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In two-fluid simulations of gas–solid fluidised beds, the gaseous phase and the particulate
phase are modelled as continuous media. The stress exerted by the particulate medium on
the container walls should be modelled to predict accurately the bed dynamics. This paper
addresses the modelling of sliding particle–wall contacts in two-fluid simulations, based
on reference simulations coupling computational fluid dynamics with the discrete element
method (CFD-DEM), in which the individual movement of the particles is tracked. The
analysis of the CFD-DEM highlights the complex near-wall behaviour of the particles,
which is not reproduced by two-fluid models. Nevertheless, the particle–wall shear stress
can be expressed based on the total granular pressure within the first cell off the wall. The
model is validated for the two-fluid simulation of a bubbling gas–solid fluidised bed of
olefin particles in the dense-fluidisation regime.
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1. Introduction

A gas–solid fluidised bed is a bed of solid particles, through which a gas is passed, which
behaves as a fluid. The fluidised state is maintained as the drag force exerted by the gas flow
on the solid particles is able to overcome the gravitational force. Gas–solid fluidised beds
are used extensively in various industrial applications, such as flue gas desulphurisation
(Deng et al. 2019), catalytic polymerisation (Neau et al. 2020) and solar receiver (Sabatier
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et al. 2020). Several modelling approaches have been proposed to simulate large-scale
gas–solid fluidised beds. They may be classified broadly into Eulerian–Lagrangian models
and Eulerian–Eulerian models.

Eulerian–Lagrangian models are those that describe the motion of the gas using an
Eulerian model, by modelling it as a continuous medium, and the motion of the solid
particles using a deterministic Lagrangian model, by modelling them as discrete entities
with, for instance, the discrete element method (DEM) (Cundall & Strack 1979), the dense
discrete phase model (DDPM) (Popoff & Braun 2007) or the multiphase particle-in-cell
(MP-PIC) method (Andrews & O’Rourke 1996). While the DDPM and MP-PIC methods
consider parcels of particles, and furthermore do not use detailed collision laws (Chen &
Wang 2014; Adnan et al. 2021), DEM entails tracking the motion of each solid particle
individually, using Newton’s second law of motion, and an explicit treatment of each
particle collision. The CFD-DEM approach is a computational technique that combines
a computational fluid dynamics (CFD) approach for the simulation of the continuous
phase with a DEM for the simulation of the discrete phase. The interaction between the
two phases is taken into account using empirical closures, as the complex flow around
individual particles is not resolved. Since every particle and every collision is considered,
CFD-DEM simulations are computationally expensive for large-scale systems, but can
account for the interactions between particles in a realistic manner.

Eulerian–Eulerian models are those that describe the motion of the gas and the
solid particles using an Eulerian two-fluid model (TFM), by modelling them as two
interpenetrating continua (Wang 2020). Two-fluid simulations rely on models to provide
of a set of proper governing equations, constitutive relationships and boundary conditions.
Coupled mass, momentum and energy transport equations may be derived for each phase
from mixture theory or statistical averaging, based on a Lagrangian stochastic model
(Anderson & Jackson 1967; Bowen 1971; Morioka & Nakajima 1987; Simonin 2000).
Constitutive models for the particulate phase are generally closed using the kinetic theory
of granular flow (KTGF), which may be understood as an extension of the kinetic theory
of gases (Jenkins & Savage 1983; Chapman & Cowling 1990). The KTGF assumes that
particle–particle collisions are instantaneous and binary. To represent the granular stress
associated with enduring contacts, referred to hereafter as the frictional granular stress, the
KTGF is usually complemented in dense-fluidisation regimes with empirical models based
on the critical state theory of soil mechanics (Schaeffer 1987; Johnson, Nott & Jackson
1990; Ocone, Sundaresan & Jackson 1993; Srivastava & Sundaresan 2003). In particular,
(Johnson et al. 1990) introduced a model for the intermediate regime where both enduring
contacts and short-duration collisions are significant, in which they proposed to sum the
KTGF stress and the frictional stress as if they acted alone.

Regarding the boundary-condition modelling, the no-slip wall boundary condition is in
general suitable for the gaseous phase because the Knudsen number is small and turbulent
effects are not important (Agrawal et al. 2001). For the particulate phase, commonly
no-slip, free-slip and partial-slip boundary conditions are used. Various particle–wall
boundary conditions have been derived in the literature following the KTGF, to take
into account the collisions between particles and flat walls (Hui et al. 1984; Jenkins &
Louge 1997; Sakiz & Simonin 1999). The shadow-effect model of Sommerfeld & Huber
(1999) has been used by several authors to extend the modelling approach to take into
account the effect of wall roughness (Konan, Simonin & Squires 2006; Radenkovic &
Simonin 2018). Johnson & Jackson (1987) proposed a boundary-condition model for dense
fluidised beds, following the approach of Hui et al. (1984), that aims to represent both
short-duration collisions and enduring contacts. The authors represented the momentum
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and energy transfer due to collisions between particles and rough walls using a specularity
coefficient, whose value depends on the roughness of the wall. This coefficient is difficult
to measure experimentally, and has in practice been used as a tuning parameter in
numerical simulations (Almuttahar & Taghipour 2008; Li, Grace & Bi 2010; Shu et al.
2014). An analytical expression for the specularity coefficient as a function of measurable
particle and wall properties has been proposed by Li & Benyahia (2012) based on the
rigid-body theory. Zhao et al. (2016) proposed another expression based on the particle
simulations of Louge (1994). Another family of particle–wall boundary conditions has
been established by Jenkins (1992) and Jenkins & Louge (1997) to predict the particle slip
velocity and agitation kinetic energy flux. Schneiderbauer et al. (2012) derived a boundary
condition that combines the sliding and non-sliding limit cases of Jenkins (1992) and
Jenkins & Louge (1997) in one expression. The approach has been extended to the case of
rough walls by Soleimani, Pirker & Schneiderbauer (2015a).

There have been numerous studies on the effect of the particle–wall boundary condition
on the hydrodynamics of gas–solid fluidised beds. Benyahia, Syamlal & O’Brien (2005)
investigated several boundary conditions (Johnson & Jackson 1987; Jenkins 1992; Jenkins
& Louge 1997) for the simulation of a dilute gas–solid pipe flow, and concluded that
the physical behaviour of the particle–wall interaction is close to the sliding limit of the
boundary condition of Jenkins & Louge (1997), to the boundary condition of Johnson &
Jackson (1987) with a small specularity coefficient, or to a free-slip boundary condition.
Darelius et al. (2008) compared free-slip and partial-slip boundary conditions for the
simulation of a high-shear mixer, and stressed the importance of developing partial-slip
boundary conditions for dense systems with enduring particle–wall contacts. Li et al.
(2010) studied the influence of the parameters of the boundary condition of Johnson &
Jackson (1987) for the simulation of a bubbling fluidised bed, and emphasised that the
particle–wall boundary condition should be specified with great care. Sharma et al. (2014)
examined the effect of the specularity coefficient using the model of Sinclair & Jackson
(1989), and found that its influence was significant at low fluidisation velocities but
negligible at higher fluidisation velocities. Soleimani, Schneiderbauer & Pirker (2015b,c)
compared four boundary conditions (Johnson & Jackson 1987; Jenkins 1992; Jenkins
& Louge 1997; Li & Benyahia 2012; Schneiderbauer et al. 2012), and argued that
the boundary condition of Schneiderbauer et al. (2012) is the most complete because
it considers rigorously the dissipation of particle agitation. Fede, Simonin & Ingram
(2016) compared smooth- and rough-wall boundary conditions for the simulation of a
dense fluidised bed, and showed that the macroscopic hydrodynamic behaviour of the
bed was not well reproduced with a smooth-wall boundary condition. Nigmetova (2019)
investigated the same bed configuration using CFD-DEM simulations, and recommended
taking into account the effect of the enduring contacts of particle clusters near the wall in
the TFM boundary condition.

In this paper, we propose and assess a new boundary-condition model for
sliding particle–wall contacts at smooth flat walls. The model is developed using
CFD-DEM simulations of a bubbling gas–solid fluidised bed of olefin particles in the
dense-fluidisation regime. The CFD-DEM simulations are performed with the explicit
goal of assisting the TFM development, and therefore use modelling assumptions intended
to facilitate the comparison. Namely, the CFD-DEM simulations use the same drag model
as used in the TFM and, for consistency with the two-fluid modelling assumptions, neglect
both rotation and particle–particle friction. The results of the CFD-DEM simulations
are used to inspect the near-wall behaviour of the bed. In particular, a relationship
between the particle–wall shear stress and the fluxes of the particle–particle contact-stress
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tensor is sought. This lets us establish a particle–wall boundary condition based on
the total granular pressure within the first cell off the wall, which can operate in all
fluidisation regimes. Finally, we compare several boundary-condition models for the
two-fluid simulation of the bubbling gas–solid fluidised bed. The results are compared
to positron emission particle tracking (PEPT) measurements (Fede et al. 2016) and to
the present CFD-DEM simulations. Two cases are considered: a case with total solid
mass 2.5 kg and high fluidisation velocity 0.32 m s−1, and a case with total solid mass
3.8 kg and low fluidisation velocity 0.16 m s−1. In both cases, the comparison includes,
in addition to the present boundary condition, a no-slip boundary condition, a kinetic
boundary condition and a kinetic-frictional boundary condition.

The paper is organised as follows. Section 2 presents the modelling and numerical
assumptions of the CFD-DEM simulations. Section 3 analyses the CFD-DEM data
and develops the boundary-condition model. Section 4 presents the modelling and
numerical assumptions of the TFM simulations, and the a posteriori comparison of the
boundary-condition models. Section 5 concludes.

