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Dynamics of turbulence production
by attenuating interfacial gravity waves observed
in air–water coupled wave-resolving simulation
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Even without breaking or wind influence, ocean surface waves are observed to produce
turbulence in the water, possibly influencing ocean surface dynamics and air–sea
interactions. Based on the water-side free-surface simulations, recent studies suggest
that such turbulence is produced through the interaction between the waves and the
near-surface Eulerian current associated with the viscous attenuation of waves. To clarify
the dynamical role of the air–water interface in the turbulence production, the attenuating
interfacial gravity waves were simulated directly using a newly developed two-phase
wave-resolving numerical model. The air–water coupling enhanced the wave energy
dissipation through the formation of a strong shear at the air-side viscous boundary
layer. This led to an enhancement of the wave-to-current momentum transfer and the
formation of the down-wave Eulerian mean sheared current, which is favourable for the
CL2 instability responsible for the production of Langmuir circulations. As a result,
the water-side turbulence grew stronger compared with the corresponding free surface
(water-only) wave-resolving simulation. The evolution of the wave-averaged field was
well reproduced with the Craik–Leibovich equation with the upper boundary condition
provided with the virtual wave stress based on linear theory. The wave energy dissipation
by air–water coupling plays a significant role in the quantitative understanding of the
wave-induced turbulence at the laboratory and field scales.

Key words: wind–wave interactions, surface gravity waves, air–sea interactions

1. Introduction

Ocean surface waves induce surface turbulent mixing and moderate the exchange of heat,
materials and momentum between the atmosphere and the ocean (Sullivan & McWilliams
2010). Waves can produce turbulence even without breaking, a representative process
being Langmuir circulations (LCs) (Langmuir 1938). LCs are roll-shaped flow structures
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aligned with wave direction, often turbulent, and visualised through the streaks of flotsam
accumulated on the convergence zones. They are considered to arise through the instability
of a vertically sheared current under the influence of the wave-associated Stokes drift.
Its dynamics are described in a wave-averaged framework called the Craik–Leibovich
(CL) equation (Craik & Leibovich 1976), and the instability is called the CL2 mechanism
(Leibovich 1983). The instability condition requires that the Eulerian current shear ∂ ūE/∂z
and the Stokes drift shear ∂uSt/∂z have the same sign. Here, ūE is wave-averaged Eulerian
current, uSt is the Stokes drift and z is the vertical coordinate with positive upwards. This
sheared Eulerian current is commonly considered to originate from wind stress, which is
aligned with the Stokes drift direction in most cases. Belcher et al. (2012) estimated the
LCs’ contributions to the ocean surface mixing based on the CL theory and suggested that
the Langmuir mixing plays a major role in many parts of the ocean.

Although the turbulence production by the CL2 mechanism requires the influence
of wind, some studies report that waves produce turbulence even without wind, a
phenomenon often termed ‘non-breaking wave-induced turbulence’. To distinguish from
LCs, it is hereinafter called ‘windless’ (WL) turbulence in this article. Multiple laboratory
studies support the presence of WL turbulence, demonstrating turbulence growth under
waves generated by a wavemaker (Babanin & Haus 2009; Dai et al. 2010; Savelyev,
Maxeiner & Chalikov 2012). The mechanism for this phenomenon was originally
proposed to be the turbulence transition of the wave orbital motion (Babanin 2006),
and parameterisations were developed for large-scale ocean models based on this idea
(Pleskachevsky et al. 2011). Wu, Rutgersson & Sahlée (2015) estimated the contribution of
WL turbulence to the ocean surface mixing based on this parameterisation and concluded
that it has a major influence on the total turbulence production. However, the validation
of the WL turbulence production mechanism has been limited in both theoretical and
experimental aspects, leading to questions raised against the validity of the turbulence
transition hypothesis (e.g. D’Asaro 2014). Furthermore, Villas Bôas et al. (2019) points
out the unclarity in the distinction between WL turbulence and LCs. Clarifying the WL
turbulence production mechanism is crucial for developing a parameterisation scheme
widely accepted by the modelling community and integrating the two phenomena branches
to accurately model wave-induced mixing.

The advancement of numerical modelling and computational resources have enabled
us to directly solve the Navier–Stokes equation in free-surface configurations. In such
numerical studies, we can strictly control the wind and wave conditions and analyse
the three-dimensional structure of turbulence, both of which are difficult in laboratory
and field measurements. Tsai et al. (2013) studied the water turbulence under wind- and
wave-forced conditions and its contribution to gas exchange across the water surface,
using the fully nonlinear free surface model described in Tsai & Hung (2007). A similar
situation is also studied by Tsai & Lu (2023) with an even more sophisticated analysis of
the multiscale vortex structures in the water. Yang & Shen (2011a) similarly developed a
fully nonlinear free-surface model, and in the accompanying paper (Yang & Shen 2011b)
they proposed a method to dynamically couple multiple domains to simulate two-phase
flow with a deformable interface. Xuan & Shen (2019) proposed an improved scheme
for the water-side simulation using flux-form formulation. Guo & Shen (2013, 2014)
studied the vorticity kinematics and the turbulence dynamics of turbulence produced by
external forcing in the subsurface layer and its interaction with the surface wave motions.
Xuan, Deng & Shen (2019) also conducted a detailed dynamical analysis of Langmuir
turbulence driven by the surface shear stress and wave motions. Wang & Özgökmen
(2018), Fujiwara, Yoshikawa & Matsumura (2018) and Fujiwara & Yoshikawa (2020)
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Dynamics of turbulence produced by interfacial gravity waves

compared the wave-resolving simulation results with the CL equation to study the
dynamics of LCs.

Among such studies, Tsai et al. (2017) and Fujiwara, Yoshikawa & Matsumura
(2020) have provided new insights into the connection between the mechanisms of
the WL turbulence and the LCs. These studies suggest that the near-surface shear
flow, known as the Eulerian mean drift, plays a central role in turbulence production.
Longuet-Higgins (1953) considered the mass transport (Lagrangian) velocity of the waves
under an influence of weak viscosity and demonstrated that the vertical shear of the
mass transport velocity near the surface would be twice as much as the Stokes drift
shear: ∂(ūE + uSt)/∂z = 2∂uSt/∂z. This Eulerian shear formation is understood through
the momentum transfer from the surface waves attenuating due to water viscosity. Consider
a small-amplitude, monochromatic deep-water wave with gravitational acceleration g,
water density ρo, water kinematic viscosity νo, amplitude a(t), wavenumber k and angular
frequency σ , where the viscous influence is sufficiently small that σ = (gk)1/2 and
a−1da/dt � σ . Lamb (1932) showed that the amplitude attenuation rate γ ≡ −a−1da/dt
for such a wave would be

γo = 2νok2 = 2
Reo

σ, (1.1)

where Reo ≡ σk−2/νo is the water-side Reynolds number based on wavenumber and wave
phase speed. The potential motion of the wave conveys horizontal momentum of Mo ≡
ρogσa2/2 per unit horizontal area. When the waves attenuate following (1.1), −dMo/dt
per unit area must be transformed to the Eulerian current. This can be only achieved via
the viscous diffusion from the surface boundary layer. Therefore, the following amount of
horizontal momentum is received by the Eulerian current (e.g. Phillips 1966):

τvws
o = ρoνo

∂ ūE

∂z
= 2γo × 1

2
ρoσa2 = 2

Reo
ρoa2σ 2. (1.2)

This viscous momentum flux was called ‘virtual wave stress’ by Longuet-Higgins (1969),
providing a boundary condition for ūE as ∂ ūE/∂z = ∂uSt/∂z.

The importance of the Eulerian mean drift was elucidated by the wave-resolving direct
numerical simulations (DNS). Tsai, Chen & Lu (2015); Tsai et al. (2017) and Fujiwara
et al. (2020) used free-surface models that explicitly solve the deformable surface motion
under the fully nonlinear boundary conditions, considering that the surface does not
overturn. They all reproduced elongated streamwise vortices as was observed in the tank
experiment by Savelyev et al. (2012). First, Tsai et al. (2015) conducted a simulation of
propagating surface waves over a turbulence field and observed a significant growth of
initial turbulence. The resulting flow field showed vortical structures with a growth rate
consistent with the model of Teixeira & Belcher (2002) based on the rapid distortion
theory. Tsai et al. (2017) further investigated the streamwise vortices with an increased
number of simulations and compared their structure with the linear stability analysis
of the CL equation. When the Eulerian current shear is provided by the theory of
Longuet-Higgins (1953), the theoretically predicted spanwise wavenumber of the fastest
growth mode was close to that of the simulated streamwise vortices. Then, Fujiwara et al.
(2020) compared a low-Reynolds number wave-resolving DNS and its wave-averaged
counterpart using the CL equation with and without virtual wave stress effect. As a
result, the temporal evolution of vertical circulation in wave-resolving DNS was very
well-reproduced with the CL equation using the virtual wave stress effect. The results
of Tsai et al. (2017) and Fujiwara et al. (2020) suggested that the simulated WL turbulence
was driven by the CL2 mechanism associated with the virtual wave stress-driven
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sheared current. The latest numerical study by Imamura, Yoshikawa & Fujiwara (n.d.)
observed that such vortical flows actually induce turbulent mixing. Through a detailed
enstrophy budget analysis, they demonstrated that the turbulence was not locally
produced from the orbital motion but non-locally through the sheared current near the
surface.

These studies considered the problem in the water-side-only framework, but the water
surface is in contact with air in reality. In the water-side-only problem, the viscous energy
dissipation occurs over the bulk of water volume (Phillips 1966), and the momentum
lost from the wave is received by the vortical current of water. In the presence of
the air above, the two fluids can exchange momentum and energy, which can make a
difference in the resulting flow fields. Thus, it is important to understand the roles played
by the air–water coupling in the attenuating interfacial gravity waves and associated
wave-induced turbulence. For this purpose, the wave-resolving numerical simulation is
a promising approach because it enables us to evaluate the dynamical interaction between
the two phases in detail, which is extremely difficult in laboratory and field measurements.
Because the exchange of momentum and energy between water and air is central in this
phenomenon, the simulations need to be conducted in air–water coupled configurations,
rather than air-side only simulations (e.g. Sullivan, McWilliams & Moeng 2000; Sullivan
et al. 2008; Cao & Shen 2021), where the water surface serves as the infinite reservoir of
energy.

The numerical study of air–water two-phase flow has a long history, with diverse topics
of interest and numerical techniques to represent this complex system. For example, the
main interest of studies using the interface-following coordinate (as in the present study)
includes wind wave generation (Fulgosi et al. 2003; Lin et al. 2008; Zonta, Soldati &
Onorato 2015; Li & Shen 2022), transient adjustment of waves to wind in high-wave-age
(Zonta, Onorato & Soldati 2016), and the wind turbulence over waves and the evolution of
wave spectrum under wind influence (Hao & Shen 2019). Nevertheless, wind is present in
all of these simulations, which makes it difficult to separately discuss the role of air–water
coupling in WL turbulence production.

One important theoretical prediction is that the Eulerian mean current is intensified in
the presence of air if its mean horizontal motion (mean wind) is zero. Dore (1978) studied
the linear theory of interfacial gravity waves under the influence of weak viscosity in both
air and water. The horizontal orbital velocity of the irrotational waves is discontinuous
at the interface, so the viscous boundary layer (Stokes layer) develops on both sides to
match the air- and water-side velocity. Due to the large density ratio, a very sharp shear
layer arises in the air side, where a strong energy dissipation occurs. As a result, the
leading-order amplitude decay rate is expressed as the sum of the dissipation in the bulk
of the water and in the Stokes layer of the air. The result of Dore (1978) can be rewritten
for deep-water interfacial waves as follows:

γao = 2νok2 + ρa

ρo
(2νak2σ)1/2 =

[
2

Reo
+ ρa

ρo

(
2

Rea

)1/2
]

σ, (1.3)

where ρa is the density of air, νa is the kinematic viscosity of air and Rea ≡ σk−2/νa
is the air-side Reynolds number based on wavenumber and wave phase speed. The
relative importance of the two terms depends on scale. Based on physical parameters
at 10 ◦C, νa = 1.4 × 10−5 m2 s−1, νo = 1.3 × 10−6 m2 s−1, ρa = 1.2 kg m−3, and ρo =
1.0 × 103 kg m−3 for reference, and using the free surface dispersion relation σ = (gk)1/2,
the ratio of the second to the first term is 0.46, 2.56 and 14.4 for wavelengths of
λ = 0.3, 3, 30 m, respectively. For waves longer than λ ≈ 0.9 m, the effect of viscous
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dissipation in the air dominates over the dissipation in the water. Dore (1978) further
investigated the second-order stress at just outside the viscous boundary layer; the results
are consistent with the following Eulerian form:

ρoνo
∂ ūE

∂z
− ρaνa

∂ ūE

∂z
= τ vws

ao = 2γao × 1
2
ρoσa2 =

[
2

Reo
ρo +

(
2

Rea

)1/2

ρa

]
a2σ 2.

(1.4)

Since ρoνo � ρaνa, the virtual wave stress is mostly received by the water side term on
the left-hand side. Therefore, the theory predicts that the wave momentum is transferred
to water with a rate higher than that of the water-only case, possibly leading to stronger
WL turbulence production than the free surface simulations.

