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Ahstract-A macroscopic energy balance model for crystalline swelling of 2: 1 phyllosilicates is pre­
sented. Crystalline swelling for a static system is modeled by a balance among the potential energies of 
attraction, repulsion and resistance. The potential energy of attraction is due to both the electrostatic 
interaction between the interlayer cations and the negative surface charge sites and to van der Waals 
attraction between layers. The potential energy of repulsion is due to the net hydration energy for the 
interlayer cations, the net hydration energy for the negative surface charge sites and Born repulsion. The 
potential energy of resistance represents irreversible work needed to overcome the mechanical resistance 
of the clay water system to both expansion and collapse. The potential energy of resistance is responsible 
for both hysteresis and the stepwise nature of crystalline swelling. 

A numerical solution of the crystalline swelling model is presented and shown to yield reasonable 
estimates of basal spacings for octahedrally charged clays. Measured and predicted basal spacings are 
directly compared and are in general agreement (r2 = 0.39). Most of the scatter for the measured vs. 
predicted basal spacing relationship is attributed to inaccuracies of the assumptions used for the numerical 
solution. The crystalline swelling model readily accounts for the effects of layer charge and nature of the 
interlayer cations upon crystalline swelling, but does not account for the effect of charge site location 
upon crystalline swelling. 
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INTRODUCTION 

The initial hydration of 2: I phyllosilicates occurs 
during a series of steps corresponding to the interca­
lation of 0, 1, 2, 3 and 4 discrete layers of water mol­
ecules (Barshad 1949; Norrish 1954; Norrish 1973; 
Slade et al. 1991; Laird et al. 1995). Norrish (1954) 
termed this initial stage of hydration "crystalline 
swelling." Since 1954 there has been general agree­
ment that crystalline swelling is controlled by a bal­
ance between forces of attraction due to both coulom­
bic and van der Waals interactions between clay layers 
and forces of repulsion arising from hydration of the 
interlayer cations and negative surface charge sites 
(Norrish 1954; van Olphen 1965; Kittrick 1969a, 
1969b; Parker 1986). 

Modeling of crystalline swelling requires either a 
microscopic or a macroscopic approach. For the mi­
croscopic approach, the modeler attempts energy min­
imization calculations considering all possible inter­
actions for a system consisting of two 2:1 phyllo­
silicate half-layers, 2 or 3 interlayer cations, and per­
haps 30 or 40 water molecules. The microscopic 
approach has considerable potential for elucidating 
fundamental mechanisms, but utility of this approach 
is limited by the complexity of the mathematics. Fur­
thermore, experimental verification of microscopic 
models is difficult because most analytical techniques, 
for example XRD, TGA and chemical analysis, mea­
sure macroscopic properties. The macroscopic ap­
proach requires spatial averaging of properties and 
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draws governing equations from thermodynamics, me­
chanics and empirical relationships. Although the mac­
roscopic approach is fundamentally less rigorous, the 
mathematics of the macroscopic approach are gener­
ally more accessible and the macroscopic approach 
provides for a greater level of conceptual understand­
ing. Macroscopic models are also amenable to direct 
experimental verification. 

Other authors (Norrish 1954; van Olphen 1965; Kit­
trick 1969a, 1969b; Parker 1986) have attempted to 
develop macroscopic models for crystalline swelling. 
However, none of these models predict crystalline 
swelling phenomena. Norrish (1954) proposed two 
different equations for estimating the electrostatic at­
traction energy between interlayer cations and the neg­
atively charged surfaces of 2:1 phyllosilicates. The 
first equation describes the energy of attraction be­
tween a point charge and a thick-plane conductor. The 
second equation describes the energy of attraction be­
tween two plates of a capacitor. Norrish (1954) noted 
that neither equation is fully adequate for describing 
the electrostatic energy of attraction between two 2: I 
phyllosilicate layers. Norrish offered no means for 
quantifying the energy of repulsion due to cation hy­
dration. The crystalline swelling models proposed by 
van Olphen (1965) and Kittrick (1969a, 1969b) lack 
general applicability, because they require estimates of 
thermodynamic properties for specific minerals. Parker 
(1986) was the first to propose a complete, generalized 
macroscopic model for crystalline swelling. Parker 
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Figure 1. Schematic diagram of an expanding 2: 1 phyllo­
silicate illustrating dimensional parameters used for the crys­
talline swelling model. 

