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A Common Extension of Arhangel’ski’s
Theorem and the Hajnal-Juhasz Inequality

Angelo Bella and Santi Spadaro

Abstract. 'We present a result about G5 covers of a Hausdorff space that implies various known cardi-
nal inequalities, including the following two fundamental results in the theory of cardinal invariants in
topology: | X| < 21 x(X) (Arhangel'skii) and | X| < 2¢(*)4(X) (Hajnal-Juhész). This solves a question
that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, ].N. Ginsburg and R.G. Woods, Car-
dinal inequalities for topological spaces involving the weak Lindelof number, Pacific J. Math. 79(1978),
37-45) and is mentioned in Hodel’s survey on Arhangel’skii’s Theorem (R. Hodel, Arhangel’skii’s solu-
tion to Alexandroff’s problem: A survey, Topology Appl. 153(2006), 2199-2217).
In contrast to previous attempts, we do not need any separation axiom beyond T5.

1 Introduction

Two of the milestones in the theory of cardinal invariants in topology are the following
inequalities.

Theorem 1 (Arhangel'skii, 1969 [2,15]) If X is a T, space, then |X| < 2L(0x(X),
Theorem 2 (Hajnal-Juhdsz, 1967 [13]) If X is a T, space, then |X| < 2¢()x(X),

Here y(X) denotes the character of X, c(X) denotes the cellularity of X (which is
the supremum of the cardinalities of the pairwise disjoint collections of non-empty
open subsets of X), and L(X) denotes the Lindeldf degree of X (which is the smallest
infinite cardinal x such that every open cover of X has a subcover of size at most ).

The intrinsic difference between the cellularity and the Lindelof degree makes it
non-trivial to find a common extension of the two previous inequalities. The first
attempt was made in 1978 by Bell, Ginsburg and Woods [5], who used the notion of
weak Lindeldf degree. The weak Lindelof degree of X, wL(X), is defined as the least
infinite cardinal x such that every open cover of X has a (<k)-sized subcollection
whose union is dense in X. Clearly, wL(X) < L(X), and we also have wL(X) <
¢(X), since every open cover without < x-sized dense subcollections can be refined
to a k-sized pairwise disjoint family of non-empty open sets by an easy transfinite
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induction. Unfortunately, the Bell-Ginsburg—Woods result needs a separation axiom
that is much stronger than Hausdorff.

Theorem 3 ([5]) If X is a normal space, then | X| < 2¥-(X)x(X),

It is still unknown whether this inequality is true for regular spaces, but in [5]
it was shown that it may fail for Hausdorft spaces. Indeed, the authors constructed
Hausdorff non-regular first-countable weakly Lindel6f spaces of arbitrarily large car-
dinality. Some progress on the question of whether | X| < 2¥2(X)*(X) for every regular
space X can be found in [7], [9] and [12].

Arhangel'skii [3] got closer to obtaining a common generalization of these two
fundamental results by introducing a relative version of the weak Lindelof degree,
namely the cardinal invariant wL.(X), i.e., the least infinite cardinal « such that for
any closed set F € X and any family of open subsets of X U satistying F € UU there
is a subcollection V € [U]** such that F ¢ UV.

Theorem 4 ([3]) If X is a regular space, then |X| < 2W-(X)x(X),

O. Alas [1] showed that the previous inequality continues to hold for Urysohn
spaces, but it is still open whether it is true for Hausdorft spaces.

In [4] Arhangel’ski made another step forward by introducing the notion of strict
quasi-Lindelof degree, which allowed him to give a common refinement of the count-
able case of his 1969 theorem and of the Hajnal-Juhdsz inequality. He defined a space
X to be strictly quasi-Lindelof if for every closed subset F of X, for every open cover U
of F and for every countable decomposition {U,, : n < w} of U there are countable
subfamilies V,, c U, for every n < w such that F c U{W :n < w}. Itis easy to
see that every Lindel6f space is strictly quasi-Lindel6f and every ccc space is strictly-
quasi Lindelof. Arhangel’ski proved that every strictly quasi-Lindelof first-countable
Hausdorff space has cardinality at most continuum.

However, Arhangel'ski’s approach cannot be extended to higher cardinals. Indeed,
it is not even clear whether | X| < 2¢(*) is true for every strictly quasi-Lindel6f space X.
This inspired us to introduce the following cardinal invariants.

Definition 5

» The piecewise weak Lindeldf degree of X, pwL(X), is defined as the minimum
cardinal x such that for every open cover U of X and every decomposition {U; :
i € I} of U, there are (<k)-sized families V; c U,;, for every i € I such that X c
U{UV;:iel}.

s The piecewise weak Lindelof degree for closed sets of X, pwL_.(X), is defined as
the minimum cardinal « such that for every closed set F c X, for every open family
U covering F and for every decomposition {U; : i € I} of U, there are (<x)-sized
subfamilies V; ¢ U; such that F c U{UV; : i € I}.

