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Abstract

Let W be an extended affine Weyl group. We prove that the minimal length elements
wO of any conjugacy class O of W satisfy some nice properties, generalizing results
of Geck and Pfeiffer [On the irreducible characters of Hecke algebras, Adv. Math. 102
(1993), 79–94] on finite Weyl groups. We also study a special class of conjugacy classes,
the straight conjugacy classes. These conjugacy classes are in a natural bijection with
the Frobenius-twisted conjugacy classes of some p-adic group and satisfy additional
interesting properties. Furthermore, we discuss some applications to the affine Hecke
algebra H. We prove that TwO , where O ranges over all the conjugacy classes of W ,
forms a basis of the cocenter H/[H,H]. We also introduce the class polynomials, which
play a crucial role in the study of affine Deligne–Lusztig varieties He [Geometric and
cohomological properties of affine Deligne–Lusztig varieties, Ann. of Math. (2) 179
(2014), 367–404].

Introduction

0.1 Let W be a finite Weyl group and O be a conjugacy class of W . In [GP93] and [GP00],
Geck and Pfeiffer proved the following remarkable properties.

(1) For any w ∈ O, there exists a sequence of conjugations by simple reflections that reduces
w to a minimal length element in O, with the lengths of the elements in the sequence weakly
decreasing.

(2) If w and w′ are both of minimal length in O, then they are strongly conjugate.
Such properties play an important role in the study of finite Hecke algebras. They lead to the

definition and determination of ‘character tables’ for finite Hecke algebras, analogous to character
tables for finite groups. They also play a role in the study of Deligne–Lusztig varieties (see, for
example, [OR08], [BR08], and [HL12]) and in the study of links between conjugacy classes in
finite Weyl groups and unipotent conjugacy classes in reductive groups (see [Lus11a]).

0.2 The main purpose of this paper is to study minimal length elements in a conjugacy class of
an (extended) affine Weyl group and to establish some remarkable properties. These properties
play an important role in the study of affine Hecke algebras and p-adic groups. We will discuss
some applications to affine Hecke algebras in § 0.4. These properties also play a key role in the
study of affine Deligne–Lusztig varieties, see [He14] and [GHN12].

The minimal length elements for some affine Weyl groups of classical types were first studied
by the first author in [He10] using a case-by-case analysis. The method we use here is quite
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different. We give a case-free proof that works for all cases, including the affine Weyl groups of
exceptional type, which seem very difficult using the approach in [He10]. The present method is
based on three main ingredients:

(1) the ‘partial conjugation’ method introduced in [He07];

(2) the geometric interpretation of the length function in terms of alcoves and Weyl chambers
introduced in [HN12];

(3) straight conjugacy classes and Newton points.

The first two ingredients were also used by the authors in [HN12] to provide a case-free proof
of the remarkable properties mentioned in § 0.1 for finite Weyl groups.

The third ingredient is a new feature for affine Weyl groups. Not only is it a crucial ingredient
that allows us to pass from the finite Weyl groups to affine Weyl groups; it also has independent
interest. We will discuss this in more detail below.

0.3 For simplicity, we only consider (unextended) affine Weyl groups and (untwisted) conjugacy
classes in the introduction. However, we will also cover the general case in this paper.

Let P+
Q be the set of dominant rational coweights. To each element x in the affine Weyl

group W , we may associate the dominant Newton point ν̄x ∈ P+
Q (see § 3.4). We call an element

x straight if `(x) = 〈ν̄x, 2ρ〉, where ρ is the sum of fundamental weights. This is equivalent to
saying that `(xn) = n`(x) for all n > 0. A conjugacy class is called straight if it contains a straight
element. The minimal length elements in a straight conjugacy class are just the straight elements
it contains. The notion of straight element/conjugacy class was first introduced by Krammer in
[Kra09] to study the conjugacy problem.

The first author observed in [He10] that the straight conjugacy classes have a geometric
meaning: there is a natural bijection between the set of Frobenius-twisted conjugacy classes of
a p-adic group and the set of straight conjugacy classes of the corresponding affine Weyl group
W . There is no known counterpart for finite Weyl groups.

We prove the following.

Theorem A (Theorem 2.9 and Theorem 3.8). Let W be an affine Weyl group and O be a
conjugacy class of W . Then we have the following.

(1) For any w ∈ O, there exists a sequence of conjugations by simple reflections that reduces
w to a minimal length element in O, with the lengths of the elements in the sequence weakly
decreasing.

(2) If w and w′ are both of minimal length in O, then they are strongly conjugate.
(3) If, moreover, O is straight, then any two minimal length elements are conjugate by ‘cyclic

shifts’.

Theorem B (Theorem 3.3 and Theorem 3.4). Let W be an affine Weyl group. Then we have
the following.

(1) The map f : W → P+
Q , x 7→ ν̄x is constant on each conjugacy class of W .

(2) The map f induces a bijection from the set of straight conjugacy classes of W to f(W ).
(3) Any conjugacy class O of W can be ‘reduced’ to the unique straight conjugacy class in

the fiber of f(O) in the sense of Theorem 3.4.

The statement of Theorem 3.4 is technical and we do not include it here. We would like
to point out that in fact Theorem B implies Theorem A. Moreover, Theorem B is a crucial
ingredient in the study of affine Deligne–Lusztig varieties in [He14]. Theorem A is not enough
for this purpose.
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0.4 Now we discuss some applications to affine Hecke algebras.
The affine Hecke algebra H is a free Z[q, q−1]-module with basis Tw for w ranges over elements

in W . By the density theorem and the trace Paley–Wiener theorem [Kaz86], if q is a power of
a prime, then the trace function gives a natural bijection from the dual space of the cocenter
H/[H,H] to the space of the Grothendieck group of representations of H.

We prove the following.

Theorem C (Corollary 5.2 and Theorem 6.7). (1) Let O be a conjugacy class of W and wO be
a minimal length representative. Then the image of TwO in the cocenter H does not depend on
the choice of a minimal length representative wO. We denote the image by TO.

(2) The set {TO}, where O ranges over all the conjugacy classes of W , is a basis of the
cocenter H/[H,H].

Here part (1) and the fact that {TO} spans the cocenter follow from the special properties
for W discussed above, and the fact that {TO} is a linearly independent set follows from the
density theorem for affine Weyl groups, which will be proved in § 6.

As a consequence, we have the following.

Theorem D (Theorem 5.3). For any w ∈ W , the image of Tw in the cocenter of H is a linear
combination of TO and the coefficients are the ‘class polynomials’ fw,O.

It is worth mentioning that the class polynomials are closely related to the affine Deligne–
Lusztig varieties [He14, Theorem 6.1 and Proposition 8.3].

1. Preliminary

1.1 Let S be a finite set and (mst)s,t∈S be a matrix with entries in N ∪ {∞} such that mss = 1
and mst = mts > 2 for all s 6= t. Let W be a group generated by S with relations (st)mst = 1 for
s, t ∈ S with ms,t <∞. We say that (W,S) is a Coxeter group. Sometimes we just call W itself
a Coxeter group.

Let Aut(W,S) be the group of automorphisms of the group W that preserve S. Let Ω be
a group with a group homomorphism to Aut(W,S). Set W̃ = W o Ω. Then an element in W̃
is of the form wδ for some w ∈ W and δ ∈ Ω. We have that (wδ)(w′δ′) = wδ(w′)δδ′ ∈ W̃ with
δ, δ′ ∈ Ω. Since we are mainly interested in the action of Ω on W , we may assume without loss
of generality that Ω is finite.

For w ∈ W and δ ∈ Ω, we set `(wδ) = `(w), where `(w) is the length of w in the Coxeter
group (W,S). Thus Ω consists of length 0 elements in W̃ . We sometimes call the elements in Ω
basic elements in W̃ .

We are mainly interested in the W -conjugacy classes in W̃ . By [GKP00, Remark 2.1], for
any δ ∈ Ω, the map W → W̃ , w 7→ wδ gives a bijection between the δ-conjugacy classes in W
and the W -conjugacy classes in W̃ that are contained in Wδ.

1.2 For w,w′ ∈ W̃ and s ∈ S, we write w
s−→ w′ if w′ = sws and `(w′) 6 `(w). We write w → w′

if there is a sequence w = w0, w1, . . . , wn = w′ of elements in W̃ such that for any k, wk−1
s−→ wk

for some s ∈ S.
We write w ≈ w′ if w → w′ and w′ → w. In this case, we say that w and w′ are conjugate

by ‘cyclic shifts’. It is easy to see that w ≈ w′ if w → w′ and `(w) = `(w′).
We call w̃, w̃′ ∈ W̃ elementarily strongly conjugate if `(w̃) = `(w̃′) and there exists x ∈ W

such that w̃′ = xw̃x−1 and `(xw̃) = `(x) + `(w̃) or `(w̃x−1) = `(x) + `(w̃). We call w̃, w̃′ strongly

1905

https://doi.org/10.1112/S0010437X14007349 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007349


X. He and S. Nie

conjugate if there is a sequence w̃ = w̃0, w̃1, . . . , w̃n = w̃′ such that for each i, w̃i−1 is elementarily
strongly conjugate to w̃i. We write w̃ ∼ w̃′ if w̃ and w̃′ are strongly conjugate. We write w̃∼̃w̃′
if w̃ ∼ δw̃′δ−1 for some δ ∈ Ω.

The following result is proved in [GP93], [GKP00] and [He07] via a case-by-case analysis
with the aid of computer for exceptional type. A case-free proof which does not rely on computer
calculation was recently obtained in [HN12].

Theorem 1.1. Assume that W is a finite Coxeter group. Let O be a conjugacy class in W̃ and
Omin be the set of minimal length elements in O. Then we have the following:

(1) for each w ∈ O, there exists w′ ∈ Omin such that w → w′;

(2) let w,w′ ∈ Omin, then w ∼ w′.
The main purpose of this paper is to extend the above theorem to the cases of affine Weyl

groups and to discuss its application to affine Hecke algebras. To do this, we first recall some
basic facts on affine Weyl groups and Bruhat–Tits building.

1.3 Let Φ be a reduced root system and W0 the corresponding finite Weyl group. Then (W0, S0)
is a Coxeter group, where S0 is the set of simple reflections in W0.

Let Q be the coroot lattice spanned by Φ∨ and

W = QoW0 = {tχw;χ ∈ Q,w ∈W0}

be the affine Weyl group. The multiplication is given by the formula (tχw)(tχ
′
w′) = tχ+wχ′ww′.

Moreover, (W,S) is a Coxeter group, where S ⊃ S0 is the set of simple reflections in W .
The length function on W is given by the following formula (see [IM65]):

`(tχw) =
∑

α,w−1(α)∈Φ+

|〈χ, α〉|+
∑

α∈Φ+,w−1(α)∈Φ−
|〈χ, α〉 − 1|.

1.4 Let V = Q ⊗Z R. Then we have a natural action of W̃ on V . For x, y ∈ V , define (x, y) =∑
α∈Φ〈x, α〉〈y, α〉. Then by [Bou02, ch. VI, § 1, no.1, Proposition 3], ( , ) is a positive-definite

symmetric bilinear form on V invariant under W . We define the norm ‖ · ‖ : V → R by ‖x‖ =√
(x, x) for x ∈ V .

