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Abstract. The coupling of non-radial pulsations and convection is studied on a simple example: an unstable 
semi-infinite polytrope. An expansion is proposed and the equations that should describe correctly the 
pulsations are isolated. The additional complications of the real solar case are discussed at the end. 

1. Introduction 

The purpose of this study is to try to establish what kinds of equations are obeyed by 
the solar pulsations and to illustrate the method by a simple example. One of the main 
causes of the awkwardness of the solar problem is the presence of a convective zone, 
given the lack of any theory of convection so far. Moreover, the fuzziness and the 
scarcity of the observations make it difficult to test even a simple empirical theory such 
as the mixing length theory, as is well illustrated by Gough and Weiss (1976). Fortunately, 
the increasing accuracy of present measurements is beginning to give information about 
the evolution of the amplitude of individual pulsation modes (see Grec et ah, 1983) and 
their correlation time (Grec etai, 1980). As a consequence, it is time to try to write 
precise equations and to settle certain ambiguities about the present state of the 
treatment of the interaction of convection and pulsation in a star. 

In the case of a star in purely radial pulsation, it is clear how to separate the pulsating 
motion from the convective one: a suitable time average generally suffices (Gough, 1976; 
Unno, 1967, 1977; Poyet and Spiegel, 1979). In the case of non-radial pulsations the 
situation is less clear and the problem is really well-defined only when a separation of 
scale is assumed: the convective motions being supposed to arise on scales much smaller 
than the pulsating motions. One can then perform a two-scale development of the 
problem and average over the small convective scales (Unno etai, 1-979). In this limit 
only, the concept of turbulent viscosity, introduced to model the effects of the convection 
zone, can be justified physically. However this is not the case in the Sun since it is 
generally believed by people studying its convective zone that some cells of about the 
size of the convection zone ( « 200000 km) must be present and there are theoretical 
reasons which might lead one to believe in the presence of even larger scales (in linear 
theory, it is found, in Boussinesq convection between plane parallel layers, that the 
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convective instability arises first at zero wavenumber for boundary conditions with fixed 
flux; see Hurle etal., 1967). So theoretically, it should be assumed that convection 
covers scales from the granules {IK 1000, where / is the usual index of the spherical 
harmonics), or even from the subgranular scales that are likely to be turbulent, to the 
solar circumference, and consequently that convective and pulsating scales in the Sun 
are comparable. Thus there is no easy physical way to separate them and an arbitrary 
definition must be adopted. Given any type of well-defined linear problem, either of the 
type of the simple polytropic example that will be treated later or coming from a 
numerical program, the modes will be classified according to their time-dependence e"", 
where, in general, a = oR + iaf with aR and c, real. If \a\ <^ \aR\, the mode will be 
considered as a pulsating one. If this is not true, the modes will be treated as convective 
ones (overstable if\aR\ is different from zero). As an illustration, for a superadiabatic 
polytrope (unstable to convection) the / and p modes will be considered as pulsating 
modes, while the g~ and toroidal modes (with zero frequencies) will be considered as 
belonging to the convective modes. 

Another outstanding problem of the subject is the perturbation of the convective flux. 
It is generally ignored because it involves a time-dependent theory of convection. In the 
solar case, one can imagine trying to tackle the problem because, despite the non-linearity 
due to the convection, the pulsations are of such small amplitudes that they must behave 
almost linearly in some sense. The question is then to attempt to isolate this almost linear 
problem theoretically and use all of its nice linear properties to understand the pulsation-
convection coupling. When observers interpret the peaks in their spectra as normal 
modes of the Sun, they do nothing else but assume the existence of these linear 
properties, despite the messy couplings with the convection. Given these facts, there are 
two ways one can think of, to start the problem. On one hand, some convective terms 
in the mean equations that one wishes to start with could be kept. Then one is faced 
with the rather difficult problem of an unknown mean state to calculate further. This 
would generally force one to close the convection equations (via the mixing-length theory 
for instance) already in the mean state. This procedure has two disadvantages: the first 
one is that one has to perturb a bad theory (the mixing length theory, for example) to 
calculate even the linear problem and that there is no unique way of doing it; the second 
one is that the closure is on the mean state of the convection and it is well known, in 
usual turbulence theory, that such theories give results which are rather worse than those 
obtained by trying to close on higher order correlations. On the other hand, it seems 
more natural to perturb exact equations and then to try to close the problem. This is 
the method adopted in what follows, where the exact equations for the convection are 
kept and then perturbed. A very simple example will be treated, embodying, in our 
opinion, the conceptual difficulties of the problem. The additional difficulties of the real 
solar problem will be commented on at the end. 

Before starting the calculation for an unstable polytrope, it is useful to review the 
motivations for doing such a non-linear calculation. One of the issues about the Sun, 
that should be settled by a good non-linear theory, is the nature of the excitation of the 
pulsating modes. It has sometimes been believed, after the unsuccessful attempt by 
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Goldreich and Keeley (1977a, b) to excite the modes stochastically by turbulent 
convection, that the K-mechanism was at work, as confirmed by the calculation of Ando 
and Osaki (1975a, b). However the uncertainties in the method used by Goldreich and 
Keeley; the fact that a more accurate treatment of radiative transfer stabilizes the modes 
found unstable by Ando and Osaki (see the article by Christensen-Dalsgaard and 
Frandsen, 1983); and the behaviour of the amplitude of the modes identified in the 
South Pole experiment (see the article by Grec etal., 1983) induce one to think that 
indeed the convection zone is exciting the modes. Two things must be explained by the 
proponents of the K-mechanism as an excitation process: why doesn't the Sun pulsate 
with the amplitude of a Cepheid and, more importantly, why is there a lifetime of the 
modes of two days in Fossat's results (one would rather expect a stationnary solution 
with the K-mechanism)? However it is not excluded that some contribution to the 
excitation of the pulsation comes from the K-mechanism and, later on, the inclusion of 
such an effect in a realistic calculation will be discussed. In any case, a more realistic 
treatment of the convection is needed and we shall concentrate on this problem here. 