In this study, the viscous attenuation of air–water interfacial gravity waves and
associated WL turbulence production were investigated using two-phase wave-resolving
DNS. We aimed to elucidate the effect of air–water coupling on the Eulerian mean current
and WL turbulence generation by comparing wave-resolving simulations with and without
coupling. Here, the mean airflow is assumed to be zero to clarify the comparison against
the water-only simulation, because the wind–wave interaction (e.g. Miles 1957) would
complicate the process. However, the knowledge about the boundary layer structure and its
role in air–water coupling should still be valid even in the presence of the mean wind. We
also investigated the reproducibility of the phenomena in the wave-averaged framework
using the wave-averaged simulations incorporating virtual wave stress as the boundary
condition. We first extend the wave-resolving numerical model developed by Fujiwara
et al. (2020) to the two-phase configuration. Its numerical procedure is described in § 2.
Then the problem setting for the simulation of attenuating interfacial waves are introduced
in § 3, and its results are presented in § 4. Finally, a discussion and conclusions are provided
in § 5.

2. Problem settings and numerical scheme

2.1. Framework
Here, we describe the numerical scheme of the two-phase flow solver. Various approaches
have been used to simulate the air–water interface problems, such as the marker-and-cell
method (Harlow & Welch 1965), the volume-of-fluid method (Popinet 2003), the level-set
method (Sussman et al. 1999), the smoothed particle hydrodynamics (Colagrossi &
Landrini 2003), the direct method using the surface-following coordinate and interface
tracking (Komori et al. 2010; Yang & Shen 2011b) and modified or hybrid versions
of these algorithms. In the present problem of non-breaking waves, we employ the
surface-following coordinate approach, which can retain the sharpness of the interface
and easily cluster the grid points to resolve the thin boundary layer. This approach also
has an advantage in the conservation of mass, momentum and energy with a moderate
computational cost, if a proper numerical method is employed. Here we assume that
the air–water interface would not turn over and the interface can be represented with
a one-valued function of horizontal position and time. This assumption allows us to
prescribe a simple mapping from the physical to the computational domain (vertical
coordinate transformation) and to avoid the regridding in each time step. Such a strategy
has been adopted for simulating free-surface water-side flows (Tsai & Hung 2007; Yang
& Shen 2011a; Xuan & Shen 2019), the air-side flows (Sullivan et al. 2000, 2008) and
the air–water coupled flows (Yang & Shen 2011b). The numerical scheme is formulated
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as an extension of the framework of the free-surface (water-side) model of Fujiwara et al.
(2020).

Consider a three-dimensional rectangular domain, where the horizontal boundaries
are doubly periodic, and the top and bottom boundaries are rigid walls. The Cartesian
coordinates are denoted by x, y (horizontal) and z (vertical). The top and bottom
boundaries are denoted by z = Ha and z = −Ho, respectively. Here, for simplicity, we
assume that the top and bottom walls are flat, but the numerical method described in the
following can be easily extended to spatially varying Ha and Ho.

The domain is filled with two incompressible fluids with different densities, which are
hereinafter called ‘air’ and ‘water’. The densities of each fluid are ρa (air) and ρo (water),
and ρa < ρo. Here z = 0 is taken as the interface location at the state of rest, so the mean
vertical thickness of each phase is Ha (air) and Ho (water). The air and water occupy
the region η(x, y, t) ≤ z ≤ Ha and −Ho ≤ z ≤ η(x, y, t), respectively, where η is assumed
to be a one-valued function of x, y and t (time). With this assumption, we disregard the
situation where the interfacial overturn (plunging breaker) occurs.

The fluids follow the incompressible Navier–Stokes equation:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= − ∂

∂x
(gη + pnh) + ∂T xx

∂x
+ ∂T yx

∂y
+ ∂T zx

∂z
, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − ∂

∂y
(gη + pnh) + ∂T xy

∂x
+ ∂T yy

∂y
+ ∂T zy

∂z
, (2.1b)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −∂pnh

∂z
+ ∂T xz

∂x
+ ∂T yz

∂y
+ ∂T zz

∂z
, (2.1c)

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (2.1d)

Here, u, v and w are x-, y-, and z-component velocities, respectively, T xx and so on
are the components of kinematic viscous stress tensor T (i.e. viscous stress tensor
divided by density) and g is gravitational acceleration. In (2.1), the total pressure p̃ is
decomposed into the hydrostatic and non-hydrostatic components, p̃ = ρg(η − z) + p̃nh =
ρg(η − z) + ρpnh, where p̃nh ≡ ρpnh and ρ is the density (ρa or ρo). The viscous stress
can be written as

T xixj = ν

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.2)

where i, j = 1, 2, 3, (x1, x2, x3) = (x, y, z) and (u1, u2, u3) = (u, v, w). The kinematic
viscosity ν can be either constant or some eddy viscosity modelled with the velocity field.

At the top and bottom (z = Ha, −Ho), w = 0 is demanded as the kinematic boundary
condition. When ν /= 0, dynamic boundary conditions must be provided there, such as the
no-slip condition ((u, v, w)air = (u, v, w)water) or some momentum flux parameterisation
(ρT xz = τ x, ρT yz = τ y). At the interface z = η(x, y, t), the mass continuity is demanded
as the kinematic boundary condition:

∂η

∂t
= w − u

∂η

∂x
− v

∂η

∂y
, at z = η + 0, η − 0. (2.3)

Here, this condition is satisfied at both the air (z = η + 0) and water (z = η − 0) sides. By
vertically integrating the continuity equation (2.1d) from the top or bottom to the interface

999 A97-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.934
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and using this condition, one obtains the column mass conservation equation:

∂η

∂t
= ∂

∂x

∫ Ha

η

u dz + ∂

∂y

∫ Ha

η

v dz, (2.4a)

∂η

∂t
= − ∂

∂x

∫ η

−Ho

u dz − ∂

∂y

∫ η

−Ho

v dz. (2.4b)

As the dynamic boundary conditions, the continuity of interfacial stress (−p̃I + ρT ) · n is
demanded. Here, n = (1 + η2

x + η2
y)

−1/2(−ηx, −ηy, 1), denotes the upwards-looking unit
normal vector at the interface, where ηx ≡ ∂η/∂x and ηy ≡ ∂η/∂y, and I denotes the unit
tensor. We formulated the stress continuity via τ tx

i , τ ty
i , and −p̃nh + τ n

i (subscript i denotes
‘interface’ and not the coordinate index) in the following equations:

τ tx
i ≡ ρtx · T · n = ρ

(1 − η2
x)T

zx − ηxηyT zy + ηx(T zz − T xx) − ηyT xy[
(1 + η2

x + η2
y)(1 + η2

x)
]1/2 , (2.5a)

τ
ty
i ≡ ρty · T · n = ρ

−ηxηyT zx + (1 − η2
y)T

zy − ηxT xy + ηy(T zz − T yy)[
(1 + η2

x + η2
y)(1 + η2

y)
]1/2 , (2.5b)

−p̃nh + τ n
i ≡ n · (−p̃I + ρT ) · n. (2.5c)

Here, tx ≡ (1 + η2
x)

−1/2(1, 0, ηx) and ty ≡ (1 + η2
y)

−1/2(0, 1, ηy) represent the unit
vectors tangential to the interface that lie in x–z and y–z planes, respectively. The tangential
stress components τ tx

i and τ
ty
i need to be modelled from the neighbouring velocity field,

such as the no-slip boundary condition or the bulk formula. Once these are obtained,
the normal viscous stress component τ n

i ≡ ρ(1 + η2
x + η2

y)
−1(T zz − 2ηxT xz − 2ηyT yz +

η2
x T xx + 2ηxηyT xy + η2

y T yy) was computed explicitly at each side of the interface. To
simplify the continuity condition of the non-hydrostatic pressure (p̃nh − τ n

i )air = ( p̃nh −
τ n

i )water, we introduced the pseudo-pressure variable p ≡ ρ−1[p̃nh(x, y, z) − τ n
i (x, y)] and

transformed the pressure gradient terms in (2.1) as follows:

−∂pnh

∂x
= − ∂

∂x

(
p + τ n

i
ρ

)
, −∂pnh

∂y
= − ∂

∂y

(
p + τ n

i
ρ

)
, −∂pnh

∂z
= −∂p

∂z
. (2.6)

The pseudo-pressure p multiplied with density is continuous at the interface: (ρp)air =
(ρp)water.

We employed the curvilinear coordinate that follows the interfacial deformation. The
independent variables (x, y, z, t) were transformed to (x∗, y∗, z∗, t∗) as

x = x∗, y = y∗, z = z∗ + (1 − z∗/Ha)η, t = t∗ (air side), (2.7a)

x = x∗, y = y∗, z = z∗ + (1 + z∗/Ho)η, t = t∗ (water side). (2.7b)

This transformation maps the physical air (water) domain η ≤ z ≤ Ha (−Ho ≤ z ≤ η) to
the computational domain 0 ≤ z∗ ≤ Ha (−Ho ≤ z∗ ≤ 0).
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After coordinate transformation, the governing equations (2.1) can be written in the
following form:

∂U
∂t∗

= − ∂

∂x∗

(
UU
h

+ ghη + hτ n
i

ρ
+ P − hTxx

)
− ∂

∂y∗

(
VU
h

− hTyx
)

− ∂

∂z∗

(
ΩU

h
− gzx∗η − zx∗τ n

i
ρ

− zx∗P
h

+ zx∗Txx + zy∗Tyx − Tzx
)

,

(2.8a)

∂V
∂t∗

= − ∂

∂x∗

(
UV
h

− hTxy
)

− ∂

∂y∗

(
VV
h

+ ghη + hτ n
i

ρ
+ P − hTyy

)

− ∂

∂z∗

(
ΩV

h
− gzy∗η − zy∗τ n

i
ρ

− zy∗P
h

+ zx∗Txy + zy∗Tyy − Tzy
)

,

(2.8b)

∂W
∂t∗

= − ∂

∂x∗

(
UW

h
− hTxz

)
− ∂

∂y∗

(
VW

h
− hTyz

)

− ∂

∂z∗

(
ΩW

h
+ P

h
+ zx∗Txz + zy∗Tyz − Tzz

)
,

(2.8c)

∂U
∂x∗ + ∂V

∂y∗ + ∂

∂z∗

(
W
h

− zx∗U
h

− zy∗V
h

)
= 0. (2.8d)

Here, subscripts t∗, x∗, y∗ and z∗ denote partial derivatives, h ≡ ∂z/∂z∗ is the layer
thickness, U ≡ hu, V ≡ hv, W ≡ hw and P ≡ hp are the layer thickness-weighted
variables and Ω ≡ w − zt∗ − uzx∗ − vzy∗ is the layer thickness-weighted z∗-velocity. The
apparent form of (2.8) is identical for both air and water. However, the expressions for h
and other variables vary because the definition of z (2.7) depends on the fluid type. The
column-mass conservation equation (2.4) can be transformed as follows:

∂η

∂t∗
= ∂

∂x∗

∫ Ha

0
U dz∗ + ∂

∂y∗

∫ Ha

0
V dz∗, (2.9a)

∂η

∂t∗
= − ∂

∂x∗

∫ 0

−Ho

U dz∗ − ∂

∂y∗

∫ 0

−Ho

V dz∗. (2.9b)

2.2. Spatial discretisation
Taking advantage of the doubly periodic horizontal boundary condition, we discretise
the variables in equally spaced grid points in x∗ and y∗ and take the pseudo-spectral
approach to approximate horizontal derivatives. Hereinafter, ∂/∂x∗ and ∂/∂y∗ represent
the evaluation of horizontal derivatives using the fast Fourier transform algorithm. To
avoid nonlinear instability, spectral coefficients above two-thirds of Nyquist frequency are
filled with zeros.

In vertical, the second-order finite-difference method is used. The air-side (water-side)
domain 0 ≤ z∗ ≤ Ha (−Ho ≤ z∗ ≤ 0) is discretised as layers with variable thickness, and
variables are placed in a staggered grid layout (figure 1). Horizontal velocity components
and scalars are defined at layer centres, and vertical velocity components are defined
at layer interfaces. Both air- and water-side W are defined at the air–water interface
because the velocity discontinuity may arise there unless the no-slip boundary condition
is assumed. The thickness-weighted pseudo-pressure P is defined not only at layer centres
but also at the air–water interface. Denoting the numbers of layers with Ka (air) and Ko
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Dynamics of turbulence produced by interfacial gravity waves

U, V W, Ω P

+1+1

–1/2

+1/2

(z∗ = –0)

(z∗ = +0)

z∗ = Ha

z∗ = –Ho

z∗ = 0

–1–1 0

Figure 1. Layout of discretised variables in the vertically staggered grid. Blue, orange and green markers
represent the properties of water, air and interface, respectively. Numbers 0, ±1/2 and ±1 denote the indices
of vertical grid points used in § 2.3.

(water), P is discretised into Ka + Ko + 1 points in vertical. This additional degree of
freedom allows us to ensure the mass continuity at the interface (2.3), as discussed further
in § 2.3. Hereinafter, ∂/∂z∗ represents the second-order finite-difference approximation
of vertical derivatives. Horizontal velocity components U and V are defined at the cell
centres. When they are required at the air–water interface as in (2.8d), the values at the grid
centres just above or below the interface is consistently used to represent the interfacial
value. Evaluating (2.9) in the discretised domain and using (2.8d), we obtain

∂η

∂t∗
=

∑
k

(
∂Uk

∂x∗ + ∂Vk

∂y∗

)

z∗

k = w1/2 − u1ηx − v1ηy, (2.10a)

∂η

∂t∗
= −

∑
k

(
∂Uk

∂x∗ + ∂Vk

∂y∗

)

z∗

k = w−1/2 − u−1ηx − v−1ηy. (2.10b)

Here, the subscript k represents vertical coordinate index, where k = ±1 denote the cell
centres next to the interface and k = ±1/2 denote the variables on each side of the
interface (see figure 1). This is the kinematic boundary condition (2.3) represented in
the present framework. This approximation contains truncation error of O(
z∗), but it is
typically overwhelmed by other discretisation errors (e.g. vertical finite-difference error of
O(
z∗2)), as is observed in Appendix A.1.