As a corollary to our main result, we will obtain the following bound, which is

the desired common extension of Arhangel'ski’s Theorem and the Hajnal-Juhasz
inequality.
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Theorem 6  For every Hausdorff space X, | X| < 2PWhe(X)x(X),

For undefined notions we refer to [11]. Our notation regarding cardinal functions
mostly follows [14]. To state our proofs in the most elegant and compact way we use
the language of elementary submodels, which is well presented in [10].

2 A Cardinal Bound for the Gs-Modification

The following proposition collects a few simple general facts about the piecewise weak
Lindel6f number that will be helpful in the proof of the main theorem.

Proposition 7  For any space X, we have the following:

() pwL(X) < pwL(X).
(i) pwL,(X) < L(X).
(iii) pwL, (X) < ¢(X).
(iv) IfXis Ts, then wL,(X) < pwL(X).

Proof The first two items are trivial. To prove the third, let F be a closed subset of X
and V = U{V; : i € I} an open collection satisfying F ¢ V. Suppose ¢(X) < «.
For every i € I, let C; be a maximal collection of pairwise disjoint non-empty open
subsets of X such that for each C € C;, there is some V¢ € V; with C ¢ V¢. By
letting W; = {V¢ : C € C;}, the maximality of C; implies that UV; UW; and so
F c U{uW; :i e I}. Since |W;| < |C;] < k, we have pwL_(X) < x.

To prove the fourth item, assume X is a regular space and let x be a cardinal such
that pwL(X) < «. Let F be a closed subset of X and U an open cover of F. If U
covers X we are done. Otherwise use regularity to choose, for every p € X\UU, an
open set U, such that p € U, and Fn U, = @. Note that WU {U, : p € X\F} is
an open cover of X, so by pwL(X) < «, there is a x-sized subfamily V of U such that
X cUVUU{U,: peX\F}. Hence F c U7V, and we are done. |

Corollary 8 If X is a regular space then | X| < 2PWH(X)x(X),

Proof Combine Proposition 7(iv) with Arhangelski’s result that |X| < 2"L(¥)x(X)
for every regular space X. |

We say that G c X is a G-set if there is a family { Uy : @ < x} of open subsets of X
suchthat G =N{U,:a <k} =N{U,:a <k}.

Theorem 9  Let X be a Hausdor(f space such that t(X) - pwL_(X) < x and X has a
dense set of points of character < k. Then every cover of X by Gg-sets has a <2"-sized
subcollection whose union is dense in X.

Proof Let J be a cover of X by G -sets. Let 8 be a large enough regular cardinal

and M be a k-closed elementary submodel of H(0) such that |M| = 2 and M contains
everything we need (that is, X, F € M, x + 1 c M, etc.).
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For every F € F choose open sets {U,(F) : a < k} such that F = N{U4(F) : a <

k} =N{Uy(F): a <k} If F e Fn M we can assume that {U,(F) : « < k} € M and
hence {U,(F) : a <k} ¢ M.

Claim 1. F n M covers X n M.

Proof of Claim 1 Let x € X n M. Since F is a cover of X we can find a set F € &
such that x € F. Moreover, using t(X) < «, we can find a k-sized subset S of X n M
such that x € S. Note that x € U, n S for every a < x. Moreover, by x-closedness
of M, the set U, n S belongs to M. Set B=N{U; NS : a < x}. Note that x e BC F
and B € M. Therefore H(0) = (3G € F)(x € B c G) and all the free variables
in the previous formula belong to M. Therefore, by elementarity we also have that
M E (3G € F)(x € B c G), and hence there exists a set G € Fn M such that x € G,
which is what we wanted to prove. A

Claim 2. F n M has dense union in X.

Proof of Claim 2 Suppose by contradiction that X ¢ |J(F n M). Then we can fix a
point p € X\U(F n M) such that y(p, X) < . Let {V, : & < k} be alocal base at p.

Let € = {U,(F) : F e Fn M, a < «}. Note that C is an open cover of X n M and
Cc M.

For every x € X n M, using Claim 1 we can choose a set F, € FnM such thatx € F,.
Since p ¢ F,, thereis & < x such that p ¢ U, (F, ). Hence we can find an ordinal 8, <
such that Vg N Uy(Fx) = @. This shows that U = {U € €: (3 < «)(Un Vg = &)}
isan open coverof X N M. Let U, ={U e U: UnNV, =@} Then {Uy: a < x} isa
decomposition of U, and hence we can find a k-sized family V, c U, for every a <
such that X n M c U{U"V, : a < k}. Note that by x-closedness of M the sequence
{UV, : a < k} belongs to M and hence the previous formula implies that:

MeXcU{UV,:a<xk}.
So, by elementarity:
H(0)E X cU{UVq:a <k}
But that is a contradiction, because p ¢ UV, for every a < k. A

Since |F n M| < 2%, Claim 2 proves that every cover of X by G¢-sets has a 2*-sized
subcollection whose union is dense in X, as we wanted. ]

As a first consequence, we derive the desired common extension of Arhangel’ski’s
Theorem and the Hajnal-Juhdsz inequality.

Recall that the closed pseudocharacter of the point x in X (y.(x, X)) is defined as
the minimum cardinal x such that there is a k-sized family {U, : « < x} of open
neighbourhoods of x with N{U, : a < x} = {x}. The closed pseudocharacter of X
(y.(X)) is then defined as . (X) = sup{y.(x, X) : x € X}.

