dz). It can
be also interpreted as an element of L?(X, e~ 17’ dx), and then it will simply be
written F. Clearly, F(x,y)1 = F.

Proposition 9.27 Let u be an orthogonal operator on X. Then

D () F (203 )T (1) ™1 = Dy () F) (24 ). (9.33)
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9.8 CCR on real Gaussian L% spaces 225

Proof A dense set of vectors in L? (X, e~ 77" dz) is given by G(2w)1 =G for G
bounded Borel functions on Bz X'. We have the commutation property

Dy () F (20 )T (0) T G (2r) = G (g ) T () F (20 ) D (w) 7 (9.34)
Hence, applying (9.34) to the vacuum 1 we obtain
F1rw (U)F(xrw)rrw (u)ilG = G(xrw)rrw (U)F = (Frw (U)F) (xrw)G-

O

Proposition 9.28 Let X| be a closed subspace of X. Let ey be the orthogonal
projection on Xy. Let By be the sub-o-algebra of functions based in Xy, and Eg,
the corresponding conditional expectation. Then

E‘B1 =TIy (61)-

Proposition 9.29 Let a € B(X). Then

(1) If |la|| <1, Tyw(a) is doubly Markovian, hence it is a contraction on
LP(Q,du) for all 1 < p < oo.
(2) If |la]| < 1, then Ty (a) is positivity improving.

Proof We drop rw from I'yy, and xy .
We first prove (1). We write a as j*uj, where

Xozr—j)=280eXX
is isometric and

a (1 — aa®)?

“= (1—a*a)? a*

is orthogonal. Using Subsect. 5.4.3, we see that if we take (Q x @, ® p) as the
Q-space for X @ X, then the map T'(j) is

L(Q.du) 3 f f @1 € I3(Q,dp) ® I*(Q,dp) = LI*(Q x Q,du® dp),

which is positivity preserving.

The map I'(u) is clearly positivity preserving. In fact, recall that F'(z) is the
operator of multiplication by a measurable function F on L*(Q, 11). By (9.33) and
the unitarity of u, (I'(u)F)(z) = I'(u)F(2)['(u)~!. Since F > 0 a.e. iff F(z) > 0,
we see that I'(u) is positivity preserving. Finally T'(j*) = T'(j)* is also positivity
preserving by the remark after Def. 5.21. Hence I'(a) is positivity preserving.
Since I'(a) and T'(a)* preserve 1, I'(a) is doubly Markovian.

Let us now prove (2). We write I'(a) = I'(||a||)T'(b), where a =: ||a||b. Then
Ib]] <1, and thus I'(b) is positivity preserving by (1). If f > 0 and f # 0, then
fQ ') fdu = fQ fdu >0, so T'(b) preserves the set of non-zero positive func-
tions. So it suffices to prove that I'(]|a||) is positivity improving.
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226 CCR on Fock space

Let f,g > 0 with f,g # 0. The function F(t) = (f|T'(e™")g) is positive on RT
by (1). It tends to (1]f)(1|g) at +oo, since I'(e™") = e~V where N is the number
operator. Since F extends holomorphically to {z : Rez > 0}, it has isolated
zeroes in R*. Let ¢ > 0 and 0 < ty < ¢ such that F(tg) > 0. Set f; = ['(e™"/2)f,
g1 =T(e "/?)g. Then f1,g91 >0 and (fi|g1) = F(to) > 0. Therefore, fig; #0
and h = min(f;,¢g;) # 0. This yields

(f\I‘(e_t)g) = (f1|1—‘(e_(t—to))gl)
> (h|F(e*(t7to))gl) > (h|F(e7<t*t°))h)
= Hl"(e—(t—tu)/Q)hHQ >0,

which completes the proof of (2). O

Below we recall Nelson’s famous hyper-contractivity theorem.

Theorem 9.30 Leta € B(X) and 1 <p < q<oo. If

lall < (p— 1) (¢ —1)7F,

then Ty (a) is a contraction from LP(Q,dp) to LY(Q,du).

9.4 Wick and anti-Wick bosonic quantization

As elsewhere in this chapter, Z is a Hilbert space, J = Re(Z® Z), V¥ =
Re(Z® 2), CY = Z® Z and CY* = Z & Z. We recall from Subsect. 3.5.6 that
CPols(Y*) is identified with Poly(CY*). We can go from one representation to
the other by analytic continuation/restriction. Thus we will freely switch between
a polynomial in CPoly(Y*) and Poly(Z @ Z):

Re(Z® 2) 3 (z,2) — bz, 2),
2692’ B (51,22) — b(El,zz).

We consider the Fock CCR representation
Y3y ) € U(T,(2)).

Recall that CCRP°!()) is the %-algebra generated by ¢(y), y € V. It can be
faithfully represented by operators on the space ' (Z).

