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Dusty plasmas typically contain various species of dust particles, though most stud-
ies have focused on homogeneous systems. This paper investigates the propagation of
dust acoustic waves in an inhomogeneous dusty plasma with an interface, analysing how
plasma inhomogeneity influences wave behaviour. Using scattering and reductive per-
turbation methods, we show that both transmitted and reflected waves depend strongly
on the mass ratio between regions. Dust acoustic waves cannot propagate through a dust
lattice when the wavelength is smaller than the lattice constant. At a discontinuous inter-
face, at least one transmitted solitary wave is generated, with its amplitude determined by
the mass ratio, while at most one reflected solitary wave can exist. These results under-
score the critical role of the mass ratio in wave propagation and suggest a method for
estimating dust particle masses and properties by analysing the incident, transmitted and
reflected waves.

Keywords: Solitary waves, Plasmas

1. Introduction

A dusty plasma consists of charged micrometer-sized dust particles, free electrons,
free ions and neutrals (Rao, Shukla & Yu 1990; Mendis & Rosenberg 1994; Barkan
et al. 1995, 1996; I et al. 1996; Murillo 2000; Kalman et al. 2004; Morfill & Ivlev
2009; Ghosh et al. 2011; Shukla & Eliasson 2012; Melzer et al. 2013; Thomas et al.
2016). The interaction potential between two dust particles is typically described by
the Yukawa potential ¢(r) = (¢/4mwega) exp (a/Ap), where a is the distance between
the particles, ¢ is the dust particle charge, gp is the vacuum permittivity and Ap is
the Debye length of the dusty plasma.

For simplicity and generality, two parameters are commonly introduced in a dusty
plasma (Feng et al. 2016; Li & Duan 2021). One is the coupling parameter, I' =
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(Q2 /4mepa)(1/kpTy), and the other is the screening parameter, ¥ = (a/Ap), where
kp is the Boltzmann constant and T is the temperature of the dust particle fluid. A
dusty plasma can be in the gas, the liquid or the solid state, which depends on the
values of both parameters I' and «. For example, if I' > 102, a dusty plasma may
form a dusty plasma crystal.

There is a substantial body of research on dusty plasma (Thomas et al 1994,
Homann et al. 1997; Melzer et al. 2000; Nunomura et al. 2002; Liu, Avinash &
Goree 2003; Nosenko, Goree & Piel 2006; Koukouloyannis & Kourakis 2009;
Heinrich, Kim & Merlino 2009; Feng, Goree & Liu 2010; Oxtoby et al. 2013;
Marciante & Murillo 2017; Lin, Murillo & Feng 2019; Houwe et al. 2022). However,
most of the previous work has focused on dusty plasmas composed of identical dust
particles. Nevertheless, experimental results show that dusty plasmas in both space
and laboratory environments contain a variety of dust particles (Horanyi & Goertz
1990; Chow, Mendis & Rosenberg 1993; Meuris, Verheest & Lakhina 1997; Duan
2001). It has been found that the dust size distribution plays a crucial role in the
characteristics of a dusty plasma (Duan & Parkes 2003; Duan & Shi 2003; Duan
et al. 2007).

Recently, dusty plasmas containing two or more different microparticles with dif-
ferent sizes have been studied (Smith et al. 2008; Hartmann et al. 2009; Ivlev et al.
2009; Jiang et al. 2011; Wieben, Schablinski & Block 2017). A series of experi-
ments on binary complex plasmas over a broad range of parameters has also been
conducted (Du et al. 2012; Killer et al. 2016).

The wave phenomenon in plasmas has attracted considerable attention (Sergeev &
Grach 2014; He et al. 2016; Xu & Song 2019). The waves in a binary dusty plasma
have also been studied (Yang et al. 2017; Sun et al. 2018). The slow dynamics in
dusty plasmas with two different dust sizes were experimentally studied by Du et al.
(2019). Moreover, the reflection and transmission of a solitary wave across an inter-
face in a binary complex plasma have been examined numerically, experimentally
and analytically (Hong et al. 2021).

