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Abstract
Researchers have found that although external attacks, exogenous shocks, and node knockouts can dis-
rupt networked systems, they rarely lead to the system’s collapse. Although these processes are widely
understood, most studies of how exogenous shocks affect networks rely on simulated or observational
data. Thus, little is known about how groups of real individuals respond to external attacks. In this article,
we employ an experimental design in which exogenous shocks, in the form of the unexpected removal
of a teammate, are imposed on small teams of people who know each other. This allows us to causally
identify the removed individual’s contribution to the team structure, the effect that an individual had on
those they were connected, and the effect of the node knockout on the team. At the team level, we find
that node knockouts decrease overall internal team communication. At the individual level, we find that
node knockouts cause the remaining influential players to become more influential, while the remaining
peripheral players become more isolated within their team. In addition, we also find that node knockouts
may have a nominal influence on team performance. These findings shed light on how teams respond and
adapt to node knockouts.
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1. Introduction
Previous research has found that social networks are generally resilient to external attacks, node
knockouts, and exogenous shocks (Newman & Dale, 2005; Phan & Airoldi, 2015; Fernández-
Martínez et al., 2017). The resiliency of networked groups against external attacks is driven in
part by dynamic network formation, or the ability of agents’ to rewire their relational ties (Phan &
Airoldi, 2015; Fernández-Martínez et al., 2017; Almaatouq et al. 2020a). Dynamic network forma-
tion allows nodes to adjust their local connections after a node knockout. By forming new ties, the
remaining agents can help take on the knocked-out node’s role in the group network. At the same
time, topological features of networks can help prevent external attacks from disrupting the entire
system by localizing the adverse effects of the exogenous shocks (Ash & Newth, 2007). Together,
these features help prevent disruptions in a network from leading to the system’s collapse.

Although the processes underlying network resiliency are widely known, previous research on
how networked groups respond to exogenous shocks has mostly relied on observational analyses
or computational models. Both of these approaches have provided useful insights but also pose
analytic limitations. First, with some exceptions (e.g., Phan & Airoldi, 2015; Stuart, 2017), obser-
vational analyses of how networked groups respond to exogenous shocks often do not have the
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pre- and post-network structure of the groups (e.g. Corbo et al., 2016; Jordan, 2014; Scatà et al.,
2018; Milton & Price, 2020) or only analyze changes in a single social network (Flack et al., 2006;
Azoulay et al., 2010). In turn, these studies lack causal inference leverage or may not generalize
to other populations. Second, computational models necessarily make assumptions about agents’
actions and network structures (e.g. Doerr & Hernandez, 2010; Keller et al., 2010; Pumpuni-Lenss
et al., 2017; Duxbury & Haynie, 2019; Twumasi-Boakye & Sobanjo, 2019). These assumptions
could presumably be mistaken in ways that produce incomplete or incorrect conclusions.1

Given these uncertainties, and the relative importance of understanding how social networks
respond to exogenous shocks, it would be beneficial to assess how real networked teams respond to
node knockouts of central members in an experimental setting. Specifically, how do node knock-
outs affect performance, and how do the remaining members adapt to knockouts to offset the lost
contributions of their removed teammate? We address this research gap by reporting the results
of an experiment in which we impose exogenous shocks on small teams of real-world friends in
the form of an unexpected removal of an actor from the team’s social network while the team is
engaged in a game. Through this design, we causally identify the effects of individuals on their
team and fellow teammembers, how the remaining teammates respond to exogenous shocks, and
the effect of exogenous shocks on team performance. In so doing, we provide clarity on how real
social networks adapt to node knockouts.

To assess the effect of node knockouts on networked teams, we have preexisting groups play
a simple coordination game against a simulated opponent across ten rounds. During the experi-
ment, teams can only communicate over preexisting social ties, which allows us to measure which
individuals are the most central to their team network. In the treatment groups, the player with
the highest degree centrality (i.e., the most relational ties) is removed after the fifth round, while in
the control groups the team simply plays 10 rounds against the simulated opponent. The changes
at the team and individual level allow us to precisely quantify how networked teams respond to
node knockouts of central members.

