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Abstract

Let p be a prime and let r, s be positive integers. In this paper, we prove that the Goormaghtigh equation
(xm − 1)/(x − 1) = (yn − 1)/(y − 1), x, y, m, n ∈ N, min{x, y} > 1, min{m, n} > 2 with (x, y) = (pr, ps + 1)
has only one solution (x, y, m, n) = (2, 5, 5, 3). This result is related to the existence of some partial
difference sets in combinatorics.
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1. Introduction

Let N be the set of all positive integers. One hundred years ago, Ratat [27] and Rose
and Goormaghtigh [28] conjectured that the equation

xm − 1
x − 1

=
yn − 1
y − 1

for all x, y, m, n ∈ N, x � y, min{x, y} > 1, min{m, n} > 2, (1.1)

has only two solutions (x, y, m, n) = (2, 5, 5, 3) and (2, 90, 13, 3) with x < y. Equation
(1.1) is usually called the Goormaghtigh equation. The above conjecture is a very
difficult problem in Diophantine equations. It was solved for some special cases (see
[3, 5, 6, 9, 10, 12, 14–18, 22, 23, 26, 29–37]). But, in general, the problem is far from
solved. The solution of (1.1) is closely related to some problems in number theory,
combinatorics and algebra (see [1, 4, 13, 19, 21]). For example, while discussing the
partial geometries admitting Singer groups in combinatorics, Leung et al. [19] found
that the existence of partial difference sets in an elementary abelian 3-group is related
to the solutions (x, y, m, n) of (1.1) with

(x, y) = (2r, 3), (1.2)

where r is a positive integer. In [19], they proved that (1.1) has no solutions (x, y, m, n)
satisfying (1.2).
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Let p be a prime and let r, s be positive integers. In this paper, we discuss the
solutions (x, y, m, n) of (1.1) with

(x, y) = (pr, ps + 1). (1.3)

Thus, we generalise the above-mentioned result in [19] to prove the following theorem.

THEOREM 1.1. Equation (1.1) has only one solution (x, y, m, n) = (2, 5, 5, 3) with (1.3).

Combining Theorem 1.1 and [19, Corollary 37] with q = α + 1 = 2s + 1, we
immediately obtain the following corollary which may be regarded as a generalisation
of [19, Corollary 44].

COROLLARY 1.2. Suppose that a proper partial geometryΠ has at least two subgroup
lines and that the parameters of the corresponding partial difference set have the form
in [19, (34)]. Then, Π cannot be expressed as

Π = pg((2s + 1)u, (2r − 1)(2s + 1)u + 2s + 1, 2s)

with r, s, t ∈ N.

The organisation of the paper is as follows. In Section 2, we prove Theorem 1.1
in the case where r ≤ s using an upper bound for the number of solutions of the
generalised Ramanujan–Nagell equations due to Bugeaud and Shorey [8]. In Section 3,
using a lower bound for linear forms in three logarithms due to Matveev [24], we show
that if r > s and pr > 3.436 × 1015, then (1.1) has no solutions (x, y, m, n) with (1.3).
Thus, the remaining case to be checked is r > s and pr < 3.436 × 1015. For this, we
appeal to the reduction method due to Dujella and Pethő [11], based on [2, Lemma] by
Baker and Davenport, to complete the proof of Theorem 1.1 in Section 4.

2. The case r ≤ s

LEMMA 2.1 [20]. The equation

Xk − 1
X − 1

= Yl for all X, Y , k, l ∈ N, X > 1, Y > 1, k > 2, l > 1, (2.1)

has only two solutions, (X, Y , k, l) = (3, 11, 5, 2) and (7, 20, 4, 2) with 2 | l.

Let D1 and D2 be coprime positive integers and let p be a prime with p � D1D2.
Further, let N(D1, D2, p) denote the number of solutions (X, Z) of the equation

D1X2 + D2 = pZ for all X, Z ∈ N. (2.2)

Combining the results in [7, 8], we immediately obtain the following two lemmas.

LEMMA 2.2. We have N(D1, D2, 2) ≤ 1, except for the following cases:

(i) N(1, 7, 2) = 5, (X, Z) = (1, 3), (3, 4), (5, 5), (11, 7) and (181, 15);
(ii) N(3, 5, 2) = 3, (X, Z) = (1, 3), (3, 5) and (13, 9);
(iii) N(7, 1, 2) = 2, (X, Z) = (1, 3) and (3, 6);
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(iv) N(1, 2k+2 − 1, 2) = 2, (X, Z) = (1, k + 2) and (2k+1 − 1, 2k + 2), where k is a
positive integer with k > 1;

(v) N(3, 29, 2) = 2, (X, Z) = (1, 5) and (209, 17);
(vi) N(5, 3, 2) = 2, (X, Z) = (1, 3) and (5, 7);
(vii) N(13, 3, 2) = 2, (X, Z) = (1, 4) and (71, 16);
(viii) N(21, 11, 2) = 2, (X, Z) = (1, 5) and (79, 17); and
(ix) if D1a2 = 2k−δ and D2 = 3 · 2k+δ, where a, k are positive integers with k > 1

and δ ∈ {1,−1}, then N(D1, D2, 2) = 2, (X, Z) = (a, k + 2) and ((2k+1 + δ)a,
3k + 2).