2. The Unstable Polytrope 

We consider an adiabatic problem and take as origin the surface of the star (z = zs) with 
a z-axis oriented positively inward. We suppose that there is no viscosity or thermal 
conductivity and that y, the usual ratio of specific heats, is constant. We neglect any 
radiative effect and suppose that the gravity is constant. The fluid hydrodynamical 
equations for such a problem are 

^ + V-(pv) = 0 , (2.1) 
dt 

P T * = - ~ + Pg*t3, «" = 1, 2, 3, (2.2) 
at ox, 

dl=c2
dP = _c2(N.y=_ypy.^ ( 2 .3) 

dt dt 

c2 = y - , (2.4) 
p 

where p, v, and p are the density, velocity, and pressure in the medium. Indices 1 and 
2 for i are for the horizontal velocity and 3 is for the vertical velocity. An infinite plane 
paralel layer is considered. One starts by defining a polytropic state when v = 0. A 
reference layer, z = z0, is chosen for this polytrope such that at z = z0, T0 = 0, and 
p0 = P, where the index zero designates polytropic variables. It follows that 

T0 = Pz, (2.5) 
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*-HT' \zj 

K 
Po= —Jm, 

R0 

m + 1 
zo 

m = 1 , 
RP 

cl = y^ = yR 

i 

= Kzm+l , 

Bz = z , 
p0 m + 1 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where /? is the constant static temperature gradient, R the constant of the perfect gases, 
m the polytropic index, and c0 the sound speed for the polytrope. A polytrope of 
thickness d is considered, so that 

zs<z< zs + d, (2.11) 

and the thickness d, when it is finite, can be taken for z0 for example. The case of the 
infinite polytrope that is treated later will be given simply by taking zs = 0 and d -> co. 
The equations are nondimensionahzed by choosing the length z0 and an arbitrary time 
T as units. 

It is now convenient to introduce potential variables. Potential pressure n and 
temperature 8 are defined by 

\R/cP 

p) , (2.12) 

T=0n6. (2.13) 

Remembering that 

^ ^ A , (1.4) 
cp 1 

using 8 and n instead of T and p and eliminating p from the equations via the equation 
of state of perfect gases 

p = pRT, (2.15) 

one obtains the following equations: 

kaM
2 — = -91n + 2.Ji3, (2.16) 

dt 
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with 

dit 
— = -n(y- 1)V- v , 
dt 

d6 n 
— = o, 
dt 

X - g 

M 2 - ^ \ 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
g*o 

where Xa is the ratio of the adiabatic and static temperature gradients and M2 can be 
interpreted as the ratio of a typical velocity to a free-fall velocity and is analogous to 
a Mach number squared. Such equations have been used by Ogura and Phillips (1962) 
to derive the anelastic approximation from the convection equations in the atmosphere. 
That approximation is obtained by an asymptotic expansion to 0(M2) of the preceding 
equations. The main property of the anelastic equations is that the acoustic waves have 
been filtered out and that they should be an accurate representation of purely convective 
phenomena. Consequently, it will be interesting to trace their role, in the final equations 
derived later, by considering the M2 parameter. (For the derivation of this approximation 
in a realistic stellar case, see Gough (1969).) 

One might wonder, at this stage, about the usefulness of potential variables. On top 
of the fact that they simplify somewhat the initial equations by giving only quadratic 
non-linearities, it will be seen that the linear problem for the complete velocity and 
thermodynamic fields makes them the natural variables to utilize. 

The polytropic state can be rewritten with the new potential variables, taking into 
account the units of time and length T and z0, as 

n0 = zm+i-llm+l)/*i, (2.21) 

00 = z 1 ( ' " + 1 ) / ' 1 - ' " , (2.22) 

C°=f-U- (2.23) 
XaM

2 

In terms of these variables, the hydrostatic mean state equation becomes 

9 0 ^ = Xa. (2.24) 
dz 

A quantity f(x, y, z, i) will be expressed as 

f(x,'y, z, t) =/0(z) + / ' ( * , y, z, i), (2.25) 
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where f0 describes the polytropic state. From Equations (2.16), (2.17), and (2.18), one 
can get equations for the primed quantities, 

dt LM2 LM2 A 
= - v ' -Vv' -

g'Vn' 

ZM2 
(2.26) 

— + 7r0(y- l)V-v' + -^w' = - v ' -VTT' -(>>- 1)TC'V-V' , 
dt dz 

(2.27) 

— + _ 2 W ' = _ v ' -V0' , 
3r dz 

(2.28) 

where w' is the vertical component of the velocity. The left-hand side of (2.26), (2.27), 
and (2.28) constitutes the linear problem. By Fourier-transforming it horizontally, one 
obtains 

3 v k + 0O 

dt XnM
2 

2TI J 

37tk \ 1 d7t0 

- zk7rk + —- 5,3 + 5/3 Qv = 
dz ' ) X„M2 dr 

d 
dk' j ( k - k ' ) - u k , + wk 

5z 

1 1 

In A„M2 
dk' flL / (k-k ' ) ; t k _ k - + — 7ik_k-5,.3 

oz 
(2.29) 

7t0(y- l)ik-uk + — 2 + «o (y - i ) — 
dz dz. 

1 

271 . 

+ oo w dk' / ( k - k ' ) - u k , + wk. 
dz. 

( y - i ) 
2TT 

dk' 7rt, z ( k - k ' ) u k _ k , + — w, 
<3z 

(2.30) 

30k d0o 1 

dt dz 2n 
dk' / ( k - k ' ) - u k - + wk, 

3z. 
(2.31) 
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Here k is the horizontal wavenumber vector with components (kx, ky, 0) • vk, nk and 6k 

are the Fourier-transforms of v', %', and 9', uk is the Fourier-transform of the horizontal 
velocity with components (wlt, u2k, 0), and vvk is the Fourier-transform of the vertical 
velocity. 

3. The Linear Problem 

3.1. THE GENERAL POLYTROPIC CASE 

The general problem of waves in a polytrope has been studied by Lamb (1932) in the 
stable case, by Spiegel and Unno (1962) in the unstable case and has been applied to 
the solar case by Gough (1978). When one considers the fit showed by Gough (1978) 
between the polytropic case and the solar case, one is struck by the fact that, at least 
for the category of modes he considers (high / acoustic modes), the fit is not that bad 
and that one of the main reasons for such a fit must be the stratified nature of the medium 
which imposes roughly, its characteristics on the modes. This is another reason to use 
potential variables which are variables that include physically part of the stratification 
effects. Some more complete expressions, in the case of a finite polytrope, will be given 
here along with the values for the %' and 6' fields, but the usual linear problem will not 
be detailed. For any variable / ' , a solution of the form 

f'{x, y, z, 0 = F(z) exp [i(at - k • x)] (3.1) 

is considered, where a and k are the dimensional frequency and horizontal wavenumber 
vector (of components kx and ky and modulus k). 

A general equation can be written for the divergence of the velocity field, 

8u' 8v' dw' . . 

8x 8y 8z 

or its horizontal Fourier-transform #k, 

* k = - - ( - k - u k + ^ , (3.3) 
8z 

^ + ( m + 2 ) ^ 
dz2 8z 

m + l 1,2 2 ,2 

Mo - k 

k2 

(1 k) 
M2a2 

xk = o . 

