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Abstract
An analytical expression for the focal intensity of a laser pulse was obtained for an asymmetric out-of-plane compressor
with gratings of arbitrary surface shape. The focal intensity is most strongly affected by the linear angular chirp caused
by the spatial shift of different frequencies on the second and third gratings. The chirp can be eliminated by simply
rotating the fourth grating by an optimal angle, which significantly reduces the requirements for the grating quality. It is
shown that the decrease in the focal intensity depends on the product of the grating surface root mean square and pulse
spectrum bandwidth. With low-quality gratings, spectrum narrowing would not reduce focal intensity; contrariwise, it
may even slightly increase it.
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1. Introduction

Nearly all high-power femtosecond lasers are based on
chirped pulse amplification (CPA)[1] or optical parametric
chirped pulse amplification (OPCPA)[2] architecture. The
compressor is a key element of such lasers, especially multi-
PW ones. The vast majority of lasers use a classical Treacy
compressor (TC)[3], consisting of two identical pairs of
diffraction gratings. The gratings in each pair are parallel and
the pairs mirror each other, that is, it is a fully symmetric
compressor (SC). The beam in the compressor propagates
only in the horizontal plane (in the diffraction plane). In
other words, the wave vector at any compressor point and
at any frequency lies in the xz plane, so the TC is a plane
compressor (PC). The TC features have been studied in
many works, for example, by Martinez[4], Bromage et al.[5],
Yakovlev[6] and Romanov and Yushkov[7]. The TC is char-
acterized only by three parameters: the distance between the
gratings L, the groove density N and the angle of incidence
α. In recent years, two directions of TC modification with
more parameters have been discussed in the literature; see
Table 1. The first direction – an asymmetric compressor

Correspondence to: E. Khazanov, Gaponov-Grekhov Institute of
Applied Physics of the Russian Academy of Sciences, Niznij Novgorod
603950, Russia. Email: efimkhazanov@gmail.com

(AC) – is based on the rejection of symmetry. The second
one – an out-of-plane compressor (OC) – is based on the
rejection of plane geometry.

An AC, in which the distances L between the gratings
in the pairs are different, was proposed and numerically
studied by Shen et al.[8]. An important AC property is the
smoothing of fluence fluctuations at the output, which can
significantly reduce the probability of optical breakdown of
the fourth grating, adaptive mirror and focusing parabola. An
analytical theory of the AC, in which the grating pairs may
differ not only in L, but also in N and α (Figure 1(a)), was
constructed by Khazanov[9]. It was shown theoretically that
no compressor asymmetry reduces the focal intensity, and
this conclusion is also valid for a compressor with one pair of
gratings, which is a particular case of the AC[10–12] (Table 1).
Note also that the compressor asymmetry by no means
excludes the possibility of pulse post-compression[13,14], as
shown by Yang et al.[15]; it even expands the potential
for its applications thanks to the above-mentioned beam
smoothing[16]. The pulse self-compression after the AC is
discussed by Chen et al.[17].

The angle of incidence γ in the plane normal to the
diffraction plane is different from zero (Figure 1(b)) in
the OC[18–25]. The OC is used, for example, for spectral
beam combining[23] and for compressing narrowband
pulses[24]. Both multilayer dielectric and gold gratings in the
out-of-plane geometry can have a reflection coefficient
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2 E. Khazanov

Table 1. Parameters of different types of compressors (Y ≡ α,N,γ ,L).

Figure 1. Compressor schematic (asymmetric, out-of-plane): (a) top view; (b) side view. Green lines, beam at central frequency ω0; red lines, beam at
arbitrary frequency ω shifted to the red part of the spectrum; AOPDF, acousto-optic programmable dispersive filter; AM, adaptive mirror.

almost the same as in plane geometry[20]. The radiation
polarization in the OC was discussed by Smith et al.[20]

and Li[22]. Khazanov[26] showed that in the OC, effective
smoothing of the output beam is possible if the angle γ is
different in the first and second pairs of gratings, which was
later confirmed experimentally[27]. It was proposed to use
the OC to increase the output power by reducing the incident
angle α[28]. In a particular case of the OC, when α is equal to
the Littrow angle αL, the compressor ‘becomes’ plane again,

which greatly simplifies its experimental implementation.
Such a compressor has a number of additional advantages[20],
one of which is the possibility of using multilayer dielectric
gratings, the reflection band of which rapidly narrows with
increasing α − αL, which makes them unsuitable for the
TC in broadband lasers[25]. This compressor, given that it is
symmetric, is called a Littrow compressor (LC). In general,
an asymmetric out-of-plane compressor (AOC) has eight
parameters; all the others are its particular cases (Table 1).
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Dependence of the focal intensity of a femtosecond laser pulse 3

Both the AC and OC are quite promising as they enable
pulse power enhancement. However, the most important
parameter is the focal intensity rather than the power. To
increase focal intensity, the radiation should be Fourier-
limited not only in time, but also in space, that is, the
pulse should have a constant spectral phase and the beam a
constant spatial phase (plane wavefront). For this purpose,
various dispersion management methods are widely used,
including an acousto-optic programmable dispersive filter
(AOPDF)[29], as well as adaptive mirrors[30]. Both these
technologies are currently well developed and effectively
correct temporal and spectral phase distortions separately,
but, in principle, they cannot compensate for space–time
coupling. Since diffraction gratings are not perfectly plane,
any compressor inevitably introduces among others space–
time coupling phase distortions, which reduce the focal
intensity even with ideal operation of the AOPDF and adap-
tive mirror. This reduction has been numerically studied in
many works[11,31–38] for specific compressor parameters, but
we are not aware of any analytical results. Different methods
of space–time coupling compensation are also discussed
in many works[11,31–38], but all of them are difficult for
experimental implementation.

