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Electron Microscopes have been used to investigate  materials  from micron to nano scale.  Scanning 
electron microscopes (SEM) as well as scanning transmission electron microscopes (STEM) can acquire 
image data relatively fast, however acquiring spectroscopic data requires longer data collection times. 
Depending  on  the  desired  resolution  or  sample  area,  this  can  make  a  significant  difference  in  the 
duration and feasibility of the experiment. Moreover, for electron beam sensitive samples, it is necessary 
to acquire the image data with minimal exposure time as not to further damage the sample [1]. Here, we 
propose  an  under-sampling  and  reconstruction  method  to  reduce  the  data  collection  time  while 
maintaining imaging accuracy. 

A training dataset  consisting of  several  images with features  of interest  is  initially  collected.  Small 
patches of n x n pixels are extracted from this set of images and flattened into a library of column 
vectors. Each column in the library is normalized by subtracting the mean and dividing by the standard 
deviation of that column. Singular Value Decomposition (SVD) is then applied on the library and [U S 
V] matrices are calculated.  Left  singular vectors of the matrix U becomes our dictionary D, whose 
columns correspond to the features for image reconstruction.

We use a new test image X which represents the sample to be imaged. P is a measurement mask in 
which 14% total number of pixels are chosen randomly and set to 1, others 0 [2]. The under-sampled 
measurement of image patch is then represented by Y = PX. Since we have the measured image patch Y, 
measurement mask P and dictionary D, the problem is reduced to find sparse coefficient vector W which 
can best reconstruct a fully sampled image Xr = DW. The reconstructed image is the combination of all 
reconstructed patches with averaged overlap pixels. The sparse coefficients are calculated by solving the 
optimization problem using Lasso [3]:

The  reconstructed  image  is  the  multiplication  of  the  dictionary  and  sparse  coefficients.  Here,  a 
dictionary is also generated using public available dataset CIFAR-10 [4]. The CIFAR-10 datasets has 
60K 32 x 32 images in 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. 
50 images are randomly selected  from the dataset,  transformed from RGB to gray-scale  and 8 x 8 
patches are extracted to form a feature space. This dictionary is considered as unbiased in comparison 
with previously collected SEM images of the same sample.  

We have tested this method using SEM data of milled maize stover for cellulose fibril study [5]. The 
specimens were attached to an aluminium sample mount using carbon adhesive tabs and coated with 
5-10  nm  platinum/palladium  (80:20)  with  a  Denton  DV502  vacuum  evaporator.  Samples  were

136
doi:10.1017/S1431927617001362

Microsc. Microanal. 23 (Suppl 1), 2017
© Microscopy Society of America 2017

https://doi.org/10.1017/S1431927617001362 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927617001362


then examined at 3 kV on a Hitachi S-4800 field emission SEM. These SEM images verified the ~ 100 
nm size cellulose fibrous bundles in dried material.  We will compare the results of reconstructed 
images obtained using both biased and unbiased dictionaries, and discuss our efforts towards 
building image datasets for microstructural characterization. This under-sampling and image 
reconstruction method can be applied to various modalities of electron microscopes (SEM, TEM, 
STEM and etc.) and for different material characterization [6].
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Figure 1.  System flow of under-sampling and image reconstruction method. Top left SEM images 
are previously collected dataset (biased). Top right are randomly selected images from CIFAR-10 
public dataset (unbiased). The scale bar of the bottom test SEM image is 500 nm.
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