used the point-charge/thick-plane conductor equation 
to estimate the electrostatic energy of attraction. Par­
ker quantified the energy of repulsion as the difference 
between the total hydration energy of the interlayer 
cations and the total hydration energy of the same cat­
ions if they were in the bulk solution. Parker's model 
does not yield quantitative estimates of crystalline 
swelling phenomena because the point-charge/thick­
plane conductor equation does not adequately account 
for the effects of surface charge density on crystalline 
swelling. Furthermore, there is no means within Par­
ker's model to account for hysteresis or the stepwise 
nature of crystalline swelling. 

My objective is to propose a generalized macro­
scopic energy balance model for crystalline swelling 
of 2: 1 phyllosilicates. The model draws heavily on the 
work of Norrish (1954) and Parker (1986), but in­
cludes several new key elements. A numerical solution 
of the proposed crystalline swelling modeUs presented 
along with a direct comparison of measured and pre­
dicted basal spacings for a variety of clay-cation-water 
systems. 

MODEL 

Crystalline swelling of 2:1 phylIosilicates must be 
modeled using an open system. During expansion 
mass (water) is transferred from the surroundings to 
the clay and the layers move farther apart displacing 
solvent in the surrounding media. During collapse, 
mass is transferred from the clay to the surroundings, 
the layers move closer together and solvent molecules 
must fill the void left by the retreating layers. Each of 
these steps requires that mass be transferred from one 
location to another and mass transfer requires work. 
Crystalline swelling is irreversible because work for 
mass transfer is required for both expansion and col­
lapse. The energy that must be transferred into a clay­
water system to effect irreversible work during crys­
talline swelling has been described previously as the 
"free energy of transition" (Laird et al. 1995) and ac­
counts for both hysteresis and the step-wise nature of 
crystalline swelling. 

A balance of potential energies is used in the present 
model to describe the extent of crystalline swelling for 
a clay that is in apparent equilibrium with its environ­
ment. Thus, "apparent equilibrium" means a system 
at thermal and mechanical equilibrium but not neces­
sarily at material equilibrium. For a smectite at appar­
ent equilibrium, the extent of crystalline swelling is 
determined by a balance between potential energies of 
repulsion (Grp) , attraction (Gat) and resistance (G,,): 

Grp = Gal + G rs [1] 

All of the potential energy terms in Equation [1] are 
most conveniently expressed relative to the surface 
area of the clay (J m-2). 

The potential energy of resistance for a static system 
(Equation [I]) is not equal to the free energy of tran­
sition as described previously (Laird et al. 1995) for a 
dynamic system. The free energy of transition is equal 
to one half the amount of energy that must be trans­
ferred into a clay-water system to effect a complete 
cycle of expansion and collapse. The potential energy 
of resistance is the contribution of mechanical stress 
upon the clay water system to the overall energy bal­
ance for a system at apparent equilibrium. 

The potential energy of attraction is the sum of po­
tential energies for the electrostatic interaction be­
tween the interlayer cations and the negative surface 
charge sites (GC(i» and for van der Waals interactions 
between adjacent layers (Gv). 

A modified version of the capacitor model is used 
for estimating G c(i). The original capacitor model (Nor­
rish 1954) was derived by assuming that both inter­
layer cation charge and negative layer charge are uni­
formly distributed upon the outer surfaces of parallel 
plates made of a conducting material, thus, the capac­
itor plates. However, phyllosilicates are nonconductors 
and the excess negative charge is not uniformly dis­
tributed across the surface, but rather is localized in 
the framework oxygens adjacent to sites of isomor­
phous substitution. Excess positive charge in phyllo­
silicates is localized in discrete cations within the clay 
interlayers. Furthermore, the original capacitor model 
does not consider valence of the interlayer cations. 