In this work, the focal intensity is found analytically for
an arbitrary shape of the surface of the diffraction gratings
for the AOC, that is, for any compressor from Table 1. In
addition, a simple method of compensating for space–time
coupling is proposed, which consists of two-angle adjusting
of the G4 grating, which allows us to significantly increase
the focal intensity and/or reduce the requirements for the
accuracy of grating manufacturing.

2. Formulation of the problem

We will consider an AOC (Figure 1) consisting of two pairs
of gratings with groove density N1,2, distance between the
gratings L1,2 and angles of incidence on the first grating
α1,2 and γ1,2 in the zx and zy planes, respectively; the
subscripts 1 and 2 correspond to the first and second grat-
ing pairs. All the other compressors listed in Table 1 are
particular cases of AOCs. In the SC, gratings G1 and G4
(as well as G2 and G3) are antiparallel in both planes,
which corresponds to the replacement of the transverse wave
vector κ by −κ and, consequently, to the change in the sign
of the angles of incidence: α2 = −α1 and γ2 = −γ1. For
convenience, we will consider the second pair of gratings
in a coordinate system rotated around the z-axis by 180

◦

relative to the laboratory system for all angles of incidence
α1,2 and γ1,2 to be positive, that is, α2 = α1 and γ2 = γ1 in
the SC. Let the time spectrum of the field at each point of the
cross-section r be given at the input (point 0) in the following
form:

E0 (ω,r) = eiϕin(ω)+iϕD(ω)eiHyeiϕ0(ω,r) |E0 (ω,r)|, (1)

where ϕ0 (ω,r) is the space phase characterizing the
aberrations (wavefront distortions) of the input field and
ϕin (ω) is the spectrum phase without allowance for the
phase introduced by the AOPDF ϕD (ω),

H = ω

c
sinγ1. (2)

The (ω,r)-representation of the field is convenient for
describing an imperfect grating surface with hn (r) profile,
where n = 1,2,3,4 is the number of the grating. The incident
and the reflected fields in this representation are related by
the phase ϕn (ω,r):

Ereflected (ω,r) = eiϕn(ω,r)Eincident (ω,r) . (3)

In the model presented in the Appendix A, the expression for
ϕn (ω,r) is written as follows

ϕn (ω,r) = −ω

c
dn (ω,r), (4)

where

dn (ω,r) = cosγ1,2
(
cosθ1,2 (ω)+ cosα1,2

)
hn

(
x

cosα1,2
; y

cosγ1,2

)
,

(5)

sinθ1,2 (ω) = − 2πc
ωcosγ1,2

N1,2 + sinα1,2. (6)

Hereinafter, the indices 1, 2 for α,θ,γ and N correspond
to the first (n = 1,2) and second (n = 3,4) grating pairs,
respectively. Note that Equation (4) is written in the reference
frame aligned with the geometric center of the grating, rather
than in the laboratory coordinate system. As can be seen
from Equation (5), after reflection from the grating, the phase
front repeats the shape of the grating, but the proportionality
coefficient depends on the frequency, which obviously leads
to space–time coupling and a decrease in focal intensity. To
the best of our knowledge, this effect has not been previously
studied in the literature. In particular, an approximate model
in which dn (ω,r) = dn (ω0,r) was considered by Li et al.[11].
The field in the (t,r)-representation at any compressor point
j (j = 0, 1, . . ., 6, see Figure 1(a)) is an inverse Fourier
transform of Ej (ω,r):

Ej (t,r) =
∫

Ej (ω,r)e−iωtdω. (7)

Here and below, all integrals are over infinite limits, and the
multiplier

√
2π in the Fourier transforms is omitted, as it

does not affect the final result. Analogously, the field in the
(ω,κ)-representation is designated as Ej (ω,κ):

Ej (ω,κ) =
∫

Ej (ω,r)eiκrdr. (8)
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It is convenient to describe the field propagation at reflection
from two parallel gratings in the (ω,κ)-representation, in
which, for the minus first diffraction order, the input and
output fields are related by the �p1,2 phase[9]:

�p1,2
(
ω,kx,ky

) = L1,2kzx

(
cosθ̃1,2 + cos

(
α1,2 ± atan

kx

kz

))
,

(9)

where k2
zx = ω2

c2 − k2
y , k2

z = ω2

c2 − k2
x − k2

y and θ̃ is the angle of
reflection from the grating:

sinθ̃1,2
(
ω,kx,ky

) = −2π

kzx
N1,2 + sin

(
α1,2 ± atan

kx

kz

)
. (10)

By neglecting the diffraction, Equation (9) may be signifi-
cantly simplified by expanding it into a Taylor series around

the point
(

kx

ky

)
= κ1,2 =

(
0

ω
c sinγ1,2

)
:

�p1,2 (ω,κ) = �1,2 (ω)+R1,2(ω)κ, (11)

where

�1,2 (ω) = �p1,2
(
ω,κ = κ1,2

)−R1,2 (ω)κ1,2, (12)

R1,2 (ω) ≡ ∂�p1,2
(
ω,κ = κ1,2

)
∂κ

= ±L

⎛⎝ − sin(θ1,2(ω)+α1,2)
cosθ1,2(ω)

− tanγ1,2
1+cos(θ1,2(ω)+α1,2)

cosθ1,2(ω)

⎞⎠ . (13)

The ± sign in Equations (9) and (13) corresponds to the
above convention on the positiveness of α1,2 and γ1,2.
The R1,2 (ω) vector shows the beam displacement at
frequency ω relative to the z-axis. For α1 > α1L (ω0) (the
case depicted in Figure 1(a)), R1x (ω) < 0 for the first
grating pair and R2x (ω) > 0 for the second one. In the
LC, α1 = α1L (ω0); hence, for ω < ω0,R1x (ω) > 0 and for
ω < ω0,R1x (ω) < 0. In the SC, R1 (ω)+R2 (ω) = 0. In the
PC, R1y (ω) = R2y (ω) = 0 – there is no beam displacement
along the y-axis. Note that, according to Equations (6) and
(10), θ1,2 (ω) = θ̃1,2

(
ω,kx = 0,ky = ω

c sinγ1,2
)
.