For α ∈ Φ and k ∈ Z, define Hα,k = {x ∈ V ; 〈x, α〉 = k}. Let H = {Hα,k; α ∈ Φ, k ∈ Z}. For
each hyperplane H ∈ H, let sH ∈ W be the orthogonal reflection with respect to H. Connected
components of V −⋃

H∈HH are called alcoves. We denote by Ā the closure of an alcove A. We
denote by ∆ the fundamental alcove, i.e. the alcove in the dominant chamber such that 0 ∈ ∆̄.

Let H ∈ H. If the interior HA = (H ∩ Ā)◦ ⊂ H ∩ Ā spans H, then we call H a wall of A and
HA a face of A.

For p 6= q ∈ V , we denote by L(p, q) ⊂ V the affine subspace spanned by p and q.
Let K ⊂ V be a convex subset. We call x ∈ K a regular point of K if, for any H ∈ H, x ∈ H

implies that K ⊂ H. It is clear that all the regular points of K form an open dense subset of K.

1.5 The action of W̃ on V sends hyperplanes in H to hyperplanes in H and thus induces an
action on the set of alcoves. It is known that the affine Weyl group W acts simply transitively
on the set of alcoves. For any alcove A, we denote by xA the unique element in W such that
xA∆ = A.

For any w̃ ∈ W̃ and alcove A, set w̃A = x−1
A w̃xA. Then any element in the W -conjugacy class

of w̃ is of the form w̃A for some alcove A.
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For any two alcoves A,A′, let H(A,A′) denote the set of hyperplanes in H separating them.

Then H ∈ H(∆, w̃∆) if and only if w̃−1α is a negative affine root, where α is the positive affine

root corresponding to H. In this case, `(sHw̃) < `(w̃). We also have that `(w̃) = ]H(∆, w̃∆).

2. Minimal length elements in affine Weyl groups

Unless otherwise stated, we write W0 for finite Weyl group and W for affine Weyl group in the

rest of this paper.

2.1 Similar to [HN12], we may view conjugation by a simple reflection in the following way.

Let A,A′ be two alcoves with a common face HA = HA′ , here H ∈ H. Let sH be the reflection

along H and set s = x−1
A sHxA. Then s ∈ S. Now

w̃A′ = (sHxA)−1w̃(sHxA) = sx−1
A w̃xAs = sw̃As

is obtained from w̃A by conjugating the simple reflection s. Similar to [HN12, Lemma 1.1], we

have the following criterion to check if `(w̃A′) > `(w̃A).

Lemma 2.1. We keep the notation as above. Define fw̃ : V → R by v 7→ ‖w̃(v)− v‖2. Let h be

a regular point in HA and v ∈ V such that (v, h − h′) = 0 for all h′ ∈ HA and h − εv ∈ A for

sufficient small ε > 0. Set

Dvfw̃(h) = lim
t→0

fw̃(h+ tv)− fw̃(h)

t
= 2(w̃(h)− h, w̃(v)− w̃(0)− v).

If `(w̃A′) = `(sw̃As) = `(w̃A) + 2, then Dvfw̃(h) > 0.

2.2 Let gradfw̃ denote the gradient of the function fw̃ on V ; that is, for any other vector field

X on V , we have Xfw̃ = (X, gradfw̃). Here we naturally identify V with the tangent space of

any point in V .

We will describe where the gradient vanishes. To do this, we introduce an affine subspace

Vw̃.

Notice that Ω is a finite subgroup of W̃ . For any w̃ ∈ W̃ , there exists n ∈ N such that

w̃n ∈ W . Hence there exists m ∈ N such that w̃mn = tλ for some λ ∈ Q. Set νw̃ = λ/mn ∈ V
and call it the Newton point of w̃. Then it is easy to see that νw̃ does not depend on the choice

of m and n. We set

Vw̃ = {v ∈ V ; w̃(v) = v + νw̃}.

Lemma 2.2. Let w̃ ∈ W̃ . Then Vw̃ ⊂ V is a nonempty affine subspace such that Vw̃ = w̃Vw̃ =

Vw̃ + νw̃.

Proof. Since w̃ is an affine transformation, for any p 6= q ∈ Vw̃, the affine line L(p, q) is also

contained in Vw̃. Thus Vw̃ is an affine subspace of V .

Now we prove that Vw̃ is nonempty. Assume w̃n = tnνw̃ for some n > 0. Let q ∈ V . Set

p = (1/n)
∑n−1

i=0 w̃
i(q). Then w̃(p)− p = (1/n)(w̃n(p)− p) = νw̃. In particular, Vw̃ 6= ∅.

For any x ∈ Vw̃, ‖w̃k(x) − w̃k−1(x)‖ = ‖w̃(x) − x‖ = ‖νw̃‖ and w̃n(x) − x = nνw̃. Hence

w̃k(x) = w̃k−1(x) + νw̃ for all k ∈ Z. In particular, w̃(x) = x+ νw̃ ∈ Vw̃. 2
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Lemma 2.3. Let w̃ ∈ W̃ . Then we have the following.
(1) For v ∈ V , gradfw̃(v) = 0 if and only if v ∈ Vw̃.
(2) Let Cw̃ : V ×R → V denote the integral curve of the vector field gradfw̃ with Cw̃(v, 0) = v

for all v ∈ V . Define
Lim : V → Vw̃, v 7→ lim

t→−∞
Cw̃(v, t) ∈ Vw̃.

Then Lim : V → Vw̃ is a trivial vector bundle over Vw̃.

Proof. (1) Let p ∈ Vw̃. Set Tp : V → V by v 7→ v+p. Define w̃p = T−1
p ◦w̃◦Tp and Vw̃p = T−1

p Vw̃ =

{v ∈ V ; w̃p(v) = v + νw̃}. Then Vw̃p ⊂ V is a linear subspace. Let V ⊥w̃p
= {v ∈ V ; (v, Vw̃p) = 0}

be its orthogonal complement.
Then w̃p(x+ y) = w̃p(x) + w̃p(y)− w̃p(0) = x+ w̃p(y) for any x ∈ Vw̃p and y ∈ V ⊥w̃p

. Since w̃p
is an isometry on V , we have that

‖x‖2 + ‖y‖2 = ‖x+ y‖2 = ‖w̃p(x+ y)− w̃p(0)‖2
= ‖x‖2 + ‖w̃p(y)− w̃p(0)‖2 + 2(x, w̃p(y)− w̃p(0)).

In particular, (x, w̃p(y)− w̃p(0)) = 0 for all x ∈ Vw̃p and y ∈ V ⊥w̃p
. Hence w̃p(y)− w̃p(0) ∈ V ⊥w̃p

for all y ∈ V ⊥w̃p
. Let M : V ⊥w̃p

→ V ⊥w̃p
be the linear transformation defined by y 7→ w̃p(y)−w̃p(0)−y.

By definition, kerM ⊂ Vw̃p ∩ V ⊥w̃p
= {0} for w̃p(0) = νw̃. Hence M is invertible.

For x ∈ Vw̃p and y ∈ V ⊥w̃p
,

fw̃p(x+ y) = ‖w̃p(x+ y)− (x+ y)‖2 = ‖M(y)‖2 + ‖w̃p(0)‖2
= (y, tMM(y)) + ‖νw̃‖2,

where tM is the transpose ofM with respect to the inner product ( , ) on V . Thus gradfw̃p(x+y) =
2tMM(y) ∈ V ⊥w̃p

. Hence gradfw̃p which vanishes exactly on Vw̃p .

Notice that fw̃p = fw̃ ◦ Tp and Tp is an isometry. We have that gradfw̃(v) = gradfw̃p(v − p)
for any v ∈ V . Hence gradfw̃ vanishes exactly on Vw̃.

(2) The integral curve of gradfw̃p can be written explicitly as Cw̃p(x + y, t) = x +
exp(2ttMM)(y) for any x ∈ Vw̃p and y ∈ V ⊥w̃p

. Hence the integral curve Cw̃(t, v) of gradfw̃ is

given by Cw̃(x+ y, t) = x+ exp(2ttMM)(y) for x ∈ Vw̃ and y ∈ V ⊥w̃p
. Since tMM is self-adjoint

with positive eigenvalues, limt→−∞ exp(2ttMM) = 0. Hence Lim(x+ y) = x for any x ∈ Vw̃ and
y ∈ V ⊥w̃p

. Thus Lim is a trivial vector bundle over Vw̃. 2

Proposition 2.4. Let w̃ ∈ W̃ and A be an alcove. Then there exists an alcove A′ such that Ā′

contains a regular point of Vw̃ and w̃A → w̃A′ .

Remark 1. The proof is similar to [HN12, Proposition 1.2]. The difference is that we consider
here Dw̃ = {v ∈ V ; v /∈ Cw̃(V >2,R) ∪ Lim−1(V >1

w̃ )}, where V >1
w̃ ⊂ Vw̃ is the complement of the

set of regular points of Vw̃ and V >2 be the complement of all alcoves and faces in V . We omit
the details.

2.3 As a consequence, there exists a minimal length element in the conjugacy class of w̃ which
is of the form w̃A for some alcove A with Vw̃∩ Ā 6= ∅. However, not every minimal length element
is of this form. Now we give an example.

Let W be the affine group of type Ã2 with a set of simple reflections {s1 = sα1 , s2 = sα2 ,
s0 = tα

∨
1 +α∨2 s1s2s1}, where α1, α2 are the simple roots. The corresponding fundamental coweights
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are denoted by ω∨1 , ω
∨
2 respectively. Let δ ∈ AutW such that δ : s1 7→ s2, s2 7→ s1, s0 7→ s0. Let

w̃ = t2α
∨
1 +2α∨2 δ and A = tα

∨
1 s1s2∆. Then `(w̃) = `(w̃A) = 8 and w̃A is of minimal length in W · w̃.

Note that Vw̃ = {v ∈ V ; (v, α∨1 − α∨2 ) = 0}. The vertices (extremal points) of Ā are ω∨1 , ω∨1 − ω∨2
and 2ω∨1 − ω∨2 which all lie in the same connected component of V − Vw̃. Hence Vw̃ ∩ Ā = ∅.

2.4 Now we recall the ‘partial conjugation action’ introduced in [He07].

For J ⊂ S, we denote by WJ the standard parabolic subgroup of W generated by J and by
JW̃ the set of minimal coset representatives in WJ\W̃ .

For w̃ ∈ JW̃ , set

I(J, w̃) = max{K ⊂ J ; w̃(K) = K}.

The following result is proved in [He07, §2 and §3]. See also [He10, Theorem 2.1].

Theorem 2.5. Let J ⊂ S such that WJ is finite. We consider the (partial) conjugation action

of WJ on W̃ . Let O be an orbit. Then we have the following:

(1) there exists w̃ ∈ JW̃ , such that for any w̃′ ∈ O, there exists x ∈WI(J,w̃) such that w̃′ → xw̃;

(2) if w̃′, w̃′′ ∈ Omin, then w̃′ ∼ w̃′′.

2.5 We will show that w̃A′ appeared in Proposition 2.4 is of the form xy for some y ∈ JW̃ and

x ∈WI(J,w̃). To do this, we introduce some more notation.

Let K ⊂ V be a convex subset. Let HK = {H ∈ H;K ⊂ H} and WK ⊂ W be the subgroup

generated by sH with H ∈ HK . For any two alcoves A and A′, define HK(A,A′) = H(A,A′)∩HK .