Our research is driven by two hypotheses: (a) the loss of internal connectivity brought on by
node knockouts will negatively impact the performances of teams and (b) teammates will adjust
their behaviors to compensate for, but not fully offset, the lost contributions of the knocked out
teammate, with the remaining central players becoming more central and the peripheral players
becoming more peripheral within their team. The first hypothesis is based on a substantial liter-
ature that finds that the knockout of central and highly connected nodes can disrupt networked
systems by reducing the system’s overall connectivity (e.g., Barabási & Bonabeau, 2003; Flack et al.,
2006; Azoulay et al., 2010). We expect node knockouts of central players to negatively influence
team performance because it will reduce the remaining teammates’ abilities to coordinate their
behaviors and disseminate information. In the experiment, team coordination and information
sharing are operationalized using two dependent variables, changes in the team record, and nor-
malized volume of messages sent.2 Due to the loss of a central teammate, we expect teams that
experience a knockout to have a worse team record and send fewer messages within their team
than the control teams.

For our second hypothesis, we expect players that shared ties with the knocked-out partici-
pant to become more integral to their team to redress the lost contributions of their knocked-out
teammate. However, these players will not fully offset the lost contributions of the knocked-out
teammate, which will lead to the remaining peripheral players becoming more isolated within
the team. We operationalize changes in the remaining teammates messaging contributions by
evaluating players’ degree, betweenness, and eigenvector centrality within their teams’ messaging
networks after the knockout. These network centrality measures help us infer the influence of a
node within their team’s messaging network, with increases in a participant’s message network
centrality after a node knockout indicating that they have taken on a greater and more influential
role within their team.

In total, we find some supporting evidence for our hypotheses. In particular, we find that the
node knockout treatment reduces the normalized volume of messages sent at the team level but
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increases the centrality of the remaining players that shared ties to the knocked-out teammate in
their teams’ messaging networks. Put another way, at the team level, node knockouts decrease
overall information sharing within teams. At the individual level, influential members become
more influential, while peripheral members become more isolated within their team. In addition,
we find a negative effect of node knockouts on teams’ records. Although the effect is not statis-
tically significant at the 0.05 level. The null effect suggests that exogenous shocks may not affect
team coordination. However, the present null finding of the knockout on team performance may
not generalize to when teams are engaging in more complex and difficult tasks.

2. Prior research and hypothesis development
The importance of understanding how to design efficient and effective teams has led to an
expansive literature on how network structures influence team and group dynamics, including
scholarship on how social networks affect team and group performance (Bavelas, 1950; Guetzkow
& Simon, 1955; Mulder, 1960; Landers & Lüschen, 1974; Carron & Chelladurai, 1981; Evans &
Dion, 1991; Mullen & Copper, 1994; Beal et al., 2003; Kearns et al., 2006; Judd et al., 2010; Shore
et al., 2015; Becker et al., 2017; Argote et al., 2018) and their resiliency to exogenous shocks (Najjar
& Gaudiot, 1990; Flack et al., 2006; Azoulay et al., 2010; Sterbenz et al., 2011; Freeman, 2014;
Phillips, 2015; Zhang et al., 2015; Dong et al., 2018; Liu et al., 2020; Wang & Edgerton, 2022). In
this section, we briefly discuss the extant research on how social networks affect individuals and
the performance of groups, but prioritize a discussion of the network resiliency literature, as the
present study uses an experimental design to assess how social networks respond and adapt to
node knockouts.

