

A Common Extension of Arhangel'ski's Theorem and the Hajnal–Juhász Inequality

Angelo Bella and Santi Spadaro

Abstract. We present a result about G_{δ} covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X| \leq 2^{L(X)\chi(X)}$ (Arhangel'skii) and $|X| \leq 2^{c(X)\chi(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods's 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, *Cardinal inequalities for topological spaces involving the weak Lindelöf number*, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel's survey on Arhangel'skii's Theorem (R. Hodel, *Arhangel'skii's solution to Alexandroff's problem: A survey*, Topology Appl. 153(2006), 2199–2217).

In contrast to previous attempts, we do not need any separation axiom beyond T_2 .

1 Introduction

Two of the milestones in the theory of cardinal invariants in topology are the following inequalities.

Theorem 1 (Arhangel'skii, 1969 [2,15]) If X is a T_2 space, then $|X| \le 2^{L(X)\chi(X)}$.

Theorem 2 (Hajnal–Juhász, 1967 [13]) If X is a T_2 space, then $|X| \le 2^{c(X)\chi(X)}$.

Here $\chi(X)$ denotes the *character* of *X*, c(X) denotes the *cellularity* of *X* (which is the supremum of the cardinalities of the pairwise disjoint collections of non-empty open subsets of *X*), and L(X) denotes the *Lindelöf degree* of *X* (which is the smallest infinite cardinal κ such that every open cover of *X* has a subcover of size at most κ).

The intrinsic difference between the cellularity and the Lindelöf degree makes it non-trivial to find a common extension of the two previous inequalities. The first attempt was made in 1978 by Bell, Ginsburg and Woods [5], who used the notion of weak Lindelöf degree. The weak Lindelöf degree of X, wL(X), is defined as the least infinite cardinal κ such that every open cover of X has a ($\leq \kappa$)-sized subcollection whose union is dense in X. Clearly, wL(X) $\leq L(X)$, and we also have wL(X) $\leq c(X)$, since every open cover without < κ -sized dense subcollections can be refined to a κ -sized pairwise disjoint family of non-empty open sets by an easy transfinite

Received by the editors January 14, 2019; revised July 17, 2019.

Published online on Cambridge Core January 6, 2020.

The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM.

AMS subject classification: 54A25, 54D20, 54D10.

Keywords: cardinality bound, cardinal invariant, cellularity, Lindelöf, weakly Lindelöf, piecewise weakly Lindelöf.

induction. Unfortunately, the Bell–Ginsburg–Woods result needs a separation axiom that is much stronger than Hausdorff.

Theorem 3 ([5]) If X is a normal space, then $|X| \le 2^{wL(X)\chi(X)}$.

It is still unknown whether this inequality is true for regular spaces, but in [5] it was shown that it may fail for Hausdorff spaces. Indeed, the authors constructed Hausdorff non-regular first-countable weakly Lindelöf spaces of arbitrarily large cardinality. Some progress on the question of whether $|X| \leq 2^{wL(X) \cdot \chi(X)}$ for every regular space *X* can be found in [7], [9] and [12].

Arhangel'skiĭ [3] got closer to obtaining a common generalization of these two fundamental results by introducing a relative version of the weak Lindelöf degree, namely the cardinal invariant wL_c(X), *i.e.*, the least infinite cardinal κ such that for any closed set $F \subseteq X$ and any family of open subsets of X U satisfying $F \subseteq \bigcup U$ there is a subcollection $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ such that $F \subseteq \overline{\bigcup \mathcal{V}}$.

Theorem 4 ([3]) If X is a regular space, then $|X| \leq 2^{wL_c(X)\chi(X)}$.

O. Alas [1] showed that the previous inequality continues to hold for Urysohn spaces, but it is still open whether it is true for Hausdorff spaces.