Note that the continuity of the normal stress is achieved implicitly by introducing
the pseudo-pressure at the interface and using the common value for calculating the
pressure-gradient force at the air and water side. Similar strategy is adopted to achieve
the continuity of the tangential stress: we evaluated τ tx

i and τ
ty
i at the interface and used

that common value at the air and water side, thereby ensuring the momentum conservation.
The method for evaluating the tangential stress is detailed in the following subsection.

2.3. Temporal integration
To achieve high accuracy in mass, momentum and energy conservation, the fourth-order
Adams–Bashforth (AB4) scheme was adopted for the time integration of velocity field and
interface elevation (Fujiwara et al. 2020). Hereinafter, we describe the time-advancement
method from the known fields of U(n), V(n), W(n) and η(n), where superscript (n) denotes
the timesteps. Since we employ a fully explicit scheme, all the right-hand side terms of
(2.8a–c) and (2.9) are evaluated at timestep n and used for temporal integration. The terms
at past three timesteps (n − 1, n − 2, n − 3) are stored for the AB4 scheme, but when
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Y. Fujiwara

the stability limit of some terms (e.g. viscosity) is much looser than that required by the
interfacial waves, lower-order explicit schemes can be used to reduce computational cost
without much truncation error.

The viscous stress tensor Tij is diagnostically evaluated from (U(n), V(n), W(n)). At the
air–water interface, the tangential components (τ tx

i , τ
ty
i ) are required to be continuous

across the interface. They are evaluated referring to the velocity at the bottom layer of
the air and the top layer of the water. In the case of the no-slip boundary condition, the
velocity at the interface z∗ = 0 is approximated with the value at z∗ = −0.5
z∗ (top layer
of water) due to the large density ratio. The tangential stress (τ tx

i , τ
ty
i ) is evaluated from the

velocity difference between the lowest layer of the air and the interface. Then (τ tx
i , τ

ty
i ) is

used to determine the boundary values of the water-side viscous stress tensor, together with
τ n

i , which is independently evaluated at each side. Due to the approximation of interfacial
velocity using the first grid point, the consistency between the tangential stress and the
surrounding velocity is not strictly satisfied. However, the relative error induced by this
approximation (difference between ‘true’ interfacial velocity and the top layer of water)
would be small as discussed in the following. The error can be roughly estimated from the
leading-order stress balance ρaνa(du/dz)a = ρoνo(du/dz)o. The difference between the
true interfacial velocity ui and approximated velocity is estimated by

u(−0.5
z∗) − ui = 0.5
z∗
(

du
dz

)
o

≈ 0.5
z∗ ρaνa

ρoνo

(
du
dz

)
a

≈ ρaνa

ρoνo
(u(0.5
z∗) − ui),

(2.11)

where the grid thicknesses at the air and water sides are assumed similar. Therefore,
the relative error is estimated as O(ρaνa/ρoνo), which is typically of O(10−2),
assuming ρaνa/ρoνo � 1 and u(−0.5
z∗) ∼ u(0.5
z∗). Furthermore, as long as the
tangential stress imposed for each phase is identical, local momentum conservation is
satisfied. Therefore, the present approximation saves us from an iterative approach for
velocity–stress consistency without much disadvantage in accuracy. The error caused by
this approximation is evaluated in Appendix C.

In the present model with variable vertical layer thickness, the temporal integration
of the viscosity term using an explicit scheme would impose a severe limitation on the
time step for a stable computation. However, the CFL condition regarding the interfacial
gravity wave mode, which need to solve accurately, is similarly strict, even with the vertical
resolution high enough to resolve the Stokes boundary layer (SBL) with several layers.
Therefore, we employ the explicit scheme for the integration of viscous terms and do not
employ the implicit scheme that requires iteration.

To integrate the pressure gradient terms in (2.8) using the AB4 scheme, the
instantaneous pressure field P(n) is needed. The pressure field must satisfy the normal
stress continuity equation (2.5c) and retain the velocity incompressibility. Such pressure
field must be obtained through a Poisson equation with non-constant coefficients that
require an iterative approach to solve. In some preceding air–water coupled numerical
models, the air–water coupling was achieved by alternatively solving for each phase, where
the single-phase solution is used as the boundary condition for the other phase (see the
detailed discussion given in, e.g. Lombardi, De Angelis & Banerjee 1996; Yang & Shen
2011b). In the present model, we derive the pressure field based on the air–water coupled
pressure Poisson equation, which is solved in a single-loop iteration, since the numerical
accuracy of the pressure field matters in the problems of our concern.
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Dynamics of turbulence produced by interfacial gravity waves

To obtain the instantaneous pressure field, we constructed a pressure Poisson equation
for P(n) as follows. The time derivative of incompressibility relation (2.8d) is

∂Ut∗

∂x∗ + ∂Vt∗

∂y∗ + ∂

∂z∗

(
Wt∗

h
− zx∗Ut∗

h
− zy∗Vt∗

h

)

+ ∂

∂z∗

[(
1
h

)
t∗

W −
(zx∗

h

)
t∗

U −
(zy∗

h

)
t∗

V
]

= 0. (2.12)

By substituting (2.8a–c), we obtain(
∂2

∂x∗2 + ∂2

∂y∗2 + ∂2

∂z∗2

)
P =

(
1 − 1

h2

)
∂2P
∂z∗2

+ 1
h2

∂

∂z∗
[
h(zx∗P)x∗ + h(zy∗P)y∗ + hzx∗Px∗ + hzy∗Py∗ − zx∗(zx∗P)z∗ − zy∗(zy∗P)z∗

]
+ ∂Gx

∂x∗ + ∂Gy

∂y∗ + 1
h

∂

∂z∗ (Gz − zx∗Gx − zy∗Gy) + ∂

∂z∗

[(
1
h

)
t∗

W −
( zx∗

h

)
t∗

U −
( zy∗

h

)
t∗

V
]

,

(2.13)

where Gx, Gy and Gz denote the right-hand-side terms in (2.8a–c) that can be evaluated
explicitly, i.e. terms that do not include P, and the timestep index (n) is omitted. We
separated the constant-coefficient terms in the Laplacian of P into the left-hand side,
and the time derivatives of the metric variables h and z were explicitly evaluated using
(2.9). This relation holds for each discretised layer, so the number of equations per vertical
column was Ka + Ko. One more equation per column was needed to obtain P, which has
Ka + Ko + 1 degrees of freedom in vertical. For this, we employed the mass continuity
equation at the interface (2.3). Equating the right-hand sides of (2.10) and taking a time
derivative, we obtained

1
ha

(
∂W
∂t∗

)
1/2

− ηx∗

ha

(
∂U
∂t∗

)
1

− ηy∗

ha

(
∂V
∂t∗

)
1

+
(

1
ha

)
t∗

W1/2 −
(

ηx∗

ha

)
t∗

U1 −
(

ηy∗

ha

)
t∗

V1

= 1
ho

(
∂W
∂t∗

)
−1/2

− ηx∗

ho

(
∂U
∂t∗

)
−1

− ηy∗

ho

(
∂V
∂t∗

)
−1

+
(

1
ho

)
t∗

W−1/2 −
(

ηx∗

ho

)
t∗

U−1 −
(

ηy∗

ho

)
t∗

V−1.

(2.14)

Variables with subscripts 1 and −1 were evaluated at the layer centres next to the interface
in the air and water side, respectively (see figure 1). Similarly, subscripts 1/2 and −1/2
denote the variables on the air and water side, respectively, of the interface z∗ = 0. By
substituting (2.8a–c) to (2.14), we obtained the following equation for P:(

− 1
h2

a

∂P
∂z∗ + Gz

ha

)
1/2

− ηx∗

ha

[
− ∂P

∂x∗ +
(

zx∗ P
ha

)
z∗

+ Gx
]

1
− ηy∗

ha

[
− ∂P

∂y∗ +
(

zy∗ P
ha

)
z∗

+ Gy
]

1

+
(

1
ha

)
t∗

W1/2 −
(

ηx∗

ha

)
t∗

U1 −
(

ηy∗

ha

)
t∗

V1

=
(

− 1
h2

o

∂P
∂z∗ + Gz

ho

)
−1/2

− ηx∗

ho

[
− ∂P

∂x∗ +
(

zx∗ P
ho

)
z∗

+ Gx
]

−1
− ηy∗

ho

[
− ∂P

∂y∗ +
(

zy∗ P
ho

)
z∗

+ Gy
]

−1

+
(

1
ho

)
t∗

W−1/2 −
(

ηx∗

ho

)
t∗

U−1 −
(

ηy∗

ho

)
t∗

V−1. (2.15)

The pressure variable notation in this equation requires clarification. From the definition,
P ≡ hap and P ≡ hop in the air side (positive indices) and water side (negative
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indices), respectively. Since ρp is continuous at the interface, we introduced P0 ≡
ρp/

√
ρaρo for numerical implementation. With these definitions of discretised P, the

z∗-derivatives of P in (2.15) should be read as(
∂P
∂z∗

)
1/2

= hap1 − hap0


z∗
1/2

= 1

z∗

1/2

(
P1 − ha

√
ρo

ρa
P0

)
, (2.16)

and so on. Similarly, this definition of P0 was used when evaluating (2.13) at the layers
directly above and below the interface.

For each vertical column, (2.13) and (2.15) provided (Ka + Ko + 1) equations with
(Ka + Ko + 1) unknown variables P−Ko,...,0,...,Ka . This system was solved by the
fixed-point iteration method as described in Sullivan et al. (2000) and Fujiwara et al.
(2020). When the vertical index is denoted with k, (2.13) and (2.15) can be written as

(
∂2

∂x∗2 + ∂2

∂y∗2

)
Pk +

(
∂2P
∂z∗2

)
k

= ε(Pk−1, Pk, Pk+1) + Qk (k /= 0), (2.17a)

(
∂2P
∂z∗2

)
k

= ε(Pk−1, Pk, Pk+1) + Qk (k = 0). (2.17b)

Here, ε is the linear term of P whose coefficients vary in space, and Q represents the terms
that do not include P. Denoting the left-hand side terms with L(P) and the iteration index
with superscript [m], we iteratively solved for P[m] in the following equation:

L(P[m]
k−1, P[m]

k , P[m]
k+1) = ε(P[m−1]

k−1 , P[m−1]
k , P[m−1]

k+1 ) + Qk. (2.18)

The inversion of the left-hand side can be achieved by using horizontal fast Fourier
transform and tridiagonal solver. Since both the top and bottom boundaries are rigid-lid,
one can add an arbitrary constant to the pressure field. We constrained this degree of
freedom by demanding that the horizontal average of P0 is zero. This equation was
iteratively solved until all of the normalised residuals

max |P[m]
1,...,Ka

− P[m−1]
1,...,Ka

|
r.m.s.(P[m]

1,...,Ka
)

,
max |P[m]

0 − P[m−1]
0 |

r.m.s.(P[m]
0 )

,
max |P[m]

−Ko,...,−1 − P[m−1]
−Ko,...,−1|

r.m.s.(P[m]
−Ko,...,−1)

(2.19)

become smaller than a certain value (typically 10−8), where r.m.s. denotes root mean
square over all grid points. This way, the instantaneous pressure field is accurately solved
without nested iteration. For the AW-ctrl case introduced in § 3, which is a typical problem
with wave slope ak = 0.1, the number of iteration required for convergence was seven.

Once the pressure field was obtained, the prognostic equations (2.8a–c) and (2.9b) were
integrated with the AB4 scheme. Due to the nonlinearity of the incompressibility equation,
the velocity field after the time integration contains a small compressibility of O(
t5). To
fix this, the gradient of a scalar potential was added to the velocity field as in Fujiwara
et al. (2020). The Poisson equation for the potential was obtained by demanding the
incompressibility of the final velocity field. The procedure is very similar to the pressure
equations (2.13) and (2.15), so it is not detailed here.

The performance of the numerical model was examined in several benchmark cases,
and its results are described in Appendix A. The model well-reproduced the analytic
behaviours of interfacial gravity waves and the Miles instability problem with a
reasonable spatial resolution. Notably, the flux form configuration and the fully coupled
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Dynamics of turbulence produced by interfacial gravity waves

Case name Domain Difference from ‘ctrl’

AW-ctrl Air–water —
W-ctrl Water only —
AW-noturb Air–water x–z two-dimensional
W-noturb Water only x–z two-dimensional
AW-CL Air–water CL equation, described in detail in § 4.4
W-CL Water only CL equation, described in detail in § 4.4
AW-deepnoise Air–water Initial u noise added to all grid points
AW-a2 Air–water Initial a = 0.2
AW-narrow Air–water Ly = 1.8π

AW-long Air–water Lx = 4π, Ly = 1.8π

Table 1. List of cases considered in this study.

pressure-solving strategy led to small numerical errors in the energy, momentum and mass
conservation, as demonstrated in § 3. This feature is favourable in considering a delicate
problem such as the WL turbulence production.

The numerical procedure can be extended easily to the air-side-only configuration where
η(x, y, t) is externally provided. Although such a problem is not considered in this article,
the numerical procedure is briefly introduced in Appendix B for future reference.

3. Problem set-up

Numerical simulations of attenuating interfacial waves are conducted to clarify the
difference in wave-induced turbulence between the air–water coupled flow and the
free-surface flow. We consider both the air–water coupled (simulated with the model
developed in this study, labelled ‘AW’) and the water-only (simulated with the free surface
model of Fujiwara et al. (2020), labelled ‘W’) configurations. In each configuration, a
basic three-dimensional set-up labelled ‘ctrl’ is considered, and several variants are also
designed to study the dynamical roles of particular processes and sensitivity to problem
set-up. In table 1, all the set-ups are listed.