2.1 Network structure and performance
Leavitt (1951) analyzes how communication patterns influence the behaviors of individuals.
Through the analysis of 100 students, Leavitt finds that variation in group communication affects
the satisfaction of group members, emergence of leaders, and organizational structure of groups.
In particular, students that were central to their group’s communication structure reported greater
satisfaction and were more likely to become leaders. Scholars have expanded on this research to
analyze other ways that social networks shape the behaviors and actions of individuals, includ-
ing how social ties affect political preferences (e.g., Poteat & Spanierman, 2010; Campbell, 2013;
Minozzi et al., 2020), health outcomes (e.g., Christakis & Fowler, 2007, 2013), employment (Calvo-
Armengol & Jackson, 2004; Ziersch &Arthurson, 2005), and cooperation and conflict (e.g., Fowler
& Christakis, 2010; Larson & Lewis, 2017; Larson, 2021).

In addition to research on how social networks influence the behaviors and actions of individu-
als, scholars have also assessed how social networks affect team-level outcomes, such as the ability
of networked teams to collectively make a decision (Marsden, 1981; Shore et al., 2015; Noriega-
Campero et al., 2018; Almaatouq et al. 2020b), complete a task (Leavitt, 1951; Guetzkow & Simon,
1955; Kearns et al., 2006; Judd et al., 2010), or internally disseminate information (Cowan &
Jonard, 2004; Luarn et al., 2014; Becker et al., 2017; Bernstein et al., 2018). Grund (2012) ana-
lyzes how the network structure of soccer teams affects their performance. He finds that teams
with high intensity and low centralization generally perform better than other teams.

Other researchers have similarly found that teams with low centralization outperform highly
centralized teams (e.g., Urban et al., 1995; Schraagen et al., 2010); however, this finding may
be contingent on the type, or difficulty, of task the team is trying to complete (Cox et al., 2003;
D’Innocenzo et al., 2016; Almaatouq et al. 2020b). In an experiment, Argote et al. (2018) exogenize
network structures on small teams to assess how it affects the collective memory, or expertise,
of teammates. They find that centralized teams are able to coordinate more efficiently than
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decentralized teams when there is a high rate of turnover of team members, while decentralized
teams outperform centralized teams when the turnover rate is low.

Aside from Argote et al. (2018), other researchers have used experiments to understand how
social networks influence individuals and teams (e.g., Mason et al., 2008; Centola, 2010; Mason &
Watts, 2011; Rand et al., 2011; Shirado et al., 2013; Melamed et al., 2018). Network experiments
are especially flexible because they allow for social networks to be exogenously imposed on partic-
ipants. This helps address potential endogeneity issues related to network topology and individual
preferences and behaviors. Namely, the attributes and characteristics of individuals affect their
network structure and network structure affects the attributes and characteristics of individuals.
At the same time, exogenously imposing network structures on experiment participants reduces
the level of realism because social networks outside of experimental settings reflect individual
preferences.

2.2 Network structure and resiliency
Researchers have found that network structures across a variety of systems are resilient to exoge-
nous shocks, external attacks, and local failures, including biological systems (Janssen et al., 2006;
Baggio et al., 2016; Donohue et al., 2016), social relations (Newman & Dale, 2005; Phan & Airoldi,
2015; Fernández-Martínez et al., 2017), public utilities (Chen &Hero, 2014; Dong et al., 2018), and
transportation networks (Zhang et al., 2015; Do & Jung, 2018), among others (Wang & Edgerton,
2022). Although external and internal stressors may disrupt network systems, these stressors
rarely lead to a collapse of the system. This is due in part to topological features of networked
systems, with scholars finding that networks with high connectivity (Sterbenz et al., 2014; Alenazi
& Sterbenz, 2015), greatermodularity (Dong et al., 2018), or scale-free degree distributions (Albert
et al., 2000; Wang et al., 2006) are highly resilient.

In addition to network topology, if a networked system has nodes that can form new rela-
tional ties it can also make the system more robust against node knockouts (Lusseau, 2003). This
is because the remaining nodes can form new ties to adjust to the lost connectivity caused by
node knockouts or other exogenous shocks. Azadegan & Dooley (2021) demonstrate how self-
organization can make networked systems more robust to exogenous shocks by analyzing how
supply chain networks responded to disruptions during the COVID-19 pandemic. They find that
short and intermediate-term collaboration at the meso-level between suppliers helped companies
respond to disruptions in supplier chains caused by the pandemic.