In [4] Arhangel'ski made another step forward by introducing the notion of strict quasi-Lindelöf degree, which allowed him to give a common refinement of *the count-able case* of his 1969 theorem and of the Hajnal–Juhász inequality. He defined a space *X* to be *strictly quasi-Lindelöf* if for every closed subset *F* of *X*, for every open cover \mathcal{U} of *F* and for every countable decomposition $\{\mathcal{U}_n : n < \omega\}$ of \mathcal{U} there are countable subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$ for every $n < \omega$ such that $F \subset \bigcup \{\bigcup \mathcal{V}_n : n < \omega\}$. It is easy to see that every Lindelöf space is strictly quasi-Lindelöf and every ccc space is strictly-quasi-Lindelöf. Arhangel'ski proved that every strictly quasi-Lindelöf first-countable Hausdorff space has cardinality at most continuum.

However, Arhangel'ski's approach cannot be extended to higher cardinals. Indeed, it is not even clear whether $|X| \le 2^{\chi(X)}$ is true for every strictly quasi-Lindelöf space X. This inspired us to introduce the following cardinal invariants.

Definition 5

• The piecewise weak Lindelöf degree of X, pwL(X), is defined as the minimum cardinal κ such that for every open cover \mathcal{U} of X and every decomposition $\{\mathcal{U}_i : i \in I\}$ of \mathcal{U} , there are $(\leq \kappa)$ -sized families $\mathcal{V}_i \subset \mathcal{U}_i$, for every $i \in I$ such that $X \subset \bigcup \{\overline{\bigcup \mathcal{V}_i} : i \in I\}$.

• The piecewise weak Lindelöf degree for closed sets of X, $pwL_c(X)$, is defined as the minimum cardinal κ such that for every closed set $F \subset X$, for every open family \mathcal{U} covering F and for every decomposition $\{\mathcal{U}_i : i \in I\}$ of \mathcal{U} , there are $(\leq \kappa)$ -sized subfamilies $\mathcal{V}_i \subset \mathcal{U}_i$ such that $F \subset \bigcup \{\bigcup \mathcal{V}_i : i \in I\}$.

As a corollary to our main result, we will obtain the following bound, which is the desired common extension of Arhangel'ski's Theorem and the Hajnal–Juhász inequality.

A Common Extension

Theorem 6 For every Hausdorff space X, $|X| \le 2^{\text{pwL}_c(X) \cdot \chi(X)}$.

For undefined notions we refer to [11]. Our notation regarding cardinal functions mostly follows [14]. To state our proofs in the most elegant and compact way we use the language of elementary submodels, which is well presented in [10].

2 A Cardinal Bound for the G_{δ} -Modification

The following proposition collects a few simple general facts about the piecewise weak Lindelöf number that will be helpful in the proof of the main theorem.

Proposition 7 For any space X, we have the following:

(i) $pwL(X) \le pwL_c(X)$. (ii) $pwL_c(X) \le L(X)$. (iii) $pwL_c(X) \le c(X)$. (iv) If X is T_3 , then $wL_c(X) \le pwL(X)$.

Proof The first two items are trivial. To prove the third, let *F* be a closed subset of *X* and $\mathcal{V} = \bigcup \{\mathcal{V}_i : i \in I\}$ an open collection satisfying $F \subseteq \bigcup \mathcal{V}$. Suppose $c(X) \leq \kappa$. For every $i \in I$, let \mathcal{C}_i be a maximal collection of pairwise disjoint non-empty open subsets of *X* such that for each $C \in \mathcal{C}_i$, there is some $V_C \in \mathcal{V}_i$ with $C \subseteq V_C$. By letting $\mathcal{W}_i = \{V_C : C \in \mathcal{C}_i\}$, the maximality of \mathcal{C}_i implies that $\bigcup \mathcal{V}_i \subseteq \bigcup \mathcal{W}_i$ and so $F \subseteq \bigcup \{\overline{\cup \mathcal{W}_i} : i \in I\}$. Since $|\mathcal{W}_i| \leq |\mathcal{C}_i| \leq \kappa$, we have $pwL_c(X) \leq \kappa$.