A dusty plasma usually contains different species of dust particles both in space
plasma and in laboratory experiments. However, most previous studies on the dusty
plasma focussed on the dust plasma in which all the dust particles are assumed
to be the same. How a wave propagates in an inhomogeneous dusty plasma com-
posed of different species of the dust particles remains an interesting question with
many unresolved problems. Recently, experimental investigations on a dust acous-
tic wave propagating to an interface were reported (Du et al 2019; Kumar et al.
2021). Subsequently, studies examined how an incident pulse wave is transmitted and
reflected by several impurity dust particles (Wei et al. 2023). Following the previous
works, the present paper investigates how both the linear wave and the nonlinear
wave are reflected and transmitted by an interface, as reported in experiments (Du
et al. 2019). It has been found that both the transmitted and reflected waves not
only depend on the incident wave, but also are strongly influenced by the mass ratio
between the two regions. It appears that the dust acoustic wave cannot propagate
through the dust lattice if the wavelength is smaller than the dust lattice constant.
Additionally, it has been observed that at least one transmitted solitary wave is gen-
erated when an incident solitary wave reaches a discontinuous interface. However,
there is at most one reflected solitary wave. Based on these results, an experiment
can be designed to estimate the mass of the dust particles and the distribution of dif-
ferent dust species by sending an incident wave through the inhomogeneous region
and measuring the transmitted and reflected wave information.
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FIGURE 1. Schematic of a one-dimensional dust particle chain, in which the blue spheres are
one kind of dust particles, while the magenta spheres are another kind of dust particles.

This paper is organised as follows. Section 2 establishes the model used in the
present study. Section 3 gives linear wave propagation and its dispersion relation.
Section 4 discusses the continuity condition when a wave propagates across a discon-
tinuous interface. Section 5 examines the transmission and reflection of an incident
solitary wave by the discontinuous interface. Section 6 provides the conclusion for
the present paper.

2. Model

It has been recently reported that a binary complex plasma was formed by
injecting two types of particles under microgravity conditions in the PK-3 Plus
laboratory onboard the International Space Station (ISS). One type consists of
melamine formaldehyde particles with a diameter of 2.55 um and a mass of
m =134 x 10~1* kg, while the other consists of SiO5 particles with a diameter of
1.55 um and a mass of m =3.6 x 10~13 kg. Due to differences in particle proper-
ties, phase separation occurred, leading to the formation of an interface between the
two types of particles (Du et al. 2019; Hong et al. 2021). In this study, we consider
a strongly coupled regime where the coupling strength satisfies I' > 100, ensuring
that the dusty plasma is in a solid-state condition. Based on this, we now consider an
inhomogeneous dust particle chain consisting of an homogeneous chain of N iden-
tical dust particles from i = —N + 1 to i =0, and another homogeneous chain of N
identical dust particles from i =1 to i = N. However, the dust particles differ in the
regionsi=—N+1toi=0(x<0)andi=1toi=N (x> 0), as shown in figure 1.

We now aim to understand the following phenomena. Suppose that a wave prop-
agates in the region i < 0 (x < 0) and moves towards the region i > 0 (x > 0). When
it reaches the discontinuity at x =0, it will evolve into a transmitted wave in the
region x > 0 and a reflected wave in the region x < 0. In this case, the region x > 0
will contain only the transmitted wave, while the region x < 0 will contain both the
incident and reflected wave.

When there are perturbations in a dust particle chain, we assume that the position
of dust particle i is given by x; = iag + &;, where &; is the displacement of dust particle
i from its equilibrium position iay and aq is the lattice constant representing the
distance between neighbouring dust particles in the equilibrium state. For simplicity
and convenience, we express & as él.Z , where Z can be I, R or T for the incident,
reflected or transmitted wave, respectively. .

For an arbitrary dust particle i, the equation of motion is given by m,&; =
—qV ) ¢ij, where my and g are the mass and charge of the dust particle, ¢;; is the

JF#L
Xij
Yukawa interaction potential between dust particles of i and j, ¢;; = q/47reox,~je_5,
where x;; = |x; — x;| is the distance between dust particles i and j, Ap is the Debye
length, and &g is the permittivity of vacuum.