3. Focal intensity for arbitrary phase distortions
ϕn (ω,r)

Let us find the field at all points in Figure 1(a) succes-
sively from the compressor input to the focus. According to
Equation (3):

E1 (ω,r) = eiϕ1(ω,r)E0 (ω,r), (14)

from which, with allowance for Equations (8) and (9), we
obtain the following:

E2 (ω,κ) = ei�p1(ω,κ)

∫
eiϕ1(ω,r)E0 (ω,r)eiκrdr. (15)

Taking into account that the centers of the G2 and G3
gratings are at the point r = R1 (ω0) in the laboratory frame
of reference and using Equation (3), we can find E3 (ω,r):

E3 (ω,r) = eiϕ23(ω,r−R1(ω0))E2 (ω,r), (16)

where ϕ23 = ϕ2 + ϕ3. Making the Fourier transform of
Equation (16), with Equations (15), (14) and (11) taken into
account, we find E3 (ω,κ):

E3 (ω,κ) = ei�1(ω)eiκR1(ω)

∫
dreiϕ23(ω,r+ρ1(ω))eiκreiϕ1(ω,r)E0 (ω,r),

(17)

where

ρ1,2 (ω) = R1,2 (ω)−R1,2 (ω0) (18)

is the beam displacement (difference of coordinates) at
frequency ω relative to the beam at frequency ω0 (Figure 1).
The fields at points 3 and 4 are related by the phase
�p2 (ω,κ):

E4 (ω,κ) = ei�p2(ω,κ)E3 (ω,κ) . (19)

The substitution of Equation (17) into Equation (19) taking
into account Equation (11) yields E4 (ω,κ), and after the
inverse Fourier transform,

E4 (ω,r) = ei�2(ω)ei�1(ω)eiϕ23(ω,r−R12(ω)+ρ1(ω))eiϕ1(ω,r−R12(ω))

×E0 (ω,r−R12 (ω)), (20)

where

R12 (ω) = R1 (ω)+R2 (ω) . (21)

From the physical considerations, we can make an edu-
cated guess that the strongest space–time coupling distor-
tions are nothing but an angular chirp or pulse front tilt. In
what follows we will use the term ‘angular chirp’, although
both these terms are equivalent and describe the same
phenomenon[39]. It can be compensated by adding a chirp of
the same absolute value but of the opposite sign, for which it
is sufficient to simply rotate the G4 grating by angle δx in the
xz plane and by angle δy in the yz plane (Figure 1). At first
glance, this trick looks counterintuitive, since for perfectly
flat gratings any violation of the parallelism of G3 and G4
leads to angular chirp and a decrease in focal intensity.
However (see below), for non-flat gratings, non-parallel G3
and G4 provide the highest focal intensity. With allowance
for this and for the fact that the center of the G4 grating is
located in the laboratory system at the point r = R12 (ω0), we
obtain the following:

E5 (ω,r) = E4 (ω,r)eiϕ4(r−R12(ω0))eiε(ω)(r−R12(ω0)), (22)

https://doi.org/10.1017/hpl.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.58


Dependence of the focal intensity of a femtosecond laser pulse 5

where ε (ω) is the wave vector produced by the adjustment
of the G4 grating. From Equation (4) we find the following:

εx = −ω

c
cosγ2

cosα2
(cosα2 + cosθ2 (ω))δx,

εy = −ω

c
(cosθ2 (ω)+ cosα2)δy. (23)

The adaptive mirror introduces the phase ϕam = −2ω
c ham (r),

where ham (r) is its surface shape. The mirror center is at the
point r = R12 (ω0), and therefore

E6 (ω,r) = E5 (ω,r)eiϕam(ω,r−R12(ω0)). (24)

By substituting Equation (20) into Equation (22) and the
result into Equation (24), we find E6 (ω,r) and after the
Fourier transform

E6 (ω,κ) = ei�12(ω)eiϕin(ω)+iϕD(ω)eiκR12(ω)

×
∫

dreiκreiε(ω)reiHyeiφ(ω,r) | E0 (ω,r) | , (25)

where

�12 (ω) = �1 (ω)+�2 (ω)+ε (ω)(R12 (ω)−R12 (ω0)),

(26)

φ (ω,r) = ϕ0 (ω,r)+ϕ1 (ω,r)+ϕ23
(
ω,r+ρ1 (ω)

)
+ϕ4

(
ω,r+ρ1 (ω)+ρ2 (ω)

)
+ϕam

(
ω,r+ρ1 (ω)+ρ2 (ω)

)
. (27)

From Equation (27) it is clear that the adaptive mirror
most effectively (although not completely) compensates for
the distortions ϕ4 of the G4 grating, since the spatial chirp
on the mirror and on the grating is the same. In the SC,
ρ1 (ω)+ρ2 (ω) = 0 (see Equations (13) and (18)), the input
beam distortions ϕ0 are completely compensated for and the
distortions ϕ1 of the G1 grating are compensated for just as
well as ϕ4. This is not the case in the AC. However, if the
asymmetry is not large, that is, ρ1 (ω)+ρ2 (ω) � ρ1,2 (ω),
then the differences from the SC may be neglected. In a
strong AC (for example, a double-grating compressor), an
additional adaptive mirror located in front of the compressor
should be used to completely compensate for ϕ0 and to a
large extent for ϕ1. This reduces the problem to the case of
an SC, so we will further consider this particular case. Then
Equation (25) can be reduced to the following form:

E6 (ω,κ) = ei�12(ω)eiϕin(ω)+iϕD(ω)ei�aber(ω)eiκR12(ω)

×
∫

dreiκreiε(ω)reiHyeiφ23(ω,r)+iφall(ω,r) | E0 (ω,r) |,
(28)

where

φ23 (ω,r) = −ω

c

3∑
j=2

(
dj

(
ω0,r+ρ1 (ω)

)
−dj

(
ω0,r+ρ1 (ω)+ρ2 (ω)

)
−dj

(
ω0,ρ1 (ω)

)+dj
(
ω0,ρ1 (ω)+ρ2 (ω)

))
,

(29)

φall (ω,r) = −ω

c

4∑
j=1

(
dj (ω,r)−dj (ω0,r)

)
, (30)

�aber (ω) = −ω

c

3∑
j=2

(
dj

(
ω0,ρ1 (ω)

)−dj
(
ω0,ρ1 (ω)+ρ2 (ω)

))
.

(31)

In Equation (28) we zeroed the sum of all terms of the phase
of the form ωf (r), that is, we zeroed the phase that may
be compensated by an adaptive mirror and obtained for the
shape of the mirror surface the following condition:

2ham (r) = −
4∑

j=1

dj (ω0,r)− c
ω

ϕ0 (ω,r), (32)

that is, the surface of the adaptive mirror (except for the com-
pensation of the distortions of the input wavefront c

ω
ϕ0 (ω,r))

will repeat with the inverse sign the total shape of all wave-
front distortions for the radiation at frequency ω0, rather than
the total shape of all surfaces

∑4
j=1 hj (r). In other words,

the adaptive mirror must optimize the radiation wavefront at
frequency ω0. Next, we will find the field at the focal point,
that is, at Hy+ (κ+ε(ω0))r = 0,

Ef (ω) = E6
(
ω,κx = −εx (ω0),κy = −εy (ω0)−H

)
. (33)

Substituting Equation (25) into Equation (33) and passing
over to the frequency � = ω−ω0 yields the following:

Ef (�) =
∫

dreiμ(�)reiφ23(�,r)+iφall(�,r) | E0 (�,r) | , (34)

where

μ(�) = ε(�)−ε (�0) = �

ω0
Aμ +Cμ

(
�

ω0

)2

Aμ +O

((
�

ω0

)3
)

,

(35)

Aμ = −k0w
1+ cos (α2 +β2)

cosα2cosβ2

(
δxcosγ2

δycosα2

)
,

Cμ = − (sinα2 − sinβ2)
2

2cos2β2 (1+ cos (α2 +β2))
, (36)
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and β1,2 = θ1,2 (ω0) is the angle of refection from the grating
at frequency ω0 (Figure 1(a)). In Equation (34) we zeroed
the sum of all phase terms dependent only on �, that is, we
zeroed the phase that may be compensated for by the AOPDF
and obtained for the AOPDF-introduced phase �D (�) the
following condition:

ϕD (�) = −ϕin (�)−�1 (�)−�2 (�)+HR12y (�)

−�aber (�)+μ(�)
(
ρ1 (�)+ρ2 (�)

)
. (37)

The first four terms correspond to a compressor without
space–time coupling (for a PC, only the first three terms
remain). The fifth term generalizes the result to the case
of space–time coupling. It permits obtaining the shortest
possible pulse exactly at the focal point, rather than in the
near field. The spectral phases of these two pulses differ
by �aber (ω), which can be easily found from Equations
(5) and (31), if the surface shapes of the G2 and G3 grat-
ings are known. Thus, dispersion management significantly
depends on space–time coupling. Finally, the last term with
μ(ω) takes into account the correction of the angle of the
fourth grating (note that in the SC this term is equal to
zero).

From Equation (34) it is clearly seen that space–time
coupling involves two effects described by the phase terms
φ23 (�,r) (Equation (29)) and φall (�,r) (Equation (30)).
The first effect is due to the fact that different frequencies
are reflected from different areas of G2 and G3. The G1
and G4 gratings do not contribute to this effect, as it is
completely compensated by the adaptive mirror (see above).
The second effect, in contrast, occurs in all four gratings
and is associated with the fact that the spatial phase of
the beam reflected from the grating does not exactly follow
the shape of the grating surface (see Equation (4)). As
far as we know, this effect has not been studied in the
literature before. In particular, only the first effect was taken
into account in previous works[11,31–36]. The term μ(ω)r
in the exponent in Equation (34) is determined by the
detuning of two angles of incidence on the G4 grating,
δx and δy, and depends strictly linearly on r. This means
that only a linear angular chirp (the linear dependence
of the wave vector direction on the frequency) can be
compensated.

From Equations (29) and (30) it is clear that φ23(� = 0,
r) = φall (� = 0,r) = 0. In the first order, both φ23 (�,r) and
φall (�,r) are proportional to the first power of � = �ω

ω0
� 1,

where �ω is the spectrum halfwidth at the 1/e level of the
field. Besides, they are also proportional to the first power of
the grating surface shape and, therefore, are proportional to
the root mean square (rms) of the surface shape σ , that is,
the sum φ23 (�,r)+φall (�,r) is proportional to σ�ω. Thus,
from Equations (29), (30) and (34) it follows that, from the
point of view of space–time coupling effects, a decrease in
�ω is equivalent to a corresponding decrease in σ and vice

versa. Consequently, with an increase in �ω, the behavior of
the intensity at the focal point is contradictory: it increases
in proportion to 1/�ω due to the shortening of the Fourier-
limited pulse, and decreases due to space–time coupling,
thus moving the pulse away from the Fourier limit.