Let A be an alcove. We set WK,A = x−1
A WKxA and I(K,A) = {sH ∈ S;K ⊂ xAH}. If Ā

contains a regular point of K, then WK,A = WI(K,A).

Lemma 2.6. Let w̃ ∈ W̃ and K ⊂ Vw̃ be an affine subspace with w̃(K) = K. Let A be an

alcove such that A and w̃A are in the same connected component C of V −⋃
H∈HK

H. Assume

furthermore that Ā contains an element v ∈ K such that for each H ∈ H, v, w̃(v) ∈ H implies

that K ⊂ H. Then

`(w̃A) = ]H(A, w̃A) = 〈ν̄w̃, 2ρ〉.

Here ρ is the half sum of the positive roots in Φ and ν̄w̃ is the unique dominant element in the

W0-orbit of νw̃.

Proof. By our assumption, w̃ fixes C. Hence H(w̃iA, w̃jA) ⊂ H−HK for any i, j ∈ Z. Since v ∈ Ā
and w̃(v) ∈ w̃Ā, any H ∈ H(A, w̃A) intersects with the closed interval [v, w̃(v)] at a single point.

If νw̃ = 0, then w̃(v) = v. For any H ∈ H(A, w̃A), we have v ∈ H, hence H ∈ HK . That is a

contradiction. Hence H(A, w̃A) = ∅ and `(w̃A) = 〈ν̄w̃, 2ρ〉 = 0.

Now we assume νw̃ 6= 0. Set vi = w̃i(v) = v + iνw̃ ∈ K for i ∈ Z. Then all the vi span an

affine line L. We prove the following.

(a) If i < j, then H(w̃i−1A, w̃iA) ∩ H(w̃j−1A, w̃jA) = ∅.

Let H ∈ H(w̃i−1A, w̃iA)∩H(w̃j−1A, w̃jA). Then H ∩L = H ∩ [vi−1, vi]∩ [vj−1, vj ] 6= ∅. Thus

i = j − 1 and vi ∈ H. Hence H ∈ H(w̃i−1A, w̃jA). Therefore w̃iA and w̃jA are in the same

connected component of V −H, that is, H /∈ H(w̃j−1A, w̃jA). Hence (a) is proved.

Now we prove the following.

(b) For i < j, H(w̃iA, w̃jA) =
⋃j
k=i+1 H(w̃k−1A, w̃kA).
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If H /∈ ⋃j
k=i+1 H(w̃k−1A, w̃kA), then w̃iA, w̃i+1A, . . . , w̃jA are all in the same connected

component of V −H. Thus H /∈ H(w̃iA, w̃jA).
Let H ∈ H(w̃r−1A, w̃rA) for some i < r 6 j. Then H∩L = H∩ [vr−1, vr] = {e}. If e /∈ {vi, vj},

then H ∈ H(w̃iA, w̃jA). If e = vj , then H ∈ H(w̃j−1A, w̃jA) and vj−1 and vi are in the same
connected component of V −H. Hence w̃iA and w̃j−1A are in the same connected component of
V −H, while w̃j−1A and w̃jA are in different connected components of V −H. Hence H ∈ H(w̃iA,
w̃jA). If e = vi, by a similar argument we have that H ∈ H(w̃iA, w̃jA).

Let n ∈ Z such that w̃n = tnνw̃ . Then by (a) and (b), we have that

n]H(A, w̃A) =
n−1∑
i=0

]H(w̃iA, w̃i+1A) = ]H(A, w̃nA) = ]H(A, tnνw̃A).

Hence `(w̃A) = 〈ν̄w̃, 2ρ〉. 2

Proposition 2.7. Let w̃ ∈ W̃ and K ⊂ Vw̃ be an affine subspace with w̃(K) = K . Let A be
an alcove such that Ā contains a regular point v of K. Then w̃A = uw̃K,A for some u ∈WI(K,A)

and w̃K,A ∈ I(K,A)W̃ I(K,A) with `(u) = ]HK(A, w̃A), w̃K,A(I(K,A)) = I(K,A) and `(w̃K,A) =
〈νw̃, 2ρ〉.

Proof. We may assume that A is the fundamental alcove ∆ by replacing w̃ by w̃A. We simply
write I for I(K,∆).

We have that w̃ = u′w̃′u′′ for some u′, u′′ ∈WI and w̃′ ∈ IW̃ I . Since w̃K = K, then w̃(HK) =
HK and w̃WIw̃

−1 = WI . Hence w̃′WI(w̃
′)−1 = WI and w̃′(I) = I.

Let C be the connected component of V −⋃H∈HK
H that contains ∆. We claim that w̃′(∆) ⊂

C. Otherwise, there exists H ∈ HK separating ∆ and w̃′(∆). Hence `(sHw̃
′) < `(w̃′). This

contradicts our assumption that w̃′ ∈ IW̃ . Hence `(u) = ]HK(∆, w̃∆) and HK(∆, w̃′(∆)) = ∅.
Since WI is a finite group and the conjugation by w̃ is a group automorphism on WK , there

exists n > 0 such that

(w̃′)nw̃−n = u−1(w̃u−1w̃−1) · · · (w̃n−1u−1w̃−n+1) = 1.

Hence (w̃′)n = w̃n and there exists m > 0 such that mnνw̃ ∈ Q and (w̃′)mn = w̃mn = tmnνw̃ .
Note that v and w̃(v) = w̃′(v) = v + νw̃ are regular points in K. Applying Lemma 2.6, we

have `(w̃′) = 〈ν̄w̃′ , 2ρ〉 = 〈ν̄w̃, 2ρ〉. 2

Corollary 2.8. Let w̃ ∈ W̃ be of minimal length in its conjugacy class. Then w̃ is of finite
order if and only if w̃ ∈ WJ o 〈δ〉 for some proper subset J of S and δ ∈ Ω with δ(J) = J such
that the corresponding parabolic subgroup WJ is finite.

Proof. The ‘if’ part is clear.
Now assume that w̃ is of finite order. Let K = Vw̃. By Proposition 2.4 and 2.7, there exists

an alcove A such that w̃ ≈ w̃A and w̃A = uw̃K,A for some u ∈ WI(K,A) and w̃K,A ∈ I(K,A)W
with w̃K,A(I(K,A)) = I(K,A) and `(w̃K,A) = 〈νw̃, 2ρ〉. Since w̃ is of finite order, νw̃ = 0 and
`(w̃K,A) = 0. So w̃K,A ∈ Ω.

By definition, I(K,A) is a subset of S such that WI(K,A) is finite. We have that w̃A ∈
WI(K,A)w̃K,A and w̃ ≈ w̃A. Hence w̃ ∈WI(K,A)w̃K,A. 2

Now we may prove the main result of this section, generalizing § 0.1(1) and § 0.1(2) to affine
Weyl groups.
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Theorem 2.9. Let O be a W -conjugacy class in W̃ and Omin be the set of minimal length
elements in O. Then we have the following:

(1) for each element w̃′ ∈ O, there exists w̃′′ ∈ Omin such that w̃′ → w̃′′;

(2) let w̃′, w̃′′ ∈ Omin, then w̃′ ∼ w̃′′.

Proof. (1) We fix an element w̃ of O. Set K = Vw̃. Then any element in O is of the form w̃A′ for
some alcove A′. By Proposition 2.4, w̃A′ → w̃A for some alcove A such that Ā contains a regular
point of K.

If C is a connected component of V −⋃
H∈HK

H, then w̃(C) is also a connected component
of V − ⋃

H∈HK
H. We denote by `(C) the number of hyperplanes in HK that separate C and

w̃(C). By definition, if C is the connected component that contains A, then `(C) = ]HK(A, w̃A).
Now by Proposition 2.7, `(w̃A) = `(C) + 〈ν̄w̃, 2ρ〉.

Let C0 be a connected component of V −⋃
H∈HK

H such that `(C0) is minimal among all the
connected components of V −⋃

H∈HK
H. Then `(w̃A′) > `(w̃A) > `(C0) + 〈ν̄w̃, 2ρ〉. In particular,

let A0 be the alcove in C0 such that A0 = uA for some u ∈WK , then Ā0 contains a regular point
of K and w̃A0 ∈ Omin.

We have that w̃A0 = u′w̃A(u′)−1 for some u′ ∈WK,A and w̃A0 is a minimal length element in
the WK,A-conjugacy class O′ = {xw̃Ax−1;x ∈ WK,A} ⊂ O. Hence, by Theorem 2.5, there exists
w̃′′ ∈ O′min such that w̃A′ → w̃A → w̃′′ ∼ w̃A0 . Since w̃A0 ∈ Omin, w̃′′ ∈ Omin. Part (1) is proved.

(2) Let w̃′ ∈ Omin. We have showed that there exists an alcove A′0 ⊂ C0 such that Ā′0 contains
a regular point of K and w̃′ ∼ w̃A′0 . Now it suffices to prove that w̃A0 ∼ w̃A′0 .

Let AC0 be the set of all alcoves in C0 whose closures contain regular points of K. Then⋃
A∈AC0

Ā ⊃ K. Hence there exists a finite sequence of alcoves A = A0, . . . , Ar = A′0 ∈ AC0 such

that Ki = Āi∩ Āi+1∩K 6= ∅ for all 0 6 i < r. Then there exists ui ∈WKi such that Ai+1 = uiAi.
Hence w̃Ai+1 = u′iw̃Ai(u

′
i)
−1 for some u′i ∈WKi,Ai . Notice that w̃Ai+1 and w̃Ai are minimal length

elements in {xw̃Aix
−1;x ∈ WKi,Ai}. (Actually by the proof of (1), they are of minimal lengths

in O.) Thus by Theorem 2.5, w̃Ai+1 ∼ w̃Ai . Therefore w̃A0 ∼ w̃A′0 . 2

As a consequence, we have a similar result for any conjugacy class of W̃ , which is a union of
W -conjugacy classes.

Corollary 2.10. Let O be a conjugacy class of W̃ and Omin be the set of minimal length
elements in O. Then we have the following:

(1) for each element w̃′ ∈ O, there exists w̃′′ ∈ Omin such that w̃′ → w̃′′;

(2) let w̃′, w̃′′ ∈ Omin, then w̃′∼̃w̃′′.

3. Straight conjugacy class

3.1 Following [Kra09], we call an element w̃ ∈ W̃ a straight element if, for any m ∈ N, `(w̃m) =
m`(w̃). We call a conjugacy class straight if it contains some straight element. It is easy to see
that w̃ is straight if and only if `(w̃) = 〈ν̄w̃, 2ρ〉 (see [He10]).

By definition, any basic element of W̃ is straight. Also tλ is also straight with λ ∈ Q. In
Proposition 3.1, we will give some nontrivial examples of straight elements.

3.2 We follow [Spr74, 7.3]. Let δ ∈ Ω. For each δ-orbit in S, we pick a simple reflection. Let g
be the product of these simple reflections (in any order) and put c = (g, δ) ∈ W o 〈δ〉. We call
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c a twisted Coxeter element of W̃ . The following result will be used in forthcoming work by He
and Wedhorn in the study of basic locus of Shimura varieties.

Proposition 3.1. Let c be a twisted Coxeter element of W̃ . Then c is a straight element.

Remark 2. The case where δ = 1 (for any Coxeter group of infinite order) was first obtained by
Speyer in [Spe09]. Our method here is different from that given by Speyer.