Due to the shielding effect, we consider only the interaction forces between

nearest-neighbouring dust particles. We also use two approximations. First, the small
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amplitude approximation ag > & — &_1. The small amplitude approximation means
that the displacement difference between the nearest neighbours of the dust particles
(& — &;—1) is much less than the lattice constant (ag). Second, the long wavelength
approximation ag << A, where XA is the wavelength of the perturbations. In other
words, the long wave approximation means that the wavelength is much larger
than the lattice constant. By usin§ the small amplitude approximation and Taylor
expansions, we have mg(3°€i/91) = ki (&iv1 + &1 — 26) + ko[ (Gir1 — £)° — (& —
E-DM 4 Ol — &) — & — &)1, where ki = (¢%/4meoag)e ™ [2 + 2 + k7],
ky = —(¢*/ Snsoag)e_" [6 + 6k + 3k + k3]. By using the long wavelength approxi-
mation and the continuum approximation &;(f) = &(x, ), we have &4 ,=&(x, 1) £
(3& /8x)ag + (a3/2)(3%& /0x?) + (ag /6)(33& /3x) + (af /24)(9*E /9x*) + - - - . Since all
the physical quantities are functions of time ¢ and the spatial coordinate i, where i
is a discrete integer variable, for simplicity and convenience, we can treat i as X,
where x is a continuous variable. This is known as the continuum approximation.
Furthermore, due to the small amplitude approximation, Taylor expansion can be
applied. Consequently, we obtain the equation of motion for the dust particle as
follows (Wei et al. 2023):

9% 9% a3t A& 9%¢
2 ~BiGe T B

where B] = klag/md and Bz = 2k2a(3)/md.

(2.1)

3. Linear wave and dispersion relation

For a small amplitude wave (i.e. a linear wave), (2.1) reduces to a linear equation

as
9% 9% af 3%
—2 = Bi(— + 22, 3.1
oz -~ BGe T 3.1y
i(kx—wt)

For a linear wave, we assume that & = &ge
is given by w? = B1k*(1 — (a3/12)k?), or w =++/Bik,/(1 — (a5/12)k?). The phase

speed is v, = w/k =%/B1,/(1 — (a%/lZ)kz). It appears that there are no real values

for w if a(z)k2 > 12, which indicates that the waves cannot propagate in the dust chain

if the wavelength is small enough. The critical wavenumber is k. = 2+/3/ag. Waves
exist if k < k., but do not exist if k > k..

The natural frequency in the dust lattice chain is wg=+/k1/my. For the long
wavelength approximation, i.e. apk << 1, we have v, = /B| = woay.

. The dispersion relation from (3.1)

4. Continuity equation

Suppose there is an incident wave propagating in the positive x direction in the
region x < 0. When it reaches the discontinuity point x =0, it will be both reflected
and transmitted at this point. We now aim to construct both the reflected wave
and transmitted waves from the incident wave. To do this, we use the continuity
condition at x=0.

The momentum of the dust particles and the force acting on them at the inter-
face x =0 should be continuous. Neglecting higher-order terms and applying the
continuity conditions at the interface x =0, we have
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my as m; agR md asT
3 81‘ |x:0 3 8t |X 0_ +3 8t |x 07 (41)
dy ) ay
K E |z +hy ER [xmo=kTET 1m0, (4.2)

where m; and m:; are the mass of the dust particles in the regions x < 0 and x > 0,
respectively. Here, k| and kf correspond to the parameters of k| in the regions
x <0 and x > 0, respectively. For the three-dimensional case, n; = 1/a; 3 and n;l" =
1 +3

/aq

4.1. Reflection and transmission by linear incident wave

We first study the transmission and reflection of an incident linear wave. For
convenience and generality, we assume that &’ :Eéek”‘_‘”’, gR =§§eka_“” and

g7 =gl kT2 where &/, £l and &1 are the wave amplitude of the incident wave,
reflected and transmitted waves, respectively. Here, w is the wave frequency, and
kr, kg and kp are the wavenumbers for the incident, reflected and transmitted wave,

respectively. We have kj =kgr=(w/\/B)), kr=(0/ Bf'), B = (kl_(aa)z)/rm;
and BIL = (k;“(aar )?) /m;;. We derive these results from (4.1) and (4.2),
2
T

§ = ———&0- (4.3)
O xm+ax °
Xk — Xm
£ ="l (4.4)
0 Xm + Xk 0

where y,, = m;; /m;(a)_ /aar)3 , Xk = k;r /k| . The amplitude ratios of both the trans-
mitted wave to the incident wave and the reflected wave to the incident wave are