2. Discrete element modelling

The selected test case is a dense, non-reactive, isothermal and pressurised gas–solid
cylindrical fluidised bed of olefin particles in the bubbling fluidisation regime. The
configuration reproduces the experimental set-up of Fede et al. (2009, 2016). A CFD-DEM
simulation of the case has been performed by Nigmetova et al. (2022). The present
CFD-DEM simulations use the same mesh and numerical method as in Nigmetova et al.
(2022). This section presents the geometrical and operational parameters of the case, the
numerical and modelling hypotheses of the CFD-DEM simulations, and validation results.

2.1. Geometry and operating conditions
The computational domain of the CFD-DEM simulations is represented in figure 1(a).
The internal radius of the cylindrical column is Rc = 0.077 m. Above height HC = 12Rc,
the radius is enlarged progressively over a height HE = 3.7Rc until RE = 1.65Rc. The
total height of the column is HT = 22.2Rc. A pressurised gas (nitrogen) is injected with
uniform velocity Vf on the bottom boundary (inlet). A pressure 12 bar is prescribed on
the top boundary (outlet). This elevated pressure is not necessary for the development of
the present wall shear stress model, which should also apply to other pressure conditions
and in particular to dry granular flows, where the interstitial gas plays a negligible
role. The lateral boundaries are considered no-slip walls for the gas. The variations of
temperature and density within the column are assumed negligible. The gas temperature
is Tg = 298 K. The gas density is ρg = 13.595 kg m−3. The gas dynamic viscosity is
ηg = 1.7982 × 10−5 Pa s.

The bed is filled with smooth, mono-disperse, ideally spherical particles of diameter
dp = Rc/88 = 875 × 10−6 m and density ρp = 740 kg m−3. The minimum fluidisation
velocity of the particles is 0.095 m s−1 according to the correlation of Wen & Yu (1966),
and 0.10 m s−1 according to the correlation of Thonglimp, Hiquily & Laguerie (1984).
For the particles, the lateral boundaries and the gas inlet act as walls, and are treated
identically. Thus no particle can leave the bed during the simulation. Two cases from Fede
et al. (2009, 2016) are considered, as reported in table 1: case F3, with total solid mass
Mp = 2.5 kg and fluidisation velocity Vf = 0.32 m s−1; and case F4, with total solid mass
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Outlet
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Figure 1. (a) Computational domain of the CFD-DEM simulations, and (b) bottom view of the CFD-DEM
mesh.

Simulation F3-frictionless F3 F4

Number of particles, Np 9 631 313 9 631 313 14 639 596
Total solid mass, Mp 2.5 kg 2.5 kg 3.8 kg
Fluidisation velocity, Vf 0.32 m s−1 0.32 m s−1 0.16 m s−1

Wall sliding friction coefficient, μw 0 0.3 0.3

Table 1. Operating conditions and numerical parameters of the CFD-DEM simulations.

Mp = 3.8 kg and fluidisation velocity Vf = 0.16 m s−1. A frictionless variant of case F3 is
also considered, in which the sliding friction between particles and walls is neglected. The
two cases are in the bubbling fluidisation regime. The bed is denser and associated with
smaller bubbles in case F4, given its larger total solid mass and lower fluidisation velocity.
The average bed height is hb ≈ 4.8R in case F3, and hb ≈ 6.6R in case F4.

2.2. Governing equations and numerical method
Following the CFD-DEM approach, the particulate phase is modelled as a discrete set
of particles, whereas the gaseous phase is modelled as a continuous medium that can
penetrate the particles. The motion of the particles is modelled using Newton’s second
law of motion, with a soft-sphere treatment of the contact forces (Cundall & Strack 1979).
The motion of the gas is modelled using a large-eddy simulation formalism, under the low
Mach number approximation and without density or temperature variations. A detailed
description of the governing equations used for the gaseous and solid phases is found
in Dufresne et al. (2020) and Nigmetova et al. (2022). The most relevant modelling
hypotheses are recalled below for clarity. First, one may note that particle rotation is
not considered, for consistency with the two-fluid modelling assumptions discussed in
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§ 4.1. Although the effect of particle rotation is neglected in the present study, it would
be valuable to carry out an investigation of its effect in the future, as it might affect the
dynamics of the particles near the side walls. Second, the normal contact force exerted on
a particle by another particle or by a wall is computed using damped linear spring model,
while the tangential contact force is computed using a Coulomb sliding friction model. The
collision model is characterised by spring stiffness kn, the spring damping coefficient γn,
and the coefficient of sliding friction μ. In the soft-sphere approach, the spring stiffness
is generally not determined based on the Young’s modulus of the particle material, as this
would lead to an impractically small collision time (van der Hoef et al. 2006)

Tc = π
√

meff /kn. (2.1)

In the present CFD-DEM simulations, the spring stiffness is set to kn,p = 200 N m−1 for
particle–particle contacts. Since particle–particle contacts are limiting for the simulation
time step, a higher value kn,w = 300 N m−1 is used for for particle–wall contacts, without
additional computational cost. The spring damping coefficient γn is given by

γn = − ln ec√
π2 + (ln ec)2

√
kn/meff , (2.2)

where ec is the normal restitution coefficient associated with the contacts. For
particle–wall contacts, the restitution coefficient is denoted ew and set to ew = 1, which
corresponds to purely elastic contacts. For particle–particle contacts, the restitution
coefficient is denoted ec and set to a lower value ec = 0.9 to take into account the energy
dissipated during particle collisions. As reported in table 1, CFD-DEM simulations are
performed with wall sliding friction coefficient μw = 0 (frictionless wall contacts) and
μw = 0.3 (non-zero wall sliding friction). The coefficient of sliding friction is set to zero
for particle–particle contacts in all cases.

The simulations are performed using a finite-volume method. The gas is advanced using
the time-staggered projection method of Chorin (1968) and the explicit TRK4 scheme
of Kraushaar (2011), which combines linearly a fourth-order Runge–Kutta scheme and
a two-step Taylor–Galerkin scheme (Colin & Rudgyard 2000). A fourth-order centred
scheme is used for spatial discretisation. The simulation is performed on an O-grid mesh
that contains 350 000 cells in total, as represented in figure 1(b). The cell size in the vertical
direction (z) is regular and equal to �z = 5dp. The typical cell size in the radial direction
(r) is also �r = 5dp. The grid sensitivity analysis performed in Nigmetova et al. (2022)
has shown that this cell size is relevant. In the outer region, the number of cells in the
angular direction (θ ) is Nθ = 80. This implies that the circular geometry of the column is
approximated by an octacontagon (A.4).

The particles are advanced using an explicit second-order Runge–Kutta scheme for
time advancement. A linked-cell data structure is used to search for potential collision
partners (Lubachevsky 1991; Komiwes et al. 2006). A Voronoi-region decomposition of
the wall features is used to solve the wall contacts. This is performed using the massively
parallel code YALES2 (Moureau, Domingo & Vervisch 2011). A detailed description of
the CFD-DEM methodology is given in Dufresne et al. (2020). The gas is advanced in time
using a time step �tf . The particles are advanced in time using a time step �tp < �tf ,
during which the gas advancement is frozen. The computation of the fluid and particle
time steps is detailed in Nigmetova et al. (2022).
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3. Development of a particle–wall shear stress model

The present paper establishes a boundary-condition model for the friction exerted by
the particles onto the container walls in the sliding regime, assuming a continuum
representation of the dispersed phase. The continuum modelling relies on a statistical
description of the particles, as described in § 3.1. This theoretical balance of the stresses
is combined with insights from the CFD-DEM simulations to inform the modelling of the
particle–wall shear stress.

3.1. Continuum modelling
To represent a dispersed phase as a continuous medium, one may consider that the motion
of the particles is analogous to the motion of the particles in a gas. Namely, continuum
equations and constitutive relationships relevant for an Eulerian modelling of the particles
may be derived following the approach used in formal kinetic theory (Chapman & Cowling
1990), that is, from the transport equation of the particle probability density in phase space
(Buyevich & Shchelchkova 1979; Morioka & Nakajima 1987; Reeks 1991; Simonin 2000;
Zaichik, Oesterlé & Alipchenkov 2004), which is a Boltzmann-type equation that accounts
for the interaction with the gaseous phase, external forces and particle–particle collisions.
In this work, the one-particle phase-space density is denoted fp(v, x; t) and defined such
that fp(v, x; t) dv dx is the expected number of particles whose centre is within a range
dx of location x, and within a range dv of velocity v. Since the particles have a large
inertia, we can neglect the effect of the fluid turbulence on the particle motion. For any
particle-valued variable ϕ, the expected value of ϕ at time t may be expressed as

〈ϕ〉(x, t) = 1
np(x, t)

∫ +∞

−∞
ϕ(v, x; t) fp(v, x; t) dv, (3.1)

where np(x, t) = ∫ +∞
−∞ fp(v, x; t) dv is the number of particle centres per unit volume. The

expectation 〈·〉 is conditioned implicitly on a given realisation of the gaseous phase, and
corresponds to an ensemble average over a distribution of particulate-phase realisations
(Février, Simonin & Squires 2005). Conservation equations associated with the particle
velocity moments may be derived. Within a particulate medium, up to but excluding wall
boundaries, the transport equations of the mean particle density np, particle velocity 〈up〉
and particle velocity covariance Rp = 〈u′′ ⊗ u′′〉 may be expressed as

∂t(npmp) + ∇ · (npmp〈up〉) = 0, (3.2)

∂t(npmp〈up〉) + ∇ · (npmp〈up〉 ⊗ 〈up〉) = −∇ · (npmpRp) + np fp

+ np
〈
fg→p

〉 + npmpg, (3.3)

∂t(npmpRp) + ∇ · (npmpRp ⊗ 〈up〉) = − ∇ · (npmpT p)