LEMMA 2.3. If p � 2, then N(D1, D2, p) ≤ 1, except for the following cases:

(i) N(2, 1, 3) = 3, (X, Z) = (1, 1), (2, 2) and (11, 5); and
(ii) if 4D1a2 = pk − δ and 4D2 = 3pk + δ, where a, k are positive integers and

δ ∈ {1,−1}, then N(D1, D2, p) = 2, (X, Z) = (a, k) and ((2pk + δ)a, 3k).

PROPOSITION 2.4. If r ≤ s, then (1.1) has only one solution (x, y, m, n) = (2, 5, 5, 3)
with (1.3).

PROOF. We now assume that (x, y, m, n) is a solution of (1.1) with (1.3). Then

prm − 1
pr − 1

=
(ps + 1)n − 1

ps . (2.3)

When r = s, by (2.3),

pr(m+1) − 1
pr − 1

= (pr + 1)n. (2.4)

If 2 | n, by (2.4), the equation (2.1) has a solution (X, Y , k, l) = (pr, pr + 1, m + 1, n)
with 2 | l. However, since m > 2, by Lemma 2.1, this is impossible. So 2 � n and n ≥ 3.

Since pr + 1 > 2 and pr ≡ −1 (mod (pr + 1)), by (2.4),

0 ≡ (pr − 1)(pr + 1)n ≡ pr(m+1) − 1 ≡ (−1)m+1 − 1 (mod (pr + 1)),

from which we get 2 | m + 1. Hence, by (2.4),

(p2r)(m+1)/2 − 1
p2r − 1

= (pr + 1)n−1. (2.5)

Recall that 2 � n and n ≥ 3. We see from (2.5) that if (m + 1)/2 > 2, then (2.1) has
a solution (X, Y , k, l) = (p2r, pr + 1, (m + 1)/2, n − 1) with 2 | l. But, by Lemma 2.1
again, this is impossible. Therefore, since 2 � m and m ≥ 3, we get m = 3, and by (2.5),

(p2r)(m+1)/2 − 1
p2r − 1

=
p4r − 1
p2r − 1

= p2r + 1 = (pr + 1)n−1 ≥ (pr + 1)2 > p2r + 1,

which is a contradiction. Thus, (1.1) has no solutions (x, y, m, n) with (1.3) and r = s.
When r < s, by (2.3),

(pr − 1)(ps + 1)n + (ps − pr + 1) = prm+s. (2.6)
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Since r < s, pr − 1, ps + 1 and ps − pr + 1 are positive integers satisfying

gcd((pr − 1)(ps + 1), ps − pr + 1) = 1, p � (pr − 1)(ps + 1)(ps − pr + 1). (2.7)

If 2 | n, by (2.6), the equation (2.2) has a solution

(X, Z) = ((ps + 1)n/2, rm + s)

for (D1, D2) = (pr − 1, ps − pr + 1). Notice that (2.2) has another solution (X, Z) =
(1, s) for (D1, D2) = (pr − 1, ps − pr + 1). So

N(pr − 1, ps − pr + 1, p) ≥ 2. (2.8)

However, by (2.7), using Lemmas 2.2 and 2.3, (2.8) is false.
Similarly, if 2 � n, by (2.6), the equation (2.2) has a solution

(X, Z) = ((ps + 1)(n−1)/2, rm + s)

for (D1, D2) = ((pr − 1)(ps + 1), ps − pr + 1). Moreover, (2.2) has another solution
(X, Z) = (1, r + s) for (D1, D2) = ((pr − 1)(ps + 1), ps − pr + 1). So

N((pr − 1)(ps + 1), ps − pr + 1, p) ≥ 2. (2.9)

Applying Lemmas 2.2 and 2.3 to (2.9), we can only obtain

(p, r, x) = (2, 1, 2). (2.10)

Therefore, by (1.3) and (2.10), we get (D1, D2) = (5, 3) and (x, y, m, n) = (2, 5, 5, 3).
Thus, the proposition is proved. �

3. The case r > s

In this section, we assume that r > s and (x, y, m, n) is a solution of (1.1) with (1.3).

LEMMA 3.1. If (p, s) � (2, 1), then n > pr.