The field in focus Ef (t) is the inverse Fourier transform of
Equation (34) in time. In what follows, we will assume that
the input field is super-Gaussian both in time and in both
spatial coordinates (such beams are typical for high-power
lasers, especially OPCPA lasers[11,38,40,41]):

| E0 (�,x,y) |=| E00 | e−ξ2μ
e−x2ν

e−y2ν
, (38)

where ξ = �
�ω

, u = (x,y) = r
w and T = t�ω are the dimen-

sionless frequency, coordinates and time, respectively, and
w is the beam halfwidth at the 1/e level of the field. From
Equations (34) and (38) we obtain an expression for the pulse
shape at the focal point:

Ef (T) =| E00 | �ωw2
∫

dξe−iξTe−ξ2μ

×
∫

due−x2ν
e−y2ν

ei(μ(ξ)u+φ23(ξ,u)+φall(ξ,u)). (39)

By zeroing the time derivative of Equation (39) we can find
the time Tmax, at which Ef (T) is maximal and the maximum
focal intensity is

∣∣Ef (T = Tmax)
∣∣2, from which the Strehl

ratio for the focal intensity follows

St =
∣∣Ef (Tmax)

∣∣2∣∣Ef (T = 0;μ = φ23 = φall = 0)
∣∣2 , (40)

which shows the focal intensity decrease caused by the
space–time coupling. From Equation (39) it is clear that
Tmax = 0 in the absence of space time coupling, that is,
if μ = φ23 = φall = 0. Since in the described model the
temporal distortions are fully compensated by the AOPDF
and the spatial distortions by the adaptive mirror, in the
absence of space–time coupling St = 1.

4. Grating surface in the form of quadratic Zernike
polynomials

Without loss of generality, wedge-shaped aberrations may be
regarded to be equal to zero. Let the grating surface shape
hn (r) be a sum of three quadratic Zernike polynomials –
defocus z0

2 (r), vertical astigmatism z2
2 (r) and oblique astig-

matism z−2
2 (r) – with Zernike coefficients Z0,Z2 and Z−2:

hn (r) = c
ω0

(
Z0

nz0
2 (r)+Z2

nz2
2 (r)+Z−2

n z−2
2 (r)

)
. (41)
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Then, Equations (29) and (30) transform to the following:

φ23 (ξ,u) =
(

ξ�
L2

w
q+ (ξ�)2 L2

w
q̃
)

u+O
(

L2

w
�3

)
,

(42)

φall (ω,x,y) = ξ�
(
Px2 +Qy2 +Sxy

)+O
(
�2), (43)

where q, q̃, P, Q and S depend only on the compressor
geometric parameters α1,2,β1,2,γ1,2 and on the Zernike coef-
ficients:

q = (̂
Z2 + Ẑ3

)
A, q̃ = (̂

Z2 + Ẑ3
)
(A−B), (44)

A =
( cosα2

cos3β2
(sinα2 − sinβ2)

tanγ2
(sinα2−sinβ2)2

cos3β2

)
,

B =
⎛⎝ cosα2

cos3β2
(sinα2 − sinβ2)

(
1− 3

2 sinβ2
sinα2−sinβ2

cos2β2

)
tanγ2

(sinα2−sinβ2)2

cos3β2

(
1+ cosβ2+3(sinα2−sinβ2)

2cos2β2

) ⎞⎠,

(45)

Ẑn = cosγ1,2
(
cosβ1,2 + cosα1,2

)
×

⎛⎜⎝ 2
(

Z0
n 2

√
3+Z2

n
√

6
)

cosα1,2

√
6Z−2

n
cosα1,2√

6Z−2
n

cosγ1,2

2
(

Z0
n 2

√
3−Z2

n
√

6
)

cosγ1,2

⎞⎟⎠, (46)

P =
∑4

n=1
pn, Q =

∑4

n=1
qn, S =

∑4

n=1
sn, (47)

⎛⎝ pn

qn

sn

⎞⎠ = cosγ1,2 tanβ1,2
(
sinα1,2 − sinβ1,2

)√
6

×

⎛⎜⎜⎝
1

cos2α1,2

(
Z0

n

√
2+Z2

n

)
1

cos2γ1,2

(
Z0

n

√
2−Z2

n

)
1

cosα1,2cosγ1,2
Z−2

n

⎞⎟⎟⎠ . (48)

4.1. Without compensation of space–time coupling

Without compensation, μ(�) = 0. In this case, by sub-
stituting Equations (43) and (42) into Equation (39) and
neglecting the terms of order �2 L2

w and � in the exponent
we obtain the following:

Ef (T) =| E00 | �ωw2
∫

dξe−iξTe−ξ2μ

×
∫

due−x2ν
e−y2ν

cos
(

ξ�
L2

w
qu

)
, (49)

from which it follows that Tmax = 0. If ξ�
L2
w q1x,1y � 1, from

Equations (49) and (40) we find the following:

St = 1− �
( 3

2ν

)
�

( 1
2ν

) �
(

3
2μ

)
�

(
1

2μ

)�2
(

L2

w

)2

q2, (50)

where � is a Gamma function. From Equation (49) it is clear
that the space–time coupling is a linear angular chirp – the
effective wave vector ξ�

L2
w q is proportional to the frequency

�. As was to be expected, the other effects are much weaker,
so their impact on St may be neglected. It is important to
note that both Ef (T) and St depend on the surface shape of
gratings G2 and G3 and do not depend on G1 and G4 (see
Equation (44)). To be more exact, the dependence on G1 and
G4 is so weak that it may be neglected. In addition, Ef (T) and
St depend on the geometric parameters α2,β2,γ2,L2 of the
second pair of gratings and do not depend on the parameters
of the first pair. Physically, this is explained by the fact that of
major importance is the difference between the spatial chirps
on the grating and on the adaptive mirror, rather than the
absolute value of the spatial chirp on the gratings.