We first introduce the air–water coupled configuration. The following description
pertains to the AW-ctrl case, whereas the AW-noturb case is derived by assuming
homogeneity in the y direction (∂/∂y = 0). Consider a wavelength λ and non-
dimensionalise all the variables based on the spatial scale of k−1 = λ/2π and the temporal
scale of σ−1 = [gk(ρo − ρa)/(ρo + ρa)]−1/2 (angular frequency of the small-amplitude
deep-water wave). For density, the air-side density is used as the reference. Hereinafter,
all the symbols denote non-dimensionalised variables. Under this non-dimensionalised
system, a three-dimensional domain of (Lx, Ly, Ha, Ho) = (2π, 2.4π, 1.5π, 1.5π) was
considered. The mean depths of air and water layers are 75 % of a wavelength, which is still
in a deep-water regime. Therefore, the wave period is roughly 2π, with small modifications
by nonlinearity and finite-depth effects.

This system is characterised by three non-dimensional numbers, namely, the density
ratio r ≡ ρo/ρa and the Reynolds numbers (Rea, Reo) = (σk−2/νa, σk−2/νo). We choose
the density ratio of r = 1.0 × 103 and the Reynolds numbers of (Rea, Reo) = (1.5 ×
104, 1.5 × 105). This parameter set does not precisely correspond to a particular physical
condition because we are mainly focused on the dynamical understanding of the
phenomena. Nevertheless, the present parameter choice roughly corresponds to the actual
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air–water interfacial wave with λ ≈ 1.0 m (Rea = 1.4 × 104, Reo = 1.5 × 105 and r =
8.1 × 102 at 10 ◦C). Here we neglect the effect of surface tension to further simplify the
dynamics.

The top and bottom boundaries are flat and free-slip. The no-slip boundary condition
is imposed at the air–water interface. Then the domain was discretised with 128 and 320
grid points in x and y directions, respectively. Higher spatial resolution is assumed in y
direction because the resulting flow shows a finer structure in y. In the vertical, the air and
water domains are discretised with 128 and 160 grid points, respectively. The grid points
are clustered near the interface, such that the layer thickness directly above and below the
interface would be half of the viscous SBL thickness (2/Rea,o)

1/2, which is thicker in the
air side. The layer thickness increased exponentially away from the interface, with ratios
of 1.0239 and 1.0270 on the air and water side, respectively.

For the water-only case (W-ctrl and W-noturb), we consider a horizontally rectangular
domain topped with a free-surface boundary at its upper surface, z = η(x, y, t). The
upper surface satisfies the kinematic boundary condition ∂η/∂t = w − u∂η/∂x − v∂η/∂y
and the no-stress boundary condition (−p̃I + ρT ) · n = 0. The bottom boundary is
the flat wall with the free-slip condition as in the AW cases. Because the dispersion
relation of the surface waves differs from the air–water coupled cases, the reference
time scale of σ−1 = (gk)−1/2 was used for the non-dimensionalisation instead.
Otherwise, the geometric set-up and parameters are identical to the water side of the
AW cases.

In both the AW and W configurations, we initialised the flow field with the orbital
velocity of the fifth-order Stokes wave (Tsuji & Nagata (1973) for the AW and Fenton
(1985) for the W cases) that propagates towards the x direction, with wavelength 2π and
initial wave amplitude of a = 0.1 (wave slope of 0.1). The asymptotic solution of Tsuji &
Nagata (1973) assumes a deep-water limit, so its use as the initial condition can introduce
a spurious response with an interfacial displacement of O(10−3). The analysis conducted
here is insensitive to the spurious waves of this amount. In the AW-ctrl and W-ctrl cases,
a Gaussian noise with a standard deviation of 10−3 is added to u at water-side grid points
near the interface (only in one layer centred at z∗ = −0.0086 and 
z∗ = 0.0020 thick) to
seed the horizontal inhomogeneity. Before adding to the orbital velocity, the noise field is
horizontally low-pass filtered at a cutoff wavenumber of 16. Then, the divergent component
of the noise field is removed and made solenoidal in the projection procedure during the
initialisation of the simulation. We expect that the resulting turbulence is insensitive to
this noise structure because of inherent instability (Tsai et al. 2017; Fujiwara et al. 2020).
To examine the dependence of the result on initial noise structure, we have conducted an
AW case with the same amplitude noise added to the grid points of all levels in the water
side, which is named the ‘AW-deepnoise’ case. In addition, to study the phenomenon
under larger wave amplitude, an AW case with doubled initial wave amplitude (AW-a2)
was conducted. We also conducted the sensitivity study to the domain size (AW-long and
AW-narrow), which is described in Appendix E.

Starting from this initial velocity field, the temporal integration was conducted with

t = 2π/240 until t = 2400π, which is about 1200 wave periods. During the simulation,
it was confirmed that the waves barely change shape and do not break, as monitored by
the time series of maximum interface slope max(

√
η2

x + η2
y). In all cases listed in table 1,

the maximum slope decreased over time and did not exceed its initial value (about 0.2
for AW-ak2 and 0.1 for the rest). In fact, in the AW-ctrl case, the primary harmonic
component (wavenumber (1,0) in (x, y) direction) of η explains more than 99.7 % of
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Dynamics of turbulence produced by interfacial gravity waves

the total variance throughout the simulation period, and with the addition of the second
harmonic (wavenumber (2, 0)), it reaches above 99.998 %.

To demonstrate the accuracy of the present numerical model, the numerical errors are
monitored in various ways in the AW-ctrl case, and their time series is shown in figure 2.
In figure 2(a), the temporal evolution of error in conserved properties is shown. Water
mass conservation can be monitored by the horizontal average of interface elevation, η̄,
and its error is of O(10−16). The total x-component momentum M should be conserved in
the present set-up because of the free-slip boundary condition at the top and bottom, and
the horizontally periodic boundary condition. It is defined as follows:

M(t) = r
∫ η

−Ho

u dz +
∫ Ha

η

u dz. (3.1)

Here, the overline denotes the horizontal average. The momentum error 
M ≡ M(t) −
M(0) normalised by initial total momentum is as small as O(10−7) after 1200 periods of
integration thanks to the full-flux form configuration (2.8). The total energy is calculated
as the sum of the kinetic energy (KE) and potential energy (PE):

E(t) = r
∫ η

−Ho

1
2
(u2 + v2 + w2) dz

+
∫ Ha

η

1
2
(u2 + v2 + w2) dz + 1

2
(r − 1)gη2. (3.2)

There is no energy flux through the free-slip top and bottom boundaries, so the temporal
change of total energy can be monitored by the viscous dissipation. Therefore, the energy
error 
E can be computed as follows (Tsai & Hung 2007):


E(t) = E(t) − E(0)

+
∫ t

0

[∫ η

−Ho

r(uFx + vFy + wFz) dz +
∫ Ha

η

(uFx + vFy + wFz) dz

]
dt. (3.3)

Here, (Fx, Fy, Fz) denotes the viscous force divided by density (as denoted in (2.1a–c)).
The time series of energy error normalised with E(0) shows energy growth of 0.01 % per
1000 wave period, which is sufficiently small even for a long-term integration as in the
present problem.

To monitor the mass continuity, the maximum velocity divergence over air and water
domains is shown in figure 2(b). It is about 10−6∼−5 smaller than the characteristic strain
rate by the wave orbital motion. There is a jump of velocity divergence at around t/2π =
150, which corresponds to the onset of the small-scale flow structure by wave-induced
turbulence (§ 4.2). Similarly, the continuity of interface (w − uηx − vηy)z=η+0 − (w −
uηx − vηy)z=η−0 is confirmed to be small. The numerical error shown in figure 2 is also
monitored for the AW-a2 and AW-deepnoise cases and presented in appendix D.

We have also estimated the numerical diffusivity using the W-noturb configuration.
At the moment, the tracer equation is not implemented in the two-phase model, so the
free-surface model of (Fujiwara et al. 2020) that employs identical discretisation was used.
Passive tracer with various diffusivity κ and corresponding Péclet number Pe = σk−2/κ
was placed in the initial field as a vertical water column and was advected and diffused
following the wave motion. The same simulation was conducted for a configuration
with doubled horizontal and vertical grid points, and the tracer fields at t = 100π were
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Figure 2. Time series of numerical error in the AW-ctrl case: (a) error in total mass, horizontal momentum
and energy, as defined in the text; and (b) maximum velocity divergence and mass discontinuity at the
interface.

compared for the two resolutions. For simulations with Pe � O(106), the tracer fields were
different between the two resolutions, which is dominated by the numerical dispersion and
diffusion. However, at Pe � O(106), the simulation results are nearly identical between the
two resolutions. Therefore, in the present simulations with Reo = 1.5 × 105, the influence
of numerical dispersion/diffusion is negligible.

Finally, to justify the approximation of interfacial velocity by the water-side top layer,
the resulting error in interfacial velocity and stress is evaluated in Appendix C between the
simulation results of the AW-noturb case. The error between the exact and approximated
velocity and the resulting error in momentum and energy exchange between air and water
was at most O(1)%. Therefore, its effect on the dynamics reported in the following section
is minor.

4. Results

4.1. Overview of flow structure
An overview of the simulated wave motion and the resulting turbulence field is presented.
Figure 3 is the three-dimensional plot of the streamwise (x component) vorticity
component in the AW-ctrl case at t = 1200π showing the elongated vortex structure.
This is consistent with the streak structure observed in the laboratory experiment by
Savelyev et al. (2012). The vortices are present both in the water and air domains, but their
typical spatial scale is larger in the air side because of the larger kinematic viscosity value
there. These turbulent vortices developed over the time scale of O(100) wave periods, as
described in § 4.2.

The velocity field in the AW-ctrl case is shown in figures 4 and 5. The instantaneous
velocity field is dominated by the wave orbital motion, which is nearly uniform in the y
direction, so the deviation from the y average along constant x∗ and z∗ lines is considered
as the turbulence field. Hereinafter, prime is used to denote the turbulence component:

ϕ′(x∗, y∗, z∗, t∗) ≡ ϕ(x∗, y∗, z∗, t∗) − 〈ϕ〉y(x∗, z∗, t∗), (4.1)

999 A97-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.934


Dynamics of turbulence produced by interfacial gravity waves

0

–0.1

–0.2

–0.3

0

0.1

0.2

0.3

1.2
1.00.8

y/2π

z/2π

z/2π

x/2π
0.60.40.20.2

0.4
0.60.8

1.0

0

Figure 3. Three-dimensional plot of the turbulence field of the AW-ctrl case at t = 1200π. The curved grey
surfaces denote the interface, and the air domain is artificially lifted for visibility. Red and blue surfaces denote
contours of x-component vorticity ∂w/∂x − ∂v/∂z (±0.013 in the air and ±0.020 in the water), and the red
(blue) surfaces show the positive (negative) contours. Waves propagate towards the x direction.

where ϕ denotes an arbitrary field and

〈ϕ〉y(x∗, z∗, t∗) ≡ 1
Ly

∫ Ly

0
ϕ(x∗, y∗, z∗, t∗) dy∗ (4.2)

is the along-crest average.
Figure 4 shows the x–z vertical section of the velocity field at t/2π = 1200. Since η

is almost uniform in the y direction, 〈η〉y is used as the interfacial shape. Figure 4(a–c)
show that the crest-averaged velocity field is dominated by the wave orbital motion.
Although it is invisible in the present plotting, the air-side 〈u〉y sharply adjusts to
the water-side value near the interface. This will be further demonstrated in § 4.3.
The along-crest variance of velocity components shows that the horizontal components
of the turbulence component are located near the interface. The vertical component
〈w′2〉y is also concentrated near the interface in the water side, but it is centred at the
middle of the domain in the air, representing the large vertical scale of vortices in the
air side.

Figure 5 shows the horizontal distribution of u′, v′ and w′ at both air side (upper row,
z∗ = 0.2) and water side (lower row, z∗ = −0.2). The flow structure is elongated in the
wave propagation direction in both the air and water sides, and its spatial scale is finer
for the water side because of its smaller viscosity. On the water side, the downwelling
part w′ < 0 is often associated with the down-wave velocity u′ > 0, which is consistent
with the typical structures of the LCs (Leibovich 1983) and the turbulence produced
in water-only wave resolving simulations (Tsai et al. 2017). The air-side flow shows
an upsidedown LC-like structure in that the strong streamwise current region (u′ > 0)
corresponds well with the convergence zone ∂v′/∂y < 0 and the upwelling zone w′ > 0.
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Figure 4. Vertical cross-section of the flow field of the AW-ctrl case at t = 2400π: (a) 〈u〉y; (b) 〈v〉y; (c) 〈w〉y;
(d) 〈u′2〉y; (e) 〈v′2〉y; ( f ) 〈w′2〉y. Note that the colour range is different for air and water sides in the along-crest
variance plots.

This is understandable because the wave-driven airflow (figure 7d) has the negative shear
∂ ūE/∂z < 0, and the shear of the air-side Stokes drift ∂uSt/∂z = −2a2e−2z < 0 has the
same sign. This results in CL2 instability (Leibovich 1983), producing the roll structure
in the air side as well. The W-ctrl case also showed a turbulent flow pattern similar to the
water side of the AW-ctrl case, and their difference in turbulence intensity is discussed in
§ 4.2.