(3.4) 
y 

Defining î k such that 

«k = e f a Z k , (3-5) 

one obtains the usual equation (Lamb, 1932) 

d 2 ^ k / ~ r-v ^ k 

—— + (m + 2 - 0 —— 
8C2 8C 

C ^ + ( W I + 2 - O ^ 7 - « ^ = 0, (3.6) 
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where 

and 
C = 2kz, 

m + 1 , ., , x 1 
2a = co2 + (1 - Xa) — + m + 2 , 

M2CT2 

CO 

(3.7) 

(3.8) 

(3.9) 

Equation (3.8) is the differential equation of confluent hypergeometric functions. Two 
solutions are M(ix, m + 2, () and (1/C"+ ' ) M ( a - m-l, -m, Q, where Af(a, 6, C) is 
the confluent hypergeometric function of the first kind, sometimes called Kummer's 
function, and defined by 

M(a,b,Q= E (4 I 
o (b)j j \ 

where 
(a)0 = 1 and (a)j = a(a + 1 ) . . . (a +j - 1). 

The two solutions are independent, their Wronskian being 

l T [ l , 2 ] = -
(m + l)ec 

c 1 + 2 

(3.10) 

(3.11) 

(3.12) 

( varies from 2kzs to 2k{zs + d) and, in the case of an infinite polytrope, ( will vary from 
0 to oo. Once %k is known, it is fairly easy to deduce that the vertical velocity Wk is given 
by (Spiegel and Unno, 1962) 

(a>4-l)Wk = ye -f/2 

(m + \)k 
co - C ^ - ( « + l ) ^ + i^ico2 + 1) . 

(3.13) 

Some manipulations with the confluent hypergeometric functions can be used (see 
Appendix A) to cast the velocity into the more convenient form 

Wu -A -l-e-i/2 

2k 

y ' 

-M{a, m + 1, 0 + M(oi. - 1, m + 1, Q 
w2+ 1 

- C / 2 

+ B 
2k m(m + 1)( 

1 

co2+ 1 

c o 2 - l 

(a - m - l)M(a - m, - m + 1, Q + 

c o 2 - l 
(a - l)M(a - m - 1, - m + 1, () (3.14) 
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where A and B are arbitrary constants. Now, if boundary conditions are applied to Wk 

at the top and the bottom of the layer, a complicated equation determining the 
eigenvalues a>2 follows. 

3.2. THE INFINITE POLYTROPE 

This equation simplifies considerably in the case of an infinite polytrope for which £ 
varies from 0 to oo. We choose the simplest boundary conditions 

Wk(0) = W k (») = 0 , (3.15) 

and consider from now on only the case of an infinite polytrope. The boundary condition 
at C = 0 forces B = 0 in (3.14) and, using asymptotic expansions for the confluent 
hypergeometric functions when £-» oo, Spiegel and Unno (1962) established that the 
equation for the eigenvalues becomes simply 

a = 1 - « , n = 1, 2, 3, etc., (3.16) 

where a is given by (3.8). One obtains a quadratic equation for co2 whose solution is 
(Gough, 1978) 

m 

m+ 1 I 2 
nP + 

m m + 1 
(4 -1 ) 

1/2 

(3.17) 

np = 1, 2, 3, etc., (3.18) 

m 
\ n g + -

m+1 g 2 
n„ + 

m (4 -1 ) 
1/2 

(3.19) 

n = 1, 2, 3, etc. (3.20) 

From now on, the polytrope is supposed to be unstable, i.e. Xa < 1, which is seen from 
(2.19) to be the familiar condition of superadiabaticity. The squared frequencies co2. are 
positive and associated with the stable acoustic modes pn. The squared frequencies cof, 
are real and negative and associated with the unstable g~ modes whose strong 
interaction will give rise to turbulent convection. As far as the frequencies themselves 
are concerned, a special notation is required to differentiate the positive and negative 
parts of each frequency. One defines from (2.9) 

"' M 
\WnD\ , 

M 
UnJ, 

np = 1, 2, 3, etc. 

(3.21) 

(3.22) 

(3.23) 
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Since the co^ are strictly negative, it is convenient to define 

< = - < (3-24) 
and 

K " V | - ' (3.25) 
., . . , M ..... 

*k, -„ , = - ^ r l®«J . (3-2 6) 

ng = 1, 2, 3, etc. (3.27) 

The modes corresponding to (3.21), (3.22), (3.25), and (3.26) will be denoted respectively 
by P„ , P-„ , g'n , gZ„ . Before going on with the calculation of the eigenfunctions, it is 
time to mention here that the above procedure has left out two types of modes. These 
are modes which have zero divergence. The first type has 

< = 1 , (3.28) 

and is the familiar class of/-mode (or Kelvin mode) which will be associated with the 
index nf where nf is zero symbolically, 

M 

0 k . - B / = - ^ - (3-30) 
M 

The other type has zero frequency and corresponds to the toroidal modes of the 
spherical case; and index nt will later be associated with them. They are such that 

< = 0. 
One can now calculate the eigenvectors associated with each type of mode and start 

with the p and g modes. The calculation is much simplified by the fact that a is a negative 
integer. In this limit the confluent hypergeometric functions are expressible in terms of 
generalized Laguerre polynomials, 

M(l-n,m+l,Q= , ( " ~ ^ ) ! ^ _ , ( C ) , (3.31) 
(m+ 1)„_, 

where the notation (m + 1)„_! is the same as the one used in (3.11). The Laguerre 
polynomials are given by 

r-m An 

L™(Q = ei~ (e-cC" + m ) . (3.32) 
n\ d(" 
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Using (3.14) with B = 0 and A = co2. - 1, one gets 

-1 . -C/2 , 
2K 

where 

2 M ( 0 = L/l 
(m + l)|7l 

^ i ( 0 + 
(ofj\ + i ly'l 

' L / l - i (0 

(3.33) 

(3.34) 

where y stands for w ,̂ «g, - n p , or - «^. From now on \j\ will mean that the quantity that 
depends on j is independent of the sign of the frequency. From (3.5) and the 
normalization used in (3.33), one gets 

-C /2 

(m + 2)|,,_1 
^i-KO- (3.35) 

Using (3.33), (3.35), the linear part of Equations (2.26), (2.27), (2.28), and the following 
identity between generalized Laguerre polynomials: 

CLr,'(0 = -Z-WQ = (« + m)L^1(0-nL':(0, 
dC 

(3.36) 

it is easy to express the total eigenvector as 

K y 

«VJ 

UK\J\ 

VK\J\ 

WkM 

nK, 

&KJ 

_ 

= e-c/2 

k 2k Jl 

i ** - 1 
k 2k 

P\A0 

2k 

M2 

ei,i(C) 