We will define and study the bosonic Wick and anti-Wick quantization. The
Wick quantization is the most frequently used quantization in quantum field
theory and many-body quantum physics.

9.4.1 Wick and anti- Wick ordering

Let b € Pols(Z). Recall that in Subsect. 3.4.4 we defined the multiple creation and
annihilation operators a*(b) and a(b). Note that the possibility of unambiguously
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9.4 Wick and anti- Wick bosonic quantization 227

defining a*(b) and a(b) follows from the fact that Z and Z are isotropic subspaces
of CY for wc.

Definition 9.31 For by, by € Poly(Z) we set

Op® "% (byby) := a*(by)a(by),

Op®™? (byby) := a(by)a*(by).
These maps extend by linearity to maps

CPol,(V*) 3 b — Op® *?(b) € CCRP!()),
i (9.35)
CPol,(Y*) 3 b — Op™“ (b) € CCRP*'(Y),
called the Wick and anti-Wick bosonic quantizations.

Definition 9.32 The inverse maps to (9.35) will be denoted by

CCRpol(y) 5B S(g“,a c (CPOls(y#)>

CCRP ()) 3 B — s%*" € CPol,(V*).
The polynomial s'g’“, resp. s%’a* is called the Wick, resp. anti-Wick symbol of
the operator B.

Remark 9.33 Suppose that we fix an o.n. basis {e; : i € I} in Z. Every poly-
nomial b € Poly(Z ® Z) can be written as

Z b,,’ﬁfyzﬁ,

v,

where v, 3 are multi-indices, that is, elements of {0,1,2,...} . Then

Op* (b)) = > by, sa™a’, (9.36)
v,

Op™™ (b)) = > by pa’a™. (9.37)
v,

The r.h.s. of (9.36), resp. (9.37) is probably the most straightforward, even if
often somewhat heavy, notation for the Wick, resp. anti- Wick quantization.

More generally, one can assume that Z = L?(Z,d¢), where (Z,d€) is a measure
space. Then polynomials on Z can be written as

Z/-"/b(&,~--§n;§7'm-~-’§{)551 B, R, A

n,m
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228 CCR on Fock space

and one writes

Zb [STRURY S S ,§{)a21 -af ag ---ag instead of Op” (D),

n,m

Z b(&s- &yl s 1) <o -agral, - -af, instead of Op™®" (b).

n,m
Thus a’g and a¢ are treated as “operator-valued measures”, which acquire their
meaning after being “smeared out” with “test functions”.

The following theorem is the analog of Thm. 4.38 devoted to the z, D- and
D, x-quantizations.

Theorem 9.34 Let b,b_,b, ,by,by € Poly(Z, Z).
(1) Op"*" (b)* = Op™*(5) and Op" " (b)* = Op" (D).
(2) Forwe Z,
Op"™“(wb) = a*(w)Op* “(b), Op" “(wb) = Op" " (b)a(w),
(0p*"(6), " (w)] = Op" (w¥-b),  fa(w), Op" " (8)] = Op* " (@V=b)
(Q|0p* (b)) = b(0). (9.38)
(3) If Op™® (b_) = Op® *(bs), then
by (Z,2) =eV7Veb (3, 2)

= (2mi) [ e GE=20p, (71, 21)dZ dz, if dim Z = d.

(4) If Op* " (b1)Op" " (by) = Op" " (b), then
b(z,z) = eV 1 Vb (, 21)52(71,Z)|zl:

= (27i)~¢ / e~ FTPE=20p (7, 20 )by (21, 2)d21dZr,  if dim Z = d.

If Op™ (b1)Op™™ (be) = Op™™  (b), then

b(Z,2) = e V71 Vorby (21, 2)ba(Z, 21|

Z1=Zz

Proof 1If we use the complex-wave representation, we see that the Wick, resp.
anti-Wick quantization can be viewed as the Z,Vz, resp. Vz, Z quantization.
Therefore, we can apply the same combinatorial arguments as in the proof of
Thm. 4.38. O

Remark 9.35 The exponentials of differential operators in the above formu-
las can always be understood as finite sums of differential operators, since we
consider polynomial symbols. Note also that in the expression for the anti- Wick
symbol of a product of two operators there is no integral formula.

Downloaded from https://www.cambridge.org/core. IP address: 18.191.223.123, on 21 Jul 2024 at 04:58:56, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://www.cambridge.org/core/product/3F2652F5759A09E8165EEO08E3F91CC35


https://www.cambridge.org/core/terms
https://www.cambridge.org/core/product/3F2652F5759A09E8165EE08E3F91CC35
https://www.cambridge.org/core

9.4 Wick and anti- Wick bosonic quantization 229

The theorem that we state below is what is usually meant by Wick’s theorem.
We will discuss its diagrammatic interpretation in Chap. 20. It is an analog of
Thm. 4.39.