− npmpRp · ∇〈up〉 + npmp ∇〈up〉 · Rp

+ np

〈
fp ⊗ u′′

p

〉
+ np

〈
u′′

p ⊗ fp

〉
+ np

〈
fg→p ⊗ u′′

p

〉
+ np

〈
u′′

p ⊗ fg→p

〉
, (3.4)

where u′′
p = up − 〈up〉 is the particle velocity fluctuation, T p = 〈u′′

p ⊗ u′′
p ⊗ u′′

p〉 is the
third-order particle velocity covariance, np fg→p is the total force per unit volume exerted
by the gas, and np fp is the total force per unit volume due to contacts with other particles.
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For convenience, the particle–particle contact force fp is expressed formally as the
divergence of a particle–particle contact-stress tensor Σcnt

p . This lets us rewrite (3.3) as

∂t(npmp〈up〉) + ∇ · (npmp〈up〉 ⊗ 〈up〉) = −∇ · ((Σkin
p )T + (Σcnt

p )T)

+ np
〈
fg→p

〉 + npmpg, (3.5)

where Σkin
p = npmpRp is by definition the kinetic stress of the particles. We

thereby identify two classes of stresses within the particulate medium, as represented
schematically in figure 2(a). The kinetic stress represents the transport of momentum
by the translational motion of the particles across a given surface, due to the particle
agitation. The contact stress represents the transfer of momentum due to contacts with
other particles. In a dense fluidised bed, the stress associated with particle contacts
can be expressed formally as the sum of contributions from two modes of contact:
short-duration collisions and enduring contacts. Short-duration collisions are the dominant
mode of contact in moderately dense beds. In a moderately dense bed, they can be treated
as instantaneous collisions and are generally modelled following the KTGF. Enduring
contacts are the dominant mode of contact in densely packed beds. In densely packed
beds, they can be treated as semi-permanent frictional contacts and are generally modelled
using empirical constitutive relationships. In the following, the stress that results from
short-duration collisions is referred to as the collisional stress and denoted Σcol

p , and the
stress that results from enduring contacts is referred to as the frictional stress and denoted
Σ

fr
p , such that

Σcnt
p = Σcol

p +Σ fr
p . (3.6)

In practice, only the contact stressΣcnt
p can be measured in the CFD-DEM simulation, and

not the separate contributions Σcol
p and Σ fr

p . Indeed, Σcnt
p corresponds to the contact force

per unit area between particles lying on the opposite side of a surface. The computation of
the stresses in the CFD-DEM simulation is detailed in (A.2) and (A.3). The collisional and
frictional contributionsΣcol

p andΣ fr
p stem from an abstract decomposition in the TFM, and

we are not currently able to use an objective criterion to identify the contacts that should
be viewed as collisional or frictional in a CFD-DEM simulation.

An analogous classification of the stresses may be established on the wall boundaries, as
represented schematically in figure 2(b). The particles in contact with a wall may undergo
short-duration collisions and enduring contacts with the wall. The stress vector exerted by
an element of wall surface of normal n on the particles, denoted σ tot

w , can thus be expressed
formally as the sum of contributions from the two possible modes of contact:

σ tot
w = σ col

w + σ fr
w, (3.7)

with σ col
w the collisional particle–wall stress and σ fr

w the frictional particle–wall stress.
There is no kinetic contribution to the particle–wall stress. Indeed, a non-zero kinetic
particle–wall stress would imply that some particles leave the domain, i.e. either pass
through the wall or deposit onto the wall.

3.2. Continuity of the stress at the wall
Let us consider particulate stress in the vicinity of the location xw on the wall surface.
The unit vector n is normal to the wall at this location, and the unit vector t is parallel to
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Abulk
�n

Awb

dp/2
n n

dp/2

Collisional flux

Collisional flux:

Collisional flux:

Collisional flux

Frictional flux

Frictional flux: Frictional flux:
Particles below xn,bulk in one or more enduring

contacts with particles beyond xn,bulk

Particles in an enduring

contact with the wall

Particles in a short-duration

collision with the wall

Particles not involved in the

momentum f lux across Abulk or Awb

Particles beyond xn,bulk in one or more enduring

contacts with particles below xn,bulk

Particles beyond xn,bulk in one short-duration

collision with a particle below xn,bulk

Particles beyond xn,bulk crossing surface Abulk
without contact with particles below xn,bulk

Particles below xn,bulk in one short-duration

collision with a particle beyond xn,bulk

Particles below xn,bulk crossing Abulk
without contact with particles beyond xn,bulk

(a) (b)

Frictional flux

Kinetic flux

Kinetic flux:

fw

Figure 2. Schematic representation of the different classes of (a) particle momentum fluxes across a surface
Abulk in direction n at a distance xn,bulk = dp/2 + �n from the wall surface, and (b) momentum flux exchanges
between the particles and the wall. The contact flux is the sum of the collisional flux and the frictional flux.

the wall surface and aligned with the tangential velocity of the particles above the wall,
t = 〈up,t〉/‖〈up,t〉‖, with 〈up,t〉 = 〈up〉 − 〈up,n〉n and 〈up,n〉 = 〈up〉 · n. The transverse unit
vector s is taken such that {t, n, s} is a local orthonormal basis. Assuming hard-sphere
collisions, no particle centres are found below řw = 1/2 at the location xwb = xw +
(dp/2)n. By construction, the stress vector (i.e. the traction) associated with a wall-parallel
plane within the particulate medium, σ tot

p,n = (Σ tot
p (x, t))T · n, tends to the particle–wall

stress when approaching the wall boundary. Hence we have

σ tot
w (xwb, t) = lim

ε→0+
σ tot

p,n(xwb + εn, t). (3.8)

For simplicity, we use the notation ϕ(xwb) to denote for any field ϕ the limit lim
ε→0+

ϕ(xwb +
εn). This leads to no confusion since particle fields are not defined at the location xwb. We
may thereby express as

σ tot
w (xwb, t) = σ tot

p,n(xwb, t) = σ kin
p,n(xwb, t) + σ cnt

p,n(xwb, t) (3.9)

the correspondence between the classes of stress within the particulate medium and at the
wall. Note that the vector σ cnt

p,n corresponds to the stress associated with particle–particle
contacts, which includes in general both a collisional contribution and a frictional
contribution, but includes a frictional contribution only at the location xwb due to the
closeness of the wall. Equation (3.9) can be simplified in the limit case of a moderately
dense bed or a densely packed bed. Indeed, the particles in contact with a wall are unlikely
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Figure 3. Radial profile very close to the wall in the cases (a) F3 and (b) F4 of the total normal particle stress
Σcnt

p,nn, normal kinetic particle stressΣkin
p,nn and normal contact particle stressΣcnt

p,nn. The filled square symbol at
řw = 1/2 indicates the corresponding particle–wall normal stress σ tot

w,n. (a) Upper part of the bed, z/R = 3.45.
(b) Bottom of the bed, z/R = 0.05.

to simultaneously be in contact with a particle in moderately dense beds, such that (3.9)
simplifies to σ col

w (xwb, t) = σ kin
p,n(xwb, t), which expresses the collisional stress at the wall

based on the kinetic particle stress within the particulate medium. Conversely, the particle
velocity covariance can be neglected in densely packed beds, such that (3.9) simplifies to
σ

fr
w(xwb, t) = σ

fr
p,n(xwb, t), which expresses the frictional stress at the wall based on the

frictional stress within the medium.
It should be noted that the continuity of the stress at the wall applies to only the

total stress, as the relative contributions of the kinetic, collisional or frictional stress
vary dramatically near the contact point. The near-wall variations of the particle stresses
are measured in the CFD-DEM simulations on a series of octacontagonal surfaces at
a varying distance dpřw,bulk of the lateral wall (A.4). Numerically, we find that the
particle–wall normal stress σ tot

w,n is close to the total normal particle stress close to the
wall (figure 3), which corroborates the continuity of the stress at the wall. However, the
kinetic particle stress increases rapidly as the distance to the wall tends to dp/2, while
the contact particle stress drops to a small value. At the limit, the kinetic contribution is
predominant because most particle–wall contacts are collisional short-duration contacts.
Indeed, the contact particle stress at the wall is by construction related to the number
of particles infinitesimally close to the wall, which is zero if there are no frictional
contacts, as this implies a finite wall particle density. The normal contact particle stress
Σcnt

p,nn(xwb, t) = n · σ cnt
p,n(xwb, t) at the height řw = 1/2 is thus related to the presence of

frictional contacts. In the CFD-DEM simulations F3 and F4, that contribution does not
exceed 15 % of the wall-normal particle–wall stress at any height of the bed, indicating
that enduring contacts are only a small proportion of the contacts. This is confirmed
by the direct measurements of the particle–wall contact duration in the CFD-DEM
simulation. The contribution of contacts of varying durations to the mean particle–wall
stress according to the CFD-DEM simulations is provided in figure 4. Given that the
duration of the contacts Tc depends on the spring constant, which is non-physical in
CFD-DEM, the figure should be regarded with some care and used for a qualitative
assessment rather than a precise reading of the values. It may be seen that the stress
increases with elevation from the bottom of the bed, because the particle concentration
reaches a maximum in the upper part of the bed. In case F3, more than 90 % of the mean
particle–wall stress is due to contacts that are less than three CFD-DEM collision times
Tc in duration. Enduring contacts are more important in case F4 due to the larger solid
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Figure 4. Vertical profiles in case F4 of the mean particle–wall normal stress σ tot
w,r associated with

particle–wall contacts that are shorter than a duration. The durations are given in units of the CFD-DEM
collision time Tc (see (2.1)), which corresponds to the duration of a short-duration collision between two
particles in the CFD-DEM simulation.

volume fraction and lower particle velocity of that case. Nevertheless, contacts less than
seven CFD-DEM collision times Tc account for more than 80 % of the mean particle–wall
stress throughout the bed height (figure 4). This suggests that, from a modelling point
of view, the collisional contribution to the particle–wall stress is dominant in the two
CFD-DEM simulations.

