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108.20 Euler's totient theorem and Fermat's little  theorem
are generalisations of one another!

Let us consider a non-familiar converse for the obvious fact that if
, then  divides , which is also related to Fermat's little

theorem (briefly, Fermat's theorem). For example if  is prime, then by
Fermat's theorem,  divides  if, and only if, . In fact,

 if, and only if, . Indeed, for any natural
numbers , , if  then  and by applying an
induction on a natural number  we have . In the last
step of this induction, one may write 

a ≡ 1 (mod n) n an − 1
n = p

p ap − 1 a ≡ 1 (mod p)
a ≡ 1 (mod p) ap ≡ 1 (mod p2)

a n a ≡ 1 (mod n) an ≡ 1 (mod n2)
m anm ≡ 1 (mod nm + 1)

anm + 1
− 1 = (anm

− 1) (anm(n − 1) + anm(n − 2) +  …  + 1) ,
assuming , by the induction hypothesis, and noticing that
the sum in the previous parenthesis is divisible by  [note, still

], we then immediately infer that . In this
Note we like to formulate a few results related to the above non-familiar
converse and obtain some useful consequences including the unusual fact in
the title. Indeed, this fact is a rare occurrence between any two theorems in
mathematics, even between the equivalent ones (see my concluding
comments, briefly). Using the above simple facts, and invoking Fermat’s
theorem, one may observe that if we replace  by a prime number  in the
above congruences, then  if, and only if, .
In particular, if , then  if, and only if,  is odd,
where . We show that the latter two cases can be unified and
obtained as consequences of either Corollary 1 or Corollary 2, below.
Before presenting the results, let us recall that if  is the least prime divisor
of a natural number , then . Motivated by this we define a
quasi-prime number to be a natural number  such that ,
where  is any prime divisor of . It is evident that  is quasi-prime if, and

anm ≡ 1(modnm+1)
n

a ≡ 1(modn) anm + 1 ≡ 1(modnm+2)

n p
apm ≡ 1 (mod pm + 1) a ≡ 1 (mod p)

p = 2 a2m ≡ 1 (mod 2m + 2) a
m ≥ 1

p
n (n, p − 1) = 1

n (n, p − 1) = 1
p n n
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only if, for, , the sequence of distinct prime divisors of
,  for all . For example, , where  is prime

and  a positive integer; , where ,  are natural numbers and
 are primes such that  does not divide  (note, in this case, the

pair  can be any twin primes); or if the prime divisors of  are all of the
form of Fermat primes, i.e. of the form , where  is a nonnegative
integer. It is clear that  is an even quasi-prime number if, and only if,

 for some natural number . Using the above observations, we are
now ready to present our results.

p1 < p2 <  … < pk
n (pi, pj − 1) = 1 i ≤ j n = pm p

m n = prqs r s
p < q p q − 1

p, q n
22k + 1 k

n
n = 2m m

Theorem A: Let n be a natural number and  be a positive integer. Then
, where  is even,  (resp.,  is odd, , and

is the product of distinct prime divisors of  if, and only if, for any prime
divisor  of ,  , with .

a
an ≡ 1 (mod qnn) n qn = 2q n qn = q) q

n
p n adp ≡ 1 (mod p) dp = (n, p − 1)

Proof: Let . Clearly,  for any prime divisor
 of  and , hence by Fermat's theorem .

Consequently, , where . Conversely, let
 be the prime factorisation of . Then by our assumption

and by what we have already observed earlier, for any  we must have
 with  and hence

for any . Now if  is even (i.e. ) then . But,
 for any , and hence  is divisible by . Consequently,

 for any  and if  is even, then .
This implies that if  is odd, , i.e.

, where  and in the case  is even, we may take
 and hence we have , i.e.

, where , and we are done.

an ≡ 1 (mod qnn) an ≡ 1 (mod p)
p n (a, p) = 1 ap − 1 ≡ 1 (mod p)

adp ≡ 1 (mod p) dp = (n, p − 1)
n = pm1

1 pm2
2 … pmk

k n
pi

adpi ≡ 1 (mod pi) dpi = (n, pi − 1) adpip
mi
i ≡ 1 (mod pmi + 1

i )
i pj pj = 2 adpjp

mj
j ≡ 1 (mod pmj + 2

j )
(dpi, pmi

i ) = 1 i n dpip
mi
i

an ≡ 1 (mod pmi + 1
i ) i pj an ≡ 1 (mod pmj + 2

j )
n an ≡ 1 (mod pm1 + 1

1 pm2 + 1
2 … pmk + 1

k )
an ≡ 1 (mod qnn) qn = q n
p1 = 2 an ≡ 1 (mod pm1 + 2

1 pm2 + 1
2 … pmk + 1

k )
an ≡ 1 (mod qnn) qn = 2q

   The next corollaries are now immediate.
Corollary 1: Let  be any quasi-prime number and  be a positive integer.
Then , where  is even,  (and similarly, where  is
odd, ) and  is the product of distinct prime divisors of  if, and only
if, for any prime divisor  of , .

n a
an ≡ 1 (mod qnn) n qn = 2q n

qn = q q n
p n a ≡ 1 (mod p)

Corollary 2: Let  be a quasi-prime number which is square-free and ,
be natural numbers. Then , where  is odd (resp.,

, where  is even (i.e., )) if, and only if,
.

n a m
anm ≡ 1(modnm+1) n

anm ≡ 1(modnm+2) n n = 2
a ≡ 1(modn)