Theorem 9.36 Let by,...,b,,b € CPoly(V*) and

Opa*,a (b) _ Opa*,a (bl) o Opa*,a (bn)

Then
b(z, 2) (9.39)
= exXp (Z v?, 'sz-)bl (21731) e bn <zn’zn)’z:21:---:zn )
i<j
(Q20p" " (b)) (9.40)
= exp (Z V=, -V, )bl (Z1,21) -+ by (7”’2”)|0=z1:~-:z,, .
i<j

Proof (9.39) is shown by the same arguments as Thm. 4.39. (9.40) follows from
(9.39) and (9.38). O

9.4.2 Relation between Wick, anti- Wick and
Weyl-Wigner quantizations

Let us assume that dim Z < co, so that the Weyl-Wigner quantization of a
polynomial in CPols(Y*) is well defined.

The following theorem gives the connection between the Weyl-Wigner and the
Wick and the anti-Wick quantizations. We express these connections using two
alternative notations: either we treat them as functions of the complex variables
(Z1,22) € Z® Z, or we treat the symbols as functions of the real variable v €
Re(Z @ 2).

Theorem 9.37 Let b_,b,b; € CPoly(Y*). Let
Op" " (by) = Op(b) = Op™* (b-).
(1) One can express the Wick symbol in terms of the Weyl-Wigner symbol:
by (%,2) =e?VoVeb(z, 2)
= (7)™ / e 2GR =)z 2)dz d,
by (v) = et Vib(v)
= 7r_d/e_(”_“)Qb(vl)dvl.
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230 CCR on Fock space

(2) One can express the Weyl-Wigner symbol in terms of the anti- Wick symbol:
bz, 2) = e’V Vob_(Z,2)
= (Wi)_d / 6_2(?_?1 ) (z=21) b_ (21 s zl)dildzl,

b(v) = et Vib_(v)
:W_d/e_(’”_’“l)zb,(vl)dvl.

Proof Let by, by € Poly(Z), by (Z,2) = b1 (2)by(2). We have

Op” *(bs) = a* (b )a(bs)
= Op(b1)Op(bs) = Op(b).

Using the formula for the product of two Weyl-Wigner quantized operators, we
obtain

(Z,2)=(%1,22)

= e_%(v?l V. =V, V. 1)b1 (Zl)b2(22)|( 2)=(Z1.22)

where in the second line we use the definition (9.6) of the symplectic form w.
This proves the first formula of (1). The second follows from the first, using the
identities of Subsect. 4.1.9. (2) follows from (1) and Thm. 9.34 (3). O

9.4.3 Wick and anti- Wick quantization as covariant and
contravariant quantization

For z € Z, we consider the Gaussian coherent vectors {2, and the correspond-
ing projections P, in I's(Z), defined in Def. 9.9. We will show that the Wick,
resp. anti-Wick quantizations coincide with the covariant, resp. contravariant
quantization for Gaussian coherent vectors.

Theorem 9.38 (1) Let B € CCRPY(Y). Then for all z € Z, Q. € Dom B and
$49(Z,2) = (L|BQ.), z€Z. (9.41)
(2) Let b € CPols(Y*). Let the dimension of Z be finite. Then

Op™® (b) = (2mi) ¢ / b(z,%)P.dzdz. (9.42)

(The integral should be understood in terms of a sesquilinear form on an
appropriate domain.)

Proof Let by, by € Poly(Z). Set
b(Z,2) := b1 (2)by(Z) € Poly(Z @ 2).
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9.4 Wick and anti- Wick bosonic quantization 231

Then

(Q.|0p" (b)) =

—~

Q[a”(b1)a(b2)$2:)
QW (iz, —iz)a™ (b1 )a(by )W (—iz,iz)R2)
Ql(a®(b1) + b1(2))(a(b2) + by @)Q)

12)2(Z) = b(z,2).

This proves (9.41). Next, we compute

—~

I
N

=

Op"*"(b) = a(bs)a” (by)
= (27ri)_d/a(bg)Pza*(bl)dEdz

_ (2ni)~ / W(iz — i%)(a(by) + 5o @) Py (a” (1)
+01(2))W(—iz + iz)dzdz
— (2i)~ / B2 @by () P.dzdz = (27i)~ / b(Z, 2)P.dZdz.

This proves (9.42). O

Remark 9.39 Thm. 9.38 (1) says that the Wick symbol coincides with the
covariant symbol defined with the help of Gaussian coherent states. Thus, using
the notation of Sect. 8.5, (9.41) can be denoted s (Z + z). (Strictly speaking,
however, operators in CCRPOI())) are usually unbounded, so they do not belong
to the class considered in Sect. 8.5.)