The increase in the kinetic normal particle stress Σkin
p,nn = npmpRp,nn near the

particle–wall contact point can also be explained by a large increase in the particle-centre
density near a distance dp/2 from the wall (see figure 6). Indeed, the wall surface has
a large influence on the particle statistics, which is related to the quasi-two-dimensional
arrangement of the particles in the vicinity of the wall. Section 3.3 describes this effect
based on the numerical results of the CFD-DEM simulations, and discusses the prospect
of taking into account these wall-specific effects in a TFM simulation and the implications
for the modelling of the particle–wall shear stress.

3.3. Near-wall arrangement of the particles
In the vicinity of the container walls, the particle distribution and dynamics are constrained
by the wall surface, and therefore display behaviour different to that in the internal region.
This subsection analyses these effects for a dense fluidised bed in the bubbling regime,
using the CFD-DEM simulations presented in § 2.

Figures 5(a,c) provide a visualisation of the particle arrangement near the wall in the
simulation F3. The particles close to cylindrical walls tend to form particle assemblies
with a two-dimensional hexagonal arrangement. These assemblies may be observed for
each time step on a significant portion of the wall surface, but are local and transient.
Indeed, following the passage of a bubble (figure 5c), the flow is locally more dilute
and the arrangement of the particles is broken for a brief duration. The influence of
the hexagonal arrangement of the particles lingers for a few layers away from the wall.
However, as we move farther away from the wall, the influence of the wall diminishes,
and the two-dimensional arrangement of the particles is much less orderly, because the
particles are no longer constrained by the wall surface. Thus the arrangement of the
particles near the wall differs from the arrangement of the particles in the internal region.

The structural properties of the near-wall region are consistent with the structural
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Figure 5. Close-up views in case F3 of (a,c) the first layer of particles near the wall (0 < zr < 1), namely the
particles whose centre is located within zr = (Rc − rp)/dp = 1 particle diameter of the wall, and (b,d) a thin
layer of particles away from the wall (10 < zr < 11), namely the particles whose centre is zr = 10–11 particle
diameters away from the wall. (a,b) Instant A: Typical arrangement of the particles (αp = 0.59). (c,d) Instant
B: Arrangement of the particles following the passage of a bubble (αp = 0.26).

properties of the near-wall region in a fixed randomly packed bed of spheres, which
have been described both experimentally and numerically by various authors (Rocke
1971; Tingate 1973; Mueller 1997; Abreu et al. 1999; Zhang et al. 2006; Wensrich 2012;
Burtseva et al. 2015; von Seckendorff & Hinrichsen 2021). The effect of the wall can
be characterised by the radial distribution function, as detailed in the supplementary
material available at https://doi.org/10.1017/jfm.2024.36. The influence of the wall on the
particle distribution can also be characterised by the near-wall radial evolution of the solid
volume fraction. Figure 6(a) examines, in case F3, the radial variation of the particle-centre
density near the wall for a series of nested octacontagonal shells of thickness dp/100, and
figure 6(b) examines the resulting solid volume fraction within each octacontagonal shell
(see (A.4)). Due to the wall, the density of particle centres is not uniform. The particles
are more likely to be located near specific layers, which after the first period are equally
spaced, and less likely to be located in between. Accordingly, there are large oscillations
in the solid volume fraction near the wall. Both the oscillations of particle-centre density
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Figure 6. Radial profile at the height z/Rc = 3.45 in terms of the normalised distance to the wall řw = (Rc −
r)/dp, in case F3, of (a) the number of particles per unit volume np normalised by the mean bed solid fraction,
for a series of nested octacontagonal shells of thickness dp/100, and (b) the resulting solid volume fraction αp
within each octacontagonal shell. The solid volume fraction predicted by the correlation of Mueller (1992) is
given for reference.

and solid volume fraction become negligible at a distance řw = 6 particle diameters away
from the wall. Note that since the particle distribution is two-dimensional near the wall, the
solid volume fraction on the first oscillation, which exceeds 0.74 in the CFD-DEM, should
be compared to that of a circle packing. The period of the oscillations is approximately
0.87dp. This value is consistent with the oscillation period measured experimentally in a
fixed randomly packed bed (von Seckendorff & Hinrichsen 2021). Figure 6(b) provides
a comparison of the CFD-DEM solid volume fraction with the fixed-bed correlation of
Mueller (1992), which can be expressed in the present case as

αp(řw) = αinf
(
1 − J0((7.45 − 11.25/λ)řw) exp(−(0.315 − 0.725/λ)řw)

)
, (3.10)

where J0 is the zeroth-order Bessel function of the first kind, řw = (Rc − r)/dp is the
normalised distance to the wall, and λ = 2R/dp = 176 is the cylinder to particle diameter
ratio. Note that we do not use the correlation of Mueller (1992) to set the bulk solid
volume fraction αinf , but in place use the CFD-DEM value. The correlation predicts the
CFD-DEM oscillations quite well very near to the wall, but underestimates the decrease
in the oscillation amplitude away from the wall, compared to the CFD-DEM simulation.

The dynamics of the particles is also influenced by the wall. For instance, the mean
wall-normal particle velocity is oscillating following the variations of particle density
near the wall. The mean radial motion of the particles tends to be small within the layers
where a large density of particles is found, and larger in the regions in between, where
few particles are found (figure 7a). The mean vertical velocity of the particles exhibits
similar oscillations. Namely, the fall of the particles in contact with the wall and in the
layers where a large density of particles is found tends to be slow compared to the depleted
regions. This can be explained by the fact that an orderly three-dimensional arrangement
of the particles hinders motion and forbids the presence of particles in between layers.
Similarly, the wall-normal particle velocity variance Rnn (figure 7b), the vertical particle
velocity variance Rzz (figure 7d) and the vertical-normal particle velocity covariance Rnz
(figure 7e) exhibit oscillations and are greater in the regions where few particles are
found, since they are associated with a locally less orderly and more dilute flow. The
large oscillations of the particle-centre density and of the particle velocity variance are
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Figure 7. Radial profile at the height z/Rc = 3.45 in terms of the normalised distance to the wall řw = (Rc −
r)/dp, in case F3, for a series of nested octacontagonal shells of thickness dp/500 near the wall surface, of
(a) the mean wall-normal velocity 〈up,n〉, (b) the total wall-normal velocity variance Rnn, (c) the mean vertical
velocity 〈up,z〉 = 〈up,t〉, (d) the total vertical velocity variance Rzz, and (e) the total vertical-normal velocity
covariance Rnz within each octacontagonal shell.

of interested for the modelling of the particle–wall shear stress since they are involved
directly in the expression for the kinetic particle stress.

In view of these results, it is clear that the vicinity of the container walls is associated
with a specific particle dynamics that is not found in the internal region. The prospect of
reproducing this complex near-wall dynamics in a TFM simulation, where the particulate
phase is represented as a continuous medium, represents a considerable challenge. First,
this would be costly in terms of computational resources, as resolving the near-wall spatial
variations in a TFM simulation would require a fine mesh, with a cell size much smaller
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than a particle diameter. Second, this would be demanding in terms of modelling, as
specific source terms would need to be included in the momentum and kinetic energy
equations to account for the modification of the particle phase-space density in the
near-wall region. In that context, we consider that the Eulerian field of a TFM simulation
should filter out these small-scale variations. The continuum equations cannot be resolved
too close to the wall in a two-fluid simulation, because certain effects are not accounted
for in current models. For instance, the ‘wall shelter effect’ identified by Sakiz & Simonin
(1998), and discussed further in Fede & Simonin (2018), leads to the appearance of a
mean effective force towards the wall, and causes a significant increase in the number
of particle centres per unit volume np for wall distances below (3/2)dp. Therefore, in
practice, the boundary-condition model for the particulate phase should seek to express
the particle–wall shear stress in terms of flow variables that are relatively far from the
wall, avoiding values near the particle–wall contact point. Let us consider a location
xbulk that is sufficiently far from the wall. A model for the particle–wall shear stress
requires, in particular, the modelling of the kinetic particle stress at the location xwb.
This entails providing a model for the particle-centre density np(xwb, t) and the particle
velocity covariance Rp. For instance, this could be achieved by providing a model for
the wall-amplification coefficient χ , which we assume is a function of the solid volume
fraction αp(xbulk), to relate Rp,nn(xwb, t) to Rp,nn(xbulk, t), i.e.

χ(αp(xbulk)) = np(xwb, t) mp〈v′
pv

′
p〉(xwb, t)

np(xbulk, t) mp〈v′
pv

′
p〉(xbulk, t)

. (3.11)

In addition, the modelling of the frictional term should be addressed. This would
require dedicated models as no specific frictional model is available to account for the
modification of the arrangement of the particles in contact with the wall due to the
two-dimensional structure imposed by the wall. The present paper circumvents these
modelling requirements by, instead, seeking a relationship between the particle–wall stress
and the particle stress within the particulate medium.