The following theorem, together with its remark, clearly show that
Fermat's theorem is equivalent to a generalisation of Euler's theorem.
Although, its proof is similar to the proof of Theorem A, it is given for the
sake of completeness.
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Theorem B: Let  be positive integers such that whenever  divides ,
 divides , where  is a prime number and  is a positive

integer (e.g.  where  is Euler's function). Then
if, and only if, for any prime divisor  of , , with

.

m, n pk n
pk − 1 (p − 1) m p k

m = φ (n) , φ am ≡ 1(mod  n)
p n adp ≡ 1 (mod p)

dp = (m, p − 1) = p − 1

Proof: Let  and  be a prime divisor of , then .
Now by Fermat's theorem and the assumption that  divides , we
immediately infer that , where .

am ≡ 1 (mod n) p n (a, p) = 1
p − 1 m

adp ≡ 1 (mod p) dp = (m, p − 1) = p − 1
Conversely, let  be the prime factorisation of . By our

assumption  for each , where . Now by the
observations that we started off with, we have  for each .
Since  we infer that  divides , hence
for each . Consequently, we have  and we are done.

n = pα1
1 pα2

2 … pαk
k n

adpi ≡ 1 (mod pi) i 1 ≤ i ≤ k
adpip

αi − 1
i ≡ 1 (mod pαi

i ) i
(dpi, pαi − 1

i ) = 1 dpip
αi − 1
i m am ≡ 1 (mod pαi

i )
i am ≡ 1(modpα1

1 pα2
2 … pαk

k )
Remark: There are infinitely many positive pairs of integers, , with the
above property, in the statement of Theorem B, satisfying . To
this end, let  and , where
the integers , ,  are greater than 1 and . One may choose other
primes similar to 2, 3 , 7 and 13 with putting appropriate restrictions on , ,
, . For example, we may replace 13 by 17 and assuming that  or

even one may change the number of above primes. Or, simply let
, where , be Fermat prime numbers with

 for , then we may put , ,
where ,  are positive integers with  and  for all . Clearly,

 and ,  have the above property in the statement of Theorem B.

m, n
m < φ (n)

n = 2r × 3s × 7t × 13u m = 2r − 1 × 3s− 1 × 7t −1 × 13u −1

s t u r > 2
r s

t u r > 4

Fi = 2ki + 1 i = 1,  2, … , s
Fi < Fj i < j n = 2t (∏s

i = 1 Fdi
i ) m = 2t −1(∏s

i =1 Fdi −1
i )

t di t > ks di > 1 i
m < φ (n) m n

The comments and observations preceding Theorem A, have also some
manifest consequences as follows. Let ,  be two natural numbers with the
same primes in their prime factorisations (or just assuming, ,  share the
same minimal prime divisor), then  (for otherwise, let

, then by taking  to be the least prime divisor of  we must have
, , but  with

imply that , which is absurd, for ). In
particular, . More generally , where  is a natural
number with  for the least prime divisor  of . Moreover, if
is also a quasi-prime number, then for any natural number ,
where  is a natural number with  for some prime divisor  of

. Although, as we have already emphasised above that Theorem B,
manifestly shows that Fermat's theorem is a generalisation of Euler's
theorem, however we like to make the next comments, too. A conspicuous
consequence of Theorem B, is the non-emphasised fact in the literature, to
wit, “Euler's theorem generalises Fermat's theorem and vice versa”. In
almost all the elementary textbooks on number theory, the authors usually
claim that Euler's theorem is a generalisation of Fermat's theorem. Whereas
in Theorem B, it is explicitly shown that the two theorems are, in fact,
equivalent. Indeed, Fermat's theorem plays a key role in both the statement

m n
m n

m |/ 2n − 1
m | 2n − 1 p m
(2, p) = 1 (n, p − 1) = (m, p − 1) = 1 p | 2n − 1 p | 2p−1 − 1

p | 2(n,p − 1) − 1 (n, p − 1) = 1
n |/ 2n − 1 m |/ an − 1 a

a ≡/ 1 (mod p) p n n
q, q |/ an − 1

a ≠ 1 a ≤ p p
(n, q)
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and the proof of the theorem. However, we should remind the reader that
when two theorems, P, Q say, are equivalent (i.e, a proof of P can be
deduced from Q and vice versa) they need not be generalisations of one
another. For example, Pythagorean theorem and Law of Cosines are
equivalent, and the latter is a generalisation of the former but not necessarily
vice versa (note, no generalisation of Law of Cosines is known in the
literature that is proved via Pythagorean theorem, up to now). We like to
remind the reader that in [2, Prob. 15(c). p. 58] it is observed that Euler's
theorem can be deduced from Fermat's theorem. However, in [2], and also in
the literature, in general, the peculiar and simple fact that Fermat's theorem
is, indeed, a generalisation of Euler's theorem too, is overlooked (note, as
John Conway once said, see [1], [3]: All the easy things, at first sight,
appear to have been said already, but you can find that they have not been
said). Finally, we would like to record the following equivalence, also as a
corollary to Theorem B.

Corollary 3: The following theorems are equivalent.
(1) Fermat's theorem.
(2) Euler's theorem.
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108.21 An amazing quartet of integrals

Introduction: Some time ago I stumbled upon the following four related
integral representations of well-known mathematical constants:

π2 = 2J (−2) ,  ζ (3) = 2
7J (−1) ,  π3 = 8J (0) ,  G = 1

4J (1)
where                              

J (k) = ∫
π
2

0
arctanh2 (cos t) cosk t  dt
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