To prove the fourth item, assume *X* is a regular space and let κ be a cardinal such that $pwL(X) \leq \kappa$. Let *F* be a closed subset of *X* and \mathcal{U} an open cover of *F*. If \mathcal{U} covers *X* we are done. Otherwise use regularity to choose, for every $p \in X \setminus \bigcup \mathcal{U}$, an open set U_p such that $p \in U_p$ and $F \cap \overline{U}_p = \emptyset$. Note that $\mathcal{U} \cup \{U_p : p \in X \setminus F\}$ is an open cover of *X*, so by $pwL(X) \leq \kappa$, there is a κ -sized subfamily \mathcal{V} of \mathcal{U} such that $X \subset \overline{\bigcup \mathcal{V}} \cup \bigcup \{\overline{U_p} : p \in X \setminus F\}$. Hence $F \subset \overline{\bigcup \mathcal{V}}$, and we are done.

Corollary 8 If X is a regular space then $|X| \leq 2^{\text{pwL}(X) \cdot \chi(X)}$.

Proof Combine Proposition 7(iv) with Arhangel'ski's result that $|X| \le 2^{wL_c(X)} \cdot \chi(X)$ for every regular space *X*.

We say that $G \subset X$ is a G_{κ}^{c} -set if there is a family $\{U_{\alpha} : \alpha < \kappa\}$ of open subsets of X such that $G = \bigcap \{U_{\alpha} : \alpha < \kappa\} = \bigcap \{\overline{U_{\alpha}} : \alpha < \kappa\} = \bigcap \{\overline{U_{\alpha}} : \alpha < \kappa\}$.

Theorem 9 Let X be a Hausdorff space such that $t(X) \cdot pwL_c(X) \leq \kappa$ and X has a dense set of points of character $\leq \kappa$. Then every cover of X by G_{κ}^c -sets has a $\leq 2^{\kappa}$ -sized subcollection whose union is dense in X.

Proof Let \mathcal{F} be a cover of X by G_{κ}^{c} -sets. Let θ be a large enough regular cardinal and M be a κ -closed elementary submodel of $H(\theta)$ such that $|M| = 2^{\kappa}$ and M contains everything we need (that is, $X, \mathcal{F} \in M, \kappa + 1 \subset M, etc.$).

For every $F \in \mathcal{F}$ choose open sets $\{U_{\alpha}(F) : \alpha < \kappa\}$ such that $F = \bigcap \{U_{\alpha}(F) : \alpha < \kappa\} = \bigcap \{\overline{U_{\alpha}(F)} : \alpha < \kappa\}$. If $F \in \mathcal{F} \cap M$ we can assume that $\{U_{\alpha}(F) : \alpha < \kappa\} \in M$ and hence $\{U_{\alpha}(F) : \alpha < \kappa\} \subset M$.

Claim 1. $\mathcal{F} \cap M$ covers $\overline{X \cap M}$.

Proof of Claim 1 Let $x \in \overline{X \cap M}$. Since \mathcal{F} is a cover of X we can find a set $F \in \mathcal{F}$ such that $x \in F$. Moreover, using $t(X) \leq \kappa$, we can find a κ -sized subset S of $X \cap M$ such that $x \in \overline{S}$. Note that $x \in \overline{U_{\alpha} \cap S}$ for every $\alpha < \kappa$. Moreover, by κ -closedness of M, the set $U_{\alpha} \cap S$ belongs to M. Set $B = \bigcap \{\overline{U_{\alpha} \cap S} : \alpha < \kappa\}$. Note that $x \in B \subset F$ and $B \in M$. Therefore $H(\theta) \models (\exists G \in \mathcal{F})(x \in B \subset G)$ and all the free variables in the previous formula belong to M. Therefore, by elementarity we also have that $M \models (\exists G \in \mathcal{F})(x \in B \subset G)$, and hence there exists a set $G \in \mathcal{F} \cap M$ such that $x \in G$, which is what we wanted to prove.

Claim 2. $\mathcal{F} \cap M$ has dense union in *X*.