3.4. Development of a TFM boundary condition
This subsection uses the momentum balance (3.5) and the results of the CFD-DEM
simulation data to develop a TFM model for the particle–wall shear stress. The
particle–wall shear stress is the component of the stress parallel to the wall surface.
For simplicity, we assume that the particle–wall shear stress vector is aligned with the
tangential velocity of the particles at a distance dp/2 from the wall, that is, that the
particle–wall stress can be decomposed formally as

σ tot
w (xwb, t) = σ tot

w,n(xwb, t) n + σ tot
w,t(xwb, t) t, (3.12)

with σ tot
w,t the particle–wall shear stress. This assumption is verified exactly in the purely

collisional regime. Indeed, the wall-parallel kinetic particle stress close to the wall,
np(xwb, t) mp(Rp(xwb, t) · n − Rp,nn(xwb, t) n), is aligned theoretically with the tangential
velocity 〈up,t〉. If there are enduring contacts, then the alignment of the tangential force
exerted by a single particle onto the wall and its tangential velocity is verified for each
particle time step in the CFD-DEM simulation. However, assumption (3.12) is verified
only if the correlation between the normal force exerted by the wall and the orientation
of the instantaneous tangential particle velocity is not strong. Figure 8 confirms that the

982 A2-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.36


D. Dupuy, R. Ansart and O. Simonin

0 50

50

100

150

200

250

300

350

100 150 200

Tangential velocity orientation (deg.)W
al

l 
sh

ea
r 

st
re

ss
 o

ri
en

ta
ti

o
n
 (

d
eg

.)

250 300 350

Figure 8. Relationship between the orientation of the particle–wall shear stress and the cell-averaged
tangential particle velocity for various instants and locations along the lateral wall surface, where the orientation
is defined as the angle between a vector and the unit vector eθ . The red line is the identity. Due to the symmetry
of the angle space, the clusters of points at the bottom left, bottom right, top left and top right of the figure are
all close to each other and to the origin.

alignment between the particle–wall shear stress and the cell-averaged tangential particle
velocity is generally high in the CFD-DEM simulation.

A useful relationship for modelling the particle–wall shear stress can be derived from
the balance of momentum (3.5) in the vicinity of a wall, in the frame of a quasi-parallel
equilibrium boundary layer assumption. By integrating (3.5) over a control volume
extending in the wall-normal direction from the near-wall location ϕ(xwb + εn) to the
location xbulk = xwb + (�n)n, and infinitesimally small in the two tangential directions t
and s, we obtain in the limit of an infinitesimally small ε:

σ tot
w (xwb, t) = σ kin

p,n(xbulk, t) + σ cnt
p,n(xbulk, t) + np(xbulk, t) mp(〈up〉 ⊗ 〈up〉)(xbulk, t) · n

+
∫ dp/2+�n

dp/2

(
∂t(npmp〈up〉) − np

〈
fg→p

〉 − npmpg
)

dxn

+
∫ dp/2+�n

dp/2

∂

∂xt

(
npmp

(〈up〉 ⊗ 〈up〉
) +Σkin

p +Σcnt
p

)
· t dxn

+
∫ dp/2+�n

dp/2

∂

∂xs

(
npmp

(〈up〉 ⊗ 〈up〉
) +Σkin

p +
(
Σcnt

p

)T
)

· s dxn,

(3.13)

where xn = (x − xw) · n denotes the wall-normal coordinate. The momentum balance
can be simplified in the wall-normal direction. Indeed, assuming that the point xbulk =
xwb + (�n)n is not too far from the wall, the mean wall-normal particle velocity, the
mean wall-normal gas velocity and the mean gas wall-normal pressure gradient can be
assumed to be close to zero. This suggests that the contribution of the interaction with
the gas ( fg→p) in (3.13) is negligible in the wall-normal direction. Assuming in addition
a vertical wall, such that the contribution of gravity is zero in the wall-normal direction,
allows us to neglect all the integral terms in (3.13). Hence the wall-normal particle stress
balance reads

σ tot
w,n(xwb, t) = Σ tot

p,nn(xwb, t) ≈ Σkin
p,nn(xbulk, t) +Σcnt

p,nn(xbulk, t). (3.14)
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Figure 9. Radial profile in case F3 of the total normal particle stressΣcnt
p,nn, normal kinetic particle stressΣkin

p,nn
and normal contact particle stress Σcnt

p,nn. The filled square symbol at řw = 1/2 indicates the corresponding
particle–wall normal stress σ tot

w,n. (a) Upper part of the bed, z/R = 3.45. (b) Bottom of the bed, z/R = 0.05.

The wall-normal profiles of the particle stress balance, provided in figure 9, demonstrate
that the total normal particle stress Σ tot

p,nn = Σkin
p,nn +Σcnt

p,nn remains approximately
constant and equal to the wall-normal particle–wall stress close to the wall. This validates
the assumptions leading to (3.14) for the lateral wall of the CFD-DEM simulations. For
every height in the CFD-DEM simulation, the contribution of the contact forces to the
total particle stress dominates the kinetic contribution, except in the vicinity of řw = 1/2.
Near-wall oscillations of the normal kinetic particle stress and the normal contact particle
stress may be observed (figure 9), following the oscillations of the particle-centre density
and of the particle velocity variance described in § 3.3. However, these oscillations are
relatively small in amplitude, and cancel out in the profile of the total normal particle
stress.

In the tangential direction, these approximations cannot be made, since the mean
tangential velocity can be large at the wall. Thus the drag force exerted by the gas and
the effect of the gas pressure gradient are not necessarily negligible. Furthermore, the
weight of the solid in the control volume should be taken into account in the case of a
vertical wall. However, the particle–wall shear stress can be related to the particle–wall
normal stress using the coefficient of sliding friction of the particle–wall contacts:

σ tot
w,t(xwb, t) = μw σ tot

w,n(xwb, t) = μwΣ
tot
p,nn(xbulk, t). (3.15)

This expression will form the basis of the two-fluid modelling. For Coulombian contacts,
the relationship (3.15) holds exactly for a single particle for each particle time step of
the CFD-DEM simulation. In the general case, the relationship is valid if the orientations
of the different particle–wall contacts are perfectly correlated with one another. This is
examined in figure 10 based on the CFD-DEM data. A linear best fit of the CFD-DEM
data gives σ tot

w,t(xwb, t) = 0.268 σ tot
w,n(xwb, t), with a slope 11 % smaller than the friction

coefficient μw. However, the distribution of the slope is skewed negatively, which suggests
that a proportionality coefficient close to μw is preferable, as proposed in (3.15).

In order to develop a model for the wall-normal particle–particle contact stress in (3.15),
it is useful to first assume that the diagonal part of the particle–particle contact-stress
tensor is distributed isotropically, that is, to make the approximation

Σ tot
p,nn(xbulk, t) = Ptot

p (xbulk, t), (3.16)

with Ptot
p = (1/3) tr(Σ tot

p ) the total granular pressure. This is a non-trivial approximation
and could not be argued to be valid generally in all gas–solid fluidised beds. For the
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Figure 10. Relationship between the particle–wall shear stress and particle–wall normal stress for various
instants and locations along the lateral wall surface. The red line is the 0.3 slope corresponding to the coefficient
of sliding friction of the CFD-DEM simulation. The green line is the linear best fit, of slope 0.268.

configurations F3 and F4, the diagonal particle–particle contact stress is, according to the
CFD-DEM data, frequently close to isotropy, which supports the assumption of isotropy
(figure 11). Furthermore, the two-fluid modelling paradigm used in the present work,
which is based on a transport equation for the kinetic energy of particle agitation (§ 4.1),
does not consider the anisotropy of the particle agitation and of the granular pressure.
Using (3.16) and (3.15), a TFM for the particle–wall shear stress can be obtained by
formulating a suitable model for the granular pressure. We use the same model as within
the flow, since (3.16) expresses the particle–wall stress in terms of the granular pressure
relatively far from the wall. Specifically, the granular pressure is decomposed formally into
a kinetic pressure Pkin

p , a collisional pressure Pcol
p , and a frictional pressure Pfr

p :

σ tot
w (xwb, t) =

(
Pkin

p (xbulk, t) + Pcol
p (xbulk, t) + Pfr

p (xbulk, t)
) (

n − μw
up,t

‖up,t‖
)

. (3.17)

Using (3.17), the particle–wall stress is expressed in terms of the total granular pressure at
some distance from the wall. The kinetic, collisional and frictional contribution in (3.17)
are given functions of the solid volume fraction αp and the kinetic energy of particle
agitation q2

p, and various models have been proposed in the literature to address these
dependencies (Gu et al. 2019; Si, Shi & Yu 2019). Note that the different contributions
are related not to the mode of particle–wall contacts, but rather to the contacts within
the flow. Thus each contribution should be included in general, regardless of the specific
particle–wall interactions. Finally, it may be noted that although it has been developed in
the context of a cylindrical column, the derivation of the present section has neglected the
effect of curvature given that the diameter of the column is large compared to the diameter
of a particle. The proposed model thus should also be applicable in the case of a flat wall.

The proposed model is related closely to several boundary-condition models from
the literature. The model of Johnson & Jackson (1987), for a smooth flat wall, can be
interpreted as a model that includes only the kinetic and frictional contributions to the
particle–wall stress:

σ tot
w (xwb, t) =

(
Pkin

p (xbulk, t) + Pfr
p (xbulk, t)

) (
n − μw

up,t

‖up,t‖
)

. (3.18)
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Figure 11. Probability density associated with various distributions of the diagonal components of the
particle–particle contact-stress tensor, characterised by the ratio of vertical–vertical (zz) component to pressure
Σcnt

p,zz(xbulk, t)/Pp(xbulk, t) and the ratio of radial–radial (rr) component to pressure Σcnt
p,rr(xbulk, t)/Pp(xbulk, t),

in the second cell off the wall in case F3. The dashed lines indicate that two of the diagonal components of the
particle–particle contact-stress tensor are equal. Their intersection indicates isotropy.