Proof. Assume that c ∈Wδ for δ ∈ Ω. By Propositions 2.4 and 2.7, c → ux for some I ⊂ S with
WI finite, u ∈ WI , and a straight element x with x(I) = I. It is easy to see that ux is also a
twisted Coxeter element and c ≈ ux. In particular, x = wδ for some w ∈ WS−I . For any s ∈ I,
wδ(s)w−1 ∈ I. Hence δ(s) ∈ I and commutes with w. So δ(I) = I and δ(S − I) = S − I. Since
ux is a twisted Coxeter element of W̃ , x = wδ is a twisted Coxeter element of WS−I o 〈δ〉. On
the other hand, w commutes with any element in I. Thus I is a union of connected components
of the Dynkin diagram of S. Hence I = ∅ since WI is finite. So u = 1 and c ≈ x is also a straight
element. 2

3.3 We will give some algebraic and geometric criteria for straight conjugacy classes. In order
to do this, we first make a short digression and discuss another description of W̃ .

Let G be a connected complex reductive algebraic group and T ⊂ G be a maximal torus
of G. Let W0 be the finite Weyl group of G and S0 the set of simple roots. We denote by Q
(respectively P ) the coroot lattice (respectively coweight lattice) of T in G. Then WG = QoW0

is an affine Weyl group in 1.3. Set W̃G = P oW0. For the group Ω′ of diagram automorphisms
of S0 that induces an action on G, we set W̃G,Ω′ = W̃G o Ω′. Then W̃G,Ω′ = WG o Ω for
some Ω ⊂ Aut(WG, S) with Ω(S) = S. It is easy to check that for any affine Weyl group W ,
W o Aut(W,S) = W̃G,Ω′ . Here G is the corresponding semisimple group of adjoint type and Ω′

is the group of diagram automorphisms on S0.
For any J ⊂ S0, set Ω′J = {δ ∈ Ω′; δ(J) = J} and

W̃J = (P oWJ) oΩ′J .

We call an element in W̃J basic if it is of length 0 with respect to the length function on W̃J .
In the rest of this section, we assume that W = WG and W̃ = W̃G,Ω′ unless otherwise stated.

Proposition 3.2. Let O be a WG-conjugacy class of W̃ . Then the following conditions are
equivalent:

(1) O is straight;

(2) for some (or, equivalently, any) w̃ ∈ O, Vw̃ * H for any H ∈ H;

(3) O contains a basic element of W̃J for some J ⊂ S0.

In this case, there exist a basic element x in W̃JO and y ∈ W JO
0 such that νx = νO and

yxy−1 ∈ Omin. Here νO = ν̄w̃ for some (or, equivalently, any) w̃ ∈ O and JO = {i ∈ S0;
〈νO, αi〉 = 0}.

Proof. (1) ⇔ (2). By Proposition 2.4 and Proposition 2.7, there is an alcove A such that Ā
contains a regular point of Vw̃ and w̃A ∈ Omin. Moreover `(w̃A) = 〈ν̄w̃, 2ρ〉+ ]HVw̃(A, w̃A).

If HVw̃ = ∅, then HVw̃(A, w̃A) = ∅. Hence `(w̃A) = 〈ν̄w̃, 2ρ〉 and w̃A ∈ O is a straight element.
If O is straight, then ]HVw̃(A, w̃A) = 0, that is, w̃ fixes the connected component C of

V −⋃
H∈HVw̃

H containing A. Choose v ∈ C and set y = (1/n)
∑n−1

k=0 w̃
k(v), where n ∈ N with

w̃n = tnνw̃ . Since C is convex, we have y ∈ C ∩ Vw̃, which forces HVw̃ to be empty.
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(3)⇒ (2). Denote by ΦJ ⊂ Φ the set of roots spanned by αi for i ∈ J . Assume w̃ = tχwδ′ ∈ O
is a basic element in W̃J . Then it is a straight element in W̃J . By condition (2) for W̃J , Vw̃ *Hα,k

for any α ∈ ΦJ and k ∈ Z.
Let µ ∈ V with

〈µ, αi〉 =

{
0 if i ∈ J,
1 if i ∈ S0 − J.

Since δ′(J) = J , then δ′(µ) = µ. Hence wδ′(µ) = µ and Rµ + Vw̃ = Vw̃. Therefore 〈Vw̃, α〉 = R
for any α ∈ Φ− ΦJ . Thus Vw̃ * Hα,k ∈ H with α ∈ Φ− ΦJ and k ∈ Z.

(1) ⇒ (3). By Proposition 2.7 and condition (2) there exists w̃ ∈ Omin such that ∆ contains
a regular point e of Vw̃. Let y ∈ W JO

0 with νO = y−1(νw̃). Set x = y−1w̃y. Then νx = νO is
dominant.

Assume that x = tχwδ′ ∈ O with χ ∈ P , w ∈ W0 and δ′ ∈ Ω′. Let n ∈ N with xn = tnνO .
Then

tnνO+χwδ′ = tnνOx = xtnνO = twδ
′(νO)+χwδ′.

Thus νO = wδ′(νO) is the unique dominant element in W0 · δ′(νO). Hence δ′(νO) = νO and
wνO = νO. Therefore w ∈WJO and δ′(JO) = JO. Hence x ∈ W̃JO .

Let C be the connected component of V −⋃
k

⋃
α∈ΦJ

Hα,k that contains ∆. Since y ∈W JO
0 ,

for any α ∈ Φ+
JO

, yα ∈ Φ+ and 0 < (y−1(e), α) = (e, y(α)) < 1. Hence y−1(e) ∈ C. Moreover,

xy−1(e) = y−1w̃(e) = y−1(e+ νw̃) = y−1(e) + νO.

Since 〈νO, α〉 = 0 for all α ∈ ΦJ , we have y−1(e) and y−1(e) + νO are contained in the same
connected component of V − ⋃

k

⋃
α∈ΦJ

Hα,k. Hence C 3 y−1(e) and xC 3 xy−1(e) are the
same connected component of V −⋃

k

⋃
α∈ΦJ

Hα,k. Thus there is no hyperplane of the form Hα,k

with α ∈ ΦJ that separates C from xC. So x is a basic element in W̃J . 2

3.4 The next task of this section is to give a parametrization of straight conjugacy classes. Such
parametrization coincides with the set of σ-conjugacy classes of p-adic groups [He14].

Let P+ be the set of dominant coweights of G and

P+
Q = {λ ∈ P ⊗Z Q; 〈λ, α〉 > 0 for all α ∈ Φ+} ⊂ V.

Then we may identify P+
Q with (P ⊗Z Q)/W0. For any λ ∈ P ⊗Z Q, we denote by λ̄ the unique

element in P+
Q that lies in the W0-orbit of λ. The group Ω′ acts naturally on P+

Q and on

W̃G/WG
∼= P/Q. Let δ′ ∈ Ω′.

For x ∈ W̃Gδ
′, we call ν̄x the dominant Newton point of x. The map x 7→ (xδ′−1WG, ν̄x)

induces a natural map
fδ′ : W̃Gδ

′
→ (P/Q)δ′ × P+

Q .

Here W̃Gδ
′ ∈ W̃G\W̃ is a right W̃G-coset containing δ′ and (P/Q)δ′ is the δ′-coinvariants of P/Q.

We denote the image by B(W̃G, δ
′).

Theorem 3.3. The map fδ′ induces a bijection between the straight W̃G-conjugacy classes of
W̃Gδ

′ and B(W̃G, δ
′).

Proof. We first show that the following holds.

(a) The map fδ′ is constant on each W̃G-conjugacy class.
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Let w̃ = tχwδ′ ∈ W̃ and ũ = tλu ∈ W̃G, where χ, λ ∈ P and w, u ∈ W0. Then ũw̃ũ−1 =
tλ+uχ−(uwδ′u−1(δ′)−1)δ′λ(uwδ′u′). Notice that for any x ∈ W0 and µ ∈ P , xµ − µ ∈ Q. Hence
tλ+uχ−(uwδ′u−1(δ′)−1)δ′λ ∈ tλ+χ−δ′(λ)WG and

ũw̃ũ−1 ∈ tλ+χ−δ′(λ)WG(uwδ′u′(δ′)−1)δ′ = tλ+u−δ′(λ)δ′WG.

Hence the images of ũw̃ũ−1 and w̃ in (P/Q)δ′ are the same. Assume that n ∈ N and w̃n = tnνw̃ .
Then (ũw̃ũ−1)n = ũtnνw̃ ũ−1 = tλtunνw̃t−λ = tunνw̃ . Therefore νũw̃ũ−1 = u(νw̃) and ν̄ũw̃ũ−1 = ν̄w̃.

Result (a) is proved.
Moreover, tnνw̃ = w̃tnνw̃w̃−1 = tχtwnδ

′(νw̃)t−χ = twnδ
′(νw̃). Thus νw̃ = wδ′(νw̃). Hence:

(b) ν̄w̃ = δ′(ν̄w̃) for all w̃ ∈ W̃Gδ
′.

By Proposition 2.4 and 2.7, for any w̃ ∈ W̃ , w̃ → uw̃I for some I ⊂ S with WI finite,
u ∈ WI , and a straight element w̃I with w̃I(I) = I. By the proof of [He10, Proposition 2.2],
fδ′(w̃) = fδ′(uw̃I) = fδ′(w̃I). So fδ′ is surjective.

Now we prove that fδ′ is injective.
Let w̃, w̃′ ∈ W̃Gδ

′ with fδ′(w̃) = fδ′(w̃
′). Assume w̃ = tλwδ′ and w̃′ = tλ

′
w′δ′ for some

λ, λ′ ∈ P , w,w′ ∈ WG. Then after conjugating by a suitable element of W̃G, we can assume
further that w̃WG = w̃′WG.

Let J = {i ∈ S0; 〈ν̄w̃, αi〉 = 0}. By (b), ν̄w̃ = δ′(ν̄w̃). Then δ′(J) = J . By Proposition 3.2, after
conjugating by some elements in WG, we may assume that w̃, w̃′ ∈ W̃J and ν = νw̃ = νw̃′ ∈ P+

Q .
Let J ′ = S0 − J and QJ , QJ ′ be the sublattices of Q spanned by simple roots of J and J ′

respectively. Then
V = P ⊗Z R = QJ ⊗Z R⊕QJ ′ ⊗Z R.

We may write λ and λ′ as λ = aJ + aJ ′ and λ′ = a′J + a′J ′ with aJ , a
′
J ∈ QJ ⊗Z R and

aJ ′ , a
′
J ′ ∈ QJ ′ ⊗Z R. Since λ− λ′ ∈ Q, then aJ − a′J ∈ QJ and aJ ′ − a′J ′ ∈ QJ ′ .

Choose n ∈ N such that (wδ′)n = (w′δ′)n = 1. Then

ν =
1

n

n−1∑
k=0

(wδ′)k(λ) ∈ 1

n

n−1∑
k=0

(δ′)k(aJ ′) +QJ ⊗Z Q.

Similarly,

ν ∈ 1

n

n−1∑
k=0

(δ′)k(a′J ′) +QJ ⊗Z Q.

Hence
n−1∑
k=0

(δ′)k(aJ ′ − a′J ′) = 0.