4.2. Compensating for space–time coupling by rotating the
fourth grating

From Equations (42) and (35) it follows that, in the last
exponent in Equation (39), the largest term proportional to
�

L2
w turns to zero if the following holds:

Aμ = −L2

w
q. (51)

Physically, this means that the linear angular chirp resulting
from the imperfect surfaces of G2 and G3 is completely
compensated by adjusting the angle of the G4 grating.
Note that Aμ and q are vectors, that is, the chirp must be
compensated in both planes. From Equations (36) and (51)
we obtain the adjustment angles δx,y for G4:

(
δx

δy

)
= 1

k0w
L2

w
cosα2cosβ2

1+ cos (α2 +β2)

(
qx

cosγ2qy
cosα2

)
. (52)

The substitution of Equations (42), (35) and (51) into Equa-
tions (39) yields the following:

Ef (T) = |E00|�ωw2
∫

dξe−ξ2μ

∫
due−x2ν

e−y2ν

× cos
(

ξ�
(
Px2 +Qy2 +Sxy

)+ (ξ�)2 L2

w
su− ξT

)
, (53)

where s = q̃ − Cμq. If the cosine expression is much less
than 1, then from Equations (53) and (40) we obtain the
Strehl ratio in the case of compensation Stcomp:

Stcomp = 1−G23 −Gall, (54)
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where

G23 = �4
(

L2

w

)2 �
(

5
2μ

)
�

( 3
2ν

)
�

(
1

2μ

)
�

( 1
2ν

) s2, (55)

Gall = �2
�

(
3

2μ

)
�2

(
1

2μ

)
�2

( 1
2ν

)
×

{(
P2 +Q2)(

�

(
1

2μ

)
�

(
5

2ν

)
�

(
1

2ν

)
−�

(
3

2μ

)
�2

(
3

2ν

))
+S2�

(
1

2μ

)
�2

(
3

2ν

)}
. (56)

The comparison of Equations (50) and (54) shows that
the difference of Stcomp from unity is much less than
the difference of St from unity, as � � 1 and w � L2.
Here, Stcomp decreases due to two effects. The first effect
is the spatial chirp on gratings G2 and G3 (term G23).
As a result of the adjustment of G4 in Equation (54)
this term is proportional to �4, rather than to �2 like in
Equation (50). The second effect is associated with the fact
that, although the spatial phase of the beam reflected from
the grating is proportional to the grating surface shape,
the proportionality coefficient depends on frequency (see
Equation (4)), and all four gratings contribute to it (the term
Gall)). Since � � 1 and L2 � w, the relationship between
these two terms can be arbitrary and, in the general case,
we cannot neglect any of them. It is worth noting that
1 − Stcomp and 1 − St are proportional to the square of
Zernike coefficients (see Equations (50) and (54)) and hence
are proportional to the square of the rms of the grating
surface.

Next, let us set, as an example, four options for dis-
tortions of the surface shape of the gratings: only defo-
cus, only vertical astigmatism, only oblique astigmatism
and the sum of these three polynomials with coefficients
related as Z0

n : Z2
n : Z−2

n = 1 :
√

2
3 :

√
2

3 , which corresponds to

the astigmatism 1 ± 1/3. It is convenient to express the
answer in terms of the rms of the average surface shape
1
4

∑4
n=1 hn (r), that is, the rms of the surface of one (average)

grating:

σ 2 = 1
4w2

∫ w

−w
dx

∫ w

−w

(
1
4

4∑
n=1

hn (r)

)2

dy. (57)

Note that the rms is calculated over a square with side 2w,
rather than over the entire grating area.

4.3. Plane symmetric compressor (Treacy compressor)

Consider as an example the TC parameters of the
Exawatt Center for Extreme Light Studies (XCELS) from
Khazanov[28]: L2 = 7.67w,� = 0.0824, α2 = 36◦, γ2 = 0,
N = 950 mm−1, ν = 6 and μ = 6. As mentioned above, as a
result of space–time coupling the spectrum phases of a pulse
in the near field and in focus differ by �aber (ω), which can
be readily found from Equations (5) and (31), given known
surface shapes of gratings G2 and G3. The dependence of
GVD =

∣∣∣ 1
2

d2

dω2 �aber

∣∣∣ on σ is shown in Figure 2(a). Since
the duration of the Fourier-limited pulse is 17 fs, neglecting
�aber (ω) will lead to a significant lengthening of the pulse in
focus. In practice, this means that the minimum pulse width
in the near field cannot serve as a feedback for generating
the AOPDF signal, so the pulse width at the focal point must
be used.

The curves for δx,y (σ ) are plotted using Equation (52)
in Figure 3(a). The defocus and the vertical astigmatism
(with equal σ ) have equal values of δx, and their δy are
equal in magnitude but opposite in sign. Therefore, the plots
include data for three variants of the surface shape: defocus,
oblique astigmatism and the sum of three polynomials. The
graphs are plotted assuming that the Zernike coefficients are
positive. Otherwise, δx,y (σ ) changes its sign. As can be seen
from the figure, in the last two cases δy �= 0, that is, even for

Figure 2. (a) Treacy compressor and (b) Littrow compressor. The difference of group velocity dispersion (GVD) of pulses in the near field and at the focal
point: defocus (red), or vertical astigmatism (green), oblique astigmatism (blue) and the sum of three Zernike polynomials (black). The curves for defocus
and direct astigmatism in Figure 2(a) coincide.
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Figure 3. (a) Treacy compressor and (b) Littrow compressor. Adjustment angle of the G4 grating in the x plane δx (solid curves) and in the y plane δy
(dashed curves) for the grating shape shaped as defocus or vertical astigmatism (blue), oblique astigmatism (red) and the sum of three Zernike polynomials
(black). In Figure 3(a), δx for oblique astigmatism and δy for defocus are equal to zero.

the TC, the G4 grating should be adjusted not only in the
horizontal, but also in the vertical plane (out-of-diffraction
plane). Note that δx,y can significantly exceed the diffraction
angle, which is about 0.3 arcseconds.