The collisional contribution has, however, been shown to be important in the present
CFD-DEM simulations. The boundary-condition model of Jenkins (1992), in the
all-sliding case, may be recast as

σ tot
w (xwb, t) =

(
χ(αp(xbulk)) Pkin

p (xbulk, t)
) (

n − μw
up,t

‖up,t‖
)

, (3.19)

with χ(αp) = (1/2) g0(αp) (1 + ew), where g0 denotes the radial distribution function,
given by g0 = (1 − αp/α

max
p )−2.5αmax

p , with αmax
p = 0.64 the close-packing limit (Lun

& Savage 1986). The same remark applies to the boundary-condition model of
Schneiderbauer et al. (2012), which is based on a similar approach. By neglecting
the frictional contribution in (3.17), the present boundary-condition model suggests
χ(αp) = 1 + 2αp g0(αp) (1 + ec). In the limit case of a dilute bed, the wall-amplification
coefficient χ tends to (1/2)(1 + ew) in the model of Jenkins (1992), whereas χ tends to
1 in the present model, which is consistent with a kinetic boundary-condition model (see
(4.5) below). The present boundary-condition model tends to a kinetic boundary-condition
model in the limit case of a dilute bed, and to a purely frictional model σ tot

w,t = μwPfr
p

in the limit of a densely packed bed. This thus provides a candidate general boundary
condition that takes into account all modes of particle–wall contacts, whether collisional
or frictional.

4. A posteriori tests

The particle–wall stress model is assessed a posteriori for the TFM simulation of the
dense bubbling fluidised beds presented in § 2.1. This section presents the two-fluid
governing equations and numerical method, discusses the modelling of frictional effects,
and evaluates the performance of the particle–wall stress model.

4.1. Two-fluid modelling
The Eulerian two-fluid method used in the present paper relies on a hybrid modelling
approach (Morioka & Nakajima 1987), in which the continuous-phase equations are
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derived by phase ensemble averaging and the dispersed-phase equations are derived by
using the KTGF supplemented with models for fluid and turbulent effects for the dispersed
phase. The system of equations is based on the approach of Simonin (2000) and includes a
transport equation for the kinetic energy of particle agitation q2

p. A detailed description of
the governing equations is found in Ansart et al. (2017). The same modelling assumptions
as in the CFD-DEM simulations are used to compute the mean gas–particle relaxation
time scale (Gobin et al. 2003). The particle–particle normal restitution coefficient is set to
ec = 0.9, to be consistent with the CFD-DEM simulations.

The TFM wall boundary condition (3.17) developed in § 3, and several boundary
conditions from the literature, have been assessed. Generally, the wall boundary condition
for the particles should provide a closure for the particle momentum and agitation kinetic
energy fluxes at the wall, or more precisely, for the particles whose centres are at distance
dp/2 from the wall. To ensure that there is no solid mass flow across the boundary,
the wall-normal particle velocity is set to zero at the walls. Thus only the tangential
particle momentum flux requires modelling. In other words, providing a wall boundary
condition for the particles entails providing a model for (1) the particle–wall shear stress
σ tot

w,t = ηp ∂nup,t|wall and (2) the agitation kinetic energy flux Qw = αpρpKkin-col
p ∂nq2

p|wall.
The fluxes σ tot

w,t and Qw depend on how the discrete particles interact with the wall and in
particular may be functions of the elastic normal and tangential restitution coefficients, the
wall friction coefficient (Jenkins 1992; Schneiderbauer et al. 2012) and the wall roughness
(Hui et al. 1984; Konan et al. 2006). Presently, ideally smooth particles and walls are
considered, since there is no roughness in the reference CFD-DEM simulations that we
aim to reproduce in a TFM setting.

All the boundary-condition models investigated assume that the particle agitation
kinetic energy flux is negligible, Qw = 0. We will therefore focus on the tangential
momentum flux. The following models are considered.

No-slip: Up,t|wall = 0. (4.1)

Kinetic: σ tot
w,t = μwPkin

p . (4.2)

Kinetic-frictional: σ tot
w,t = μw

(
Pkin

p + Pfr
p

)
. (4.3)

Total-pressure (present): σ tot
w,t = μw

(
Pkin

p + Pcol
p + Pfr

p

)
. (4.4)

To close the boundary-condition models, the following expressions may be used for the
kinetic, collisional and frictional pressures (Ansart et al. 2017; Bennani et al. 2017):

Pkin
p = αpρp

(
2
3 q2

p

)
, (4.5)

Pcol
p = 2α2

pρpg0 (1 + ec)
(

2
3 q2

p

)
, (4.6)

Pfr
p = Fr

(
αp − αmin

p

)nJ

(
αmax

p − αp

)mJ

[
αp ≥ αmin

p

]
, (4.7)

with g0 = (1 − αp/α
max
p )−2.5αmax

p the radial distribution function. Following the model of
Johnson et al. (1990), the frictional pressure law is a rational function that vanishes for
a loose-packed bed and increases asymptotically in the limit of a close-packed bed. The
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proportionality constant Fr = 0.05, the exponents nJ = 2 and mJ = 5, and the activation
threshold αmin

p are empirical parameters. The values proposed originally in Johnson et al.
(1990) are used for nJ and mJ . The activation threshold αmin

p is set to 0.63. This high value
is relevant for the particles being used, which are ideally spherical and frictionless.

Following Fede et al. (2016), the no-slip boundary condition assumes the maximum flux
transferred by the particles towards the wall. The kinetic boundary condition is a suitable
boundary condition in dilute beds, as investigated in Sakiz & Simonin (1999). It assumes
instantaneous fully sliding particle–wall contacts on a smooth flat surface, with a Coulomb
sliding friction coefficient μw. The kinetic-frictional boundary condition assumes that the
particle–wall stress may be expressed as the sum of a kinetic-collisional contribution and
a frictional contribution, modelled based on the frictional pressure within the first cell
off the wall. It corresponds to the boundary condition of Johnson & Jackson (1987) in
the particular case where the specularity coefficient is neglected. This assumption is well
justified considering that ideally the particles are spherical and the walls are smooth in
the CFD-DEM simulation. The present total-pressure boundary condition can be derived
assuming, following the CFD-DEM analysis of § 3, that the particle–wall stress may be
expressed based on the total granular pressure, which is due to kinetic, collisional and
frictional contributions. It should be noted that the choice of the distance from the wall
at which the granular pressure is taken is not critical in the model formulation, given that
the total granular pressure is constant in the vicinity of the wall and that the TFMs do
not represent the near-wall oscillations of the particle statistics observed in the CFD-DEM
simulations (§ 3.3). The total granular pressure within the first computational cell off the
wall is therefore used for the sake of simplicity. Due to the high value of the activation
threshold αmin

p , the frictional term in (4.4) is not large and can be neglected. The frictional
contribution may, however, be dominant in other flow configurations, in particular if the
particles are rough or non-spherical.

4.2. Results
This subsection compares the four boundary-condition models presented in § 4.1 for
the TFM simulation of the three-dimensional pressurised gas–solid bubbling fluidised
beds of § 2.1. The corresponding CFD-DEM simulation of the case will be used as a
reference. In addition, the experimental measurements of Fede et al. (2016) by PEPT will
be provided when available. The geometry and the properties of gaseous or particulate
phases are identical to those of the CFD-DEM simulations (§ 2.1). The simulations are
performed using an unstructured-mesh finite-volume method (Neau et al. 2020), with a
predictor–corrector scheme (Méchitoua et al. 2003). This is performed using the massively
parallel code NEPTUNE_CFD. The mesh is an O-grid mesh that contains 4 million cells
in total. Given the different requirements of CFD-DEM and TFM in terms of cell size, a
finer mesh has to be used compared to the CFD-DEM mesh. The cell size in the vertical
direction (z) is regular and equal to �z = 1.5dp, whereas the typical cell size in the radial
direction (r) is �r = 2.2dp. The number of cells in the angular direction is Nθ = 280
for the outer region. Cases F3 and F4 are considered. As in the CFD-DEM simulation,
a no-slip boundary condition is used at the walls for the gaseous phase. Simulations
are performed with the wall boundary conditions (4.1)–(4.4) for the particulate phase.
In each case, the simulation is initialised with a bed of uniform porosity and with no
particle velocity. The dynamics of the fluidised bed is established in the first seconds of
the simulation, during a transitory phase. After 10 s, the bed is considered statistically
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Simulation F3 F4

CFD-DEM 0.432 0.542
CFD-DEM, frictionless 0.446 —
No-slip 0.434 (+0.5 %) 0.537 (−0.9 %)
Kinetic 0.469 (+8.6 %) 0.556 (+2.6 %)
Kinetic-frictional 0.469 (+8.6 %) 0.556 (+2.6 %)
Total-pressure 0.446 (+3.2 %) 0.543 (+0.2 %)

Table 2. Effect of the wall boundary condition on the mean bed solid fraction. The error with respect to the
CFD-DEM is given in parentheses.

stationary, and an averaging is performed over a duration of 70 s. Given the rotational
symmetry of the geometry, the statistics are averaged in the angular direction.