Since aJ ′−a′J ′ ∈ QJ ′ , then aJ ′−a′J ′ = θ−δ′(θ) for some θ ∈ QJ ′ . Let w̃′′ = tθw̃′t−θ. By condition
(2) of Theorem 3.2, w̃′ and w̃′′ are conjugate to basic elements in W̃J by elements in QJ oWJ .
Moreover, λ ∈ λ′ + θ − δ′(θ) +QJ and (QJ oWJ)w̃ = (QJ oWJ)w̃′′ ∈ (QJ oWJ)\W̃J . Thus w̃
and w̃′′ are conjugate to the same basic element of W̃J by an element in QJ oWJ and w̃ and w̃′

are in the same W̃G-conjugacy class. 2

Combining Proposition 2.4, Proposition 2.7 and the proof of Theorem 2.9, any W̃G-conjugacy
class of W̃Gδ

′ can be ‘reduced’ to the unique straight conjugacy class in the same fiber of fδ′ as
follows.
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Theorem 3.4. Let O be a W̃G-conjugacy class of W̃Gδ
′ and w̃ ∈ O. Then there exists w̃′ ∈ Omin

such that the following hold:

(1) w̃ → w̃′;

(2) there exists a straight element x ∈ W̃Gδ
′ with fδ′(x) = fδ′(w̃), a subset J of S with WJ

finite, x ∈ J(W̃Gδ
′) and x−1(J) = J , and an element u ∈WJ such that w̃′ = ux.

3.5 Let τ ∈ Ω. Conjugation by τ gives a permutation on the set of affine simple reflections S of

W . We say that τ is superbasic if each orbit is a union of connected components of the Dynkin

diagram of S.

In this case, any two vertices in the same connected components of S have the same numbers

of edges and thus S is a union of affine Dynkin diagrams of type Ã. Hence it is easy to see that

τ ∈ Ω is a superbasic element of W̃ if and only if W = Wm1
1 × · · · ×Wml

l , where Wi is an affine

Weyl group of type Ãni−1 and τ gives an order nimi permutation on Wmi
i .

3.6 We follow the notation in § 3.4. Let δ′ ∈Ω′. Then any fiber of the map fδ′ : W̃Gδ
′
→ (P/Q)δ′×

P+
Q is a union of W̃G-conjugacy classes. We call a W̃G-conjugacy class in W̃Gδ

′ superstraight if

it is a fiber of fδ′ . By Theorem 3.3, any fiber contains a straight W̃G-conjugacy class. Hence a

superstraight conjugacy class is in particular straight. Now we give a description of superstraight

W̃G-conjugacy classes which is analogous to Proposition 3.2.

Proposition 3.5. We keep the notation as in § 3.3. Let O be a W̃G-conjugacy class of W̃ . Then

the following are equivalent:

(1) The conjugacy class O is superstraight;

(2) for some (or, equivalently, any) w̃ ∈ O, H ∩ Vw̃ = ∅ for any H ∈ H(νw̃). Here H ∈ H(νw̃) =

{Hα,k ∈ H; 〈νw̃, α〉 = 0, k ∈ Z};
(3) there exists a superbasic element x in W̃JO and y ∈ W JO

G such that νx = νO and yxy−1 ∈
Omin.

Proof. We assume that O ⊂ W̃Gδ
′ for some δ′ ∈ Ω′.

(1) ⇒ (3). By Proposition 3.2, there exists a basic element x in W̃JO and y ∈ W JO
G such

that νx = νO and yxy−1 ∈ Omin. Assume that x is not superbasic in W̃JO . Then there exists an

x-orbit O such that C ∩O ( C for each connected component C of the Dynkin diagram W̃JO .

Note that C ∩ O ( C is the Dynkin diagram of a finite Weyl group. Hence WO is a finite

product of Weyl groups corresponding to C ∩ O and hence is finite. By the proof of [He10,

Proposition 2.2], fδ′(wx) = fδ′(x) for all w ∈WO. In particular, sjx and x are in the same fiber

of fδ′ for any j ∈ O.

However, `(sjx) ≡ `(x) + 1 mod 2. Thus sjx and x are not in the same conjugacy class. So

O is not superstraight.

(2)⇒ (1). Note that H ∈ H(νw̃) if Vw̃ ⊂ H ∈ H. Hence, by Proposition 3.2 (2), O is straight.

Let O′ be another W̃G-conjugacy class such that O′ and O are in the same fiber of fδ′ . By

Proposition 2.4 and Proposition 2.7, O′ contains an element of the form ux, where x is straight,

fδ′(ux) = fδ′(x) and u ∈WVux . By Theorem 3.3, x ∈ O. By the proof of [He10, Proposition 2.2],

νux = νx.

Let v ∈ Vux. By Lemma 2.2, ux(v) = v + νux = v + νx ∈ Vux. Since u ∈ WVux , x(v) =

u−1ux(v) = ux(v) = v + νx and v ∈ Vx. Thus Vux ⊂ Vx.
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Let H ∈ HVux ⊂ H(νx). Then, by our assumption, H ∩ Vux ⊂ H ∩ Vx = ∅, which forces
HVux = ∅. Hence WVux = {1} and u = 1. So O′ = O.

(3)⇒ (2). Let C be the unique connected component of V −⋃
H∈H(νO)H containing ∆. We

call H ∈ H(νO) a wall of C if H ∩ C̄ spans H. Let H(C) be the set of walls of C. Note that
xC = C for x is basic. Since C is convex, Vx ∩ C 6= ∅.

Suppose that Vx ∩H ′ 6= ∅ for some H ′ ∈ H(νO). Let p ∈ Vx ∩ H ′ and q ∈ Vx ∩ C. Then
the affine line L(p, q) ⊂ Vx intersects with the boundary ∂C̄ ⊂ ⋃

H∈H(C)H of C̄. Choose v ∈
L(p, q) ∩ ∂C̄. Then v ∈ H0 for some H0 ∈ H(C). Thus xm(v) = v + mνO ∈ xmH0 for m ∈ Z.
Notice that RνO +H = H for all H ∈ H(νO). Thus v ∈ xmH0 for all m ∈ Z. As x is superbasic,
the orbit O = {xiH0; i ∈ Z} is a union of connected components of the Dynkin diagram of
{sH ;H ∈ H(C)}. Hence v ∈ ⋂

H∈OH = ∅. That is a contradiction. 2

3.7 In the rest of this section, we will show that any two straight elements in the same conjugacy
class are conjugate by cyclic shift, which is analogous to § 0.1(3) for an elliptic conjugacy class
of a finite Coxeter group.

In order to do this, we use the following length formula. The proof is similar to [HN12,
Proposition 2.3] and is omitted here.

Proposition 3.6. Let w̃ ∈ W̃ and K ⊂ Vw̃ be an affine subspace with w̃(K) = K. Let A and A′

be two alcoves in the same connected component of V −⋃
H∈HK

H. Assume that Ā∩Ā′∩K spans
a codimension 1 subspace of K of the form H0 ∩K for some H0 ∈ H and w̃(H0 ∩K) 6= H0 ∩K.
Then

`(w̃A) = `(w̃A′) = 〈ν̄w̃, 2ρ〉+ ]HK(A, w̃A).

Lemma 3.7. Let w̃ ∈ W̃ . Let K ⊂ Vw̃ be an affine subspace such that w̃K = K. Let A and A′

be two alcoves such that Ā∩ Ā′ contains a regular point of K and w̃A, w̃A′ are straight elements.
Then w̃A = w̃A′ .

Proof. We may assume that A is the fundamental alcove ∆ by replacing w̃ by w̃A. We simply
write I for I(K,∆). By Proposition 2.7 and the straightness of w̃, w̃ ∈ IW̃ I and w̃(I) = I. Since
Ā′ ∩ ∆̄ contains a regular point of K, xA′ ∈WI . Thus

w̃A′ = x−1
A′ w̃xA′ = (x−1

A′ w̃xA′w̃
−1)w̃

and x−1
A′ w̃xA′w̃

−1 ∈WI . Therefore `(w̃A′) = `(w̃)+`(x−1
A′ w̃xA′w̃

−1). Since `(w̃A′) = `(w̃), we have
x−1
A′ w̃xA′w̃

−1 = 1 and w̃A′ = w̃. 2

Theorem 3.8. Let O be a straight W -conjugacy class of W̃ . Then for any w̃, w̃′ ∈ Omin, w̃ ≈ w̃′.

Proof. Let ũ ∈ O and K = Vũ. Then by Proposition 2.4 and Proposition 2.7, we may assume
that w̃ = ũA and w̃′ = ũA′ , where A and A′ are two alcoves whose closures contain regular points
of K. Let C be the connected component of V −⋃

H∈HK
H that contains A and let A′′ be the

unique alcove in C such that Ā′ ∩ Ā′′ contains a regular point of K. By Proposition 2.7, we have
ũA′′ ∈ Omin. By Lemma 3.7, we have that ũA′ = ũA′′ .

It remains to show that ũA ≈ ũA′′ . Assume A 6= A′′. Similar to the proof of [HN12, Lemma
2.4], there is a sequence of alcoves A = A0, A1, . . . , Ar = A′′ in C such that Ai contains a regular
point of K and Āi−1∩ Āi∩K spans a codimension one affine subspace Pi of K for i = 1, 2, . . . , r.
By Proposition 2.7, ũAi ∈ Omin for any i.

If ũPi = Pi, by Lemma 3.7, we have that ũAi−1 = ũAi . If ũ(Pi) 6= Pi, then there is a sequence
of alcoves Ai−1 = B0, B1, . . . , Bs = Ai in C such that Bk−1 and Bk share a common face
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and B̄k−1∩ B̄k∩K spans Pi for k = 1, . . . , s. By Proposition 3.6, we have that `(ũBk−1
) = `(ũBk

)
and ũBk−1

≈ ũBk
for k = 1, . . . , s. So ũAi−1 ≈ ũAi . Hence ũA ≈ ũA′′ . 2

4. Centralizer in W

4.1 Let (W,S) be a Coxeter group and Ω be a group with a group homomorphism to Aut(W,S).
Let W̃ = W oΩ. Let w̃ ∈ W̃ be a minimal length element in its conjugacy class. Let Pw̃ be the
set of sequences i = (s1, . . . , sr) of S such that

w̃
s1
→ s1w̃s1

s2
→ · · · sr→ sr · · · s1w̃s1 · · · sr.

We call such sequence a path form w̃ to sr · · · s1w̃s1 · · · sr. Denote by Pw̃,w̃ the set of all paths
from w̃ to itself. Let Ww̃ = {x ∈W ; `(x−1w̃x) = `(w̃)} and Z(w̃) = {x ∈W ;xw̃ = w̃x}.

There is a natural map

τw̃ : Pw̃ → Ww̃, (s1, . . . , sr) 7→ s1 · · · sr,

which induces a natural map τw̃,w̃ : Pw̃,w̃ → Z(w̃).
We call a W -conjugacy class O of W̃ nice if, for some (or, equivalently, any) w̃ ∈ Omin, the

map τw̃ : Pw̃ → Ww̃ is surjective. It is easy to see that O is nice if and only if properties (1) and
(2) below hold for O:

(1) for any w̃, w̃′ ∈ Omin, w̃ ≈ w̃′;
(2) for any w̃ ∈ Omin, the map τw̃,w̃ : Pw̃,w̃ → Z(w̃) is surjective.