JKj 

(y- \){m + 1) -"• ' rm-\<m+ l) /vl n /"£\ 

_ L ( m + l - m y ) f ( w + 1 ) / y 1_M_, 

, (3.37) 

where 

A/i(0 = 
(#»+ l)l,l ^ i ( 0 -

0>frl + 1 \j\ 
^ i - . ( 0 (3.38) 
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and j has the same significance as before. The eigenvector can be expressed with the 
polynomials of degree |y'|, Py\, and Qy\. The use of potential variables gives simple 
expressions, simply proportional to P\j\ and g ^ , for the thermodynamic part of the 
eigenvector which then looks like the velocity part. This will, later on, ease the task of 
finding orthogonality relations. The use of any of the original thermodynamic variables 
would not have had such an effect and would have given a combination of Py\ and Q\f\ 
in the thermodynamic part of the eigenvector. As far as the /-modes are concerned, it 
can be easily verified that they have an analogous expression to (3.37) with j = 0 if one 
adopts the conventions 

col 1, 

(m + 1)0 = 1, 

(3.39) 

(3.40) 

cot 

\j\ -ij-o 
1^,(0 = 0. 

One gets the eigenvectors (^ ± by replacing j by ±nf in (3.37) and defining 

^ ( 0 = ̂ 0 (0 = 1.7 ( 0 = 1 , 

eiB/i(o = Go (o = ^ ( o = i -
These modes have zero divergence 

Xk, ±nf
 = 0 • 

(3-41) 

(3.42) 

(3.43) 

(3.44) 

The toroidal modes can be found directly from the linear part of (2.29), (2.30), and (2.31) 
and have the following expression: 

<Pk,t=f(z) 0 

0 

0 

(3.45) 

where f(z) is an arbitrary function of z. Their divergence is also zero: 

Xk,„, = 0 . (3.46) 

One must now try to build some orthogonality relation between all the modes. One very 
useful result is the completeness of the system of polynomials {e~c/2£m/2L™([)}, 
n = 0, 1, 2, etc., with respect to square integrable functions on [0, + oo] (see for example 
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Sansone, 1959). This allows us to build at once the following toroidal eigenvectors; 

Vt,„, = e-C / 2L"(C) 

-K 

0 

0 

0 

(3.47) 

where n, = 0, 1, 2, etc. 

3.3. PROPERTIES OF THE LINEAR MODES 

The first problem that arises in building the non-linear theory with an expansion over 
the eigenmodes is the completeness problem. When one speaks of completeness 
properties, one should mention the vector space and the norm with respect to which 
completeness is defined. In stellar oscillation theory, completeness means, generally, 
completeness of the operator acting on the Lagrangian displacements § (which forms 
a Hilbert space) with respect to the norm 

< « 1 , « 2 > = Vtfd^r. (3.48) 

where §, and £2 are arbitrary displacement eigenvectors, M is the mass of the star, Mr 

the mass inside radius r, and * is complex conjugation. The results, so far, have been 
established in the frame of adiabatic theory with 'zero boundary conditions' and use 
fairly sophisticated techniques of functional analysis. Kaniel and Kovetz (1967) showed 
the existence of an expansion theorem; Eisenfeld (1969) established completeness in the 
convectively stable case. More recently, Dyson and Schutz (1979) generalized these 
results to the case of a differentially rotating body. Their proof appears to us as the most 
careful and most general one since it includes the convective case. In the non-rotating 
case the only condition on their completeness result is that the square of the local 
Brunt-Vaisala frequency has a lower bound (possibly negative!) over the whole star. 
Some more general results connected with these problems can be found in Eisenfeld 
(1968) and Weinberger (1968). In the present case, (3.48) is connected with the usual 
orthogonality relation between the velocity eigenmodes, 

J PoVV**dz= bik, (3.49) 

for a suitable normalization of the eigenvectors, and is due to the orthogonality relation 
of the generalized Laguerre polynomials 

OO 

J 
Tin + m + \) 

e - c r L ; r ( 0 L r ( 0 d C = ^ ) _ K i . W ; / > 0 ( 3 J 0 ) 
n\ 
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(p0 is proportional to (m). Equation (3.50) has the immediate consequence 

C"e-t[/,
B(0^/(0 + G„(Ofi/(0]dC = 

! 

2n\T(n + m + 1) 

" [(m+lU2 
1 + 

^ 2 - l 
col + 1 

m + n 

n 
(3.51) 

where « and / are any of the indices np, ng, and nf. (The formula is valid for nf if one 
follows the convention that nf is associated with the value 0 and [(cof„r\ - \)2]/nf = 0.) 
Let ~ip be the velocity part of the eigenvector </>, then the following relation ensues from 
(3.51), (3.17), and (3.19): 

GO 

! 
C"^,„-^,/dC = 0 if n±l, (3.52) 

where n and / are any of the indices np, ng, nf, or n„ and 

OC 

|« | !r( |« | + m + 1) 
C"lvt.J2dC = 

2k2 [ ( m + l k , ] 2 1 + cof 

CUf„ I + 1 

w + |«| 

(3.53) 

for « being an index np, ng, ^((3.53) is the same if one considers the negative frequency 
modes), and 

C"|ftl,J
2dC = A: 2 T(n, + m + 1) 

(3.54) 
«,! 

for all indices nt. 
What is needed is a similar orthogonality relation for the eigenvector <p. The problem 

is that the completeness result is valid only for the velocity part of the eigenvector <p 
which is insensitive to the sign of the frequency. (Only the thermodynamic part is 
sensitive to this sign.) Completeness is generally linked with the self-adjointness of the 
equations, and the equations for the velocity (after elimination of the thermodynamic 
variables) are self-adjoint with respect to the scalar product (3.49). However, it is fairly 
easy to prove that for no scalar product of the form 

(<P, * ) = zm {q>x W + cp21>2* + cp3 \p*) + a 4 4 (j94 i/r* + a 5 5 <p51/>5* ] d z , 

(3.55) 
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where <x44 and <x55 are arbitrary functions of z, is the differential operator i?(k, z, d/dz) 
involved in the linear part of (2.29), (2.30), and (2.31), and which satisfies the eigenvalue 
equation 

^ + ̂ (k,z, - W o , (3.56) 
dt \ dzj 

self-adjoint (one can find a bilinear form satisfying (3.55) and making if(k, z, d/dz) 
self-adjoint in appearance but this bilinear form is not positive definite). One can think 
of two ways to tackle the problem. 

3.3.1. The Use of New Unknown Variables 

The inspection of the eigenvector (3.37) reveals that in fact each component, when n 
varies, forms a complete basis in z-space. One can then use the scalar product (3.52), 
(3.53), and (3.54) for the velocity part and associate a variable Ak „(t) with it and 
similarly associate variables Bk „ (?), and Ck „(t) with the pressure and the temperature. 
One gets the expansions 

%=Z\„(')%,„(i (3-57) 
n 

Pk,4= I f l k . B ( 0 % . „ , 4 . (3-58) 
n 

Vk,5=ZCKn(t)cpk,n,5. (3-59) 
n 

This method will certainly provide completeness but it has the drawback of having 
several variables. 