In an attempt to compensate for these deficiencies, 
new terms for the effective anionic radius (rJ of the 
negative charge sites and a dimensionless proportion­
ality constant (f;) related to the valence of the inter­
layer cations have been introduced into the original 
capacitor model to estimate GC(i). The revised capacitor 
model is: 

[2] 

where a is the surface charge density, D is one half 
of the layer separation (Figure 1) and 13, is the inter­
layer diabattivity. 
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Table 1. Parameters values used for the numerical solution 
of the crystalline swelling model. 

Parameter 

G" 
e 

Value. range. or source 

Assumed to equal 0 
1.602 X 10-19 C 
8.854 X 10-12 C2 N-I m-2 

78.15 
6 
Equation 9 
8.695 X 10-9 C2 N-I m-2 
Equation 8 
2.2 X 10-20 J 
9.4 X 10-10 m 
Between 6.0 X 10- 11 and 1.3 X 10-9 m 
0.5 for monovalent cations and 1 for divalent 

r, 
r, 
0" 

z, 
L 
Cl 
C2 

cations 
4.7 X 10-10 m 
Pauling radii plus 8.5 X 10- 11 m 
Between 0.103 and 0.344 C m-2 

Interlayer cation valence 
1.4627 X 10-124 J m lO 

1.46 X 10-9 m 
9.0 X 10-10 m 

The energy of attraction due to Van der Waals in­
teractions between two parallel plates of thickness T 
and separation 20 is given by: 

G H( I 1 2) 
v = 12'lT (20)2 + (20 + 2T)2 - (20 + T)2 

[3] 

where H is the Hamaker constant (Quirk and Murray 
1991). 

The potential energy of repulsion between 2: 1 phyl­
losilicate layers is the sum of the net hydration energy 
for the interlayer cations (Gh(,)), the net hydration en­
ergy for the negative surface charge sites (Gh(S)) and 
Born repulsion energy (Gb)' Net hydration energies 
may be estimated using the Born equation (Basu and 
Sharma 1994) as the change in electrostatic free en­
ergy of an ion on reversibly and isothermally moving 
the ion from a solution of one dielectric to another. By 
using this approach, the net hydration energy for in­
terlayer cations in 2: 1 phyllosilicates becomes: 

Gh(i) = a2~ie (k -;J [4] 

where e is the unit charge on a proton, ri is the effec­
tive radius of the cation, 131 is the diabattivity of the 
interlayer and I3B is the diabattivity of the bulk solu­
tion. Similarly, the net hydration energy for the neg­
ative surface charge sites may be estimated as: 

Gh(s) = ;:, (k -;J [5] 

where rs is the effective radius of the negative surface 
charge sites. 

Born repulsion prevents the electron clouds of two 
atoms from occupying the same space (Giiven 1992). 
The potential energy due to Born repulsion between 
two 2: 1 phyllosilicate layers may be estimated by: 

G =_L_ 
b (20)12 [6] 

where L is a constant. For the crystalline swelling 
model, Born repulsion prevents the clay layers from 
collapsing below 10 A, but has little influence on the 
energy balance for basal spacings larger than 10.5 A. 

When Equations [1] through [6] are combined: 

G = _ fi2'lTa2(0 + rJ 
rs 131 

H ( 1 1 2) 
- 12'lT (20)2 + (20 + 2T)2 - (20 + T)2 

(
azie ae)( 1 1 ) 

+ 2r, + 2rs ~ - I3B 

L +-­
(2D)12 [7] 

a generalized model for crystalline swelling of 2: 1 
phyllosilicates is obtained. 

NUMERICAL SOLUTION OF THE MOOEL 

Numerical solution of the crystalline swelling mod­
el requires quantitative estimates for all of the param­
eters in Equation [7] (Table 1). Some of the parameters 
are constants ('IT, e, H, T, L) and others are variables 
(Zi' D, a, fi, ri' rs ' I3B' 131' Grs) that depend upon prop­
erties of the interlayer cations, properties of the bulk 
solution or nature of the clay being modeled. Four of 
these variables (Zi, 0, a, I3B) are readily determined. 
The other five require careful consideration. 