The definition of nice conjugacy classes is inspired by a conjecture of Lusztig [Lus11b, 1.2]
that property (2) holds for elliptic conjugacy classes of a finite Weyl group.

4.2 For finite Weyl groups, nice conjugacy classes play an important role in the study of Deligne–
Lusztig varieties and representations of finite groups of Lie type. Property § 4.1(1) is a key
ingredient to prove that Deligne–Lusztig varieties corresponding to minimal length elements
in a nice conjugacy class are universally homeomorphic. Property § 4.1(2) leads to nontrivial
(quasi-)automorphisms on Deligne–Lusztig varieties and their cohomology groups. For more
details, see [DM06] and [Lus11b].

Nice conjugacy classes for affine Weyl groups will also play an important role in the study
of affine Deligne–Lusztig varieties. See [He14].

4.3 The main goal of this section is to classify nice conjugacy classes for both finite Coxeter
groups and affine Weyl groups.

We first consider finite Coxeter groups. Let (W0, S0) be a finite Coxeter group and Ω′ ⊂
Aut(W0, S0). Set W̃0 = W0 o Ω′. Let z = wσ ∈ W̃0 with w ∈ W0 and σ ∈ Ω′. We denote by
supp(w) the support of w, i.e. the set of simple reflections appearing in a reduced expression of
w. Set supp(z) =

⋃
n∈Z σ

nsupp(w). We call supp(z) the support of z. It is a σ-stable subset of
S0.

We call a W0-conjugacy class O of W̃0 elliptic if supp(w̃) = S0 for any w̃ ∈ O. An element
in an elliptic conjugacy class is called an elliptic element.

We have the following result.

Theorem 4.1. Any elliptic conjugacy class in a finite Coxeter group is nice.
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4.4 In order to classify nice conjugacy classes for finite Coxeter group, we first recall the
geometric interpretation of conjugacy classes and length function in [HN12].

Let V be a finite-dimensional Euclidean vector space over R and H0 be a finite set of
hyperspaces of V through the origin such that sH(H0) = H0 for all H ∈ H0. Let W0 ⊂ GL(V )
be the subgroup generated by sH for H ∈ H0. Let C(H0) be the set of connected components
of V − ⋃

H∈H0
H. We call an element in C(H0) a chamber. We fix a fundamental chamber C0.

For any two chambers C,C ′, we denote by H0(C,C ′) the set of hyperspaces in H0 separating C
from C ′. Let S0 = {sH ∈ W0; ]H0(C0, sHC0) = 1}. Then (W0, S0) is a finite Coxeter group. Let
W̃0 = W0oΩ′ where Ω′ ⊂ GL(V ) consists of automorphism preserving S0. Then `(w) = ]H0(C0,
wC0) is the length function on W̃0.

It is known that W0 acts simply transitively on the set of chambers. For any chamber
C, we denote by xC the unique element in W0 with xCC0 = C. Here C0 is the fundamental
chamber. Then any element in the W0-conjugacy class of w̃ is of the form w̃C = x−1

C w̃xC for
some chamber C.

For any w̃ ∈ W̃0, we denote by Cw̃(H0) the set of chambers C such that w̃C is of minimal

length in its W0-conjugacy class. We denote by V subreg
H0

the set of points in V that is contained
in at most one hyperplane of H0. By [HN12, Lemma 4.1], we have the following.

(a) A W0-conjugacy class O of W̃0 is nice if and only if (
⋃
A∈Cw̃(H0) Ā)

⋂
V subreg
H0

is connected
for some (or, equivalently, any) w̃ ∈ O.

By [He07, Lemma 7.2], a W0-conjugacy class O of W̃0 is elliptic if and only if, for some (or,
equivalently, any) element w̃ ∈ O, the fixed point set V w̃ ⊂ V W0 . Now we introduce the weakly
elliptic conjugacy classes.

Proposition 4.2. Let O be a W0-conjugacy class of W̃0. Then the following conditions are
equivalent.

(1) For some w̃ ∈ Omin, supp(w̃) is a union of some connected components of the Dynkin
diagram of S0 and w̃ commutes with any element in S0 − supp(w̃).

(2) For any w̃ ∈ O, supp(w̃) is a union of some connected components of the Dynkin diagram
of S0 and w̃ commutes with any element in S0 − supp(w̃).

(3) For some (or, equivalently, any) element w̃ ∈ O, sHV
w̃ = V w̃ for all H ∈ H0.

In this case, we call O a weakly elliptic conjugacy class and any element in O a
weakly elliptic element.

Proof. (1) ⇒ (2). Assume that O ⊂ W0σ for σ ∈ Ω′. By our assumption, σ(s) = s for all
s ∈ S0 − S′0 and supp(xw̃x−1) ⊂ S′0 for any x ∈ W0. Since w̃ is elliptic in WS′0

o 〈σ〉, then

supp(xw̃x−1) = S′0 for any x ∈W0.
(2) ⇒ (3). Assume that O ⊂ W0σ for some σ ∈ Ω′. By assumption, there exists S′0 ⊂ S0,

which is a union of some connected components of the Dynkin diagram of S0 such that σ(s) = s
for all s ∈ S0 − S′0 and supp(w̃) = S′0 for any w̃ ∈ O. Then O is elliptic in WS′0

o 〈σ〉. Therefore

V w̃ ⊂ V WS′0 for all w̃ ∈ O. Hence sHV
w̃ = V w̃ for all H ∈ H0.

(3)⇒ (1). By [HN12, Proposition 2.2], there exists w̃ ∈ Omin such that C̄0 contains a regular
point e of V w̃. Assume that w̃ = wσ for w ∈ W0 and σ ∈ Ω′. Then wσ(e) = e and thus e =
σ(e) = w(e) for e, σ(e) ∈ C̄0 are dominant.

Let J = {s ∈ S0; s(e) = e}. Then σ(J) = J and w ∈ WJ . Note that V w̃ ⊂ V WJ for e is a
regular element in V w̃. Hence w̃ is an elliptic element in WJ o 〈σ〉 and supp(w̃) = J .
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Let s ∈ S0 − J . Then s(V w̃) = V w̃. Thus s(e) = e + 〈e, α〉α∨ ∈ V w̃, where α is the positive
root corresponding to s. Since s /∈ J , we have s(e) 6= e and α∨ ∈ V w̃. Hence w̃s = sw̃. The
statement follows from the following Lemma 4.3. 2

Lemma 4.3. Let w̃ = wσ with w ∈W0 and σ ∈ Ω′. Let s ∈ S0 − supp(w̃). Then sw̃ = w̃s if and
only if s = σ(s) and s commutes with each element of supp(w̃).

Proof. Let K = supp(w) and K ′ = {s′ ∈ K; ss′ = s′s}. Write w as w = abc for a ∈ WK′ ,
c ∈ Wσ(K′) and b ∈ K′W0

σ(K′). Then sb = bσ(s). Since s /∈ K and each element of K −K ′ does

not commute with s, we have that bσ(s) = sb ∈ K−K′W0. Therefore b ∈ K−K′WK for σ(s) /∈ K.
Since b ∈ K′WK , we must have that b = 1. Hence s = σ(s) and K = supp(a) ∪ supp(c) ⊂ K ′.
Hence for any n ∈ Z and any r ∈ K, sσn(r) = σn(sr) = σn(rs) = σn(r)s. Therefore s commutes
with every element of supp(w̃) =

⋃
n∈Z σ

n(K). 2

Now we classify nice conjugacy classes for W̃0.

Theorem 4.4. Let O be a W0-conjugacy class of W̃0. Then O is nice if and only if it is weakly
elliptic.

Proof. Suppose that O is nice. Let w̃ ∈ Omin and S′0 = supp(w̃). Then w0w̃w0 ∈ Omin, where
w0 is the largest element of W0. Hence there exists a reduced expression w0 = s1s2 . . . sr such
that w̃0 ≈ w̃1 ≈ · · · ≈ w̃r, where w̃i = (s1 . . . si)

−1w̃(s1 . . . si). By [He07, Lemma 7.4], supp(w̃i) =
supp(w̃) = S′0 for all i. Therefore sj+1w̃jsj+1 = w̃j if sj+1 /∈ S′0. By Lemma 4.3, st = ts and
w̃t = tw̃ for any s ∈ S′0 and any t ∈ S0 − S′0. Hence O is weakly elliptic.

Suppose that O is weakly elliptic. Let w̃ ∈ Omin and J = supp(w̃). Let x ∈ W0 such that
`(x−1w̃x) = `(w̃). We may write x as x2x1 with some x1 ∈ WJ and x2 ∈ WS0−J for J and
S0− J are unions of connected components of the Dynkin diagram of S0 and w̃. Then x−1w̃x =
x−1

1 (x−1
2 w̃x2)x1 = x−1

1 w̃x1. Since w̃ commutes with each simple reflection of S0 − J , x2 is in the
image of τw̃. By assumption, w̃ is elliptic in WJ o 〈σ〉 for some σ ∈ Ω′. Thus by [HN12, Corollary
4.4], x1 is in the image of τw̃. Hence so is x2x1. Thus O is nice. 2

4.5 Now we study affine Weyl groups. We keep the notation as in § 3.3. Let W̃0 = W0 o Ω′.
Then W̃ = WG oΩ = P o W̃0. For any w̃ ∈ W̃ , we denote by Aw̃ the set of alcoves A such that
w̃A is of minimal length in its W -conjugacy class. We denote by V subreg the set of points in V
that is contained in at most one hyperplane of H. Similar to the proof of [HN12, Lemma 4.1],
we have.

(a) A W -conjugacy class O of W̃ is nice if and only if (
⋃
A∈Aw̃

Ā) ∩ V subreg is connected for
some (or, equivalently, any) w̃ ∈ O.

4.6 Let y ∈ W̃ . Let K ⊂ Vy be an affine subspace such that yK = K. Choose p ∈ K. Define
ȳ = T−νy−p ◦ y ◦ Tp ∈ GL(V ), where Tv denotes the map of translation by v ∈ V . Then ȳ(0) = 0

and ȳ is the image of y under the map W̃ = P o W̃0 → W̃0. In other words, ȳ is the finite part
of y.

Set HK,p = T−p(HK). Then any element in HVy ,p is a hyperplane through 0 and contains
V ȳ = T−p(Vy). Since y preserves HK , ȳ preserves HK,p.

The following result relates § 4.4(a) with § 4.5(a).

Lemma 4.5. Keep the notation as above. Assume p is a regular point of K and A,A′ ∈ Ay with
p ∈ Ā ∩ Ā′. Let C (respectively C ′) be the unique element of C(HK,p) such that A ⊂ Tp(C)
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(respectively A ⊂ Tp(C ′)). Then A and A′ are in the same connected component of (
⋃
A∈Ay

Ā)∩
V subreg if and only if C and C ′ are in the same connected component of (

⋃
C∈Cȳ(HK,p) C̄)∩V subreg

HK,p
.

Proof. Suppose that C and C ′ are in the same connected component of (
⋃
C∈Cȳ(HK,p) C̄)∩V subreg

HK,p
.