3.3.2. The Use of the Adjoint Problem 

We choose the following scalar product in the five-dimensional space of the <p, 

((Pi 

OO 

.. ,Ak)= M<Pk,lW,l + <Pk,2,/'k,2 + <Pk,3>Ak,3) + 

+ a4<jok>4i/£4 + a5^ki5i/ 'k*i5]dz, (3.60) 
with 

a = z m , (3.61) 

a 4 = z - m + [ ( 2 ( m + l ) ) / v ] ) ( 3 6 2 ) 

a 5 = z - [ ( 2 ( m + l ) ) / y ] + 3 m + 2> ( 3 6 3 ) 

As already mentioned in (3.56), the eigenvectors are solution of 

^ + ̂  = 0 , (3.64) 
dt 
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where i £ is the five-dimensional operator 

JzJ, — 

laM
2 

XUM2 y 

So S 

0 

0 

1 

-&*io(y-i) -*>to(7- i ) — + to(y- i) — 
dz dz 

d^ 
dz 

A„M2 dz XaM
2 dz 

0 0 

. (3.65) 

The adjoint operator £$ is defined by 

( ^ k « t , "M = (fl» ^ fc) + [Jtffofc, fc)]S°, (3.66) 

where M(</»k, t^k) is the bilinear concomitant. The adjoint operator ifk
f is given by 

at-V, 

a ft 
— ikr 

a ft 
a4 4 ^ 2 ^-r ik„ 

<x4 XaM
2 

1 

a.4XaM
2 

a 

as 

0 

0 

0 

~ A P ~ 

— (aft,) + a0o — 
.dz oz_ 

1 d7t0 

^„A/2 dz 

a4 d7r0 

a dz 

« 4 . 
a 

( 7 - 1 ) 
a 

rc0(y- i ) * x 

7i0(y- 1 ) / ^ 

— (a47i0) + a47r0 — 
.dz dz_ 

0 

a5 dftj 

a dz 

0 

0 

(3.67) 

and the bilinear concomitant by 

ft, 
Miq^, VO = «4 " 0 (y - 1) q>u, 3 "Ak, 4 + a — " ^ <Pk, 4 <Af,: 

/ L M 2 
(3.68) 
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The boundary condition (3.15) makes q^ 3 vanish at z = 0 and z = oo; the same 
condition will be imposed on the adjoint eigenvectors, solutions of 

%f<Pk = i<%<Pk, (3.69) 

and, as a result, the bilinear concomitant (3.68) becomes equal to zero. 
It is easy now to calculate the eigenvectors of the adjoint operator by introducing 

solutions of the form (3.1). The calculation is simplified by the fact that the differential 
system obtained by eliminating the pressure and the temperature is self-adjoint with 
respect to the eigenvalues a2

 n. As a consequence, one obtains the same equation for 
the eigenvalues and the same 'velocity part' for the eigenvectors. The only part left to 
calculate is the adjoint pressure and temperature which are given by (3.67) and (3.69). 
One gets for the adjoint eigenvectors 

< j -

U. k, \j\ 

KM 

K 

Kj 

KJ 

= e 
-C /2 

k 2k J 

••H^° 

Ik 
fii/i(0 

-w. * c m- \-[(m+ l ) / y ] 

(y-\)2k2 (2k)' 

£ - m - 2 + [ ( m + l)/y] 

a* 2kM2 (2k)-m-2 + [(m+X)/^ 

- l - [ ( m + l ) / y ] l ' l V - / 

Qu\(0 

(3.70) 

The toroidal modes and/modes are the same as in (3.39)-(3.44), and (3.45) (with the 
same conventions). From (3.64), (3.66), and (3.69), one gets the following properties: 

so that, using (3.66), one obtains 

K,,-ffk,/)(<Pk,y, ^k,/) = °> 

which implies, when crk y and ak , are different, the orthogonality property 

(<Pk,./, ^k,/) = ° i f ffk,,#ffk,/-

Let now the eigenvectors be normalized such that 

(*t.,,1tf,/)=V 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 
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For this, one needs to calculate 

(</V,, tLj) = .<, r f 
0 

r - l y 

(2Jfc)™ 4k2 WAD)2 + (Quito)2] + 

( „ + 1 ) ^ , ^ , ( 0 + ^ ^ G & | ( 0 " 
(2fc)m 2A:2 L 

if 7" is any of np, ng, nf, -np, -ng, -nf. For the toroidal modes, one gets 

d£ (%,„,. *£„,) = J : ^ — k2[L™{{)]2 — 
(2kr Ik 

d£ 

2fc ' 

(3.76) 

(3.77) 

The calculation of (3.76) is tedious but straightforward; one has to use the dispersion 
relation (3.16) and the following identities for Laguerre polynomials 

J 

I 
A = 0 

LT(O= I m~\Q, 

and 

CO 

1 e - c r - i L ™ ( 0 L r ( 0 d C = 
r[InfQ,Q + m + l ] 

[InfU0]!»i 

One gets 

( / t ^ w f t ^ i r2 \j\i-r(\j\+m + i) 
(<Pk » wl f) - N(K J) = 

'J -J (2kT+1 k2 [(m+l\A]2 

x 1 + 
m 

1 + 
coh + 1 

H i - l 
CO2,., + 1 

yl • - 171 J 

m + 1 - my + (m + l)co • 4 
tny(D2j\ 

for 7 belonging to ±np, ±ng, ±nf, and 

(<Pk,„,> ^ln) = N(k,nt) = 
1 A:2T(«( + w + 1) 

(2*r n,\ 

This suggests that we define 

*k,j=9k.j[NQL,M-1/2 

(3.78) 

(3.79) 

(3.80) 

(3.81) 

(3.82) 
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and 

Vlj = *KjlW>j)]-i / 2 (3.83) 

for any index j , so that (3.75) is satisfied. (If N(k,j) is negative, one takes one of the 
imaginary roots.) 