Corollary 10 Let X be a Hausdorff space. Then |X| < 2P"Le(X)x(X),
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Proof It suffices to note that in a Hausdorff space, y.(X) - t(X) < y(X), and hence
if x is a cardinal such that y(X) < «, then § = {{x} : x € X} is a cover of X by G¢-
sets. Therefore by Theorem 9, § has a <2*-sized subcollection D such that D = UD
is dense in X. It turns out that D is a dense subset of X of cardinality < 2. Since
1X| < (d(X))¥X) for every Hausdorff space X, we have | X| < 2, as desired. ]

Remark  Corollary 10 is a strict improvement of both Arhangel'ski’s Theorem and
the Hajnal-Juhdsz inequality. Indeed, if S is the Sorgenfrey line and A([0,1]) the
Aleksandroff duplicate of the unit interval, then the space X = (S x S) & A([0,1])
is first countable, pwL_(X) = Ry, and L(X) = ¢(X) = .

Recall that a space is initially k-compact if every open cover of cardinality at most x
has a finite subcover (for ¥ = w we obtain the usual notion of countable compactness).
The following Lemma essentially says that if X is an initially x-compact space such
that wL.(X) < «, then it satisfies the definition of pwL_(X) < x when restricted to
decompositions of cardinality at most k.

Lemma 11  Let X be an initially x-compact space such that wL.(X) < k and F be a
closed subset of X. If U is an open cover of F and {U, : a < x} is a x-sized decomposition
of U, then there are k-sized subfamilies Vo, ¢ U, such that F c U{UV, : & < k}.

Proof Let U, = UUWU,. Then {U, : a < x} is an open cover of F of cardinality «, so
by initial k-compactness there is a finite subset S of x such that F ¢ {U, : « € S}. Now
let W = U{U, : « € S}. We then have F c lUW, and hence by wL.(X) < x we can find
a k-sized subfamily W’ of W such that F c UW’. Now set V, = {W e W' : W € U, }.
Then [V,| < x and F c U{UV, : « < k}, as we wanted. |

Noticing that in the proof of Theorem 9 we only needed to apply the definition of
pwL,_(X) < « to decompositions of cardinality x, Theorem 9 and Lemma 11 imply the
following corollaries.

Corollary 12 ([8]) Let X be an initially x-compact space containing a dense set of
points of character at most k and such that wL.(X) - t(X) < k. Then every cover of X
by G:-sets has a 2% -sized subcollection whose union is dense in X.

Corollary 13 (Alas, [1]) Let X be an initially x-compact space with a dense set of
points of character «, such that wL.(X) - t(X) - v.(X) < k. Then |X]| < 2~.

3 Open Questions

Corollary 8 can be slightly improved by replacing regularity with the Urysohn separa-
tion property (that is, every pair of distinct points can be separated by disjoint closed
neighbourhoods). Indeed, in a similar way as in the proof of Proposition 7(iv), it can
be shown that if X is Urysohn then wLg(X) < pwL(X), where wLg(X) is the weak
Lindelof number for 8-closed sets (see [6]). Moreover, |X| < VLo (X)x(X) for every
Urysohn space X. However it is not clear whether regularity can be weakened to the
Hausdorft separation property. That motivates the next question.
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Question 3.1 s the inequality |X| < 2PV*COXD) trye for every Hausdorff space X?

Moreover, we were not able to find an example that distinguishes a countable piece-
wise weak Lindel6f number for closed sets from the strictly quasi-Lindel6f property.

Question 3.2 Is there a strictly quasi-Lindelof space X such that pwL_(X) > R¢?

Arhangel'ski’s notion of a strict quasi-Lindelof space suggests a natural cardinal in-
variant. Define the strict quasi-Lindelf number of X, sqL(X), to be the least cardinal
number x such that for every closed subset F of X, for every open cover U of F, and
for every <x-sized decomposition {U, : a < k} of U there are x-sized subfamilies
Vi c Uy such that X ¢ U{UV, : @ < k}. Obviously sqL(X) < pwL_(X). It is not at
all clear from our argument whether the piecewise weak-Lindel6f number for closed
sets can be replaced with the strict quasi-Lindel6f number in Corollary 10.

Question 3.3  Let X be a Hausdorff space. Is it true that |X| < 254X x(X)
Even the following special case of the above question seems to be open.
Question 3.4 Let X be a strict quasi-Lindelof space. Is it true that |X| < 2¢(X)?

Finally, it would be interesting to know whether the assumption about the existence
of a dense set of points of small character can be removed from Theorem 9.

Question 3.5 Let k be an infinite cardinal and let X be a Hausdor(f space such that
t(X) - pwL (X) < k. Is it true that every cover of X by Gg-sets has a <2"-sized subcol-
lection whose union is dense in X?

An affirmative answer to this question would imply that the answer to the following
question is also positive.

Question 3.6 Let X be a Hausdor{f space. Is it true that

|X] < 2PWL(X)-£(X)-ye(X) o
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