Although complex networks are often highly resilient, researchers have found that networked
systems can be disrupted by coordinated knockouts of central and highly connected nodes (Gallos
et al., 2005; De Domenico et al., 2014; Duan et al., 2019; Wang & Edgerton, 2022). Barabási &
Bonabeau (2003) find that scale-free networks are especially vulnerable to node knockouts because
relatively few nodes in the network account for a high proportion of the total ties within the
networked system. Similarly, Flack et al. (2005, 2006) assess how node knockouts affect primate
behavior. They find that removing several central adult male pigtailed macaque disrupt the play
and grooming social network among the remaining pigtailed macaques.

2.3 Argument
Previous research on social networks suggests that network structure affects individuals, team per-
formance, and resiliency. In this section, we discuss our expectations for how exogenous shocks
influence teams and their members. Specifically, we hypothesize that: (a) the loss of internal con-
nectivity brought on by node knockouts will negatively impact the performances of teams and
(b) teammates will adjust their behaviors to compensate for, but not fully offset, the lost contribu-
tions of the knocked out teammate, with the remaining central players becomingmore central and
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the peripheral players becoming more peripheral within their team. Together, the present analysis
sheds light on how networked systems respond to exogenous shocks at themicro andmacro levels.

Our first hypothesis is that the exogenous knockout of central teammates will reduce teams’
internal connectivity, which will hurt their performance. This hypothesis is drawn from extant
studies of network disruption, including research on the effect of knockouts on professional ath-
letes (Stuart, 2017), simulated agents (Carley et al., 2002; Carley, 2006), cells (Galou et al., 1996),
and genes from a network (Nabi-Abdolyousefi&Mesbahi, 2012; Deutscher et al., 2006). Generally,
researchers have found that knockouts of central or highly connected nodes hurt the performance
of the team and remaining members. Node knockouts reduce the performance of teams because
of lost internal connectivity. In the context of our experiment, we hypothesize that the exoge-
nous removal of the most central teammate will reduce a team’s ability to internally coordinate
and share information. We use two dependent variables to assess these claims, changes in the:
(a) team record and (b) normalized volume of messages sent. These variables were selected
because they help capture how effectively the team coordinates their behaviors and internally
disseminates information.

Our second hypothesis is that the remaining central players will becomemore influential within
their team to adjust for, but not fully offset, the lost contributions of the knocked-out central
teammate. This hypothesis is drawn from existing studies on changes in the characteristics of
individuals within a team or group after an exogenous shock (Flack et al., 2005, 2006; Azoulay
et al., 2010; Phillips, 2015; Jordan, 2014; Freeman, 2014). Researchers have generally found that
networked systems adapt to node knockouts (e.g., Stuart, 2017; Azadegan & Dooley, 2021), but
may not fully redress or offset the loss in internal connectivity caused by the removal of central
and highly connected nodes. Further, in some cases node knockouts can cause networked systems
and their members to retrench and withdraw so the attack can be locally absorbed within the
system (Ash & Newth, 2007). In the context of our experiment, we expect the remaining treated
central participants that rewire their network to take on the lost contributions of their teammate
by becoming more influential within their team’s messaging network after the knockout, while
peripheral players will become more peripheral. We operationalize the influence of the remaining
teammates as changes in their degree, betweenness, and eigenvector centrality for the weighted
message frequency network. These centrality measures were selected because they indicate how
important or influential a node is within the network (Abbasi et al., 2014; Kermani et al., 2016;
Subbian et al., 2014).