4.2. Temporal evolution of flow field
Here, the temporal evolution of the flow field is described. First, figure 6 shows the
temporal variation of the wave amplitude. The wave amplitude is evaluated as a(t) =
(2η2)1/2, where the overline denotes horizontal average. Both in the AW and W cases,
the decay rate is almost identical with and without turbulence. The simulated decay rate
followed the linear theory of Dore (1978) (AW) and Lamb (1932) (W) well, indicating
the prevalence of linear dynamics. The simulated decay rate of both the AW-ctrl and
AW-noturb cases exceeded the theoretical prediction slightly, although this deviation
diminished with a higher vertical resolution near the interface on the air side. This suggests
that the air-side Stokes layer is playing a central role in the energy dissipation, and it needs
to be properly resolved when we focus on its role. With that caveat in mind, we proceed
with the present resolution, as the enhanced wave decay predicted by the linear theory is
mostly reproduced.

As waves decay, they give up the horizontal momentum and produce a vortical current,
namely, the Eulerian mean drift. The Eulerian mean drift is evaluated by first vertically
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Figure 5. Top view of u′, v′ and w′ obtained in the AW-ctrl case at t = 2400π: (a–c) distributions on
z∗ = 0.2 (air) and (d–f ) distributions on −0.2 (water).
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Figure 6. Temporal change of wave amplitude a(t) =
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lines denote the decay rate predicted with the linear theories (1.3) and (1.1).
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Figure 7. Vertical profiles of the Eulerian mean horizontal velocity ūE of the AW-noturb, AW-ctrl, W-noturb
and W-ctrl cases: (a) AW-noturb, air; (b) AW-noturb, water; (c) W-noturb; (d) AW-ctrl, air; (e) AW-ctrl, water;
( f ) W-ctrl. Dashed lines in (b) show the result of the one-dimensional diffusion equation (4.3).

interpolating the horizontal velocity field u to fixed levels and then taking a horizontal
average. The temporal evolution of the Eulerian mean horizontal velocity ūE(z, t) is shown
in figure 7. The data at the vertical levels between wave crests and troughs are not plotted
here. The comparison of the AW-noturb and W-noturb cases (figure 7b,c) shows that, due
to the enhanced energy decay in the air–water coupling, the development of ūE is also
accelerated in the AW case. In the air side of the AW-noturb case (figure 7a), the Eulerian
mean drift develops in the down-wave direction. The drift near the interface is stronger
than that in the water-side drift. However, its velocity scale is still on the order of the
water-side Stokes drift O(a2kσ). In the realistic ocean, this is likely significantly smaller
than that of the wind over the waves, which is typically on the order of the wave phase
speed O(σ/k).

The evolution of water-side Eulerian mean drift in the AW-noturb case is compared
with the virtual wave stress theory. The one-dimensional diffusion equation below was
simulated for the velocity profile u(z, t) in the water side (−Ho ≤ z ≤ 0):

∂u
∂t

= νo
∂2u
∂z2 . (4.3)

The upper boundary condition is provided as the virtual wave stress, νo(∂u/∂z) = τvws
ao

(1.4), and the bottom boundary is assumed as free-slip. Since the amplitude time series
was well followed by the linear theory (figure 6), the wave amplitude a(t) used in τvws

ao
is assumed to exponentially decay with time as a(t) = a(0)e−γaot. The result is shown
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Figure 8. Vertical profiles of the normalised Eulerian mean horizontal velocity ūE of the AW-noturb, AW-ctrl,
W-noturb and W-ctrl cases: (a) air-side velocity profile in the AW cases; (b) water-side profile in the AW
cases; and (c) water-side profile in the W cases. Solid (dashed) lines in each panel indicate the AW-noturb and
W-noturb (AW-ctrl and W-ctrl) cases. Vertical coordinate is normalised with the viscous length scale

√
t/Re.

The horizontal velocity is normalised with U0(t) of (4.4) in (b,c).

as the dashed lines in figure 7(b), which mostly overlaps with the AW-noturb simulation
result.

In the three-dimensional cases, turbulence alters the velocity profile by carrying
horizontal momentum away from the interface. As a result, velocity profile ūE shows
weaker vertical shear in both air and water sides (figure 7d–f ).

Veron & Melville (2001) derived a similarity solution of the wind-driven sheared current
in the water-side based on the one-dimensional diffusion equation (4.3) subject to a
constant wind stress τ . Wu & Deike (2021) conducted a two-dimensional DNS of the
wind–wave growth under the influence of viscosity and confirmed that the wind-induced
drift current ūE(z, t) falls into a single curve if the depth and the velocity are scaled with√

νot/8 (under our non-dimensionalisation
√

t/8Reo) and U0(t) ≡ ūE(0, t), respectively.
Figure 8(b,c) show the temporal evolution of the Eulerian current profile scaled as
previously. Here, the velocity scale U0(t) is evaluated as (Veron & Melville 2001; Wu
& Deike 2021)

U0(t) = 2√
π

τ

√
t

Reo
, (4.4)

and τ = τvws
ao (0) and τ = τvws

o (0) for the AW-ctrl/noturb and W-ctrl/noturb cases,
respectively. The AW-noturb and W-noturb cases follow the scaling well, but in the AW-ctrl
and W-ctrl cases, the shear is reduced due to turbulence, and the drift current profiles
deviate from the scaling solution.

On the air side, however, the drift velocity scales differently. The Eulerian current profile
in the air with vertical coordinate scaled with

√
t/8Rea is shown in figure 8(a). Unlike on

the water side, the profiles of the AW-noturb case fall into a single curve without scaling
with U0(t). Therefore, the air-side drift current develops as if a Dirichlet-type boundary
condition is imposed at the bottom.

Next, the temporal evolution of turbulence, characterised by deviation velocity from y
average (u′, v′, w′) is compared among cases. Figure 9 shows the temporal evolution of
water-side turbulent kinetic energy (TKE) and the spanwise wavelength ls. TKE is defined
as (r/2)(u′2 + v′2 + w′2). Temporal evolution of its vertical profile (horizontally averaged
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Figure 9. Temporal evolution of water-side turbulence statistics in the AW-ctrl, W-ctrl, AW-deepnoise and
AW-ak2 cases: (a,b) vertical-temporal distribution of horizontally averaged TKE in the AW-ctrl and W-ctrl
cases, respectively; (c) time series of TKE averaged over −0.4 ≤ z∗ ≤ 0, where the TKE of the AW-2d case
is multiplied by 0.1 for visibility; (d) time series of spanwise wavenumber ls defined in (4.5) evaluated at
−0.4 ≤ z∗ ≤ 0. Horizontal white-dashed lines in (a,b) denote z∗ = −0.4 above which the TKE and ls in (c,d)
are evaluated.

along z∗-surface) is shown for the AW-ctrl (figure 9a) and W-ctrl (figure 9b) cases.
Turbulence arises from the near-interface layer and spreads into the water as time passes.
The magnitude of turbulence is greater in AW-ctrl than in W-ctrl throughout the simulation
period. Note that, even at t/2π = 1200, the turbulence has not fully reached the bottom
of the water side. However, the turbulence near the interface has reached a mature stage,
and the turbulence statistics no longer change rapidly. Therefore, we can expect that the
flow field of AW-ctrl after t/200π ≈ 500 would well reflect the dynamics of turbulence
produced by persistent wave forcing in the air–water coupled configuration.

To illustrate the turbulence development in different cases more quantitatively, let us
examine TKE vertically averaged over −0.4 ≤ z∗ ≤ 0 shown in figure 9(c). In all cases,
the TKE is initially of very small magnitude (e.g. O(10−7) in AW-ctrl), rapidly grows in
the earlier stage, and then saturates, reflecting some instability mechanism at work. The
onset of instability is quicker in AW-ctrl (t/2π ≈ 175) than W-ctrl (t/2π ≈ 250), and TKE
magnitude of the former remains stronger than the latter throughout the simulation period.
Therefore, the air–water coupling enhances the wave-induced turbulence.
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To characterise the spatial scale of the turbulence, we have evaluated the TKE-weighted
mean spanwise wavenumber ls following Tsai et al. (2017), as follows:

ls(t) =
∫

lS(l, t) dl∫
S(l, t) dl

, (4.5)

where l is the wavenumber in the y direction and S(l, t) is the spanwise power spectral
density of turbulence velocity averaged over 0 ≤ x∗ ≤ 2π and −0.4 ≤ z∗ ≤ 0,

S(l, t) = 1
0.4

1
2π

∫ 2π

0

∫ 0

−0.4
[Su(x∗, l, z∗, t) + Sv(x∗, l, z∗, t) + Sw(x∗, l, z∗, t)] dz∗ dx∗,

(4.6)

where Su and so on denote the power spectral density obtained by applying the Fourier
transform in the y∗ direction.

The temporal evolution of ls is shown in figure 9(d). Before the onset of instability,
the turbulence field is dominated by the spatial scale of ls ≈ 7, which corresponds to the
initial noise field. As the disturbance grows, vortices with relatively high wavenumbers
first develop, and then the dominant spanwise scale grows (ls decreases) rapidly after the
instability is saturated. At a later stage of the simulation period, the temporal development
of ls is small. The AW-ctrl and W-ctrl cases show the similar temporal evolution of
ls, except that the time series in W-ctrl is lagged behind AW-ctrl by about 50 periods,
consistent with the delay of the instability onset.

The result of the AW-deepnoise case is shown in figure 9(c,d) with a blue dashed line.
The rapid growth of TKE at the onset stage and the subsequent decrease of ls observed in
the AW-deepnoise case precedes the corresponding changes in AW-ctrl. As a result of the
initial noise injected into all the water grid points, the initial TKE level (about 1 × 10−5)
is about 300 times greater than in the AW-ctrl case. This results in an enhancement of
the initial amplitude of the fastest-growing mode, so we can understand that the onset
of instability occurs earlier. However, after the turbulence reached maturity, there was no
clear difference between AW-deepnoise and AW-ctrl. Therefore, the statistical features of
the simulated turbulence are not dependent on the initial noise structure, and only the onset
timing of instability is changed.

To examine the influence of wave amplitude on the phenomenon, we have conducted
an air–water coupled case with greater initial wave amplitude, a = 0.2 (AW-a2 case).
The spatial structure of turbulent velocity was similar to AW-ctrl: the vortices elongated
in wave-propagation direction was observed, and the temporal evolution of turbulence
statistics is shown in figure 9. Overall, the temporal evolution of turbulence is similar to the
AW-ctrl case, but the onset of instability is earlier (t/2π ≈ 75). This reflects the stronger
Eulerian sheared current (∝ τvws

ao ∝ a2) than AW-ctrl, resulting in a greater growth rate of
instability. The magnitude of TKE at the mature stage (average over 600 ≤ t/2π ≤ 1200)
is about eight times greater than that of AW-ctrl.

From these results, we can make a remark on the onset time scale of wave-induced
turbulence (300 periods in the AW-ctrl case). The DNS by Tsai et al. (2017) required only
10 wave periods for turbulence to develop. In their set-up, the wave slope was 0.25, which
is even greater than in our AW-a2 case, and they imposed the initial noise that contains
0.1 % of the total energy. The large amplitude should lead to a strongly unstable condition,
and the fraction of disturbance energy is much greater than our set-up (O(10−6)% for the
AW-ctrl and AW-a2 cases), so the initial instability is considered to be strongly seeded.
Therefore, in the simulation set-up of Tsai et al. (2017), the instability is expected to arise
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at an early stage after the simulation starts. Notably, the tank experiment of Savelyev et al.
(2012) also observed the turbulence growth at a similar time scale (ramp-up time of 7–10
periods followed by 6–9 periods with constant wave amplitude). Therefore, we consider
that the initial noise field of our simulation design was too weak, leading to unrealistically
long spinup period of O(100) wave periods. However, our simulations demonstrate that
the flow field is inherently unstable and the turbulence develops over time even with such
a small initial disturbance.

4.3. Momentum and KE budget analysis
To examine the mechanism of vertical transfer of momentum and energy, the budget
equations of the horizontal momentum and KE were explored. The analysis was conducted
on the model coordinate z∗ as in preceding studies using wave resolving simulations
(Sullivan et al. 2008; Cao & Shen 2021). In our framework, the horizontally averaged
x-component momentum equation is written as follows:

∂

∂t∗
(ρhu) = − ∂

∂z∗ (Fp + Fv + Fa), (4.7)

where the overline denotes the horizontal average along constant z∗. Here Fp, Fv and
Fa denote the vertical flux of horizontal momentum by form stress, viscous stress and
advection, respectively, and are defined as follows:

Fp = p̃zx∗, (4.8a)

Fv = −ρh(T xz − zx∗T xx − zy∗T xy), (4.8b)

Fa = ρhωu. (4.8c)

Here, ω ≡ h−1(w − zt∗ − uzx∗ − vzy∗) = Ω/h is the z∗ velocity. The density ρ and total
pressure p̃ are non-dimensionalised with the air density, i.e. ρ = 1 in the air and r in the
water. Note that the forecast variable of (4.7) is the layer-thickness-weighted momentum
hu, which includes the momentum associated with both the wave motion and the vortical
current. The budget equation of the KE E ≡ ρ(u2 + v2 + w2)/2 can be obtained by taking
an inner product of (2.8a–c) and (u, v, w):

∂

∂t∗
(ρhE) = − ∂

∂z∗ (Wp + Wv + Wa) − C − D. (4.9)

Here Wp, Wv and Wa are the vertical flux of KE by pressure, viscous stress and advection,
respectively, C is the conversion term to PE, and D is the dissipation. They are defined as
follows:

Wp = p̃(zt∗ + hω) = p̃(w − zx∗u − zy∗v), (4.10a)

Wv = −ρ
[
hu(T xz − zx∗T xx − zy∗T xy)

+ hv(T yz − zx∗T yx − zy∗T yy)

+ hw(T zz − zx∗T zx − zy∗T zy)
]
, (4.10b)
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Wa = hωE, (4.10c)

C = ρhw = ρ

[
∂

∂t∗
(hz) + ∂

∂z∗ (hωz)
]

, (4.10d)

D = (2ρ/Re)hSij2. (4.10e)

Here, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the strain rate. The PE conversion term C can
be decomposed into the local PE increment ρ∂(hz)/∂t∗ and the vertical flux of PE
ρ∂(hωz)/∂z∗ (the right-hand side of (4.10d)), but we only evaluate their total effect. In
the following analysis, the momentum and KE budget equation terms are evaluated as
temporal averages over 600 ≤ t/2π ≤ 1200.