It is now possible to develop on the basis of the eigenvectors 4>k „. The general vector 
&k, solution of (2.29), (2.30), and (2.31), is written 

*k= I^ k . J , (0«t ,» , (3.84) 

where, by convection, a summation over index j covers all the indices ± np, ± ng, ± nf, 
and nt. The linear part of the equation, given by (3.64), becomes 

dt 
+ ^k #k = X Uk, j - 'Ok, JAK j) $k, j & , (3.85) 

and the equations (2.29), (2.30), and (2.31) are now 

+ ao 

X Uk>, - i(Xk.y*k.,)*k» = " -1" I [ ( dk' j i ( k - k ' ) - * k - , , + 

+ <*V„,3 
& #„ 

+ ao 

' • •^'••^-'•• ' •s^SlI*' 

x <*k'.y.s l ( k - k ' ) * k _ k ' . / . 4 + V $ " - k ' , / , 4 ^ 3 
oz 

- ^ k ' . y ^ k - k ' , / > 

(3.86) 

I(4r'\AAy.4=-r I I I dk' 
j 2n J,I 

i ( k - k ' ) - * k ' . , + 

+ <pL'.y,3 & 
^ - k ' , / , 4 f ^ k ' . y ^ k - k ' , / " 

Z7T y,/ 
dk' ^ k - . ^ x 

i ( k - k ' ) - « k - k - , / + — ^ k - k , / , 3 dz 
•^k ' . y -^k -k ' , / » (3.87) 
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K4 r 'A ,A J ) $ k , ; , 5= -— I I I dk' x 
j 27C jj 

/(k-k')-*V,y+<*V,y,3 dz 
*k-k-./.5W,A-k'./, (3-88) 

where # k . is the velocity part of the eigenvector and <Pk j the horizontal velocity 
vector. The evolution equation of the amplitude of the mode n follows by taking the 
outer product with *Pk n, 

^k,n l(Tk,n^k,n~ Z-i " k ^ k , k ' ^ k ' . j ^ k - k ' , / > (3.89) 

where Ck'"k. are the coupling coefficients given in Appendix B. In general, in the 
development (3.84), the Ak j{i) are complex coefficients. If one is assured of com­
pleteness, the system of Equations (3.89) for all k and n is equivalent to the initial 
non-linear equations. Given the completeness result about the velocity vector, com­
pleteness in the present case seems to depend only on the fact that, in the linear problem, 
the relations which link 77k „ and 0k „ to the velocity have coefficients which do not 
cancel and it seems to be the case here. 

4. The Non-Linear Problem 

At this point, the modes must be classified according to the criterion of Section 1. So 
the / and p modes (respectively g and toroi'dal) will be considered as pulsating (resp. 
convective) modes and are associated symbolically with the index p (resp. c). The 
equations for both kinds of modes become 

dt 
^k,P i°k,pAk,p- 2J I " ^-k!k2^^k',ci-^k-k',c2

 + 

+ z 
Ci.Pl J 

Hk' C^P^P A A + 

+ I Hk' CP*C*P A A + 
UK <^k k - Jlk'<piSlk _ k ' , c 2 ^ 

+ I 
Pit Pi <1 J 

Hk' CPlP2P A A 
U K ^-k, k' AW ,Pl

Ak-k' ,p2i 
(4.1) 
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~ T ^ k , c + *k, c^k , c _ L, I <**C ^ k ! k 2 , C ^ k ' , c i ^ k -

dt c„c 

+ I 

P\,c2 J 

°-K C"k!k' - ^ k ' . n ^ k - k ' , / 7 2
 + 

dk Ck,'k2-c^k\/),^k-k',c2 + 

! 
ok CkV ^k,/)i^k~k',/)2 • (4.2) 

In these equations, indices c, c,, and c2 (resp. /?, /?,, and />2)
 a r e associated with 

convective (resp. pulsating) modes. <rk is real and &k c is the imaginary part of ak n 

or ffk _„ (it is zero for toroidal modes). All the different-types of coupling have been 
shown and, as far as interpretation goes, (4.1) is the system of non-linear equations that 
governs the pulsation. The terms on the right-hand side of (4.1) have a clear physical 
meaning. The first term is the forcing by the convection and it is very much like a 
'Lighthill type' forcing term, though Lighthill (1952) did his calculation for a homo­
geneous case (see also Lighthill, 1959,1962; Proudman, 1952; and Pierce and Coroniti, 
1966; for a possible example of this type of coupling in geophysics). The second and 
third terms will have a net damping effect on the pulsation (positive or negative!) and 
the last term is the wave-wave interaction which gives rise to wave-turbulence. 

To simplify these equations, one must exploit the fact that the pulsation is 'almost 
linear'. This means that we shall try to deal with the pulsation problem as with a wave 
turbulence problem (i.e. a weakly non linear problem) whereas the convection will stay 
a fully non-linear problem. Wave-turbulence problems are a familiar class of problems 
in water-wave theory and in plasma physics. The general problem of weak interaction 
of surface waves has been studied by Benney and Saffman (1966), Hasselman (1966, 
1968), and reviewed by Phillips (1981). 

In plasma physics, the evolution of wave correlations has been studied by Davidson 
(1967). One of the fundamental differences between these cases and the solar case is 
the inhomogeneity: in general, the wave problems are homogeneous and the linear 
properties of the problem are simpler than in Section 3. The other difference is that 
turbulence, when introduced, is generally considered as an external source (in the 
problem of wind-driven surface waves for instance) and is never perturbed by the waves. 
In the solar case, it is the goal of the theory to perturb the convection with the 
oscillations; as a result one has to expect a much more complicated problem. 
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Some conditions on Ak come from the fact that the vector 

<p -!- [ f < I > k ( z , 0 e ' k x d k = ^ £ 
2n J J 2n j 

AKJ(t)<PKJ(z)e'k*dk 

(4.3) 

is real. These are 

for p and / modes: A _ k, -j 
A* (4.4) 

for g and toroidal modes: A_k • = Afcj . (4.5) 

There are two ways to treat equations (4.1) and (4.2). Either one chooses to expand first 
with respect to a small parameter and then to carry out statistical averages to obtain 
equations for the evolution of the correlations or one does these in reverse order. In both 
cases, one comes up with the same equations though there is a certain amount of debate 
in the literature about the domain of validity of the expansions which seems to depend 
on the path followed. In any case, to obtain a uniform development, one has to use 
multi-time expansions, i.e. perturb the frequencies of the pulsation modes. Here, the 
method is basically the same as in wave turbulence theory, except that strongly unstable 
modes (the amplitudes Ak c) are now present and they require special treatment. It will 
be seen that indeed, contrary to the case of wave turbulence, these convective terms 
dominate the problem. The way to really deal with the problem here is to compute first 
the different coupling coefficients: there is an infinity of them and it might look a 
hopeless task, but it is simplified by the symmetries with respect to the indices that these 
coefficients have, and the fact that one can apply well established asymptotic formulae 
for the eigenfrequencies and eigenvectors for certain ranges of indices. The key question 
of the coupling is the ordering of Equations (4.1) and (4.2) when one develops them with 
respect to the pulsation amplitude (which is small). One has also to understand why it 
is small. Only when one has defined the expansion procedure and the scaling will it be 
possible to interpret the expression 'perturbation of the convection by the pulsation' 
from the equations and there are a priori several ways to do it. We shall propose one 
that looks reasonable to us and corresponds to what we think about the physics of the 
coupling, but others may be imagined. The settlement of this question demands the 
computation of the respective strengths of the coupling coefficients. We shall not go into 
the detailed calculation of these coupling coefficients here (it involves rather heavy 
numerical calculations which are not the object of this paper). The following method 
of scaling the coupling coefficients is introduced: one introduces e (the small 
bookkeeping parameter of the problem) per index p of the coupling coefficients. 
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So one 

and so on 

gets 

^ k , k' 