The present article contributes to the extant literature in two significant ways. First, we causally
identify how individuals and teams simultaneously adjust to node knockouts. In so doing, we
demonstrate the critical role of central, but secondary, teammates after a knockout by show-
ing how they adjust their behaviors to compensate for the lost contributions of their teammate.
Relatedly, we also demonstrate that node knockouts reduce internal connectivity by identifying
a clear and robust negative effect of node knockouts on the normalized volume of messages sent
at the team level. Together, this suggests that node knockouts increase the connectivity of some
teammates but decrease the overall connectivity within teams. Namely, central members become
more central after the knockout, while peripheral members become more peripheral within their
teams. Second, we find that node knockouts have a null effect on team records, which suggests that
knockouts, and the subsequent loss in internal connectivity, may not affect team performance.

3. Research design
Although the network structure underlying a team profoundly shapes the team and its members, it
is tremendously challenging to quantify the effect of network structures on an outcome of interest.
The difficulty in measuring the effect of social networks on an outcome of interest is driven in part
by (a) the large number of social structures groups may possess; (b) the attributes and behaviors
of individuals affect the network structure of groups; (c) a group’s network structure affects the
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(a) (b) (c) (d)

Figure 1. The networks above are an illustration of the study design. In cell (a), we see the initial communication network of
the team. The teams play ten rounds of a simple coordination game against a simulated opponent in the control trials. Cells
(b–d) illustrate the experimental treatment trials. In cell (b), we see that the most central blue node in the communication
network, teammate A, is selected for the knockout. In cell (c), teammate A is removed and all ties to teammate A are severed.
The team has to develop a new communication strategy following the knockout. Last, in cell (d), we see the rewired net-
work. The treated experiment participants form newmessaging ties (the green nodes and dashed lines) with the remaining
participants. The knockout enables us to measure both: (a) how the knockout affects the team and (b) how the remaining
experiment participants adapt.

attributes and behaviors of individuals; (d) social networks respond and adapt to external stimuli;
and (e) issues (a)–(d) all interact with each other.

To address these issues, we develop an experiment that exogenously imposes node knockouts
on the social networks of real groups. Specifically, we have preexisting networked groups play a
simple coordination game, with treatment teams experiencing a node knockout halfway through
the game. The experimental design draws inspiration from replicating the underlying processes
and dynamics of teams that are vulnerable to node knockouts, such as sports teams that may
experience injuries or penalties (e.g., soccer players that receive a red card and are removed from
the game), military units that may have members become unexpectedly incapacitated, or crimi-
nal organizations that may be disrupted or dismantled by law enforcement (e.g., terrorist, rebel,
or organized crime groups). The present experimental design is conceptually similar to existing
experiments on collective memory (Argote et al., 2018) and interventions into animal packs (Flack
et al., 2005, 2006), as these studies also remove nodes during their analysis. However, our design
offers a distinct contribution in that we use real teams’ preexisting social network structure during
the experiment.

3.1 Game design
Figure 1 shows an illustration of the experimental design. In cell (a), we see the base social network.
The ties between nodes in cell (a) indicate a preexisting relationship. In the experiment, teammates
could only interact through their preexisting network. In the control trials, teams play 10 rounds
with the same social network. Cells (b–d) show how the treatment trials differ from the control
trials. In cell (b), the blue node, teammate A, has the most ties within their network and, therefore,
will be removed as the node knockout treatment halfway through the experiment. In cell (c), we
see the simulated knockout. Teammate A is removed from the team social network and its ties to
nodes B, D, F, and H are severed. Last, in cell (d), we see the adaptive network. The green node
teammates B, D, F, and H who shared ties to the knocked out teammate A can form new relational
ties (green dashed lines). In the adaptive network, teammates are now able to interact through the
newly formed ties.

All teams in the treatment trials have three social networks: (a) the pre-knockout commu-
nication network, (b) the post-knockout communication network, and (c) the communication
frequency networks; while the control trials have two social networks: (a) the communication
network and (b) the communication frequency network. Figure 2a displays an example of
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(a) (b)

Figure 2. Examples of the communication and communication frequency network. In cell (a), we see the undirected mes-
saging window network. This network is a reflection of the team’s preexisting social network. In cell (b), we can see the
communication frequency network. These networks are directed and weighted by the number of messages sent over the
communication network each round.

the control, pre-knockout, and post-knockout communication networks. The pre-knockout,
post-knockout, and control trial communication networks are all undirected message windows
that teammates can dyadically communicate over. These communication ties were determined at
the start of the experiment based on each team’s preexisting social ties. In the example Figure 2a,
we can see that teammate A has four ties in their communication network and are able to message
back and forth with players B, D, F, and H.