Table 2 compares the mean bed solid fraction of the CFD-DEM and two-fluid
simulations for cases F3 and F4. In both cases, the mean bed solid fraction is more
accurately predicted with the no-slip and total-pressure boundary conditions than with
the kinetic and kinetic-frictional boundary conditions, as these boundary conditions
underestimate the expansion of the bed. The macroscopic behaviour of the bed also
depends on the particle–wall boundary condition. In both cases F3 and F4, there is a
large primary recirculation loop up until the top of the bed. In the recirculation loop, the
rise of the bubbles in the centre of the column is associated with an upward movement
of the particles, whereas the particles tend to descend near to the lateral walls. Following
the coalescence of the bubbles, the velocities of the gas and the particles increase with the
height in the column, and the particles are more densely concentrated close to the wall than
in the centre of the column. This behaviour of the primary recirculation loop is reproduced
qualitatively in all two-fluid simulations for both cases F3 and F4 (figure 12). In case F4,
the velocity of the CFD-DEM simulation is low on the mean within an intermediate region
located between heights z/Rc = 2 and z/Rc = 3. A similar behaviour is observed in the
TFM simulations with the kinetic and kinetic-frictional boundary conditions, whereas this
is not observed with the no-slip and total-pressure boundary conditions. The CFD-DEM
simulation also predicts a secondary recirculation near the bottom of the bed in both cases
F3 and F4. The secondary recirculation is not reproduced by the TFM simulation with
the kinetic and kinetic-frictional boundary conditions, However, a secondary recirculation
may be observed with the no-slip and total-pressure boundary conditions, in both cases
F3 and F4. Figure 13 shows the effect of the particle–wall boundary condition on the
vertical distribution of the solid volume fraction at the wall. With the no-slip boundary
condition, the wall solid fraction within the bed tends to be underestimated compared to
the CFD-DEM simulation. With the kinetic and kinetic-frictional boundary conditions,
and to a lesser degree the total-pressure boundary condition, the wall solid fraction within
the bed tends on the contrary to be overestimated. The wall solid fraction characterises the
vertical expansion of the bed, as well as its radial homogeneity. Indeed, the bed is typically
less dense near the centre of the column. The radial profile of the solid volume fraction
is reproduced more accurately in the TFM with the no-slip or total-pressure boundary
conditions than with the kinetic and kinetic-frictional boundary conditions (figure 14), as
these two models produce a bed that is more radially homogeneous than the CFD-DEM
simulation.

Figure 15 compares the mean vertical particle velocity of the two-fluid simulations with
the CFD-DEM simulation in the upper part of the bed, within the primary recirculation
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Figure 12. Effect of the wall boundary condition on the mean particle velocity field in case F3, where
the coloured regions indicate the mean solid volume fraction: (a) CFD-DEM, (b) no-slip, (c) kinetic,
(d) two-fluid simulation with a kinetic-frictional model, and (e) total-pressure boundary condition.
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Figure 13. Effect of the wall boundary condition on the vertical distribution of the mean solid volume
fraction at the wall: (a) case F3; (b) case F4.
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Figure 14. Effect of the wall boundary condition on the radial profile of the mean solid volume fraction, in
the upper part of the bed: (a) case F3, z/Rc = 3.45; (b) case F4, z/Rc = 5.91.
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Figure 15. Effect of the wall boundary condition on the radial profile of the mean vertical particle velocity, in
the upper part of the bed, where the PEPT data are from Fede et al. (2016): (a) case F3, z/Rc = 3.45; (b) case
F4, z/Rc = 5.91.

loop. The particle–wall boundary condition has a large influence on the near-wall profile.
Indeed, with the kinetic or kinetic-frictional boundary conditions, the wall friction is
too small to hinder significantly the downward motion of the particles at the wall and
decrease the particle slip velocity. This is consistent with the CFD-DEM simulation
without particle–wall friction, but does not reproduce the experimental PEPT profile
(Fede et al. 2016). The particle slip velocity is reduced more with the total-pressure
boundary condition as the particle vertical velocity reaches an extremum at a distance
0.07Rc–0.08Rc from the wall in case F3 at z/Rc = 3.45, and 0.10Rc–0.12Rc from the
wall in case F4 at z/Rc = 5.91, which is consistent with the CFD-DEM simulation with
particle–wall friction. This is at least qualitatively in agreement with the experiments,
though the extremum is typically closer to the wall in the simulations than in the PEPT
data (Fede et al. 2016). The vertical particle slip velocity variance is large with the kinetic
and kinetic-frictional boundary conditions, whereas the variance is reduced to a low
value that is less than 20 % of the bulk value with the total-pressure boundary condition
(figure 16). This behaviour is consistent with the CFD-DEM profile. With the no-slip
boundary condition, the particle slip velocity and vertical particle slip velocity variance
are by construction equal to zero. Whether this is an acceptable approximation depends on
the magnitude of the reference slip values.

In all two-fluid simulations, the vertical distribution of the granular pressure at the
wall is governed mainly by the collisional pressure, which dominates the kinetic and
frictional pressures. More than 90 % of the wall shear stress at any height within the
bed, with the total-pressure boundary condition, is due to the collisional contribution.
With the kinetic and kinetic-frictional boundary conditions, the wall granular pressure
is greatly overestimated throughout the bed and peaks at a lower height than in the
CFD-DEM simulation, below height z/Rc = 3.6 in case F3, and z/Rc = 5.8 in case F4
(figure 17). With the no-slip and total-pressure boundary conditions, the profile of wall
granular pressure is predicted more accurately. In case F3, the wall granular pressure is
accurate at the bottom of the bed with the no-slip boundary condition, but the peak wall
granular pressure is overestimated by 25 % and occurs at a slightly higher height than in
the CFD-DEM simulation. With the total-pressure boundary condition, the wall granular
pressure is overestimated by up to 40 %, but the height of the peak wall granular pressure
is predicted accurately (figure 17). In case F4, the peak wall granular pressure is predicted
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Figure 16. Effect of the wall boundary condition on the radial profile of vertical particle velocity variance, in
the upper part of the bed: (a) case F3, z/Rc = 3.45; (b) case F4, z/Rc = 5.91.
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Figure 17. Effect of the wall boundary condition on vertical distribution of the granular pressure at the wall:
(a) case F3, (b) case F4.

accurately in terms of height and amplitude with both the no-slip and total-pressure
boundary conditions.

Finally, the mean particle–wall shear stress of the two-fluid simulations is compared
in figure 18. The particle–wall shear stress is small with the kinetic boundary condition.
Indeed, since the kinetic boundary condition is not superlinearly dependent on the solid
volume fraction, it is not able to supply a large amount of friction in dense fluidised
beds. The total-pressure boundary condition supplies a large amount of friction since it
takes into account the collisional interactions between the particles. As for the granular
pressure distribution, the peak particle–wall shear stress is overestimated in case F3 but
is more accurate in case F4. At the bottom of the bed, a region of positive vertical
wall stress associated with the secondary recirculation loop is present, although its size
is underestimated compared to the CFD-DEM simulation (figure 18). The two-fluid
simulation with the no-slip boundary condition reaches a similar or slightly higher level of
accuracy, for the vertical wall stress prediction, than the simulation with the total-pressure
boundary condition. It is also able to predict at least qualitatively the effect of the
secondary recirculation loop on the wall granular stress.

Overall, both the total-pressure and the no-slip boundary conditions provide satisfactory
predictions for the two present dense bubbling fluidised beds F3 and F4. However, the
no-slip boundary condition is not valid in all fluidisation regimes. In dilute transport flows,
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Figure 18. Effect of the wall boundary condition on vertical distribution of the particle–wall shear stress:
(a) case F3, (b) case F4.

for instance, the no-slip boundary condition is not applicable, and the kinetic boundary
condition is more suitable. The present total-pressure boundary condition provides an
approach that can be relevant in various types of fluidisation regimes, since it tends to a
purely kinetic model in the limit of a dilute bed, and a purely frictional model in the limit
of a densely packed bed. We believe that this type of modelling is of interest for complex
industrial configurations, which may be statistically unstationary and involve several types
of fluidisation regimes in a single process.

5. Conclusion

A particle–wall boundary condition model for dense fluidised beds has been developed. By
equating the particle–wall normal stress with the total normal stress within the particulate
medium, an expression is obtained relating the particle–wall friction with the total granular
pressure within the first cell off the wall. The hypothesis is verified empirically in the
CFD-DEM simulation of two dense fluidised beds of olefin particles in the bubbling
regime. Although the particles exhibit complex behaviour near container walls, due to
the constraining effect of the wall surface, the need to describe these phenomena is
circumvented following the observation that the total granular pressure is practically
constant over a thickness of a few particle diameters away from the wall. The present
boundary-condition model does not distinguish between the mode of particle–wall contact.
Regardless of the physical mechanisms by which the particle–wall shear stress is governed,
the total granular pressure may be expressed in terms of a kinetic, collisional and frictional
contribution. Finally, the present model tends to a purely kinetic model in the limit of a
dilute bed, and to a purely frictional model in the limit of a densely packed bed. It can
thus operate in all fluidisation regimes. The two-fluid simulation of the dense bubbling
fluidised beds with several boundary-condition models has demonstrated that the kinetic
and kinetic-frictional boundary conditions greatly underestimate the wall friction, and
mispredict the macroscopic hydrodynamic behaviour of the bed. The present total-pressure
boundary condition provides a more realistic radial velocity or velocity variance profiles
compared to these two models. The no-slip boundary condition also provides relevant
predictions for the two fluidised beds investigated, in the dense-fluidisation regime.
However, the no-slip boundary condition is not applicable in dilute beds, and is therefore
unsuitable in some industrial configurations that involve several types of fluidisation
regimes.
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Appendix A. CFD-DEM Post-processing

A.1. Definitions
The CFD-DEM particle data are post-processed to assist the development of a boundary
condition for the particle–wall stress in the all-sliding regime. The post-processing is based
on the spatial averaging of the Lagrangian particle data on post-processing cells, and is
similar to the post-processing described in Nigmetova et al. (2022). The analysis relies
on the hypothesis that the average over the particles in a post-processing cell Cn and over
one fluid time step �tf of the CFD-DEM simulation provides a relevant estimation of the
conditional expectation 〈 · 〉. The accuracy of this estimation depends on the number of
particles contained within the control volume and the uniformity of the particle statistics
within the control volume.