Then there is a sequence C = C1, C2, . . . , Ct = C ′ in Cȳ(HK,p) such that C̄i ∩ C̄i+1 spansH ′i ∈ HK,p
for i = 0, . . . , t− 1. Note that all the numbers ]HK,p(Ci, ȳCi) are the same. Let Ai be the unique
alcove in Tp(Ci) whose closure contains p. Then Āi ∩ Āi+1 spans Tp(H

′
i) ∈ HK for each i. By

Proposition 2.7,

]H(Ai, yAi) = ]HK(Ai, yAi) + 〈ν̄y, 2ρ〉 = ]HK,p(Ci, ȳCi) + 〈ν̄y, 2ρ〉
= ]H(A, yA).

Hence all the Ai lie in the same connected component of (
⋃
A∈Ay

Ā) ∩ V subreg.

Suppose that A and A′ are in the same connected component of (
⋃
A∈Ay

Ā)∩ V subreg. There

is a sequence of alcoves A = A1, A2, . . . , Ar = A′ in Ay such that Ai and Ai+1 share a common
face which spans Hi ∈ H for all i. By Proposition 2.7, C,C ′ ∈ Cȳ(HK,p). Now we define a sequence
of chambers in Cȳ(HK,p) as follows. Let C1 = C. Assume that Ci is already defined for i > 1. Let
ji = max{k;T−p(Ak) ⊂ Ci}. Let Ci+1 be the unique connected component containing T−p(Aji+1).
We obtain a sequence C = C1, . . . , Cs = C ′ in this way.

Notice that Hji ∈ HK (hence so is yHji) and

H(Aji , yAji)− {Hji , yHji} ⊂ H(Aji+1, yAji+1) ⊂ H(Aji , yAji) ∪ {Hji , yHji}.

Since ]H(Aji , yAji) = ]H(Aji+1, yAji+1), then {Hji , yHji} ∩H(Aji+1, yAji+1) consists of at most
one element. Hence

{T−p(Hji), T−p(yHji) = ȳ(T−p(Hji))} ∩ HK,p(Ci+1, ȳCi+1)

consists of at most one element. Notice that ]HK,p(C1, ȳC1) is minimal among all the chambers
in C(HK,p). Thus

]HK,p(C1, ȳC1) = ]HK,p(C2, ȳC2) = · · · = ]HK,p(Cs, ȳCs)

and C1, . . . , Cs ∈ Cȳ(HK,p). By our construction C̄i ∩ C̄i+1 spans T−p(Hji) for i = 0, . . . , s − 1.

So C1, . . . , Cs are in the same connected component of (
⋃
C∈Cȳ(HK,p) C̄) ∩ V subreg

HK,p
. 2

Now we classify nice conjugacy classes for affine Weyl groups.

Theorem 4.6. Let O be a W -conjugacy class of W̃ and O ⊂ W̃Gσ for σ ∈ Ω′. Then the following
conditions are equivalent:

(1) O is nice;

(2) for some (or, equivalently, any) y ∈ O, sH(Vy) = Vy for any H ∈ H(νy) with H ∩ Vy 6= ∅;

(3) for some (or, equivalently, any) y ∈ O with νy = νO, ȳ is a weakly elliptic element in
WJO o 〈σ〉.

Proof. (3)⇒ (2). Let y ∈ O with νy = νO. Let p ∈ H ∩Vy and H ′ = T−pH. Hence sH′(V
ȳ) = V ȳ

by Proposition 4.2(3) and Theorem 4.4. Thus sH(Vy) = Vy for Vy = Tp(V
ȳ).

(2) ⇒ (3). Let H = Hα,0 with 〈νy, α〉 = 0. It suffices to show the sH(V ȳ) = V ȳ. This is
trivial if V ȳ ⊂ H. Otherwise, 〈V ȳ, α〉 = R. Let p ∈ Vy, then H intersects with Vy = Tp(V

ȳ). By
condition (2), sH(Vy) = Vy. Hence α∨ ∈ and sH(V ȳ) = V ȳ.
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(1) ⇒ (2). Let H ∈ H(νy) such that K = H ∩ Vy 6= ∅. Then K is an affine subspace of Vy of
codimension at most 1 and yK = K. By Proposition 2.7 and [HN12, Lemma 2.3], there exists an
alcove A ∈ Ay whose closure contains a regular point p of K. Since O is nice, applying Lemma

4.5 yields, (
⋃
C∈Cȳ(HK,p) C̄) ∩ V subreg

HK,p
is connected. By Theorem 4.4, we have sT−p(H)(V

ȳ) = V ȳ,

that is, sH(Vy) = Vy.
(2) ⇒ (1). Let y ∈ O with νy = νO. By Proposition 2.4, it suffices to prove the following

statement:
Let A,A′ ∈ Ay such that Ā and Ā′ contain regular points of Vy. Then A and A′ are in the

same connected component of (
⋃
A∈Ay

Ā) ∩ V subreg.

Let C be the connected component of V − ⋃
H∈HVy

H that contains A and A′′ be the

unique alcove in C such that Ā′ ∩ Ā′′ contains a regular point q of Vy. By condition (3) and

§ 4.4(a), (
⋃
C∈Cȳ(HVy,q) C̄) ∩ V subreg

HVy,q
is connected. Hence, by Lemma 4.5, A′ and A′′ are in the

same connected component of (
⋃
B∈Ay

B̄) ∩ V subreg.

Similar to the proof of [HN12, Lemma 2.4], there is a sequence of- alcoves A = A0, A1, . . . ,
Ar = A′′ in C such that Āi contains a regular point of Vy and Āi−1∩ Āi∩Vy spans a codimension
one affine subspace Pi = Hi ∩ Vy of Vy for 1 6 i 6 r.

If Pi = yPi, then Hi ∈ H(νy). By condition (2), sHi(Vy) = Vy. Since Vy * Hi, then Hi is
the affine hyperplane containing Pi and orthogonal to Vy. Hence Hi is the unique element in H
whose intersection with Vy is Pi and thus the unique hyperplane separating Ai−1 from Ai. So
Ai−1 and Ai are in the same connected component of (

⋃
B∈Ay

B̄) ∩ V subreg.
If yPi 6= Pi, then there is a sequence of alcoves Ai−1 = B0, B1, . . . , Bs = Ai in C such that

Bk−1 and Bk have a common face and B̄k−1 ∩ B̄k ∩ Vy spans Pi for k = 1, . . . , s. By Proposition
3.6, we see that all Bk ∈ Ay. Hence Ai−1 and Ai are in the same connected component of
(
⋃
B∈Ay

B̄) ∩ V subreg.

Hence A and A′′ are in the same connected component of (
⋃
B∈Ay

B̄) ∩ V subreg. 2

Corollary 4.7. Let y ∈ W̃ such that ȳ is an elliptic element in W0. Then the W -conjugacy
class of y is nice.

Now we classify straight nice conjugacy classes.

Proposition 4.8. Let O be a straight W -conjugacy class of W̃ and O ⊂ W̃Gσ with σ ∈ Ω′.
Then O is nice if and only if there exists x ∈ O such that νx = νO and x is superbasic in W̃J ,
where J ⊂ JO is a union of connected components of Dynkin diagram of JO and σ fixes each
element of JO − J .

Proof. Assume that x ∈ O such that νx = νO and x is superbasic in W̃J , where J ⊂ JO is a
union of connected components of Dynkin diagram of JO and σ fixes each element of JO−J . Let
H = Hα,k ∈ H(νx). Then 〈νx, α〉 = 0 and α is a linear combination of roots in JO. If α is a linear
combination of roots in J , then by Proposition 3.5, H ∩ Vx = ∅. If α is a linear combination of
roots in JO − J , then sH(Vx) = Vx since α∨ ∈ V x̄. By Theorem 4.6, O is nice.

Assume that O is nice. By Proposition 3.2 and Theorem 4.6, there exists a basic element
x ∈ W̃JO such that νx = νO and x̄ is weakly elliptic in WJO o 〈σ〉. Set J = supp(x̄). Then J is
a union of connected components of Dynkin diagram of JO and σ fixes each element of JO − J .
Let H = Hα,k such that α is a linear combination of roots in J . By assumption, x is elliptic in
WJ o 〈σ〉, i.e. V x̄ ⊂ V WJ . We have that V x̄ ⊂ Hα,0. By Proposition 3.2, Vx * H. Notice that
Vx = p+ V x̄ for some p ∈ Vx. Thus Vx ∩H = ∅. By Proposition 3.5, x is superbasic in W̃J . 2
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Corollary 4.9. Let O be a superstraight W -conjugacy class of W̃ . Then O is nice.

5. Class polynomial

5.1 Set A = Z[v, v−1]. The Hecke algebra H associated to W is the associated A-algebra with
basis Tw for w ∈W and the multiplication law is given by

TxTy = Txy if `(x) + `(y) = `(xy),

(Ts − v)(Ts + v−1) = 0 for s ∈ S.

Then T−1
s = Ts− (v− v−1) and Tw is invertible in H for all w ∈W . If δ is an automorphism

of W with δ(S) = S, then Tw 7→ Tδ(w) induces an A-linear automorphism of H which is still

denoted by δ. The Hecke algebra associated to W̃ = W o Ω is defined to be H̃ = H o Ω. It is
easy to see that H̃ is the associated A-algebra with basis Tw̃ for w̃ ∈ W̃ and multiplication is
given by

Tx̃Tỹ = Tx̃ỹ if `(x̃) + `(ỹ) = `(x̃ỹ),

(Ts − v)(Ts + v−1) = 0 for s ∈ S.

Let h, h′ ∈ H̃, we call [h, h′] = hh′ − h′h the commutator of h and h′. Let [H̃, H̃] be the
A-submodule of H̃ generated by all commutators.

For finite Hecke algebras, Geck and Pfeiffer introduced class polynomials in [GP93]. We will
show in this section that their construction can be generalized to affine Hecke algebra based on
Theorem 2.9.

Lemma 5.1. Let w̃, w̃′ ∈ W̃ with w̃∼̃w̃′. Then

Tw̃ ≡ Tw̃′ mod [H̃, H̃].

Proof. By definition of ∼̃, it suffices to prove the case that there exists x ∈ W̃ such that w̃′ =
xw̃x−1 with `(w̃) = `(w̃′) and either `(xw̃) = `(x) + `(w̃) or `(w̃x−1) = `(x) + `(w̃).

If `(xw̃) = `(x) + `(w̃), then `(w̃′x) = `(xw̃) = `(w̃′) + `(δ(x)). Hence Tw̃′Tx = Tw̃′x = Txw̃ =
TxTw̃ and Tw̃′ = TxTw̃T

−1
x ≡ Tw̃ mod [H̃, H̃].

If `(w̃x−1) = `(x)+`(w̃), then `(x−1w̃′) = `(w̃x−1) = `(w̃′)+`(x). Hence Tx−1Tw̃′ = Tx−1w̃′ =
Tw̃x−1 = Tw̃Tx−1 and Tw̃′ = T−1

x−1Tw̃Tx−1 ≡ [H̃, H̃]. 2

Now Corollary 2.10(2) implies the following.

Corollary 5.2. Let O be a conjugacy class of W̃ and w̃, w̃′ ∈ Omin. Then

Tw̃ ≡ Tw̃′ mod [H̃, H̃].

Remark 3. We denote by TO the image of Tw̃ ∈ H̃/[H̃, H̃] for any w̃ ∈ Omin.