*-k, k' 

'-k, k' 

(^PlP2P 
^ k , k ' 

- u k , k' » 

= £ 2 ^ ir , 
. . . One looks for a 

^ k , c = 

"™k,/> = 

^ + < : 

: A% + ^ 

solution of the form 

>c + e2A^c + ..., 

>p + e2A<£>p + .... 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

It is also necessary to introduce a procedure to get rid of resonant terms in the 
'oscillatory type equations'. There are several ways to do it. Davidson (1967) uses, for 
example, a two-timing method. Here the frequencies are perturbed according to a 
procedure that is akin to the Poincare-Linds tedt method. The new time sKp such that 

t = sKp(l + ec^p + £
2a^p+...) (4.12) 

is introduced. <xk'>„ o£p, etc. are chosen so as to kill the resonances appearing on the 
right-hand side of Equation (4.1). There are other methods to deal with this problem 
but they all give essentially the same results: they kill the secular terms so that uniformly 
valid expansions can be obtained. (4.12) establishes a relation between the new shifted 
frequencies of the system and the finite amplitudes of the perturbations. 

The first equation that appears to order £° is 

dt 

+ oo 

This is a strongly non-linear problem and an answer to it necessarily asks for a theory 
of convection (for instance, some closure scheme on the B B G K Y hierarchy of equations 
for the correlations derived from (IV. 13) such as the eddy damped quasi-normal 
markovian scheme (Orszag, 1970) or the test field model (Kraichnan, 1971, 1972); we 
shall try closures of this type in a later paper). This problem will be supposed to have 
been solved; in fact, it is the problem on which one wants to put constraints from 
pulsation theory. (4.13) describes convection in the unperturbed star. The other 
equations to order e° are 

^ - ^ - , • ^ ^ = 0 , (4.14) 
dsKP 

with solutions 

A^p = aKpe'^^. (4.15) 
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To order e, the following equations are obtained: 

TAVc + 9k.XVc = I f \ d k ' DnnAV,CiA<&w,ei + A<£\ClA™k..C2) + 
at ct,c2 J J 

— OO 

+ OO 

+ d k ' z ^ c A ^ A ' V J , (4.i6) 

d ^ k , P 

A-k,p- iaV,pAk,p - '°k,pffk,p-^k,p + 

d k ' Z > ^ < > < > k ' , c 2 - (4-17) 

Equation (4.17) describes the forcing of the pulsation by the convective terms. ak\p is 
chosen in such a way that it kills the resonant part of these convective terms. 
Equation (4.17) is generally the type of equation treated under various forms in the 
literature to describe the coupling between convection and pulsation (see Goldreich and 
Keeley, 1977b). However one can barely speak of'coupling', since convection acts as 
a simple forcing term. Equation (4.16) is the equation for the perturbation of the 
convection. It would be more correct, at this stage, to reason directly on correlations, 
since perturbing the unstable equation (4.2) is a bit ambiguous. One could suppose that 
(Ak,p. Akp, > reaches a steady state and then perturb the correlation. But the results, 
as far as equations and expansions are concerned, remain the same. Equation (4.16) is 
very different in nature from Equation (4.13) despite the resemblance of the left-hand 
sides: there is no non-linear term on the right-hand side of (4.16). The first term is linear 
in the amplitude of the perturbed convection and will act as a damping (positive or 
negative) while the two remaining terms induce pulsation-convection coupling. Conse­
quently, Equation (4.16) will be easier to deal with than (4.13). To order e2, one gets the 
equation 

~ Ak,p - iGk,pAk p = iGk,pGk,pAk p + ivk,pGk,pAk p + 
dsKP 

+ I dk'^- k - (<> ) C ,^ k , C 2 + A l , . , ,< lk . ,J + 
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+ L 
P i , <=2 

U K UV., k' AW ,CIA\L-W ,pi ^ 

d k ' ^ g M W , , < > C2. (4.18) 

Equation (4.18) is the equation we really want. To this order, a^p is chosen to kill the 
resonances of the right-hand side of the equation. One can now say that the pulsation 
and the convection have really perturbed each other and that the resulting effect for the 
pulsation is Equation (4.18). So, in our opinion, Equations (4.13), (4.14), (4.16), (4.17), 
and (4.18) are the equations applicable to the solar case. One can see that, to order e2, 
with the scaling chosen, there is still no interaction of the pulsation with itself. 
Equation (4.12), to order e2, gives the frequency shifts as a function of e. As already 
emphasized, one can write equations for the correlations between the different amplitudes 
and it is these equations that have to be dealt with numerically. But, as far as establishing 
the equations is concerned, the physical interpretation of the different terms that appear 
in the expansion is more straightforward if one deals directly with the amplitudes. 

5. Conclusion and Prospects 

The polytropic problem is a much simplified version of the full solar problem. In the 
solar case, five facts complicate the problem. First one has to use a solar model with 
a convective zone calculated by mixing length theory as the static state. Second, the 
linear problem of the calculation of eigenmodes and eigenfrequencies has more 
complicated boundary conditions: one has to allow for running waves above the cutoff 
frequency which act as a drain of energy on the system and one generally has to put 
a model atmosphere on top of the solar model to have realistic boundary conditions. 
Third, the eigenmodes are more varied; there are also g + modes that will be put into 
the wave category (according to the criterion of Section 1). Fourth, some overstable 
pulsations can be found, for ^-modes for instance, due to K-mechanism (Ando and 
Osaki, 1975). Finally one has to operate in spherical geometry. None of these facts 
makes it more difficult, in theory, to deal with the problem along the lines of Sections 3 
and 4. In the problem of non-radial pulsation, perturbation of the convective flux has 
generally been ignored. So one would use as an eigenbasis the eigenvectors and 
eigenvalues calculated without coupling and combine them in the non-linear calculation 
of Section 4, where the perturbation of the convective flux effectively appears. From a 
numerical point of view, the eigenvectors and eigenfunctions can be calculated one by 
one for low / and one can use the various asymptotic formulae known for the others. 
Two cases must be considered to treat the problem of overstability. If it is a pulsation 
mode which is overstable, then one can scale the unstable part by an £ and have it 
interact in the next order, as in the usual wave-turbulence problem (the system is weakly 
non-linear). If it is a convective mode that is overstable, one can keep convective 
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frequencies with imaginary and real parts in the zeroth order problem of the convection 
and expand on the convective modes with these frequencies. 