PROOF. By (2.3),

prm − 1
pr − 1

=

m−1∑
i=0

pri =

n∑
j=1

(
n
j

)
ps(j−1) =

(ps + 1)n − 1
ps ,

from which we get

pr
( pr(m−1) − 1

pr − 1

)
= (n − 1) +

n∑
j=2

(
n
j

)
ps(j−1). (3.1)

Since n > 2 and p � (pr(m−1) − 1)/(pr − 1), we see from (3.1) that p | n − 1 and

pr ‖ (n − 1) +
n∑

j=2

(
n
j

)
ps(j−1). (3.2)
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Let

pt ‖ n − 1 (3.3)

and

ptj ‖ j for all j = 2, . . . , n, (3.4)

where t is a positive integer and tj (j = 2, . . . , n) are nonnegative integers. Then

tj ≤
log j
log p

≤ j − 1 for all j = 2, . . . , n. (3.5)

Notice that both symbols ‘≤’ in (3.5) can be taken by equal signs ‘=’ if and only if
(p, tj, j) = (2, 1, 2). It follows from (3.5) that if (p, tj) � (2, 1), then

tj < j − 1 for all j = 2, . . . , n. (3.6)

Hence, since gcd(j, j − 1) = 1 and (p, s) � (2, 1), by (3.3), (3.4) and (3.6),(
n
j

)
ps(j−1) ≡ n(n − 1)

(
n − 2
j − 2

)
ps(j−1)

(j − 1)j
≡ 0 (mod pt+1) for all j = 2, . . . , n. (3.7)

Therefore, by (3.3) and (3.7),

pt ‖ (n − 1) +
n∑

j=2

(
n
j

)
ps(j−1). (3.8)

Comparing (3.2) and (3.8),

t = r. (3.9)

Further, since n > 1, by (3.3) and (3.9), we obtain n − 1 ≥ pr and n > pr. The lemma
is proved. �

Let Z, Q and R be the sets of all integers, rational numbers and real numbers,
respectively. Let α be an algebraic number of degree d and let α(1), . . . ,α(d) denote
all the conjugates of α. Further, let

f (X) = a
d∏

i=1

(X − α(i)) ∈ Z[X] for all a ∈ N

denote the minimal polynomial of α. Then

h(α) =
1
d

(
log a +

d∑
i=1

log max{1, |α(i)|}
)

is called the absolute logarithmic height of α.

LEMMA 3.2 ([24, 25]). Let α1, α2, α3 be three distinct real algebraic numbers with
min{α1,α2,α3} > 1 and let b1, b2, b3 be three positive integers with gcd(b1, b2, b3) = 1.
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Further, let

Λ = b1 logα1 + b2 logα2 − b3 logα3.

If Λ � 0, then

log |Λ| > −CD2A1A2A3 log(1.5eDB log(eD)),

where

D = [Q(α1,α2,α3) : Q ], D′ = [R(α1,α2,α3) : R ], (3.10)

Aj ≥ max{D h(αj), | logαj|} for j = 1, 2, 3, (3.11)

B ≥ max
{
bj

Aj

A1

∣∣∣∣∣ j = 1, 2, 3
}
, (3.12)

C =
5 × 165

6D′
e3(7 + 2D′)

(3e
2

)D′

(26.25 + log(D2 log(eD))). (3.13)

PROPOSITION 3.3. If r > s and pr > 3.436 × 1015, then (1.1) has no solutions
(x, y, m, n) with (1.3).

PROOF. By [19], the proposition holds for (p, s) = (2, 1). We can therefore assume that
(p, s) � (2, 1). By (2.3),

(pr − 1)(ps + 1)n = prm+s + (pr − ps − 1). (3.14)

Since pr − ps − 1 > 0, taking the logarithms of both sides of (3.14),

log(pr − 1) + n log(ps + 1) = (rm + s) log p + log
(
1 +

pr − ps − 1
prm+s

)
. (3.15)

Since log(1 + ε) < ε for any ε > 0, by (3.15),

0 < log(pr − 1) + n log(ps + 1) − (rm + s) log p

= log
(
1 +

pr − ps − 1
prm+s

)
<

pr − ps − 1
prm+s .

(3.16)

Take

α1 = pr − 1, α2 = ps + 1, α3 = p, b1 = 1, b2 = n, b3 = rm + s (3.17)

and

Λ = log(pr − 1) + n log(ps + 1) − (rm + s) log p. (3.18)

By (3.16) and (3.18), we have Λ > 0 and

(rm + s) log p + logΛ < log(pr − ps − 1) < log(pr − 1). (3.19)

In order to apply Lemma 3.2, by (3.10), (3.11) and (3.17), we can choose the following
parameters.