To separate the influence of wave motions and turbulence, the flux terms in (4.8) and
(4.10) are decomposed based on horizontal harmonics. An arbitrary variable ϕ(x∗, y∗, z∗)
is expanded in the Fourier series:

ϕ(x∗, y∗, z∗) =
Nx/2∑

l=−Nx/2−1

Ny/2∑
m=−Ny/2−1

ϕ̂lm(z∗) exp i
(

2πlx∗

Lx
+ 2πmy∗

Ly

)
. (4.11)

Here, i denotes the imaginary unit, Nx and Ny are the number of grid points in x and
y direction, respectively. Since ϕ is a real function, the Fourier coefficients satisfy the
relation ϕ̂−l −m = ϕ̂�

lm, where the superscript � denotes complex conjugate.
Then, a flux composed of a product of two variables A, B can be written as follows:

AB =
Nx/2∑

l=−Nx/2+1

Ny/2∑
m=−Ny/2+1

ÂlmB̂�
lm = Â00B̂�

00 + 2Re[Â10B̂�
10] + · · · . (4.12)

Here, Re denotes the real part. Since the leading-order wave motion arises in the
wavenumber (l, m) = (1, 0), the rectified wave effect is expected to arise mainly in the
Â10B̂�

10 term. We first assessed the contribution of major harmonic components to total
flux in the wave-only (AW-noturb) case and then compared the result with AW-ctrl.

First, the first harmonic coefficients of u, w and p̃ in the AW-noturb case were
investigated to obtain an overview of the wave-induced variation. For an instantaneous
field ϕ, its first harmonic ϕ̂10 is separated into the in-phase (ϕ̂r) and quadrature (ϕ̂i) parts
relative to the surface elevation η as follows:

ϕ̂r = Re
[
ϕ̂10/(η̂10/|η̂10|)

]
, ϕ̂i = Im

[
ϕ̂10/(η̂10/|η̂10|)

]
. (4.13)

The vertical profile of in-phase and quadrature part of û10, ŵ10 and ˆ̃p10 in the AW-noturb
case are shown in figure 10. There, the in-phase part of pressure ˆ̃pr is not shown
because it does not contribute to the momentum and KE flux. These coefficients are
evaluated as the composites during 600π ≤ t < 602π. Following Cao & Shen (2021), the
coefficients are categorised into major and minor components. Here, ûr, ŵi and ˆ̃pr are the
major components that are present even in the inviscid interfacial waves, and the minor
components arise due to the viscosity and the interaction with Eulerian current.

The harmonic coefficient profiles consist of two parts, namely, the SBL and the bulk
region. The SBL is the region near the interface where an oscillatory response to the
boundary condition is present, and its e-folding thicknesses in the air and water sides
are

√
2/Rea ≈ 1.8 × 10−3 × 2π and

√
2/Reo ≈ 5.8 × 10−4 × 2π, respectively. Figure 10
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ûr
ûi
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Figure 10. Vertical profiles of the first harmonic coefficients of u, w and p in the AW-noturb case: (a) profiles
of the major parts; and (b) profiles of the minor parts. The profile of ûi is shown in both panels. The vertical
axis is logarithmic for |z∗/2π| ≥ 10−2 and linear for |z∗/2π| < 10−2.

shows that the response to the boundary is visible to the extent approximately five times
thicker than those values. Therefore, we loosely define the SBL of air and water as 0 ≤
z∗/2π ≤ 0.01 and −0.003 ≤ z∗/2π ≤ 0, respectively, and the region outside them as the
bulk region.

The water-side profile of ûr,i and ŵr,i are mostly consistent with the irrotational waves: u
is in-phase and w is 90◦ out-of-phase with η, and their minor components are nearly zero.
In water-side SBL, ûi shows a slight deviation from zero, which is the response to satisfy
the no-slip interfacial boundary condition, whereas ŵr is nearly zero throughout the water
side. The phase of p̃ is slightly ahead of η (higher pressure at the forward face of the wave).
In the air-side bulk region, the major components ûr and ŵi agree with the irrotational
waves. However, the minor components ûi and ŵr show greater deviation than the water
side. From figure 10, it can be seen that ûrŵr + ûiŵi ≈ 0, so u and w are still in quadrature.
In the air-side SBL, there is a strong SBL response due to the no-slip boundary condition
and large density ratio ρo/ρa, resulting in a strong shear layer just above the interface. As
in the water side, the phase of p̃ is slightly ahead of η.

The momentum flux profile of the AW-noturb case is shown in figure 11(a). In the
water side, the net momentum flux Fp + Fv + Fa is upwards with a maximum value at
z∗/2π ≈ −0.08. Therefore, the horizontal momentum is transferred from the lower part
to the near-surface part of the water body. This corresponds to the transformation of the
horizontal momentum from the wave motion that is distributed over the vertical scale
of O(0.5), to the vortical current that diffuses downwards from the SBL. The upwards
momentum transfer in the bulk of the water is performed via the form stress and the
advection, and the viscous stress carries momentum downwards. Each term is decomposed
into contributions from harmonics, and it is found that the following terms dominate the
momentum flux terms:

Fp1 = 2Re[ ˆ̃p10ẑ�
x∗10], (4.14a)
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Figure 11. Vertical profiles of the momentum flux components defined in (4.8): (a,b) profiles of the AW-noturb
and AW-ctrl cases, respectively; (a ii,b ii) the same quantities as in (a i,b i), but the range of the horizontal axis
is magnified. The vertical axis is logarithmic for |z∗/2π| ≥ 10−2 and linear for |z∗/2π| < 10−2.

Fv0 = ρT̂ xz
00, Fv1 = −2ρRe[T̂ xx

10ẑ�
x∗10], (4.14b)

Fa1 = 2ρRe[û10ω̂
�
10]. (4.14c)

These terms are plotted in figure 11(a) as markers. The pressure form stress is caused by
the relative phase shift of p̃ and z. Note that z is in phase with η by the model coordinate
definition, so Re[ ˆ̃p10ẑ�

x∗10] ∝ ˆ̃piη̂r, and this correlation is consistent with that observed in
figure 10. The viscous stress is composed of two components, out of which the downwards
momentum transfer is supported by the phase-independent stress term T̂ xz

00 = T xz. This
is an understandable result considering that the development of the vortical current is
well-reproduced in the one-dimensional wave-averaged equation with the momentum
imposed as the uniform virtual wave stress at the surface.
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In the air side, the momentum is transferred upwards from the near-interface layer to the
bulk of the air. The upwards transfer of momentum roughly agrees with the viscous stress,
where the phase-independent part T̂ xz

00 = T xz plays a central role as in the water side. The
pressure and advective momentum fluxes almost cancel each other.

The discussed results are compared with the momentum transfer profile in the presence
of turbulence (AW-ctrl), as depicted in figure 11(b). In contrast to the AW-noturb case, the
momentum is transferred downwards in the water side. This is because, over 600 ≤ t/2π ≤
1200 of the AW-ctrl case, the Eulerian current profile (figure 7e) developed deeper than the
vertical extent of the wave momentum (z∗ � −0.5) due to the presence of turbulence. This
is illustrated in the significant difference in Fa from AW-noturb. Although the contribution
from the first harmonic (Fa1) is almost unchanged, the turbulent flow structure that arises
at other horizontal wavenumbers carries momentum downwards to change the direction of
total advective momentum flux in the bulk of the water side. Due to the reduced vertical
shear of the horizontal velocity, the downwards momentum transfer by viscosity (Fv) is
also reduced. The pressure-induced momentum transfer is almost unchanged. Although
somewhat mild, the change from AW-noturb is also visible in the air side especially away
from the interface (z∗/2π ≤ 0.1). There, the upwards momentum transfer is intensified
compared with the AW-noturb case, and this difference can be attributed to the advective
flux. As in the water side, the contribution from the first harmonic is unchanged, and the
turbulence influence at other components enhances the upwards momentum transfer.

In both the AW-ctrl and AW-noturb cases, the magnitude of net momentum transfer
between air and water is much smaller than that within the water layer. Therefore, most
of the horizontal momentum lost from the waves is received as the water-side vortical
current that diffuses downwards from the SBL. Since the cross-z∗ velocity ω is zero at
the interface by definition, the cross-interface momentum flux is done by the pressure and
viscous stresses. At both the air and water sides, the pressure–slope correlation carries
momentum upwards, whereas the viscous stress nearly cancels that. Although small, the
net momentum flux across the interface was upwards in this case.

The profile of KE source terms and the KE tendency in the AW-noturb case is shown in
figure 12(a). The profile of the dissipation differs significantly between the air and water
sides. In the air side, strong dissipation occurs in the SBL, whereas the dissipation in the
water side occurs over the bulk of the water. The vertically integrated dissipation in the
air and water was 9.362 × 10−5 and 1.009 × 10−4, respectively. The dissipation term is
decomposed into harmonics, and the contribution from the first harmonic, D1 defined as
follows, is found to account for most of the total dissipation:

D1 = (2ρ/Re)
(
|Ŝxx

10|2 + 2|Ŝxz
10|2 + |Ŝzz

10|2
)
. (4.15)

The vertical profile of the PE conversion is less straightforward to interpret, but their
vertically integrated value in the air and water is 2.22 × 10−7 and −9.80 × 10−5,
respectively. The PE-to-KE conversion in the water is concentrated in the SBL, as the
integral of C over −0.005 ≤ z∗/2π ≤ 0 accounts for 98.4 % of the total. The tendency of
KE d(hE)/dt∗ mostly consists of water-side contribution due to the large density ratio,
and its vertical structure corresponds to the wave orbital motion. Vertically integrated
KE tendency in the air and water is −9.81 × 10−8 and −9.72 × 10−5, respectively.
The total energy loss (vertically integrated −C − ∂(hE)/∂t∗) in the air and water is
−1.24 × 10−7 and 1.95 × 10−4, respectively. Therefore, most of the energy lost during the
wave attenuation originates from the water side, but approximately half of it is transferred
to and dissipated in the air-side SBL. Considering the relative contribution of energy
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Figure 12. Vertical profiles of the dissipation and PE conversion terms defined in (4.10): (a,b) profiles of
the AW-noturb and AW-ctrl cases, respectively; (a ii,b ii) the same quantities as in (a i,b i), but the range of
the horizontal axis is magnified. Note that the positive values correspond to the KE sink and vice versa. The
vertical axis is logarithmic for |z∗/2π| ≥ 10−2 and linear for |z∗/2π| < 10−2.

dissipation in the air and water (1.3), the fraction above would increase with higher
Reynolds number, i.e. longer waves.

The KE flux terms in the AW-noturb case are shown in figure 13(a). In the air side, the
pressure flux term carries KE downwards to the air-side SBL, where strong dissipation
occurs. Due to the large density ratio, the viscous and advective flux terms contribute little
to the total KE flux. In the bulk of the water, KE is transferred upwards by the pressure term
and downwards by the viscosity term, resulting in a net downwards flux. In the near-surface
water, however, the downwards viscous energy flux sharply approaches zero, resulting in
a net upwards energy flux. This supplies energy to the air-side SBL, where the energy
is strongly dissipated. Although most of the energy flux is explained with pressure and
viscous terms, advective energy flux is also present in both domains, carrying energy
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Figure 13. Vertical profiles of the energy flux components defined in (4.10): (a,b) profiles of the AW-noturb
and AW-ctrl cases, respectively, (a ii,b ii) the same quantities as in (a i,b i), but the range of the horizontal axis
is magnified. The vertical axis is logarithmic for |z∗/2π| ≥ 10−2 and linear for |z∗/2π| < 10−2.

towards the interface. All of these flux terms are mostly explained with the first-harmonic
contributions defined as follows:

Wp1 = 2Re
[ ˆ̃p10ŵ�

10

]
, (4.16a)

Wv1 = −2ρRe
[
û10T̂ xz�

10

]
, (4.16b)

Wa1 = 2Re
[
ω̂10Ê�

10

]
. (4.16c)

The KE budget equation terms for the AW-ctrl case are shown in figures 12(b) and 13(b).
Unlike horizontal momentum, the KE budget profile of the AW-ctrl case is very similar
to the AW-noturb case and is mostly explained with the first harmonic contributions.
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Dynamics of turbulence produced by interfacial gravity waves

Therefore, the major energetics of the attenuating interfacial waves of λ ≈ 1 m is
dominated by the laminar wave dynamics, even in the presence of wave-induced
turbulence. Nevertheless, some differences can be seen in the advective flux in the water
side. Although the first harmonic Wa1 still carries KE upwards, the contributions from
other components carry KE downwards, resulting in Wa1 < 0 in the bulk of the water.

4.4. Comparison of TKE
In order to illustrate the role of the air–water coupling in turbulence production and
to investigate its reproducibility with the wave-averaged framework, two additional
simulations were conducted. The new simulations, named AW-CL and W-CL, are
replications of the AW-ctrl and W-ctrl cases using the CL equation and virtual wave stress
as the boundary condition. We focus on the turbulence in the water side, so they were
conducted in the rigid-lid water-side domain −Ho ≤ z ≤ 0, η = 0. The CL vortex force
term with the prescribed Stokes drift (uSt(z, t), 0, 0) was added to the governing equation:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −∂p
∂x

+ 1
Reo

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
, (4.17a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ 1

Reo

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
− uSt

(
∂v

∂x
− ∂u

∂y

)
,

(4.17b)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −∂p
∂z

+ 1
Reo

(
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

)
+ uSt

(
∂u
∂z

− ∂w
∂x

)
.