The standard form of the Born equation yields near­
ly quantitative estimates of total hydration energies for 
ions if the radius of the ion being evaluated is set equal 
to the Pauling radius plus 0.85 A for cations and plus 
0.10 A for anions (Parker 1986). Adjustment of Pau­
ling radii is necessary because the Born equation treats 
water as a dielectric continuum rather than as a me­
dium composed of discrete water molecules. The same 
adjustment factor is needed for estimating effective ra­
dii of interlayer cations (ri) for the crystalline swelling 
model. The effective radius for a negative surface 
charge site (rs) is related to the location of the charge 
site within a 2: I phyllosilicate layer. With octahedrally 
charged clays rs is estimated to be about 4.7 A. Esti­
mation of rs for tetrahedrally charged clays is less cer­
tain because of asymmetry and increased localization 
of the surface charge. As a first approximation, fi is 
set equal to the valence of the interlayer cations divid­
ed by 2. 

Oiabattivity of the interlayer is related to the di­
electric constant of the interlayer (El) through 
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Figure 2. Relationship between basal spacing and interlayer 
dielectric constant as predicted by Equation [9]. 

(8] 

where Eo is the pennittivity of a vacuum. Thus accurate 
estimation of El is critical to the success of the crys­
talline swelling model. 

On approaching a solid-liquid interface, water mol­
ecules become increasingly oriented by short-range 
forces emanating from the surface and lose their abil­
ity to orient within an electric field. Such orientation 
reduces the dielectric constant of water near the sur­
face relative to that of water within the bulk solution. 
For the first layer of water molecules adjacent to a 
surface, the dielectric constant is believed to be less 
than 10. However the dielectric constant is also be­
lieved to increase rapidly with distance from the sur­
face (Conway 1981; Sposito 1984; Newman 1987). 
Recent experimental evidence obtained using time do­
main reftectometry (Dirksen and Dasberg 1993) indi­
cates that the dielectric constant for Wyoming benton­
ite increases from 7 to about 24 as the volumetric wa­
ter content increases from 0.1 to 0.35 (cm3 cm-3). This 
range of volumetric water content corresponds to a 
range of approximately I to 3 layers of interlayer wa­
ter molecules. Thus, for the numerical solution of the 
crystalline swelling model, the dielectric constant of 
the interlayer is treated as a variable with respect to 
basal spacing. 

To estimate El we assume that: 1) El for an infinitely 
expanded 2: 1 phyllosilicate (basal spacing> 100 A) is 
equal to that of the bulk solution (Ea = 78); 2) El for 
a fully collapsed clay (basal spacing = 10 A) ap­
proaches the dielectric constant of a typical alumino­
silicate mineral (Ec = 6); and 3) the relationship be­
tween El and basal spacing is described by a hyperbolic 
tangent function: 

( (
2D - Cl)) (E - E ) Er = 1 + tanh C2 T + Ec (9] 

where Cl and C2 are empirical constants. 
The relationship between the interlayer dielectric 

and basal spacing described by Equation 9 is illustrat­
ed in Figure 2. Values for the constants (Cl and C2) 
were detennined by numerical optimization of the 
crystalline swelling model. For the numerical optimi­
zation a K-saturated smectite with a layer charge of 
0.30 per formula unit was assumed to have a basal 
spacing of 20.4 A, and a K-saturated venniculite with 
a layer charge of 0.65 per formula unit was assumed 
to have a basal spacing of 10.0 A. The relationship 
between El and basal spacing illustrated in Figure 2 is 
consistent with the experimental results of Dirksen and 
Dasberg (1993). 