The St values for defocus and direct astigmatism (with
equal σ ) are identical. The curves for St (σ ) (dashed curves),
as well as for 1 – Gall (dash-dot curves) and 1 – G23 (dotted
curves), for comparison of the contributions from different
effects are plotted in Figure 4(a) using the approximate
formulas (Equations (50) and (54)). The solid curves are
plotted using the exact formulas (Equations (49) and (53)).
It can be seen from the figure that the approximate formulas
(Equations (50) and (54)) give a very accurate result for St >

0.75. Without compensation, St � 1, even at σ = λ/12, that
is, in practice it is hard to obtain St ≈ 1. However, in the case
of compensation, the requirements for the surface quality of
the gratings are quite realistic: St > 0.83 for σ = λ/2.

4.4. Out-of-plane symmetric compressor (Littrow
compressor)

Consider as an example the LC parameters of the XCELS
from Khazanov[28]: L2 = 4.8w,� = 0.0824, α2 = 27.4◦,
γ2 = 11.2◦, N = 1000 mm−1; ν = 6;μ = 6. Analogously to
Figures 2(a), 3(a) and 4(a), plots for GVD(σ ) are shown in
Figure 2(b), for δx,y (σ ) in Figure 3(b) and for the Strehl ratio
in Figure 4(b). As seen from Figure 4(b), Equations (50)
and (54) give a very accurate result at St > 0.75. Without
compensation, the results almost coincide with those for the
TC: St � 1, even for σ = λ/12. In the case of compensation,
the requirements for the quality of the grating surface are
much weaker but more stringent than for the TC: St > 0.82
for σ = λ/3.

In practice, it is reasonable to measure the surface shape
of each grating and then select the most successful grating
sequence. If for some reason compensation is impossible,
then it is necessary to minimize q2, the contribution to which
is made only by the G2 and G3 gratings; see Equation (44).

Thus, from four gratings it is necessary to select a pair
for which the algebraic sum of surface shapes gives the
minimum value of q2. In the case with compensation, it
is necessary to choose a sequence of four gratings that
gives the maximum value of the Strehl ratio calculated by
Equation (54).

4.5. Asymmetric compressor

Without compensation, the AC is almost like the symmetric
one, as according to Equation (50) St depends on the geo-
metric parameters α2,β2,γ2,L2 of the second pair of gratings
only. Therefore, to increase St it is necessary to choose
L2 < L1. In particular, for a two-grating compressor, q = 0,
as L2 = 0. This means that, for a two-grating compressor, no
compensation is required and St = Stcomp. Physically, this is
explained by the fact that the spatial chirp on the adaptive
mirror is exactly the same as on the G2 grating.

5. Arbitrary grating surface

In Section 4, we assumed only three quadratic Zernike
polynomials to be nonzero. In the general case, there are
also other polynomials with a power higher than 2. Then in
Equations (43) and (42) additional terms with higher-order x
and y will appear, but the condition for optimal compensation
(Equation (51)) will remain the same. Thus, in a general case,
it is necessary to choose a sequence of gratings that will give
the maximum value of Equations (39) and (40); note that,
when calculating μ in Equation (39), Equation (52) shall be
used. It should be taken into account that each grating may
be rotated by 180

◦
around the normal by reversing the top

and bottom, which will change the sign of all odd Zernike
polynomials. Consequently, in addition to the sequence of
gratings, it is also necessary to choose their optimal mutual
orientation.

Note that the conclusion made in Section 4 about almost
complete compensation of the influence of spatial chirp on
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a

b

Figure 4. (a) Treacy compressor and (b) Littrow compressor. Focal intensity (Strehl ratio) as a function of the rms of one grating surface for the grating
shaped as defocus or vertical astigmatism (blue), oblique astigmatism (red) and the sum of three Zernike polynomials (black), plotted by approximate
formulas: without compensation (Equation (50)) (dashed curves) and with compensation (Equation (54)) (dash-dotted curves correspond to 1 − Gall, and
dotted cures to 1−G23). The solid curves are plotted by the exact formula (Equation (49)).

gratings G2 and G3 is not correct in the general case. From
Equation (40) it can be shown that, for aberrations in the
form of a coma, the contribution of the G2 and G3 gratings
to the reduction of St is dominant. In this case, space–time
coupling gives rise to the effects at the compressor output
that cannot be compensated by rotating G4, for example,
defocus chirp, that is, frequency-dependent defocus. From
the four gratings it is necessary to select two (taking into
account the possibility of rotation by 180

◦
) that would give

the smallest value of total aberrations after subtracting three
quadratic Zernike polynomials. These gratings will be used
as G2 and G3. The location and orientation of the remaining
two gratings shall be chosen taking into account the maxi-
mization of Equation (39). If the quality of the gratings is
such that the value of St remains unacceptably small, then

the defocus chirp can be compensated by placing a lens
telescope between the stretcher and the compressor with a
defocus chirp of the same magnitude but opposite sign, or
using the defocus chirp introduced by the stretcher.