Proof of Claim 2 Suppose by contradiction that $X \notin \overline{\bigcup(\mathcal{F} \cap M)}$. Then we can fix a point $p \in X \setminus \overline{\bigcup(\mathcal{F} \cap M)}$ such that $\chi(p, X) \leq \kappa$. Let $\{V_{\alpha} : \alpha < \kappa\}$ be a local base at p. Let $\mathcal{C} = \{U_{\alpha}(F) : F \in \mathcal{F} \cap M, \alpha < \kappa\}$. Note that \mathcal{C} is an open cover of $\overline{X \cap M}$ and $\mathcal{C} \subset M$.

For every $x \in \overline{X \cap M}$, using Claim 1 we can choose a set $F_x \in \mathcal{F} \cap M$ such that $x \in F_x$. Since $p \notin F_x$, there is $\alpha < \kappa$ such that $p \notin \overline{U_{\alpha}(F_x)}$. Hence we can find an ordinal $\beta_x < \kappa$ such that $V_{\beta_x} \cap U_{\alpha}(F_x) = \emptyset$. This shows that $\mathcal{U} = \{U \in \mathbb{C} : (\exists \beta < \kappa)(U \cap V_{\beta} = \emptyset)\}$ is an open cover of $\overline{X \cap M}$. Let $\mathcal{U}_{\alpha} = \{U \in \mathcal{U} : U \cap V_{\alpha} = \emptyset\}$. Then $\{\mathcal{U}_{\alpha} : \alpha < \kappa\}$ is a decomposition of \mathcal{U} , and hence we can find a κ -sized family $\mathcal{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ for every $\alpha < \kappa$ such that $\overline{X \cap M} \subset \bigcup \{\overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa\}$. Note that by κ -closedness of M the sequence $\{\overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa\}$ belongs to M and hence the previous formula implies that:

$$M \vDash X \subset \bigcup \{ \overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa \}.$$

So, by elementarity:

$$H(\theta) \vDash X \subset \bigcup \{ \overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa \}.$$

But that is a contradiction, because $p \notin \overline{\bigcup \mathcal{V}_{\alpha}}$, for every $\alpha < \kappa$.

Since $|\mathcal{F} \cap M| \le 2^{\kappa}$, Claim 2 proves that every cover of *X* by G_{κ}^{c} -sets has a 2^{κ} -sized subcollection whose union is dense in *X*, as we wanted.

As a first consequence, we derive the desired common extension of Arhangel'ski's Theorem and the Hajnal–Juhász inequality.

Recall that the *closed pseudocharacter of the point x in X* ($\psi_c(x, X)$) is defined as the minimum cardinal κ such that there is a κ -sized family { $U_{\alpha} : \alpha < \kappa$ } of open neighbourhoods of *x* with \bigcap { $\overline{U_{\alpha}} : \alpha < \kappa$ } = {*x*}. The closed pseudocharacter of *X* ($\psi_c(X)$) is then defined as $\psi_c(X) = \sup{\{\psi_c(x, X) : x \in X\}}$.

Corollary 10 Let X be a Hausdorff space. Then $|X| \leq 2^{\text{pwL}_c(X) \cdot \chi(X)}$.

Proof It suffices to note that in a Hausdorff space, $\psi_c(X) \cdot t(X) \leq \chi(X)$, and hence if κ is a cardinal such that $\chi(X) \leq \kappa$, then $\mathcal{G} = \{\{x\} : x \in X\}$ is a cover of X by G_{κ}^c sets. Therefore by Theorem 9, \mathcal{G} has a $\leq 2^{\kappa}$ -sized subcollection \mathcal{D} such that $D = \bigcup \mathcal{D}$ is dense in X. It turns out that D is a dense subset of X of cardinality $\leq 2^{\kappa}$. Since $|X| \leq (d(X))^{\chi(X)}$ for every Hausdorff space X, we have $|X| \leq 2^{\kappa}$, as desired.

Remark Corollary 10 is a *strict* improvement of both Arhangel'ski's Theorem and the Hajnal-Juhász inequality. Indeed, if *S* is the Sorgenfrey line and A([0,1]) the Aleksandroff duplicate of the unit interval, then the space $X = (S \times S) \oplus A([0,1])$ is first countable, $pwL_c(X) = \aleph_0$, and L(X) = c(X) = c.