The communication frequency network is a weighted and directed network for the number
of messages sent between players. The communication networks constrain the communication
frequency networks. Figure 2b, shows an example communication frequency network based on
the example communication network in Figure 2a. In this example, we can see that teammate A
has sent and received messages to teammates B and D over their messaging windows, while only
sending messages to teammates F and H. In this example, teammate G shares message window
ties with nodes F and H but did not send or receive any messages with those teammates.

The differences between the communication frequency networks under the pre- and post-
knockout communication networks reflect the adjusted behavior of both the team and its
remaining members. Thus, we quantify the contributions of the experiment participants to help-
ing develop their team strategy by using the communication frequency network because the
centrality of participants changes each round depending on how the participants communicate
with each other. Through this experimental design, we are able to measure how teams adapt fol-
lowing an exogenous shock and the individual contributions of both the knocked-out teammate
and the remaining participants.

To assess how groups and individuals interact and coordinate their behaviors, the teams played
a generalized version of the Colonel Blotto game online for 10 rounds against a simulated oppo-
nent. In the original conceptualization of the Colonel Blotto game, two participants have n troops
which they simultaneously divided between k battlefields. The player with the most troops on a
battlefield wins the battlefield, and whoever wins more battlefields wins the game. The Colonel
Blotto game is commonly used as an example of a mixed strategy game because the outcome is
contingent on an opponent’s strategy.

During the experiment, the simulated opponent randomly places approximately 60%, 40%, and
any remaining troops across the three battlefields.3 This placement strategy falls within the opti-
mal strategy range for the Colonel Blotto game, but the expected outcome of a round is contingent
on the team’s strategy. We use a simulated opponent as opposed to a second team of individuals
for two reasons. First, the simulated opponent uses an optimal strategy which allows us to better
evaluate the experimental team’s strategy. For example, if we had two human teams competing

https://doi.org/10.1017/nws.2022.26 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.26


268 J. F. Edgerton et al.

Figure 3. Example gameplay screen for experiment participants. Each player is shown the round and their record in the
upper left corner. On the left side, players can communicate with the teammates they are connected to. In this example,
player Alex can communicate with their teammates: Claire, Peter, and Nadine. Next to the player message windows, each
participant can see a timer that counts down the number of seconds left in each round. In this example, the player has
24 seconds left to commit their troops. At the bottom of the screen, the player can see how many troops they have left to
distribute between battlefields BF1–BF3. The players then commit their troops by clicking the “commit” button.

against each other, both teams could use poor strategies at the same time but perform well in the
game because their performances are correlated (Roberson, 2006; Hart, 2008). Second, a simu-
lated opponent helps us better estimate the impact of the exogenous shock on team performance
because the simulated opponent is not affected by the exogenous shock.

Figure 3 displays an example of the experiment platform. At the start of the experiment, eight
participants controlled 20 troops each (160 total per team) which they had to divide between three
battlefields (bottom of Figure 3). To identify the team’s real-life social network, each participant
was asked to rank the judgment of their teammates in a pre-experiment survey. Participants could
only communicate through messaging windows with the top three teammates whose judgment
they most respected and any player who ranked them in the top three (i.e., the pre-knockout
and control communication network). This ensured that each participant had at least three and
at most seven ties. This process served three purposes. First, because messaging window ties are
determined by players selecting whose judgment they most respect, we expect for the leaders in
the group to have the most messaging ties. This increased the level of realism because the team
communication network mirrors the preexisting participants’ real-life social network. Second,
the restricted communication network enabled us to precisely examine the flow of information
through the network. Third, the restricted communication network made it more challenging for
the teams to develop and coordinate their strategy during an experimental round.