T
2
o _ , (4.5)
50 m_d( )3 (1+(”0 )3 242+ F)? ek~ —kt)
- 242k~ +(k~ )2
My g 242+ k)
& _ a md 77 242F +(cF)? .6)
é;-‘é 1+m_[/q_2+2/c +(k)? e(K+_K7)’ '
my " 2426+ H)?
where kT = =q, Tt kT = ay /A p are the screening parameters in the region of x > 0

and x <0, respectively. Here, A} =I[(nfe*/eokpT,") + (Zl.zn;rez/eokBTiJr)]*l/z,
Ap = [(ne_e2 /eokpT, ) + (Zl-an-_e2 / eokBTi_)]_l/ 2 are the Debye length in the regions
of x>0 and x < 0, respectively, nj’, T;r , n;r and Tl.Jr are the number density, the
temperature of the electrons, the number density and the temperature of the ions in
the region x > 0, respectively, n,, 7,7, n; and T, are the number dens1ty, the tem-
perature of the electrons, the number dens1ty and the temperature of the ions in the
region x < 0, respectively, and ¢ and ¢~ are the electric charge of a dust particle
in the region x > 0 and region x < 0, respectively. The electric charge neutrality in

two regions yields nfe — Z nle + (¢7 /(al)}) =0, nje — Z n; e+ (¢~ /(ay)*) =0

where we used the equation of ag =n;1/ 3 for a three-dimensional dusty plasma
(Hong et al. 2021).
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At equilibrium, the variables of aar and a; should be interdependent because the
force in the dust particle chain must be a constant. Consequently, the following
relationship holds: kfaa' + k; (ag' = ki ay +ky(ay )2. Thus, we have

+ - - —\2
% _ | g 22T FE) e @4.7)
aa q;2+2K++(K+)2

Now consider the limiting case where ag << Ap. In this case, (4.7) simplifies to

+ —
a q
% _ | (4.38)
) 94
Equations (4.5) and (4.6) become
£ 2
g B ﬂ(ﬂ)S + (ﬂ)S ’ (4.9)
m; “at at
Wl d
R 1 — =24 (20 2
o _ My ) (4.10)

5({ 1+ my ("o )2
my g
Furthermore, if all the dust particles are made of the same material and each
dust particle is a spherlcal grain, then my =4/37r ~» where ry is the dust particle
radius. Additionally, g ~ 7, ;> With 1 <y <2 (Hong et al. 2021). Therefore, we have
ag fay = (my [mg) 6. gt /g™ =y [m)5.
Equations (4.9) and (4.10) become
T
2
gil = 4.11)
Wl m
o GhY +Gh?

1_,
5 _ 1_(md)

0 Ml (4.12)
S 14 (ML)
n’l

Figure 2 shows the dependence of the amplitude ratio (S /S ) of the transmitted

wave to the incident wave on the mass ratio (m; /m;), where the parameter y =
1, 1.5, 2 (Hong et al. 2021). It shows that the amplitude ratio of the transmitted wave
to the incident wave decreases as the dust particle mass ratio of that in the region
x> 0 to that in the region x <0 increases. In other words, the transmitted wave
amplitude decreases for a given incident wave if the incident wave propagates from
the smaller dust particle mass region to that of the larger dust particle mass region,
while the transmitted wave amplitude increases if the incident wave propagates from
the larger dust particle mass region to that of the smaller dust particle mass region.
It is also shown that the amplitude ratio of the transmitted wave to the incident wave
increases as the parameter y increases in the region m;,” /m; <1, while it decreases

as the parameter y increases in the region m 2 /my > 1
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FIGURE 2. Dependence of the amplitude ratio éOT / r&é of transmitted wave to the incident wave
on the mass ratio mz; /m , where the parameter y =1, 1.5, 2.

-0.6

-
my/my

FIGURE 3. Dependence of the amplitude ratio é(‘f /éé of reflected wave to the incident wave on
the mass ratio m:lr /m , where the parameter y =1, 1.5, 2.

It is found from figure 3 that there are no reflected waves if the mass of both
regions is same. However, there are reflected waves if the dust particle mass in both
regions is different. The reflected wave amplitude increases as the mass ratio between
the two regions increases. Furthermore, the amplitude ratio of the reflected wave to
the incident wave decreases as the parameter y increases in the region m:{ /my <1,
while it increases as the parameter y increases in the region m:{ /m; > 1. There is a
phase shift of 7 for the reflected wave in the region m:,r /my > 1, while there are no
phase shifts in the region m}' /my <1

Notice that there is no reflection in an homogeneous dust lattice chain, while there

is reflection in an inhomogeneous one. This result can be used to determine whether
the dust lattice is homogeneous or not.