Recall that a space is initially κ -compact if every open cover of cardinality at most κ has a finite subcover (for $\kappa = \omega$ we obtain the usual notion of countable compactness). The following Lemma essentially says that if X is an initially κ -compact space such that wL_c(X) $\leq \kappa$, then it satisfies the definition of pwL_c(X) $\leq \kappa$ when restricted to decompositions of cardinality at most κ .

Lemma 11 Let X be an initially κ -compact space such that $wL_c(X) \leq \kappa$ and F be a closed subset of X. If U is an open cover of F and $\{U_{\alpha} : \alpha < \kappa\}$ is a κ -sized decomposition of U, then there are κ -sized subfamilies $\mathcal{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ such that $F \subset \bigcup \{\overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa\}$.

Proof Let $U_{\alpha} = \bigcup \mathcal{U}_{\alpha}$. Then $\{U_{\alpha} : \alpha < \kappa\}$ is an open cover of *F* of cardinality κ , so by initial κ -compactness there is a finite subset *S* of κ such that $F \subset \{U_{\alpha} : \alpha \in S\}$. Now let $\mathcal{W} = \bigcup \{\mathcal{U}_{\alpha} : \alpha \in S\}$. We then have $F \subset \bigcup \mathcal{W}$, and hence by wL_c(*X*) $\leq \kappa$ we can find a κ -sized subfamily \mathcal{W}' of \mathcal{W} such that $F \subset \bigcup \mathcal{W}'$. Now set $\mathcal{V}_{\alpha} = \{W \in \mathcal{W}' : W \in \mathcal{U}_{\alpha}\}$. Then $|\mathcal{V}_{\alpha}| \leq \kappa$ and $F \subset \bigcup \{\bigcup \mathcal{V}_{\alpha} : \alpha < \kappa\}$, as we wanted.

Noticing that in the proof of Theorem 9 we only needed to apply the definition of $pwL_c(X) \le \kappa$ to decompositions of cardinality κ , Theorem 9 and Lemma 11 imply the following corollaries.

Corollary 12 ([8]) Let X be an initially κ -compact space containing a dense set of points of character at most κ and such that $wL_c(X) \cdot t(X) \leq \kappa$. Then every cover of X by G_{κ}^c -sets has a 2^{κ} -sized subcollection whose union is dense in X.

Corollary 13 (Alas, [1]) Let X be an initially κ -compact space with a dense set of points of character κ , such that $wL_c(X) \cdot t(X) \cdot \psi_c(X) \leq \kappa$. Then $|X| \leq 2^{\kappa}$.

3 Open Questions

Corollary 8 can be slightly improved by replacing regularity with the Urysohn separation property (that is, every pair of distinct points can be separated by disjoint closed neighbourhoods). Indeed, in a similar way as in the proof of Proposition 7(iv), it can be shown that if X is Urysohn then wL_{θ}(X) \leq pwL(X), where wL_{θ}(X) is the weak Lindelöf number for θ -closed sets (see [6]). Moreover, $|X| \leq 2^{wL_{\theta}(X) \cdot \chi(X)}$ for every Urysohn space X. However it is not clear whether regularity can be weakened to the Hausdorff separation property. That motivates the next question.

Question 3.1 Is the inequality $|X| \le 2^{\text{pwL}(X) \cdot \chi(X)}$ true for every Hausdorff space X?

Moreover, we were not able to find an example that distinguishes a countable piecewise weak Lindelöf number for closed sets from the strictly quasi-Lindelöf property.

Question 3.2 Is there a strictly quasi-Lindelöf space X such that $pwL_c(X) > \aleph_0$?