Theorem 5.3. Let w̃ ∈ W̃ . Then for any conjugacy class O of W̃ , there exists a polynomial
fw̃,O ∈ Z[v − v−1] with nonnegative coefficients such that fw̃,O is nonzero only for finitely many
O and

Tw̃ =
∑
O
fw̃,OTO ∈ H̃/[H̃, H̃]. (a)
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Proof. We argue by induction on `(w̃).
If w̃ is a minimal element in a conjugacy class of W̃ , then we set

fw̃,O =

{
1 if w̃ ∈ O,
0 if w̃ /∈ O.

In this case, the statement automatically holds.
Now we assume that w̃ is not a minimal element in the conjugacy class of W̃ that contains

it and that for any w̃′ ∈ W̃ with `(w̃′) < `(w̃) the statement holds for w̃′. By Theorem 2.9, there
exist w̃1 ≈ w̃ and i ∈ S such that `(siw̃1si) < `(w̃1) = `(w̃). In this case, `(siw̃) < `(w̃) and we
define fw̃,O as

fw̃,O = (v − v−1)fsiw̃1,O + fsiw̃1si,O.

By inductive hypothesis, fsiw̃1,O, fsiw̃1si,O ∈ Z[v − v−1] with nonnegative coefficients. Hence
fw̃,O ∈ Z[v − v−1] with nonnegative coefficients. Moreover, there are only finitely many O such
that fsiw̃1,O 6= 0 or fsiw̃1si,O 6= 0. Hence there are only finitely many O such that fw̃,O 6= 0.

By Lemma 5.1, Tw̃ ≡ Tw̃1 mod [H̃, H̃]. Now

Tw̃ ≡ Tw̃1 = TsiTsiw̃1siTsi ≡ Tsiw̃1siTsiTsi

= (v − v−1)Tsiw̃1siTsi + Tsiw̃1si = (v − v−1)Tsiw̃1 + Tsiw̃1si .

Hence the image of Tw̃ in H̃/[H̃, H̃] is

(v − v−1)
∑
O
fsiw̃1,OTO +

∑
O
fsiw̃1si,OTO =

∑
O
fw̃,OTO. 2

5.2 We call fw̃,O in the above theorem the class polynomial associated to w and O.
Notice that the construction of fw̃,O depends on the choice of the sequence of elements in

S used to conjugate w̃ to a minimal length element in its conjugacy class. We will show in the
next section that fw̃,O is in fact, independent of such choice and is uniquely determined by the
identity (a) in Theorem 5.3. For a finite Hecke algebra, a similar result was obtained by Geck
and Rouquier in [GR97, Theorem 4.2].

6. Cocenter of H̃

6.1 We call H̃/[H̃, H̃] the cocenter of H̃. Now for any conjugacy class O of W̃ , we choose a
minimal length representative w̃O. By Theorem 5.3, TO, where O ranges over all conjugacy
classes of W̃ , spans the cocenter of H̃. The main purpose of this section is to show that TO are
linearly independent in the cocenter of H̃ and thus form a basis. We call it the standard basis of
H̃/[H̃, H̃].

6.2 Following [Lus87a], let J be the based ring of W with basis (tw)w∈W . For each δ ∈ Ω, the
map tw 7→ tδ(w) gives a ring homomorphism of J , which we still denote by δ. Set J̃ = J o Ω,

JA = J ⊗Z A and J̃A = J̃ ⊗Z A.
Let (cw)w∈W be the Kazhdan–Lusztig basis of H. Then cxcy =

∑
z∈W hx,y,zcz with hx,y,z ∈ A.

There is a homomorphism of A-algebras ϕ : H → JA defined by cw 7→
∑

d∈D,a(d)=a(x) hw,d,xtx,
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where a : W̃ → N is Lusztig’s a-function and D is the set of distinguished involutions of W . It
is easy to see that for each δ ∈ Ω

ϕ(δ(cw)) = ϕ(cδ(w)) =
∑

d∈D,a(d)=a(x)

hδ(w),δ(d),δ(x)tδ(x) = δϕ(cw).

Hence ϕ extends in a natural way to a homomorphism ϕ̃ : H̃ → J̃A.

6.3 Set JC = J ⊗Z C and J̃C = J̃ ⊗Z C. Set HC = H ⊗A C[v, v−1] and H̃C = H̃ ⊗A C[v, v−1].
For any q ∈ C×, let Cq be the one-dimensional A-module over C such that v acts as the scalar
q. Set Hq = H ⊗A Cq and H̃q = H̃ ⊗A Cq.

Let E be a J̃C-module. Through the homomorphism

ϕ̃q = ϕ̃|v=q : H̃q → J̃C,

it is endowed with an H̃q-module structure. We denote this H̃q-module by Eq.
For an associative C-algebra R, we denote by K(R) the Grothendieck group of all finite-

dimensional representations of R over C.
Thus the map E 7→ Eq induces a homomorphism (ϕ̃q)∗ : K(J̃C) → K(H̃q). We have the

following lemma.

Lemma 6.1. The map (ϕ̃q)∗ : K(J̃C) → K(H̃q) is surjective.

Proof. The proof is similar to [Lus87b, Lemma 1.9]. Since Ω preserves a-function, we associate
to each H̃q-module M an integer aM such that cwM = 0 whenever a(w) > aM and cw′M 6= 0
for some w′ ∈ W with a(w′) = aM . For each simple H̃q-module M , we construct as in the
proof of [Lus87b, Lemma 1.9] a finite-dimensional J̃C-module M̃ and a nonzero H̃q-morphism
p : M̃q → M with M ′ = ker p such that aM ′ < aM . Since the a-function is bounded, it follows
easily that (ϕ̃q)∗ is surjective. 2

6.4 Let K∗(H̃q) = HomZ(K(H̃q),C) be the space of linear functions on K(H̃q). The map H̃q →

K∗(H̃q) sending h ∈ H̃q to the function M 7→ TrM (h) on K(H̃q) induces a map

Ψq : H̃q/[H̃q, H̃q] → K∗(H̃q).

It is proved in [Kaz86, Theorem B] and [Fli95, Main Theorem] that Ψq is injective if q is a
prime power. We will show below that Ψ1 is also injective. Here H̃1 = C[W̃ ] is the group algebra.

Lemma 6.2. Let w̃, w̃′ ∈ W̃ . If w̃ and w̃′ are not in the same conjugacy class of W̃ , then there
exists n > 0 such that the images of w̃ and w̃′ in W̃/nP are not in the same conjugacy class.

Proof. It suffices to consider the case where W̃ ⊂ W o Aut(W,S). Then we have that W̃/W is
finite. Notice that Q is a normal subgroup of W̃ and W̃/mQ is a quotient group of W̃ . Since
W̃/W and W/Q are both finite groups, W̃/Q is also a finite group. We choose a representative
xi for each coset of Q. Set w̃i = xiw̃x

−1
i . Then any element conjugate to w̃ is of the form tλw̃it

−λ

for some i and λ ∈ Q.
Now we show that the following holds.

(a) For any i, there exists ni > 0 such that the images of w̃i and w̃′ are not conjugate by an
element in niQ.
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Otherwise, there exists i such that w̃′ = tχw̃i for some χ ∈ Q such that χ ∈ (1− w̃i)Q+ nQ
for all n > 0. Therefore the image of χ in Q/(1− w̃i)Q is divisible by all the positive integer n.
So the image of χ in Q/(1− w̃i)Q is 0 and χ = λ− w̃iλ for some λ ∈ Q. Hence w̃′ = tλw̃it

−λ is
conjugate to w̃ in W̃ . That is a contradiction. Hence (a) is proved.

Now set n = Πini. If the images of w̃ and w̃′ in W̃/nQ are in the same conjugacy class, then
there exists i such that the images of w̃i and w̃′ in W̃/nQ are conjugate by an element in Q. Hence
their images in W̃/nQ → W̃/niQ are conjugate by an element in Q. That contradicts (a). 2

Proposition 6.3. Let w̃1, . . . , w̃r ∈ W̃ be elements in distinct conjugacy classes of W̃ . Then the
elements Ψ1(w̃1), . . . ,Ψ1(w̃r) are linearly independent functions on K(C[W̃ ]).

Proof. Again, it suffices to consider the case where W̃/Q is finite.
For any 1 6 i < j 6 r, there exists nij > 0 such that the image of w̃i and w̃j in W̃/nijQ are

not in the same conjugacy class.
Set n =

∏
16i<j6r nij and F = W̃/nP . Then F is a finite group. Let w̃i be the image of w̃i

in F . If w̃i and w̃j are in the same conjugacy class of F , then their images in W̃/nijP under

the map F → W̃/nijP are still in the same conjugacy class. That is a contradiction. Hence
w̃1, . . . , w̃r are in distinct conjugacy classes of F .

The surjection W̃ → F induces an injection K(C[F ]) → K(C[W̃ ]) and a surjection
K∗(C[W̃ ]) → K∗(C[F ]). We have the following commutative diagram.

W̃
Ψ1 //

��

K∗(C[W̃ ])

��
F

Ψ // K∗(C[F ])

Here Ψ : F → K∗(C[F ]) is defined in the same way as Ψq in § 6.4.
Since F is a finite group and w̃1, . . . , w̃r are in distinct conjugacy classes of F , then Ψ(w̃1),

. . . ,Ψ(w̃r) are linearly independent functions on K(C[F ]). Hence Ψ1(w̃1), . . . ,Ψ1(w̃r) are linearly
independent functions on K(C[W̃ ]). 2

Corollary 6.4. The map Ψ1 : C[W̃ ]/[C[W̃ ],C[W̃ ]] → K∗(C[W̃ ]) is injective.

Now we prove the main result of this section.

Theorem 6.5. Let w̃1, . . . , w̃r ∈ W̃ be elements in distinct conjugacy classes of W̃ . Then the
image of Tw̃1 , . . . , Tw̃r in H̃C/[H̃C, H̃C] are linearly independent.

Proof. Set AC = C[v, v−1]. Assume that
∑r

i=1 ciTw̃i ∈ [H̃C, H̃C] with all ci ∈ AC. Suppose that
not all the ci are 0. Then there exist c ∈ AC and c′i ∈ AC for 1 6 i 6 r such that ci = cc′i and
there exists 1 6 s 6 r with c′s|v=1 6= 0.

Let E be a J̃-module over C. Set EC = E ⊗C AC. Then EC is a J̃AC-module over AC. Via
the homomorphism ϕ̃ : H̃ → J̃A, EC admits an H̃C-module structure over AC. We denote it
by Eϕ. For h ∈ H̃, let TrE(h) ∈ AC be the trace of the endomorphism h on Eϕ over AC. Then
TrE(

∑r
i=1 ciTw̃i) = c(

∑r
i=1 c

′
iTrE(Tw̃i)) = 0 ∈ AC. Since AC is an integral domain and c 6= 0, we

have that
∑r

i=1 c
′
iTrE(Tw̃i) = 0 for all J̃-modules E. Set v = 1; then

r∑
i=1

c′i|v=1TrE(Tw̃i) = 0 (a)
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for all J̃-module E. Hence, by Lemma 6.1, (a) holds for all W̃ -modules. Now by Proposition 6.3,
c′i|v=1 = 0 for all i. That is a contradiction. 2

Corollary 6.6. The class polynomial fw̃,O is uniquely determined by the identity (a) in
Theorem 5.3.

Now combining Theorem 5.3 and Theorem 6.5, we have the following theorem.

Theorem 6.7. The set {TO}, where O ranges over the conjugacy classes of W , is a A-basis of
H̃/[H̃, H̃].
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