Thm. 9.38 (2) says that the anti-Wick quantization coincides with the con-
travariant quantization for Gaussian coherent states. Thus, using the notation
of Sect. 8.5, (9.42) can be denoted Op*(b). (Strictly speaking, however, func-
tions in CPol(YV*) usually do not belong to Meas' (V*) + L= (V*), so they do
not belong to the class considered in Sect. 8.5.)

9.4.4 Wick symbols on Fock spaces
So far, we have defined the Wick symbol only for operators in CCRP'()). In
this case, it is a polynomial on Re(Z @ Z).
We will now extend the definition of the Wick symbol to a rather large class
of quadratic forms on I'y(Z).

Definition 9.40 Let B be a quadratic form on I's(Z) such that Q. belongs to
its domain for any z € Z. We define the Wick symbol of B as

5% (7, 2) = (| BLL). (9.43)

By Thm. 9.38 (1), the above definition of the Wick symbol agrees with Def.
9.32 for B € CCRP°/(Y). In (9.43), the Wick symbol is viewed as a function
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232 CCR on Fock space

on V* = Re(Z @ Z). An alternative point of view on the Wick symbol uses
holomorphic functions on Z & Z.

Proposition 9.41 The holomorphic extension of (9.43) to Z® Z (see Def.
5.81) is

5

S(IB ’a(z7 22) = 6721'22+%31'21+%72 2 (QZ1 |B922)

Proposition 9.42 Let B be a positive closed quadratic form such that Ti"(Z)
Dom B and for each z € Z the series

> 1

Z \/%(Z@)”BZ@T")W

is absolutely convergent. Then the Wick symbol of B and its holomorphic exten-

n,m=0

sion are
SU(Z,2) = e 7 i L(2®"|BZ®W)L, (9.44)
wiso V! Vil
sh (B ) = e i L(Z?HBZSM)L- (9.45)

Proof Recalling that

and using that B is closed, we see that 2, € Dom B and (2, |B2,) is given by the
convergent series in (9.44). Applying the Cauchy—Schwarz inequality, we obtain
that the series in the r.h.s. of (9.45) is absolutely convergent. Then we use Prop.
9.41. d

In the following proposition we compute the Wick symbol of various operators
in the sense of Def. 9.40:
Proposition 9.43 (1) For h € B(Z), we have sf;;’(“h)(i, z) =z-hz.
(2) If p is a contraction on Z, we have s;(pa) (Z,2) = e77*T7P2,

Example 9.44 The anti- Wick, Weyl-Wigner and Wick symbols of Py = |2)(8]
(the projection onto ) are given below (compare with Examples 4.42 and 8.74):
Saﬁna (z,2) = (27T>d§07
sp, (Z,2) = 2d672?'2,

a*,a
sp, " (

ﬁm

Z) =e "7,
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9.4 Wick and anti- Wick bosonic quantization 233

9.4.5 Wick quantization: the operator formalism

Recall from Subsect. 8.5.3 that in general it is easier to find the covariant symbol
of an operator than to compute the covariant quantization of a symbol. This
remark applies to the Wick quantization. In this subsection we will describe this
more difficult direction.

It is convenient to represent Wick symbols as operators acting on the Fock
space. We need, however, to restrict ourselves to a rather small class of such
operators.

Recall that N is the number operator and 1,3 (V) is the orthogonal projection
from T's(Z) onto I'? (Z).

Definition 9.45 For b € B(I'\(Z)), set b,y = L,y (N)b1y,, 3 (N). Let

B (T4(2))
= {b € B(FS(Z)) . there exists ng such that b, , =0 for n,m > no}.

Definition 9.46 Let b € Bfi» (FS(Z)). Then we define its Wick quantization,
denoted by Op® " (b), as the quadratic form on T (Z) defined for ®, ¥ € T2 (Z)
as

Inlll m, VL

@low = 3 Y Y, o5t

n,m=0 k=0
== V(R (m+k)!
= ¥ o (Db, @ 195W).
n,m=0k=0 ’

The above definition is essentially an extension of Def. 9.31.

Proposition 9.47 Let b € B (I'y(Z)). Set B = Op” " (b), with the Wick quan-
tization defined as in Def. 9.46. Then the Wick symbol of B in the sense of Def.
9.40 and its holomorphic extension are

o0

sE0(E ) = > (2% bm), (9.46)
n,m=0

o0

sh'(FLm) = Y (2P b, (9.47)

n,m=0

Consequently, if b € CPoly(Y*) ~ Pol(Z ® Z) is identified with b € B™ (Is(Z))
with the help of (9.46) or (9.47), then Def. 9.31 coincides with Def. 9.40.
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