(4.17c)

Here, p is the generalised pressure that includes both the non-hydrostatic pressure and
the Bernoulli head effect and was calculated to retain incompressibility. The horizontal
and bottom boundary conditions are the same as the wave-resolving simulations. The
dynamical boundary condition at z = 0 is the prescribed virtual wave stress ((1.2) and
(1.4)):

1
Reo

∂u
∂z

∣∣∣∣
z=0

=
{

τ vws
ao (t) (AW-CL),

τ vws
o (t) (W-CL),

1
Reo

∂v

∂z

∣∣∣∣
z=0

= 0. (4.18)

Here, the temporal dependence of virtual wave stress is allowed to reflect the attenuating
wave amplitude a(t). The vertical structure of the Stokes drift is provided with the linear
surface wave solution:

uSt(z, t) = [a(t)]2

2 sinh2 Ho
cosh 2(z + Ho). (4.19)

The temporal decay rate of amplitude is provided with the linear theory ((1.1) and (1.3)):

a(t) =
{

a(0)e−γaot (AW-CL),
a(0)e−γot (W-CL).

(4.20)

The initial wave amplitude is a(0) = 0.1. The simulation was started using the same
Gaussian noise as added in the AW-ctrl and W-ctrl cases, and the simulation is conducted
until t = 1200π with 
t = 2π/60. Overall, the flow field obtained in the wave-averaged
cases resembled the wave-filtered field of the corresponding wave-resolving cases.

999 A97-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.934


Y. Fujiwara

6

5

4

3

2

1

0

0 500

(×10–6)(×10–6)(×10–7)

t/2π t/2π t/2π
1000

1.75AW-Ctrl

W-Ctrl

AW-CL

W-CL

1.50

1.25

1.00

0.75

0.50

0.25

0

0 500 1000

1.2

1.0

0.8

0.6

0.4

0.2

0

0 500 1000

(a) (b) (c)

Figure 14. Temporal evolution of the water-side velocity variance, (a) u′2, (b) v′2, (c) and w′2, averaged over
−0.4 ≤ z∗ ≤ 0 of the AW-ctrl, W-ctrl, AW-CL and W-CL cases. Solid lines show the AW-ctrl and AW-CL
cases and dashed lines show the W-ctrl and W-CL cases. Blue lines show wave-resolving simulation results,
and the grey lines show wave-averaged simulation results.

To quantitatively compare the temporal growth of the flow field, the variance of the
turbulent velocity u′, v′, w′ is examined in the following.

Figure 14 shows the temporal evolution of u′2, v′2 and w′2, averaged over −0.4 ≤ z∗ ≤ 0.
Each case shows the accelerating growth of variances over 0 ≤ t ≤ 300, suggesting some
instability mechanism at work. The comparison of the AW-ctrl and W-ctrl cases illustrates
that the presence of a coupled air layer intensifies the wave-induced water turbulence. The
velocity variance in the initial growth stage of the AW-ctrl and W-ctrl cases clearly differ:
the variance grows quicker and reaches a greater value in AW-ctrl. This is consistent with
the fact that a stronger Eulerian mean drift was seen in the air–water coupled case than in
the water-only case (figure 7). Once the initial instability saturates at t/2π ≈ 500, the time
series exhibits more chaotic behaviour. Thereafter, each variance component of AW-ctrl is
clearly greater than the corresponding value in W-ctrl.

Comparison between the wave-averaged cases and their corresponding wave-resolving
cases illustrates the reproducibility of the simulated wave-induced turbulence in the
wave-averaged dynamics. In the initial growth phase (0 ≤ t/2π ≤ 300), the wave-averaged
cases very well trace the corresponding wave-resolving cases. After the saturated phase
(t/2π ≈ 500), the wave-averaged cases show deviation from the wave-resolving cases due
to the chaotic behaviour of the mature flow. However, the spread of the time series of
the AW-ctrl/CL pair overlaps each other and is distinct from the W-ctrl/CL pair, which
is especially visible in the time series of u′2. Therefore, we conclude that the simulated
wave-induced turbulence can be successfully reproduced using the CL equation and the
virtual wave stress as the imposed boundary condition.

5. Discussion and conclusion

To clarify the role of air–water coupling in WL turbulence production, a wave-resolving
DNS of the air–water interfacial wave has been conducted and compared with other
simulation set-ups such as a free surface wave-resolving DNS. At the bottom of the air,
a very sharp SBL develops, where a significant amount of KE is dissipated. As a result,
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the wave attenuation rate is enhanced compared with the water-only case. Even in the
presence of WL turbulence, the attenuation rate was well-predicted by the linear theory of
Dore (1978).

The simulation results suggest that the WL turbulence is produced by the CL2 instability
mechanism under the Eulerian mean drift induced by the horizontal momentum supplied
from the attenuated wave. This conclusion qualitatively aligns with the preceding studies,
such as Tsai et al. (2017) and Fujiwara et al. (2020), but the resulting turbulence was
intensified due to the enhanced momentum transfer from the wave. The momentum and
energy budget analysis revealed the detailed flow of these quantities: although a significant
fraction of energy lost from the water is transferred to the air and dissipated there, the
momentum of wave motion is confined within the water. The present understanding is
crucial for quantitatively interpreting laboratory results and extrapolating them to the field
scale, as the water surface is constantly in contact with air in reality.

Among many cases conducted in the tank experiments of Savelyev et al. (2012), there
are a series of cases with k = 6.32 m−1 (λ = 0.99 m), which is close to the parameter
choice of the present simulations (λ ≈ 1 m). The experimental spanwise wavenumber l
is evaluated as in Tsai et al. (2017), l = λ/Leddy, where λ is wavelength and Leddy is the
eddy size provided in Savelyev et al. (2012). Here Leddy was measured at the initial stage
of vortex formation, so l is compared with the maximum value of ls (figure 9), which
reflects the characteristic scale of growing instability. In the AW-ctrl and W-ctrl cases
(ak = 0.1), we obtained ls = 15 and 14, respectively. In Savelyev et al. (2012), the case
with ak = 0.136 led to l = 13.1. Although it would be safe to say that the laboratory
and numerical experiments roughly agree, the interpretation of the values provided is
not so straightforward because of the difference in experiment parameters and evaluation
methods.

In the linear stability analysis conducted by Tsai et al. (2017), the only non-dimensional
number characterising the problem was the Langmuir number

La = ν
3/2
o

aσ 1/2k−1u∗
, (5.1)

where u∗ = (τ vws/ρo)
1/2 is the water-side friction velocity associated with virtual wave

stress. They used the water-side only virtual wave stress (τvws = τvws
o ) and obtained La =

νo/21/2a2σ . However, when interpreting the laboratory experiment result, the virtual wave
stress based on the theory of Dore (1978, i.e. τvws = τvws

ao ) would be more appropriate. As
a result,

La = νo

21/2a2σ

[
1 + ρa

ρo

Reo

(2Rea)1/2

]−1/2

(5.2)

is obtained. Assuming the material parameters at 10 ◦C (§ 1) and wavelength λ = 140 cm,
the Langmuir number is reduced by 36 % compared with the water-only case, and the
reduction is greater for longer waves. This modification of the Langmuir number somewhat
reduces the scatter of the experimental data by Savelyev et al. (2012) shown in figure 9
of Tsai et al. (2017). When the Langmuir number is evaluated as (5.1), the correlation
coefficient between − log10(La) and l is 0.45, and when (5.2) is used instead, it increases
to 0.51.

Consequently, a physically plausible approach to synthesise the parameterisations for
LCs and WL turbulence is to use the wave-averaged large-eddy simulation based on the
CL equation with the surface wind stress incremented by the virtual wave stress. Many of
the present parameterisations that incorporate mixing by LCs are based on this framework
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without virtual wave stress and employ the friction velocity u∗ ≡ (τ/ρo)
1/2 to characterise

the shear of the Eulerian current (e.g. Li et al. 2019). Therefore, the effect of virtual wave
stress can be easily incorporated into these parameterisations by increasing u2∗ by τvws

ao /ρo.
For the estimation of virtual wave stress under a realistic wind-wave spectrum, more

understanding of the energy dissipation mechanism is required. One important issue
remaining to be solved is the turbulence transition of the air-side Stokes layer. One of
the state-of-the-art wave model source function packages (Ardhuin et al. 2010) assumes
that such a transition occurs when the air-side significant Reynolds number 2uorb,sHs/νa,
where uorb,s is the significant surface orbital velocity and Hs is the significant wave height,
exceeds a certain limit value. Once the turbulence transition occurs, wave energy will be
dissipated more efficiently, and the virtual wave stress will be further increased. In our
wave-resolving DNS, such a transition could not be observed due to the smallness of
the Reynolds number, so a further experimental or computational investigation of this
boundary layer under a higher Reynolds number is necessary. Even without turbulence
transition, the large-amplitude waves can trigger other effects, such as the generation of
parasitic capillary waves and microbreaking (e.g. Tsai & Hung 2007; Deike, Popinet &
Melville 2015), modulational instability interacting with currents Li & Chabchoub (2024)
and so on. Such finite-amplitude effects should be explored further in the future. If the
linear laminar theory of Dore (1978) remains applicable and the deep-water dispersion
relation is assumed, the virtual wave stress can be estimated from a wave variance density
spectrum E(σ, θ) following

(τ vws
x , τ vws

y ) =
∫∫

G(σ )E(σ, θ)(cos θ, sin θ) dθ dσ, (5.3)

where the virtual wave stress transfer function G(σ ) is defined as follows:

G(σ ) = 2σ 2

[
2

Reo
ρo +

(
2

Rea

)1/2

ρa

]
= 4ρoνo

g2 σ 5 + 2
√

2ρaν
1/2
a

g
σ 7/2. (5.4)

For reference, with the physical parameters at 10 ◦C, G(σ ) is 1.4 × 100, 7.0 × 10−3

and 9.5 × 10−4 N m−4 for 1-, 4- and 7-second-period waves, respectively. With a
7-second-period swell with one-side amplitude of 1 m, virtual wave stress would be
4.75 × 10−4 N m−2. Therefore, the influence of additional momentum flux via virtual
wave stress is well below a typical wind stress value unless the turbulence transition
occurs. Nevertheless, its effect is worth exploring in the future because the CL2 instability
efficiently produces near-surface turbulence even under slack conditions, potentially
influencing phenomena such as the sea-surface skin temperature.
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Appendix A. Performance test of the two-phase model

A.1. Small- and finite-amplitude interfacial waves
First, let us consider the inviscid interfacial waves of small amplitude to study the
model reproducibility of dispersion relation and its resolution dependence. The dispersion
relation of small-amplitude deep-water interfacial gravity waves is given by

σ =
√

ρo − ρa

ρo + ρa
gk, (A1)

where k is the horizontal wave number and σ is the angular frequency of the wave.
We normalised the equation with the length scale k−1 and time scale

√
gk. Let us

consider a x–z two-dimensional domain with the domain size (Lx, Ha, Ho) = (2π, 4π, 4π)

(Lx is the domain size in the x direction). For the interfacial wave with the horizontal
wavenumber 1, this depth of domain is effectively the deep-water condition. The number
of grid points is 16 in the horizontal. Both the air and water sides were discretised with
uniformly distributed Nz grid points in the vertical, and the sensitivity to the vertical
resolution was investigated through cases with Nz = (16, 32, 64, 128, 256). Two sets of
density, (ρa, ρo) = (1, 10) and (1, 1000), were considered in each Nz. The simulation was
initialised using the orbital velocity of propagating small-amplitude interfacial wave:

u(x, z, 0) = −aσe−z cos x, w(x, z, 0) = aσe−z sin x, (air), (A2a)

u(x, z, 0) = aσez cos x, w(x, z, 0) = aσez sin x, (water). (A2b)

Here, a = 10−4 was chosen, and σ was provided with (A1). The simulation was conducted
with 
t = 2π/100 for over 120 periods, and the wave period was calculated as the average
of the first 100 waves obtained from the zero-up-cross analysis.

The angular frequency calculated from the simulation is plotted against Nz in
figure 15(a). With sufficient vertical resolution, the model can accurately simulate the
dispersion relation of the deep-water interfacial waves. The error is dominated by the
vertical discretisation in this setting and is of O(
z∗2). The relative error is 0.06 % with
Nz = 128 (
z∗ = 2π/64).

We also examined the error in total energy

E(t) = ρa

2

∫∫
air

(u2 + w2) dx dz + ρo

2

∫∫
water

(u2 + w2) dx dz + (ρo − ρa)g
2

∫
η2 dx,

(A3)

which should ideally be conserved. The numerical energy amplification rate γ was
evaluated by fitting E(t) = E0eγ t. In cases where ρo = 1000, γ ≈ −1.1 × 10−6 regardless
of Nz. This artificial attenuation is dominated by the temporal discretisation of O(
t5), as
it is reduced to γ ≈ −3.3 × 10−8 with halved timestep. Since the mass and momentum
equations are discretised based on the flux form (2.8) and (2.9), the error in mass
and momentum was extremely small, with relative error below O(10−12) even for the
finite-amplitude cases described in the following.
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Figure 15. (a) Angular frequency and (b) numerical energy decay rate of simulated interfacial waves with
different density ratios and vertical resolution. Horizontal dotted lines in (a) denote the linear dispersion
relation of respective density ratios. Dashed lines in (b) denote the asymptotic dispersion relation derived
by Tsuji & Nagata (1973).