4.2. Approximate nonlinear wave equations for incident, transmitted and
reflected waves

In this section, we study the transmission and reflection of a nonlinear wave
by using the traditional reductive perturbation method under the condition
that the waves satisfy both the small amplitude approximation and the long
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wavelength approximation (Su & Mirie 1980; Jeffrey & Kawahara 1982; Ghosh
et al. 2002; Zhang et al. 2014; Gao et al 2017). We introduce the stretched
coordinates nt =e(x —c¢tf), t=ex and £T =& + &3+ in the region
x> 0. However, we introduce n~ =e(x—c7¢), ¢ =e(x+c 1), T =g3x and
E” =ck +83§2_ + -+ in the region x <0, where £* and £~ represent physical
quantities in the regions x >0 and x <0, respectively, ¢ is a small parameter,
¢T is the wave speed in the region x>0, and ¢~ is the wave speed in the

region x <0. By substituting these expansions into (2.1), we obtain ¢t =,/B7,

=BT, T =TT, ), & . T D =E @m0 +ERQCT, 1), result-
ing in three Korteweg-de Vries (KdV) equations: (dw!/d7)+a~w/(@w!/an™) +
B~ @*w! /an—) =0, @w?/87) +atwl @w! /an™) + @ wT /anT?) =0,
@wR/aT) +a wR@wR/9c )+ B~ (03wR/8c73)=0,  where  w/ =03&!/on™,
wl' =37 /an*, wR=0eR/3¢~, ot =Bf/2Bf, o~ =B;/2B], pt=ai?/24
and B~ =a, 2/24. One of the solitary wave solutions of the KdV equation can

be written as w? = wisechz(njE —upt /D?), where n* and n~ correspond to the

regions x > 0 and x < 0, respectively. Here, Z represents /, R and T for the incident,
reflected and transmitted solitary waves, respectively. The parameters are defined
as follows: wi =3up/at (the wave amplitude), D* =2./B% /uy (the wave width)
and ug (propagation velocity in the moving coordinate system).

One solitary wave solution in the experimental coordinate system can be rewrit-
ten as £ = £Ztanh(x — vgzt +x% /D?), u? = uZsech?(x — vgt +x§ /D?), where £Z =
a(“)—LB?\/6(82u0)Z /82i is the displacement amplitude of the dust particle, uZ =

3
—6(82uo)ZBfE2 / rBiE is the dust particle velocity amplitude, vg = ch /1 — (e2up)?

is the wave speed, D% = a(j)E /7 6(e%ug)?[1 — (e2up)#] is the wave width, and xOZ 1s the
initial phase of the wave for the incident, reflected and transmitted solitary waves.

4.3. Scattering method for a KdV solitary wave

To understand the generation of both transmitted and reflected solitary nonlin-
ear waves at x =0, we use the inverse scattering method (Hong et al. 2021). For
the KdV equation: 3¢ /3T — 64(d¢/dX) + (3¢ /0X>) =0, with its initial condition
#(X, 0) = —(2A4/rB*)sech®(X /B). The number N of generated solitary waves is given
by the maximum integer satisfies /4 + (1/4)+ (1/2) — N > 0. The amplitudes 4;
of the jth solitary wave is given by A4;=2([/(4 + 1/4)+(1/2) —j1?)/B?, where
j=12,..-- N.

Suppose there is an incident solitary wave propagating in the positive x
direction in the region x <0, which satisfies the KdV equation of (dw!/d7)+
a~wl@w! /an™)+ B~ (33w /an~3) =0, where one solitary wave solution is w!/ =
wfnsechz(n_ —ugt/D!), with W,In =3ug/a~ and D' =2./B~/up. By substituting
W!=—6(B"/a~w!) and T=pB"t, we obtain @W!/daT)—6W! @W!/oan~)+
@3W!/an=3)=0. The solitary wave solution can be rewritten as W/ =

W,Insechz(n_ — (g—(l)T )/d". The initial condition for the incident solitary wave is
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aw! awl  Pw!
— oWl — 4+ =0,
oT g~ on3
W o= W,{,sechz'zi—l, (4.13)

where W,fq =—Uy/2, d' =2/r/Uy and Uy is an arbitrary parameter controlling the
amplitude of the solitary wave.