As stated above, a decrease in �ω is equivalent to the
corresponding decrease in σ . A decrease in �ω by a factor
of 2 will lead to a two-fold decrease in power, but, as
shown by the arrow in Figure 3(a), if St ≈ 0.2, this will
simultaneously lead to an increase in St by approximately 2.3
times. Consequently, the focal intensity will not decrease; on
the contrary, it will increase. At the same time, the two-fold
decrease in �ω makes it possible to reduce the size of the
diffraction gratings, and significantly simplify the design of
the laser as a whole. This circumstance may be useful when
designing high-power lasers.
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6. Conclusions and further research

The basic results of the study are as follows.
(i) An analytical expression for the focal intensity of a

laser pulse as a function of the surface shape of compressor
diffraction gratings has been obtained. The expression has
been obtained in a general form for an arbitrary compressor
– an AOC (see Table 1).

(ii) The focal intensity decreases as a result of an imperfect
shape of the gratings caused by two effects. The first is
the spatial chirp of the beam on the G2 and G3 gratings,
due to which different frequencies face different surface
shapes. The second effect is that the shape of the wavefront
reflected from the grating repeats the shape of the grating but
the proportionality coefficient is frequency dependent (see
Equation (5)). This effect is present in all four gratings and,
to the best of our knowledge, has not been studied in the
literature before.

(iii) The focal intensity is most strongly affected by the
linear angular chirp (linear dependence of the wave vector
direction on frequency); this chirp occurs in both planes,
even in a plane symmetric TC. The decrease in the focal
intensity associated with this chirp can be completely elimi-
nated by rotating the G4 grating by an optimal angle. It has
been shown that this simple method of suppressing space–
time coupling can significantly reduce the requirements for
the quality of grating surfaces. In practice, however, this will
require measuring the pulse width at the focal point, since
the minimum pulse width in the near field cannot serve as
a feedback for the specified G4 grating alignment, or for
the dispersion management, for example, for generating an
AOPDF signal.

(iv) It has been shown that the decrease in focal intensity
depends on the product of the grating surface rms σ and
the spectrum bandwidth �ω. For a given value of σ , with
increasing �ω, the focal intensity changes in two ways: it
increases in proportion to 1/�ω due to the shortening of
the Fourier-limited pulse, but decreases due to an increase in
space–time coupling (Figure 4). As a result, if the Strehl ratio
St � 1, a decrease in �ω does not reduce the focal intensity,
and may even lead to its slight increase. This circumstance
can be used when designing not only a compressor, but also
a laser as a whole.

The influence of space–time coupling in the stretcher
on focal intensity is beyond the scope of this work. The
beam size w in the stretcher is significantly smaller than in
the compressor, which influences the considered effects in
different ways. On the one hand, they decrease, since the rms
of the surface shape σ is significantly less, because the rms
is calculated over the beam aperture. On the other hand, they
increase because the parameter L2/w is much larger. Thus,
from Equations (43) and (42) it follows that the second effect
described above in item (ii) can be neglected for the stretcher,

but the first effect will have an order of magnitude the same
as in the compressor.

We have considered space–time coupling caused by the
phase part of the coefficient of reflection from the gratings.
The proposed analytical approach can be generalized to the
case of the amplitude part associated, for example, with
beam clipping due to the fact that some rays at the edge
of the spectrum go outside the aperture of the diffraction
gratings. This effect has been studied in the literature only
numerically[10]. In addition, the problem can be generalized
to the case of non-ideal periodicity of the grooves, as well as
their tilt.

The presented results have been obtained neglecting
diffraction, which is justified for large-scale aberrations of
diffraction gratings. Studying the influence of small-scale
aberrations without allowance for diffraction is irrelevant
and requires other approaches, which will be the subject of a
separate publication.

Appendix A

Consider a model of monochromatic beam reflection from
the grating G1 or G3 with surface shape h

(
x′′,y′′). We choose

an arbitrary point on the grating surface with coordinates(
x′′,y′′). For the beam reflected from this point, we will find

the wave vector kxz (δx) projection on the x′-axis normal to
the vector kxz (δx = 0), that is, normal to the wave vector
of the reflected beam at δx = 0. This projection is ∂ϕ(x′)

∂x′ .
Knowing this, we can find the phase for the incident beam
ϕ (x,y). It should be taken into account that, when reflected
from the grating, the beam changes its size as x = cosα

cosθ(ω)
x′.

Using the formula for the grating (Equation (6)), we obtain
the following:

ϕ (x,y) = −ω

c
cosγ (cosθ (ω)+ cosα)h

(
x

cosα
; y

cosγ

)
.

(A1)

Figure A1. Model of monochromatic beam reflection from the grating G1
or G3.

https://doi.org/10.1017/hpl.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2024.58


12 E. Khazanov

For the mirror, θ (ω) = α and we can obtain the known
expression ϕ (ω,r) = −ω

c 2cosγ cosαh
(

x
cosβ

; y
cosγ

)
. Note

that this expression can be obtained for the Littrow angle,
for which θ (ω) = −α. For gratings G2 and G4, the angles
α and θ (ω) in Equation (A1) change place and we will need
a phase for the reflected beam ϕ

(
x′,y

)
:

ϕ
(
x′,y

) = −ω

c
cosγ (cosθ (ω)+ cosα)h

(
x′

cosα
; y

cosγ

)
.

Thus, we obtain the following:

ϕn (x,y) = −ω

c
cosγ1,2

(
cosθ1,2 (ω)+ cosα1,2

)
×hn

(
x

cosα1,2
; y

cosγ1,2

)
,

where n is the number of the grating, and the subscripts 1, 2
of α,θ,γ correspond to the first (n = 1,2) and second (n =
3,4) grating pairs.
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