For any particle-valued variable ϕ, the spatial average of ϕ at a given time t� on a given
post-processing cell Cn is defined as

ϕ̄n,� =
∑Np

i=1 ϕi,�
[
xi,�

p ∈ Cn

]
nn,�

p Vn
, (A1)

where Vn is the volume of cell Cn, and nn,�
p = (1/Vn)

∑Np
i=1[xi,�

p ∈ Cn] is the number of
particle centres per unit volume in cell Cn at time t�. The time average of ϕ̄n,� over N�

particle time steps is

〈ϕ̄〉n =
∑N�

�=1 ϕ̄n,� �t�p∑N�

�=1 �t�p
, (A2)

with �tk�p the particle time step at time t�. For the computation of the particle–wall
stress, the average is performed over a portion of the wall surface, corresponding to the
intersection with a post-processing cell Cn of size Rc/18 ≈ 4.9dp along the wall and over
a short duration of time, corresponding to one fluid time step �tf of the CFD-DEM
simulation. For instance, the particle–wall stress associated with a cell Cn is the mean
contact force exerted on the walls by particles within Cn over one fluid time step, per unit

surface of the wall, 〈σ tot
w 〉n

�tf = −(1/Sn)〈np〉nVn{ fw}n
�tf = −(1/Sn)

∑Np
i=1 f i,�

w [xi,�
p ∈ Cn],
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where Sn is the area of the portion of the wall that intersects cell Cn. This provides an
estimation of the expected particle–wall stress 〈σ tot

w 〉.
Let us denote by {ϕ̄}n the Favre average of ϕ, that is, the time average weighted by the

number of particles in a given cell,

{ϕ̄}n = 〈npϕ̄〉n

〈np〉n , (A3)

and ′′ indicates the fluctuation with respect to the Favre average, that is, ϕ̄′′n,� =
ϕ̄n,� − {ϕ̄}n. The instantaneous particle velocity up can be decomposed formally into a
cell-averaged part up and a fluctuation with respect to the spatial average δup:

ui,�
p = ûp

i,� + δui
p = {̂up} + ûp

′′ + δui
p, (A4)

where (̂ · ) denotes an interpolation onto the particle location. In the present paper, a
zeroth-order interpolation is used for the post-processing particle-cell interpolation, that is,

ûp
i,� = ∑

n up
n[xi,�

p ∈ Cn]/
∑

n[xi,�
p ∈ Cn]. The total particle velocity covariance tensor in

cell Cn, denoted Rn
p,tot, can be decomposed into a cell-based particle velocity covariance

Rn
p,c and a sub-cell particle velocity covariance Rn

p,δ:

Rn
p,tot = {

up ⊗ up
}n − {up}n ⊗ {up}n = Rn

p,c + Rn
p,δ, (A5)

where Rn
p,c is given by Rn

p,c = {
up

′′ ⊗ up
′′}n = {

up ⊗ up
}n − {up}n ⊗ {up}n, and Rn

p,δ is

given by Rn
p,δ = {

δup ⊗ δup
}n. The sub-cell particle velocity covariance Rn

p,δ can provide
an estimation of the particle velocity covariance Rp. In addition, this decomposition is
useful to compare the results of a CFD-DEM simulation and a TFM simulation, because
two-fluid modelling does not provide access to the individual particle velocities but
provides a velocity field that can be compared to the cell-averaged CFD-DEM velocity,
and whose variance can be compared to the CFD-DEM cell-based velocity variance
(Nigmetova et al. 2022).

A.2. Computation of the particle–particle contact-stress tensor
In the present paper, the definition of the particle–particle contact-stress tensor adheres
strictly to the discrete-particle formalism of kinetic theory (§ 3.1). This contrasts with
approaches rooted in continuum mechanics, for instance the approaches that define a bulk
granular contact stress by considering the stress associated with the internal forces within
the solid particles, modelled as a continuous solid mass (Babic 1997; Nicot et al. 2013;
Wensrich 2014).

The particle–particle contact stress is defined directly based on the forces exerted
by particles onto particles lying on the opposing side of the surface. Namely, the
particle–particle contact stress associated with a bounded planar surface A of normal n
and area S is

1
S

∫
A
σ cnt

p,n dS = 1
S

Np∑
i=1

Np∑
j=1

f ij
c

[
xi

p · n < x0 · n
] [

(x j
p · n ≥ x0 · n) ∧ (xij

∩ ∈ A)

∧ (‖x j
p − xi

p‖ ≤ dp)
]
, (A6)
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Az

Ay

Ax

Figure 19. Elementary control volume.

where x0 is a point on surface A, and xij
∩ = xi

p + (x j
p − xi

p)((x0 − xi
p) · n)/((x j

p − xi
p) · n)

is the intersection between the plane underlying A and the line joining the centres of the
particles pi and pj.

The particle–particle contact-stress tensor Σcnt
p can be defined by considering the

particle–particle contact-stress fluxes on each face of an infinitesimal control volume
(figure 19):

Σcnt
p = ex ⊗ σ cnt

p,x

Sx
+ ey ⊗ σ cnt

p,y

Sz
+ ez ⊗ σ cnt

p,z

Sy
, (A7)

where σ cnt
p,x, σ cnt

p,y and σ cnt
p,z are respectively the particle–particle contact-stress fluxes

associated with the faces Ax, Ay and Az, which are normal to the ex, ey and ez directions,
respectively, and of respective areas Sx, Sy and Sz.

This may be used to reconstruct the particle–particle contact-stress tensor. Indeed, the
net force due to particle–particle contacts within a control volume Cn may be decomposed
as

Np∑
i=1

Np∑
j=1

f ij
c

[
xi

p ∈ Cn

] [
‖x j

p − xi
p‖ ≤ dp

]
= χn + ϑn, (A8)

with

χn =
Np∑
i=1

Np∑
j=1

f ij
c

[
xi

p ∈ Cn

] [
(x j

p ∈ Cn) ∧ (‖x j
p − xi

p‖ ≤ dp)
]
, (A9)

ϑn =
Np∑
i=1

Np∑
j=1

f ij
c

[
xi

p ∈ Cn

] [
(x j

p /∈ Cn) ∧ (‖x j
p − xi

p‖ ≤ dp)
]
, (A10)

where χn = 0 is the contribution of particles interior to the volume, which cancels out
following Newton’s third law of motion, and ϑn is the contribution of particles exterior to
the volume, which can be identified as the particle–particle contact-stress flux on the outer
surface of Cn:

ϑn =
∫

∂Cn

(Σcnt
p )T · n dS. (A11)

A.3. Computation of the kinetic particle stress
There are two methods to calculate the kinetic particle stress Σkin

p = npmpRp in the
CFD-DEM simulations. The first approach involves computing the particle velocity
covariance over small volumes, as described in (A.1). The second approach is based on
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the direct measurements of the momentum fluxes. Namely, the kinetic stress flux at time
t� across a bounded planar surface A of normal n may be computed based on the sum of
the momentum of the particles crossing the surface per unit of time:

∫
A

(
ψ�

p,n
〈
up

〉 + σ kin,�
p,n

)
dS = 1

�t�p

Np∑
i=1

mpui,�
p

[
xi,�

p · n < x0 · n
] [

xi,�+1
p · n ≥ x0 · n

]

− 1
�t�p

Np∑
i=1

mpui,�
p

[
xi,�

p · n ≥ x0 · n
] [

xi,�+1
p · n < x0 · n

]
,

(A12)

where the vector σ kin,�
p,n is defined as σ kin,�

p,n = (Σkin
p )T · n, x0 is a point on surface A, and

ψ�
p,n is the particle mass flux across the surface, given by

∫
A
ψ�

p,n dS = 1
�t�p

Np∑
i=1

mp

[
xi,�

p · n < x0 · n
] [

xi,�+1
p · n ≥ x0 · n

]

− 1
�t�p

Np∑
i=1

mp

[
xi,�

p · n ≥ x0 · n
] [

xi,�+1
p · n < x0 · n

]
. (A13)

In (A12) and (A13), [xi,�
p · n < x0 · n][xi,�+1

p · n ≥ x0 · n] indicates that particle pi is
below the plane at time t� and above the plane at the time t�+1 = t� + �t�p, one particle
time step later, or in other words that particle pi has crossed the surface A towards n
during the particle time step. Similarly, [xi,�

p · n ≥ x0 · n][xi,�+1
p · n < x0 · n] indicates

that particle pi has crossed the surface A away from n during the particle time step.
This approach is used to compute the kinetic particle stress near the wall in the present

paper, because it is more consistent with particle–particle stress computation and allows
us to compute the two stresses at the same location without interpolation.

A.4. Octacontagonal coordinates
The mesh of the CFD-DEM simulations is discretised in Nθ = 80 cells along the angular
direction (see § 2.2). Hence a horizontal section of the geometry is not circular but
octacontagonal, an 80-sided regular polygon. To investigate the CFD-DEM simulations
in the close vicinity of the wall, we define an octacontagonal coordinate system (r, θ, z),
where z is the vertical Cartesian coordinate, θ = atan2( y, x) is the angular, and r is the
octacontagonal radial coordinate, which may be computed by considering a rotation of the
polygon towards the x axis:

r = x cos(θ∗) + y sin(θ∗)
cos(π/80)

, (A14)

where θ∗ = (2π/80)�θ(80/2π)� + π/80 is the angle of the nearest side (figure 20). This
ensures that each point on the lateral wall surface has a radius r = Rc. Equation (A14)
is used to to compute the distance to the wall řwdp = Rc − r. Using the cylindrical
radial coordinate rcyl =

√
x2 + y2 to compute řwdp may induce an error of up to the

difference between the circumradius and the apothem of the octacontagon, in our case
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θ

Figure 20. Coordinates of a point in a slice of an 80-sided regular polygon.

Rc(1 − cos(π/80)) = 0.068dp. This is not negligible very close to the wall. A local
octacontagonal basis may also be defined, using

er = cos(θ∗) ex + sin(θ∗) ey, (A15)

eθ = − sin(θ∗) ex + cos(θ∗) ey, (A16)

to define the normal and tangential components of vectorial quantities near the wall.
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