5. Nonlinear transmitted wave and the nonlinear reflected wave due to an incident
solitary wave
5.1. Construction of the ‘initial conditions’ for both transmitted nonlinear wave and the
reflected nonlinear wave from an incident KdV solitary wave

We now attempt to find the transmitted and reflected waves resulting from an
incident solitary wave at an interface. We can derive the following equations from
(4.1) and (4.2):

myc 9! myc” JER mict T | G5.0)
T Ix=0— =0= =0, .
a53 =" ag3 9= " a6r3 at
_ _ogl _ _0gR il
We have from (5.1) and (5.2),

w! | x=o= w |x=0, (5.3)

X2+ X1

X2 — X1
wh |x=0= N [x=0, (5.4

X2+ x1

mtay)? o+ -, _
where x| = /mj‘(a?;ﬂ Z—_ and x> = (¢ ay /g ag)*.

The ‘initial conditions’ for the transmitted nonlinear wave can be described by the
following equations:
awrT awT B¥dwT
—ew’

27 o,
oT ont + ont3

—ect
al =’

W o= Wi sech? (5.5)

X2+ x1

where WT = —6(B JaT)w! and T =B
Letting BT = ¢ d! /rc—, we have
awT awT P¥wT
—6w’ +
oT ont ont3
T +

2.1
sech [F

=0,

24
W o= —

TE 1, (5.6)

where AT = (2/x1 + Xz)(m;/m;)((ag/aa)z(kT/kl_). In the limit case where ap <<
ip. we have AT = 2/ x1 + x2)(my /m§)ag /a3 " /q77).
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Similarly, the ‘initial conditions’ for the reflected wave can be described by the
following equations:

awk WRaWR > WR
oOR act  act3
R +

2.7
(BF)? sech [ﬁ

-0,

R
|

x=0=— —

I, (5.7)
where AR =2(x2 — x1/x1 + x2) and BR =4d’.

5.2. Transmitted wave and the reflected wave by an interface

The transmitted nonlinear waves from an indent solitary wave due to
the interface can be obtained using (5.6) and the scattering method. The
number N7 of generated transmitted solitary waves is given by the max-
imum integer satisfying the inequality /A7 4+ (1/4)+(1/2) —NT >0, where
AT =Q/x1 + x)(m [m)ag Ja)((q) /g)). In the limit case where ag << Ap,

m(ay)’

we have ag /ay = (m} /m;) 76, ¢t /g™ = (mF /m)5, xi= ) =

1,11 _ _
(my /m 2PV, yo =g ay /g~ ag)?) = ((m /m7)) . Then, AT =(2/x1+ x2)
5
(m /m:lr)?y_l. The corresponding amplitudes of jth transmitted solitary wave, 47,
AT H(1 /4 +(1/2)—)
(BT)? ’
The dependence of the number of transmitted solitary waves on the mass ratio
(m'dF /m) is shown in figure 4, with y =1, 1.5, 2. It shows that there are two trans-

is given by AJ.T =2

mitted solitary waves when 0.2 < (m:l,r /m;)<0.6. For y =1.0, there is only one
transmitted solitary wave when (m; /m;)>0.6. However, if y =1.5, the region
where two transmitted solitary waves exist is 0.4 < (m;l" /m;) < 0.6 and the region for
only one transmitted solitary wave is (m; /my) > 0.6. For a larger value of y =2, the
region for two transmitted solitary waves is 0.6 < (m;,r /m;) < 0.8, while the region

for only one transmitted solitary wave is (mjl' /m;) > 0.8. Moreover, the dependence
of the amplitude ratio of the transmitted solitary wave to the incident solitary wave
on the mass ratio (m; /m) is shown in figure 5. It seems that the amplitude ratio
of the transmitted solitary wave to the incident solitary wave decreases as the mass
ration (m;iIr /m ) increases.