The potential energy of resistance from crystalline 
swelling is due to the mechanical resistance of the clay 
water system to both expansion and collapse (Laird et 
al. 1995). Obtaining an independent estimate of G" is 
perhaps the most daunting challenge to a numerical 
solution of the crystalline swelling model. However, 
by definition G" must equal zero for the specific con­
ditions that cause a phase transition. For example, as­
sume that the relative humidity of an equilibrating at­
mosphere is gradually increased until a Ca-smectite 
with a layer charge of 0.45 (per formula unit) spon­
taneously expands from 15.5 to 19.0 A. For the con­
ditions at the moment of expansion (basal spacing = 
19.0 A, interlayer cation = Ca, (J = 0.45, (3s = 
f(relative humidity at expansion) , 131 = f(E I @ 19.0 A), 
etc.) the crystalline swelling model can be solved. 
However, for conditions not causing a change in basal 
spacing G" is not equal to zero and the model can not 
be solved. 

RESULTS AND DISCUSSION 

One application of the crystalline swelling model is 
the prediction of basal spacings. For this prediction, 
quantitative estimates are made for all parameters in 
Equation (7] except D and then the model is solved 
for D using an iterative approach. Presented in Table 
2 are basal spacings predicted by the crystalline swell­
ing model for 2: I phyllosilicates saturated with various 
alkaline and alkaline earth cations and having values 
of layer charge ranging from 0.30 to 0.70 per formula 
unit. The results in Table 2 illustrate three consistently 
observed phenomena in crystalline swelling: 1) de­
creased swelling with increasing layer charge; 2) in­
creased swelling with increasing hydration energy of 
the interlayer cation; and 3) fixation of weakly hy­
drated cations by highly charged clays. 

A direct comparison between measured and pre­
dicted basal spacings for five clays saturated with var­
ious cations are shown in Figure 3 (measured data are 
the " in water" results presented by MacEwan and 
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Table 2. Basal spacings predicted by the crystalline swelling 
mode!. 

Interlayer 
Layer charge [per 0 ,. (OH),) 

cation 0.3 0.4 0.5 0 ,6 0,7 

Li 22.8 20.6 18.6 16.8 15.1 
Na 21.5 19.1 17.0 15.0 13.2 
K 20.4 17.8 15.5 13.3 9.95 
Rb 20.0 17.3 14.9 12.5 9.95 
Cs 19.5 16.7 14.2 9.95 9.95 
Mg 21.7 19.3 17.1 15.2 13.5 
Ca 20.3 17.6 15.2 13.2 9.96 
Sr 19.5 16.6 14.2 11.9 9.95 
Ba 19.5 16.7 14.2 9.95 9.95 

Wilson 1980). Excluded are measured data (MacEwan 
and Wilson 1980) for the Unterrupsroth beidellite, St 
Cyrus saponite and the Loch Scye vermiculite due to 
uncertainty about the effects of tetrahedral charge, in­
terstratification and about the appropriate values of 
layer charge for these clays. Although there is consid­
erable data scatter, there is at least general agreement 
between the measured and predicted basal spacings (r2 
= 0.39). 

Much of the data scatter presented in Figure 3 is 
attributed to the fallacy of the assumption that Grs is 
equal to zero. This assumption was necessary for the 
numerical solution of the model, but it is clearly wrong 
for most clay-cation-water systems. The assumption 
that Grs is equal to zero is equivalent to assuming that 
crystalline swelling is both continuous and non-hys­
teretic, whereas experimental evidence clearly indi­
cates that crystalline swelling is both hysteretic and 
occurs as discrete steps (Laird et al. 1995). The mea­
sured data in Figure 3, for example, are clustered about 
basal spacings of 10 A, 12.5 A, 15 A and 19 A cor­
responding to 0, 1, 2 and 3 discrete layers of water 
molecules, respectively. 