The procedure of Section 4 links the convection spectrum to the pulsation spectrum. 
There are three ways to deal with it. First one can try to keep only a few significant 
modes of each type, truncate, and study the dynamical system that follows. Second, one 
can try arbitrary theories (mixing length or more recent closures) on Equation (4.13) to 
see the consequences on the pulsation modes. Third, one can try to use all the dynamical 
information measured so far on the modes (see Grec et al, 1983; Bos and Hill, 1983) 
and the more complete information that will be provided by DISCO (see Bonnet, 1983) 
to derive constraints on the convection spectrum in the solar case. It is a complicated 
inverse scattering problem, but, as mentioned earlier, this would be the way to under­
stand solar convection a bit better. Moreover more constraints could be derived by 
applying the same method to the erratically varying white dwarfs that have recently been 
observed. One can note that the convective equations can be simplified further by 
differentiating between the equations where \ c > 0 and those where &k c < 0. In the 
first case, the mode is strongly damped and one can put it equal to zero. These modes 
can be eliminated and this brings in new coupling coefficients for the modes with ffk c < 0. 
What we have in mind is that the interaction of these remaining modes produces a 
spectrum that is perhaps analogous to what is found in the ocean: broad peaks 
(corresponding to the different cells) superposed on a continuum. 

In conclusion, the nature of the non-linear problem in Section 4 should be 
emphasized. It is homogeneous in k (i.e. horizontally) and the inhomogeneity appears 
through the coupling coefficients. Because of this very inhomogeneity, it might turn out 
that the turbulence problem has simpler features than the usual homogeneous turbulence 
problems because the coupling coefficients will be imposed roughly by the stratification 
and one has to expect strong selection rules coming from this. The energy transfers might 
then be markedly different due to the compressible character of the problem. 
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Appendix A 

The two following relations concerning confluent hypergeometric functions will be 
useful in what follows: 

— M(a,b,0=~M(a+l,b+l,0, (A.1) 
d( b 
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(A.2) 

From this, it is easy to deduce the identities 

C — M(a, b, Q = aM{a + 1, b, Q - aM(a, b, Q, 
d( 

(A. 3) 

W{a, b, Q = (a - b)M(a - 1, b, Q + (b - 2a)M(a, b, Q + aM(a + 1, b, Q . 

(A.4) 

The term between brackets of Equation (3.13) is now calculated for each of the 
independent solutions found for i/'k. One starts with M{<x, m + 2, (): 

Hx = co2 £ (m + l)M(a, w + 2, 4) 
<3C 

+ KC1 + «2)M(a, m + 2, Q . 

Using (A.3) and (A.4) to express the first and third terms, one gets 

(A. 5) 

7/, = - (1 - co2)M{a + 1, m + 2, Q + m (1 - co2) + 1 - a 

x M(a, w + 2, C) + | (1 + w2)(a - w - 2)M(a - 1, m + 2, C) • (A.6) 

(A.6) can now be cast into the form 

H\ = {aM(a. + 1, m + 2, Q + (m + 1 - a)A/(a, m + 2, ()} + 

+ * + W {(1 - a)A/(a, m + 2, Q + (a - m - 2)Af (a - 1, w + 2, 0 } . 
2 

(A.7) 

Using the identity 

(l + a - b)M(a, b, Q - aM{a + 1, b, 0 + (b - l)M(a, b - 1, Q = 0 , (A.8) 

to express the first and fourth terms in (A.7), (A.7) finally becomes 

Hl = (m+ l)\]—0^M(a,m+ 1, Q - ^ - ^ M ( a - 1, m + 1, Q } . 

(A. 9) 
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Applying the same kind of transformation to 

H2 = (o2 i - C 
_3 M(cn- m - 1, -m, () 

Ym + 1 

(m + 1) 
Ym + 1 

M(a - m - 1, - w, C) > + 

+ ^(1 + co2) 
M ( a - m - I, - m, Q 

Ym 
(A. 10) 

one obtains 

u- v2 S *„ 1 n , w, , 2 . A / ( a - w - 1 , - w , 0 / / , = A n a - m- 1, -m, C) + ^(1 + co ) 

Using (A.l) and (A.8), one obtains the identity 

(A. 11) 

b —M{a, b, 0 = bM(a, b, Q + (a - b)M(a, b + 1, Q , 
d ( 

(A. 12) 

which can be used to transform the first term in (A. 11), 

H., 
1 f ( l - c o 2 ) 

lm I 2 
M(a - m - 1, - m, Q + 

( a - l ) c o 2 

m 

x M(a- m - I, -m + 1, 0 (A. 13) 

Using (A.8) to transform the first term, one gets 

1 [ 1 + co2 (a - 1) 
H2 = 

m Cm I 2 

1 - a>2\ ( a - m - 1) 

Af (a - m - 1, - w + 1, C) • 

Af(a- m, -m + 1, () 
w 

(A. 14) 

When one regroups /f, and 7f2 given by (A.9) and (A. 14) with (3.13), one gets (3.14) 
for the velocity. 
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Appendix B 

The expression for the coupling coefficient Ck'"k. is the following: 

ri,n — 
^ k k' — 

+ <*V,,,3 

1 1 

•CO 

~ fdzz™{i(k-kT^,(*k-k',/•*£„) + 
0 

X„M2 In 
fczm4>v,j,s i (k-k ' ) -*5[ .B«i l - k . . / .4 + 

+ (j^-WJ^Vln, 

1 
271 

( J z z - m + [ ( 2 ( m + l))/y] 
/ ( k - k ' ) - « P k , y ^ k - k , / , 4 ^ k , „ , 4 + 

+ ^ k , „ 3 f — ^ - k ' . / . 4 j * k , » , 4 -

( y - D 
2TT 

J . _ - m + [(2(/w+ l))/y] (fi U/t 
Q Z Z * k ' , > , 4 * k , n, 4 i ( k - k ' ) A - k - , / + 

+ u * — 

2TC 

C J Z z - [(2(m + 1 ))/y] + 3m + 2 

^• .y . 3 (£* k -k - . / . 5 )«V t .„ , : 

/ (k-k ' ) -4>k, t^k_k. , / , 5
,Pk

t , „ , 5 + 

(B.l) 

where the symbols $* and IP1" have the same meanings as those introduced for <P. 
Ingeneral, performing the integrals in z will give rise to some selection rules between j , 
I, and n. 
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