Similarly, the reflected nonlinear waves from an indent solitary wave due to
the interface are obtained from (5.7) and the scattering method. The number
NR of generated reflected solitary waves is given by the maximum integer of the
inequality \/AR + (1/4) + (1/2) — NR > 0, where AR =2(x2 — x1/x1 + x2). The cor-
responding amplitudes of the jth reflected solitary wave A]R are given by A]R =

2(VAR+ (1/4) + (1/2) — j(BR)?).
The dependence of the number of reflected solitary waves on the mass ratio,
(m;lL /my), is shown in figure 6, where y =1, 1.5, 2. It shows that there is either

one reflected solitary wave or none. When 0.2<(m;1Ir /m;) < 1.1, there is only
one reflected solitary wave, while there are no reflected solitary waves when
1.1 < (m;; /my). It seems that whether there is one or no reflected solitary waves
is independent of the parameter y.
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FIGURE 4. Dependence of the number of transmitted solitary waves on the mass ratio m:lr /my,
with the parameter y set to (a) 1, (b) 1.5 and (c) 2.
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FIGURE 5. Dependence of the amplitude ratio, A{ /A" of the transmitted solitary wave to the
incident solitary wave on the mass ratio mz; /m , with the parameter y setto 1, 1.5 and 2.
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FIGURE 6. Dependence of the numbers of the reflected solitary waves on the mass ratio,
mj /m, where the parameter y is set to (a) 1, (b) 1.5 and (c) 2.

Moreover, the dependence of the amplitude ratio of the reflected solitary wave
to the incident solitary wave on the mass ratio of (m:l,r /m) is shown in figure 7. It

seems that there is no reflection if m; =m . The amplitude ratio of the reflected
solitary wave to the incident solitary wave decreases as the mass ratio (m;lr /my)
increases in the region 0 < (m; /m;) <1, while the amplitude ratio of the reflected
solitary wave to the incident solitary wave increases as the mass ratio (m:{ /my)
increases in the region (m;[F /my)> 1.
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—— =10, =1.0
—e— y=1.5, j=1.0
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e
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FIGURE 7. Dependence of the amplitude ratio, Af JA!, of the reflected solitary wave to the
incident solitary wave on the mass ratio (mj]' /m ), with the parameter y set to 1, 1.5 and 2.

6. Conclusions

As is well known, a dusty plasma typically consists of different species of dust
particles, both in space plasma and experimental settings on Earth. However, most
investigations on dust acoustic wave in dusty plasma assume that all dust particles
are the same. The present paper studies dust acoustic wave propagation in an inho-
mogeneous dusty plasma and seeks to determine how the inhomogeneity of the dusty
plasma affects the dust acoustic wave.

It is found in the present paper that the transmitted wave amplitude decreases for
a given incident wave if the incident wave propagates from the smaller dust particle
mass region to the larger dust particle mass region, while the transmitted wave
amplitude increases if the incident wave propagates from the larger dust particle
mass region to the smaller dust particle mass region. It is also found that there is no
reflected wave if the dust particle mass of both regions is the same. However, there
is a reflected wave if the dust particle mass in both regions is different. The reflected
wave amplitude increases as the mass ratio between the two regions increases.

It appears that dust acoustic waves cannot propagate in the dust lattice if the

wavelength is sufficiently small. The critical wavelength is A, = (r/ Vag. If A > A,
the wave exists, but it cannot exist if A < A.. This indicates that dust acoustic waves
cannot propagate in the dust lattice when the wavelength is smaller than the dust
lattice constant.

Using the scattering method and the reductive perturbation method, we find that
at least one transmitted solitary wave is generated when an incident solitary wave
reaches a discontinuous interface. The number of solitary waves and their corre-
sponding amplitudes depend on the mass ratio between the two regions. However,
there can be at most one reflected solitary wave. No reflected solitary wave occurs if
an incident solitary wave propagates from a region with smaller dust particle mass
into a region with larger dust particle mass.

The present results demonstrate that the mass ratio between two distinct regions
in an inhomogeneous dusty plasma plays a crucial role in dust acoustic wave prop-
agation. Based on these findings, we can design an experiment to estimate the mass
of the dust particles and identify the locations of different dust species by introduc-
ing an incident wave, and analysing both the transmitted and reflected waves. For
more complex inhomogeneous dusty plasmas, understanding how transmission and
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reflection depend on both the incident wave and the plasma inhomogeneity remains
a topic for future research.
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