Arhangel'ski's notion of a strict quasi-Lindelöf space suggests a natural cardinal invariant. Define the strict quasi-Lindelöf number of *X*, sqL(*X*), to be the least cardinal number κ such that for every closed subset *F* of *X*, for every open cover \mathcal{U} of *F*, and for every $\leq \kappa$ -sized decomposition { $\mathcal{U}_{\alpha} : \alpha < \kappa$ } of \mathcal{U} there are κ -sized subfamilies $\mathcal{V}_{\alpha} \subset \mathcal{U}_{\alpha}$ such that $X \subset \bigcup \{ \overline{\bigcup \mathcal{V}_{\alpha}} : \alpha < \kappa \}$. Obviously sqL(*X*) $\leq \text{pwL}_{c}(X)$. It is not at all clear from our argument whether the piecewise weak-Lindelöf number for closed sets can be replaced with the strict quasi-Lindelöf number in Corollary 10.

Question 3.3 Let X be a Hausdorff space. Is it true that $|X| \le 2^{\operatorname{sqL}(X) \cdot \chi(X)}$?

Even the following special case of the above question seems to be open.

Question 3.4 Let X be a strict quasi-Lindelöf space. Is it true that $|X| \le 2^{\chi(X)}$?

Finally, it would be interesting to know whether the assumption about the existence of a dense set of points of *small* character can be removed from Theorem 9.

Question 3.5 Let κ be an infinite cardinal and let X be a Hausdorff space such that $t(X) \cdot \text{pwL}_{c}(X) \leq \kappa$. Is it true that every cover of X by G_{κ}^{c} -sets has a $\leq 2^{\kappa}$ -sized subcollection whose union is dense in X?

An affirmative answer to this question would imply that the answer to the following question is also positive.

Question 3.6 Let X be a Hausdorff space. Is it true that

 $|X| < 2^{\operatorname{pwL}_{c}(X) \cdot t(X) \cdot \psi_{c}(X)}$?

References

- [1] O. T. Alas, More topological cardinal inequalities. Colloq. Math. 65(1993), 165-168.
- [2] A. V. Arhangel'skii, The power of bicompacta with first axiom of countability. Soviet Math. Dokl. 10(1969), 951–955.
- [3] A. V. Arhangel'skii, A theorem about cardinality. Russian Math. Surveys 34(1979), 153–154.
- [4] A. V. Arhangel'skiĭ, A generic theorem in the theory of cardinal invariants of topological spaces. Comment. Math. Univ. Carolin. 36(1995), 303–325.
- [5] M. Bell, J. N. Ginsburg, and R. G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pacific J. Math. 79(1978), 37–45.
- [6] A. Bella and F. Cammaroto, On the cardinality of Urysohn spaces. Canad. Math. Bull. 31(1988), 153–158.
- [7] A. Bella and N. Carlson, *On cardinality bounds involving the weak Lindelöf degree*. Quaest. Math. 41(2018), 99–113.
- [8] A. Bella and S. Spadaro, Cardinal invariants for the G_{δ} -topology. Colloq. Math. 156(2019), 123–133.

A Common Extension

- [9] A. Bella and S. Spadaro, Infinite games and cardinal properties of topological spaces. Houston J. Math. 41(2015), 1063-1077.
- [10] A. Dow, An introduction to applications of elementary submodels to topology. Topology Proc. 13(1988), 17-72.
- [11] R. Engelking, *General topology*. Heldermann–Verlag, 1989.
 [12] I. Gotchev, *Cardinalities of weakly Lindelöf spaces with regular G_κ diagonals*. Topology Appl. 259(2019), 80-89.
- [13] A. Hajnal and I. Juhász, Discrete subspaces of topological spaces. Indag. Math. 29(1967), 343-356.
- [14] R. E. Hodel, Cardinal Functions I. In: Handbook of set-theoretic topology, eds. K. Kunen and J. E. Vaughan, North Holland, Amsterdam, 1984, pp. 1-61.
- [15] R. E. Hodel, Arhangel'ski's solution to Alexandroff's problem: A survey. Topology Appl. 153(2006), 2199-2217.

Dipartimento di Matematica e Informatica, viale A. Doria 6, 95125 Catania, Italy e-mail: bella@dmi.unict.it santidspadaro@gmail.com