Next, we considered the dispersion relation of finite-amplitude waves to examine the
model performance on weakly nonlinear phenomena. As in free-surface waves (Stokes
1847), nonlinearity modifies the dispersion relation of the interfacial gravity waves. Tsuji
& Nagata (1973) applied the Stokes expansion to the deep-water interfacial wave problem
and obtained the asymptotic solution to the fifth order in interfacial slope ak. Following
Tsuji & Nagata (1973), the angular frequency is

σ = σ0

[
1 + 1

2
ρo

2 + ρa
2

(ρo + ρa)2 (ak)2 + (ρo − ρa)
2(5ρ2

o − 14ρoρa + 5ρ2
a)

4(ρo + ρa)4 (ak)4
]

(A4)

to the fifth order in ak. Here, σ0 = [gk(ρo − ρa)/(ρo + ρa)]1/2 is the angular frequency of
the small-amplitude deep-water wave.

We adopted the same normalisation and domain as in the small-amplitude cases. The
number of grid points is 64 in horizontal and 128 in vertical in both air and water
sides. Two sets of density, (ρa, ρo) = (1, 10) and (1, 1000), were considered, and the
initial interfacial slope was set to ak = 0.01, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. The
fifth-order Stokes wave solution of Tsuji & Nagata (1973) was used as the initial field,
and the simulation was conducted with the integration time step of 
t = 2π/200. The
zero-up-cross analysis was applied to the interface elevation at a certain point, and the
wave periods of the first 50 waves were analysed.

The simulated angular frequency normalised with the linear angular frequency σ0
in each density ratio is plotted against ak in figure 15(b). The average of the angular
frequencies of the 50 waves is denoted with circles, and their standard deviation is denoted
with error bars. The averaged angular frequencies follow the asymptotic dispersion relation
well within the cases we studied. However, in large-amplitude cases (ak = 0.25, 0.30) of
ρo = 10, the initial wave shape was not retained and the wave periods showed some scatter.
In general, increased interfacial slopes lead to an increased number of iterations required
for solving the Poisson equation. In ρo = 1000 series, the number of iterations required
for convergence was 7 with ak = 0.10 but 15 with ak = 0.30.

A.2. Laminar Miles instability
Subsequently, we studied the wind–wave interaction problem. We adopted the problem
set-up introduced by Miles (1957), where a parallel shear flow interacts with the underlying

999 A97-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.934


Dynamics of turbulence produced by interfacial gravity waves

small-amplitude surface waves via interfacial pressure. Here, inviscid laminar flow was
considered following the simplification made by Miles (1957). Logarithmic wind profiles
are superposed over small-amplitude gravity wave as the initial condition. The growth
rate of the waves evaluated over the first tens of wave periods of the simulations, which
corresponds to the linear instability phase, and is compared with the analytic growth rate
of Miles (1959).

Let us consider inviscid air and water with a density ratio of ρo/ρa = 1.0 × 103. There,
a small-amplitude interfacial deep-water wave with a horizontal wavenumber k will have
angular frequency σ = [gk(ρo − ρa)/(ρo + ρa)]1/2. We used k−1 and σ−1 to normalise
the length and time scales, respectively. A x–z two-dimensional domain with domain size
(Lx, Ha, Ho) = (2π, 2π, 2π) was considered. The domain was discretised with 12 grid
points in the horizontal. The vertical grid points clustered near the interface, with layer
thickness varying exponentially at a ratio of 1.02. We investigated the sensitivity to the
vertical resolution, which is detailed in the following.

Let us consider a logarithmic wind profile u = (u∗/κ) log(z/z0) in the air side, as
employed in the calculation of growth rate by Miles (1959). Here, u∗ is the friction
velocity, κ = 0.4 is von Kármán constant and the roughness length z0 was specified using
the non-dimensionalised Charnock’s relation z0 = 0.01u2∗. With this, the critical level zc

can be related to u∗ as zc = 0.01u2∗eκ/u∗ , where zc is the height at which u(zc) = 1. Four
critical levels zc = 2π/10, 2π/40, 2π/160 and 2π/640 were considered. For each zc, the
first vertical layer thickness was adjusted such that the layer between the critical level and
the interface would be resolved with Nc = 2, 4, 8 and 16 grid points. The total vertical grid
points in the air side varied from 17 (zc = 2π/10, Nc = 2) to 269 (zc = 2π/640, Nc = 16).
The water-side layer thicknesses were set symmetrically to the air side.

As an initial condition, the air-side logarithmic wind profile is superposed on the
small-amplitude orbital motion (A2) with a = 10−4. Simulation is conducted for 100π
with 
t = 2π/360. Following Miles (1957), the wave growth rate was evaluated as
β = Im( ˆ̃p/η̂)/(ρau2∗/κ2), where hat denotes the Fourier coefficient of the component with
horizontal wavenumber k = 1 and Im denotes the imaginary part. We evaluated β as the
time average over 2π ≤ t ≤ 62π.

The temporal evolution of wave amplitude for a case with kzc = 2π/640 is shown in
figure 16. The amplitude is evaluated as a(t) = 2|η̂|. Initially, the waves in all cases grow at
the same rate. Over the simulation period we have conducted, we cannot clearly distinguish
linear and exponential growth, but we refer to it as linear growth for convenience. Cases
with lower vertical resolution start to deviate from the linear growth at a certain point. The
wave of the Nc = 16 case remains in the linear growth phase throughout the simulation
period, which is about 50 wave periods. When the lower-resolution cases deviate from the
linear growth, the flow structure near the critical level seems to be no longer maintained
in phase with the wave because of the coarse representation of the wind profile.

The evaluated wave growth rate β was plotted against the critical level normalised with
the wavenumber in figure 17 together with the theoretical curve computed by Miles (1959).
With sufficient vertical resolution like Nc = 8 or 16, our simulation effectively reproduces
the theoretical growth rate. This suggests that the model can accurately reproduce the weak
coupling of sheared wind and water waves, a crucial process in wind–wave interaction.

Appendix B. Modification of model formulation for the air-side-only simulations
The numerical procedure for the two-phase fluid can be extended to the air-side-only
simulation where η(x, y, t) is provided externally. In this case, the unknown variables are
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Figure 16. Time evolution of wave amplitude a(t) = 2|η̂| for cases with zc = 2π/640 and Nc = 2, 4, 8 and
16. The black dashed line shows the growth following the amplitude growth rate ζa = (1/2)(ρa/ρo)(u∗/κc)2β,
where the normalised growth rate β is obtained from the case with zc = 2π/640 and Nc = 16. The evaluation
of β in figure 17 was conducted over 2π ≤ t ≤ 62π.
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Figure 17. Dependence of growth rate β on zc and the number of grid points below the critical level Nc. The
dotted line shows the analytic solution by Miles (1959), traced from its figure 2.

U, V and W (Ka points in vertical), and P in the air-side domain and the interface (Ka + 1
points in vertical). The kinematic boundary condition at the interface is shown in (2.3),
whose left-hand side is a known function. Time advancement of U, V and W is conducted
with (2.8a–c). The pressure Poisson equation at the air-side layer centres (k = 1, . . . , Ka)
is shown in (2.13). At the air–water interface (k = 0), (2.15) is modified based on the
kinematic boundary condition (2.3) for z = η + 0:

(
− 1

h2
a

∂P
∂z∗ + Gz

ha

)
1/2

− ηx∗

ha

[
− ∂P

∂x∗ +
(

zx∗P
ha

)
z∗

+ Gx
]

1
− ηy∗

ha

[
− ∂P

∂y∗ +
(

zy∗P
ha

)
z∗

+ Gy
]

1

+
(

1
ha

)
t∗

W1/2 −
(

ηx∗

ha

)
t∗

U1 −
(

ηy∗

ha

)
t∗

V1 = ∂2η

∂t∗2 . (B1)

Since we did not need to match the definition of P in the air- and water-side domains, we
simply define P0 as P0 ≡ p, and the vertical derivatives in (B1) is interpreted accordingly.
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Figure 18. Instantaneous distribution of (a) η, (b) ui, (c) τ tx
i , (d) air-side τ n

i and (e) air-side p̃nh diagnosed
at t/2π = 300.08 of the AW-noturb and AW-noturb-highres cases. In panels (b–e), the exact (subscript
‘exact’, obtained through iteration) and the approximated (subscript ‘approx’, obtained through approximation
introduced in § 2.3) distributions and the difference between them are shown. Blue (exact) and orange
(approximated) curves nearly overlap. Dashed lines show (a) η and (b–e) difference between exact and
approximated quantities in the AW-noturb-highres case, and the solid and dashed lines are overlapped in (a).

Appendix C. Evaluation of error induced by interfacial velocity approximation

In the present model, the interfacial velocity to evaluate the viscous stress is approximated
with the value at the water-side top layer to reduce computational cost. As a result, the
interfacial velocity is expected to contain error of O(ρaνa/ρoνo) as discussed in § 2.3.
Here, the influence of the error introduced by the approximation is discussed by evaluating
the ‘exact’ interfacial velocity. From the instantaneous velocity fields (every 50π time
interval) of the AW-noturb case, the exact interfacial velocity ui is obtained through the
iterative method such that the viscous stress evaluated with the air- and water-side velocity
gradients would satisfy the continuity of the tangential and normal stresses. The iteration
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Figure 19. Time series of numerical error in the AW-a2 case: (a) error in total mass, horizontal momentum
and energy, as defined in the text; and (b) maximum velocity divergence and mass discontinuity at the

interface.
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Figure 20. Same as figure 19, but for the AW-deepnoise case.

was conducted by alternately updating the interfacial velocity and stress until convergence.
We have evaluated the error in the AW-ctrl as well, and it was almost identical to the
AW-noturb case. Therefore, to facilitate the sensitivity analysis conducted later, we focus
on the AW-noturb case here.

In figure 18, the interfacial velocity ui and the interfacial stress components τ tx
i , τ n

i
and p̃nh with exact and approximated formulations are shown for the AW-noturb case
at t/2π = 300.08. The following descriptions apply for other times in the simulation
period. As expected from the theoretical analysis, the interfacial velocity contains the
relative error of O(1)%. This results in O(1)% relative error in viscous stress at the
interface. The error in interfacial pressure is O(0.01)% of the dynamical values, but its
absolute error O(10−5) is similar to that of τ tx

i . Averaged over the simulation period, the
net horizontal momentum transfer from water to air is enhanced by 7.7 × 10−8 in the
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Figure 21. Time series of (a) TKE and (b) spanwise wavelength ls, averaged over −0.4 ≤ z∗ ≤ 0.

approximated formulation compared with the exact evaluation. This amount of error is
O(0.1)% of the momentum flux controlling the major dynamics (figure 11). In addition,
the net energy flux from water to air is reduced by 9.8 × 10−7 in the approximated
formulation, which is O(1)% of the major energy flux (figure 13). Therefore, the influence
of the interfacial velocity approximation on the dynamics reported in § 4 can be considered
minor.

To examine the sensitivity to the vertical resolution, an additional case with doubled
vertical resolution (AW-noturb-highres) is conducted. There, the numbers of vertical grid
points are doubled in both air and water sides, and the thicknesses of layer neighbouring
the interface is specified to be 0.25(2/Rea,o)

1/2 (half of the AW-noturb case). As a result,
the vertical grid spacings are halved compared with the AW-noturb case almost uniformly
throughout the domain. The interfacial velocity and stress errors are shown as green
dashed lines in figure 18(b–e). The magnitude of the error is nearly halved compared
with the AW-noturb case, so the error introduced by this approximation is proportional
to 
z∗.

Appendix D. Error time series of the AW-a2 and AW-deepnoise cases

The numerical error is monitored for the AW-a2 and AW-deepnoise cases and shown in
figures 19 and 20, respectively. In the AW-a2 case, the numerical error is greater than
cases with ak = 0.1 (figures 2 and 20), but it is still much smaller than the signals from
major dynamics. For example, the numerical error of total energy led to increase of 0.04 %
compared with E(0) over 1000 wave periods, but it is 0.1 % of the energy dissipation
induced by viscosity. In addition, mass divergence |∇ · u| is greater than AW-ctrl, but
is still about 10−5 smaller than the characteristic strain rate by the wave orbital motion
(akσ = 0.2).

Appendix E. Sensitivity of turbulence structure to domain size

The periodic boundary conditions could restrict the turbulent structure to certain
wavenumbers and affect the results. To examine the possible domain dependence of
the result, we consider two sensitivity tests with a domain size modified from the
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AW-ctrl, AW-narrow (Lx = 2π, Ly = 1.8π) and AW-long (Lx = 4π, Ly = 1.8π) cases.
Sensitivity to spanwise (streamwise) domain size can be studied by comparing the
AW-ctrl and AW-narrow (AW-long and AW-narrow) cases. In figure 21, the temporal
evolution of waterside TKE and spanwise wavelength ls averaged over −0.4 ≤ z∗ ≤ 0 are
shown. Both TKE and ls agree among cases in general. There are some time-dependent
fluctuations after the turbulence becomes mature, but there is no clear bias in any of the
three. Therefore, the general water-side turbulence behaviour of the AW-ctrl case can be
considered independent of the domain size.

On the other hand, the domain size independence on the air side is difficult to ensure
due to the large vortex structure. In both the AW-ctrl and AW-narrow cases, the number
of major vortex pairs in the air side was two, which means that the major spanwise
wavenumber ls is different. However, the vortices in the air do not play a major role in
the dynamics of wave attenuation, the dynamical understanding obtained in the AW-ctrl
case remains unchanged.
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