Another application of the crystalline swelling mod­
el is quantification of the relationship between the net 
interaction energy and basal spacing. The net interac­
tion energy for a clay at apparent equilibrium with its 
environment equals Grs. Figure 4 illustrates the net in­
teraction energy-basal spacing relationship for a 
Mg-saturated smectite with a layer charge of 0.40 per 
formula unit. The model predicts excess attraction en­
ergy for basal spacings larger than 19.4 A and excess 
repulsion energy for basal spacings between 10.2 A 
and 19.4 A. Thus, the model predicts an equilibrium 
basal spacing of 19.4 A, which is consistent with mea­
sured basal spacings of Mg-saturated smectites within 
water (MacEwan and Wilson 1980). However, the 
model also predicts negative G", values for basal spac­
ings between 10.0 A and 10.2 A. This indicates that 
if the Mg-smectite were dehydrated it would remain 
collapsed upon exposure to water. This is inconsistent 
with experimental data for Mg-smectites. One possible 
explanation for this discrepancy is that Equation [3] 
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Figure 3. Relationship between measured and predicted bas­
al spacings for various clay-cation-water systems. The mea­
sured values are the "in water" data given by MacEwan and 
Wilson (1980). 

overestimates the contribution of van der Waals at­
traction energy for smectites with small basal spac­
ings. Quirk (1994) reported that Equation [3] is valid 
for layer separations between 2 A and 70 A. 

The absolute contributions of all 5 energy terms to 
the net interaction energy for the Mg-saturated smec­
tite (layer charge = 0.40 per formula unit) are shown 
in Figure 5. The van der Waals attraction energy and 
Born repulsion energy dominate the energy balance 
for basal spacings approaching 10.0 A, whereas elec­
trostatic and hydration energies dominate the energy 
balance for basal spacings larger than 12.0 A. 
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Figure 4. Relationship between basal spacing and net en­
ergy of interaction for a Mg-smectite with a layer charge of 
0.40 per formula unit. The net interaction energy is equal to 
GB for a stable clay-cation water system. 
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A third application of the crystalline swelling model 
is quantification of the dielectric constant of the inter­
layer. To do so, all parameters except 131 are estimated 
and Equation [7] is solved for 13" which is related to 
El through Equation [8]. Such an analysis has been 
performed for a series of hypothetical clay-cation-wa­
ter systems and the results yield a distribution similar 
to that shown in Figure 2. This is not surprising be­
cause the constants in Equation [9] were estimated by 
the reverse calculation for K-clay-water system. How­
ever, no attempt has been made to use experimental 
data to estimate El using this technique, because G,s is 
unknown for most real clay-cation-water systems. 

A major limitation of the crystalline swelling model 
is the lack of an obvious means of accounting for the 
effect of charge site location upon swelling. The nu­
merical solution yields reasonable results for octahe­
drally charged clays only. Intuitively, one might ex­
pect an increase in percentage of the tetrahedral charge 
to be modeled as a decrease in rs. However, if rs is 
decreased, Equation [7] predicts increased swelling, 
which is inconsistent with experimental evidence. The 
most likely explanation for the failure of the crystal­
line swelling model to account for charge site location 
lies within the inadequacy of the capacitor model for 
quantifying Gc(j)' 

SUMMARY 

A macroscopic energy balance model for crystalline 
swelling of 2: 1 phylIosilicates has been presented. The 
model readily accounts for the effects of layer charge 
and nature of the interlayer cations on crystalline 
swelling. It does not account for the influence of 
charge site location on swelling. Uncertainty exists 
when estimating values for several of the parameters 
needed for a numerical solution of the model. How-

ever, with a combination of "best guesses" and em­
pirical parameter fitting, these parameters can be ad­
justed such that the model yields reasonable estimates 
of basal spacings for octahedrally charged 2: I phyl­
losilicates. 

The present study suggests numerous areas for pos­
sible future work. Theoretical work is needed to refine 
the capacitor model or to develop an entirely new 
macroscopic model for estimating GC(j)' Development 
of an independent means of estimating G,s would 
greatly facilitate use of the crystalline swelling model 
and permit routine estimation of El from basal spacing 
measurements. The crystalline swelling and DL VO 
models could be combined to predict the full range of 
swelling phenomena. The numerical solution of the 
model could be extended to predict swelling of clays 
at equilibrium with either an electrolyte solution or an 
atmosphere of known relative humidity by integrating 
the relationship between water activity and I3B into the 
crystalline swelling model. 
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