D = D′ = 1, (3.20)

A1 = log(pr − 1), A2 = log(ps + 1), A3 = log p. (3.21)
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Further, by (3.12), (3.13), (3.16), (3.20) and (3.21),

B =
(rm + s) log p

log(pr − 1)

and

C < 1.691 × 1010. (3.22)

Applying Lemma 3.2 to (3.17) and (3.18), by (3.20)–(3.22),

logΛ > −1.691 × 1010(log(pr − 1))(log(ps + 1))(log p)

×
(
1.406 + log

( (rm + s) log p
log(pr − 1)

))
. (3.23)

Substituting (3.23) into (3.19), we get

1 + 1.691 × 1010(log(ps + 1))(log p)
(
1.406 + log

( (rm + s) log p
log(pr − 1)

))
>

(rm + s) log p
log(pr − 1)

.

(3.24)

Hence, since (p, s) � (2, 1) and ps + 1 ≥ 4, by (3.23), we can calculate that

(rm + s) log p
log(pr − 1)

< 1.501 × 1012(log(ps + 1))(log p)(log log(ps + 1)). (3.25)

On the other hand, by (3.16),

(rm + s) log p
log(pr − 1)

>
(
1 − pr − ps − 1

prm+s log(pr − 1)

)
+

n log(ps + 1)
log(pr − 1)

>
n log(ps + 1)
log(pr − 1)

. (3.26)

Since log p ≤ (log pr)/2 for r ≥ 2, the combination of (3.25) and (3.26) yields

n < 1.501 × 1012(log p)(log(pr − 1))(log log(ps + 1))

< 7.505 × 1011(log pr)2(log log pr). (3.27)

Further, since (p, s) � (2, 1), by Lemma 3.1, we have n > pr. Hence, by (3.27),

pr < 7.505 × 1011(log pr)2(log log pr). (3.28)

Therefore, by (3.28), we obtain pr < 3.436 × 1015. Thus, if r > s and pr > 3.436 ×
1015, then (1.1) has no solutions (x, y, m, n) with (1.3). The proposition is proved. �

4. Proof of Theorem 1.1

We continue to assume that r > s and that (x, y, m, n) is a solution of (1.1) with (1.3).
Put m′ = rm + s. By (3.25),

m′ < 1.501 × 1012(log(pr − 1))(log(ps + 1))(log log(ps + 1)). (4.1)
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Since Proposition 3.3 implies that ps ≤ pr−1 < 1.718 × 1015, we see from (4.1) that

m′ < 6.702 × 1015. (4.2)

On the other hand, we deduce from Lemma 3.1 and (3.26) that

m′ >
n log(ps + 1)

log p
>

pr log(pr + 1)
log p

. (4.3)

Now, by (3.16),

0 < n − m′κ + μ < AB−m′ , (4.4)

where

m′ = rm + s, κ =
log p

log(ps + 1)
, μ =

log(pr − 1)
log(ps + 1)

, A =
pr − ps − 1
log(ps + 1)

, B = p.

LEMMA 4.1. Let κ, μ, A > 0 and B ≥ 1 be real numbers and let M′ be a positive integer.
Let p/q be a convergent of the continued fraction expansion of κ such that q > 6M′,
and put ε = ‖μq‖ −M′‖κq‖, where ‖ · ‖ denotes the distance from the nearest integer.
If ε > 0, then inequality (4.4) has no integer solution (n, m′) satisfying

log(Aq/ε)
log B

≤ m′ ≤ M′.

PROOF. Since the assertion is identical with that of [11, Lemma 5a] if the middle term
of inequalities (4.4) is multiplied by −1, the lemma is proved in the same way as [11,
Lemma 5a]. �

By Proposition 3.3, (4.2) and (4.4), we may apply Lemma 4.1 with M′ = 6.702 ×
1015 in the ranges

2 ≤ p <
√

R, 1 ≤ s < r < logp R

with (p, s) � (2, 1), where R = 3.436 × 1015. For 7 ≤ p <
√

R, the first step of reduction
gives m′ ≤ 43, which contradicts (4.3) with p ≥ 7 and r ≥ 2. For p = 5, the first and
second steps of reduction give m′ ≤ 52 and m′ ≤ 30, respectively. The latter contradicts
(4.3) with p = 5 and r ≥ 2. For p = 3, the first and second steps of reduction give
m′ ≤ 75 and m′ ≤ 45, respectively, which, together with (4.3), yields r = 2. For p = 2,
the first and second steps of reduction give m′ ≤ 126 and m′ ≤ 75, respectively, from
which by (4.3) we obtain r ∈ {3, 4}.

Thus, it remains to consider the cases where

(p, r, s) ∈ {(2, 3, 2), (2, 4, 2), (2, 4, 3), (3, 2, 1)}. (4.5)

In view of the bounds for m′ = rm + s obtained above, it suffices to check that (3.14)
with (4.5) has no solution (m, n) in the ranges m ≤ 24 and n ≤ 34, which can be easily
done. Therefore, the theorem is proved.
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