On the right side of Figure 3, we can see an example of an experiment participant’s messaging
window ties. The number and directionality of the messages sent between players is the communi-
cation frequency network. Each experimental round lasted 1minute and 45 seconds (center right
of Figure 3). Following each round, teams had 15 seconds to see where their team placed their
troops and where the simulated opponent placed its troops across the three battlefields.

In the control trials at the team level, each team played 10 rounds of the Colonel Blotto game
against a simulated opponent. In the treatment trials, the player with the highest degree centrality
(i.e., the player with the most communication ties) was removed from the experiment after the
5th round. After the player is removed, the team and the simulated opponent each lose 20 troops.
Players who had selected the knocked-out teammate in their top three for judgment could select a
new chat partner after the knockout. The new ties form the team’s post-knockout communication
network. In the individual-level analysis, we consider the participants who rewired their network
as the treated experiment participants.
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Table 1. Description of the team and individual-level recruitment data used in the analysis. Each team and
individual participated in a 10 round experiment. Because we are concerned with the treatment effect of the
knockout, we interact the treatment with round number (i.e., pre- or post-knockout rounds)

Team Individual

Control Treatment Total Control Treatment Total

Unique observations 19 33 52 227 189 416
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total observations 190 330 520 2,270 1,890 4,160
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Post-knockout observations 355 165 520 3,239 756 3,995

There are fewer total participants at the individual level because knocked-out teammates are dropped.

3.2 Recruitment
For the experiment, we recruited groups of participants through student clubs at a large university.
Clubs were asked if they had teams of eight students who knew each other and were interested in
participating in an experiment. Each club was given a $50 incentive per team of eight students
and each club member was given $10 for participating in the experiment. If a club had multiple
teams of eight students that wanted to participate in the experiment, they were asked to self-sort
into teams. This helped ensure the experimental teams were comprised of students that knew each
other.

Table 1 displays the number of experiment teams and participants. In total, 52 teams com-
prised of 8 players were recruited for the experiment. For the analysis, we assess how teams and
individuals play a game across ten rounds. Therefore, each club and individual corresponds to 10
observations. For the team-level analyses, 33 teams were part of the node knockout treatment,
corresponding to 330 treatment rounds, while 19 teams were in the control group, correspond-
ing to 190 control rounds. At the individual level, 189 participants rewired their network after
the knockout and are therefore considered treated experimental units, while 227 individuals are
in the control group. This corresponds to 1,890 treatment and 2,270 control observations at the
individual level. Because we are concerned with how teams and players adjust to the knockout,
the treatment effect is estimated as the interaction between if the game round was pre- and post-
knockout (rounds 1–5 versus rounds 6–10) and if the individual or team received the treatment
effect. This corresponds to five observations per treated team and individual, or 165 team-level
observations of treated teams and 756 individuals during rounds 6–10.

4. Material andmethods
4.1 Treatment
The experiment participants removed during the node knockout treatment trials were identi-
fied by the team’s communication network. Specifically, we remove the player with the highest
degree centrality, or most messaging window ties, in their team communication network.4 At the
individual level, the teammates who had selected the knocked-out participant in the communica-
tion network are considered the treated experiment participants. These players are distinct from
the other team members because they are able to rewire their communication network after the
knockout.

Because we are concerned with how teams and individuals adjust their behaviors to the knock-
out, we assess how the node knockout affects teams and individuals in the post-knockout rounds
of the experiment. This is estimated as an interaction effect between treatment and time, or how
teams and individuals in the treatment trials adjusted their behaviors in the last five rounds
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Figure 4. Waffle plot of the treatment effect of the knockout experiment as the interaction between the node knockout
(team level in cell [a]) and network rewire (individual level in cell [b]) and time. Each cell corresponds to an observations,
with 520 team level observations and 3,995 individual level observations.

compared to treated teams and individuals in the first five rounds and the control teams and
individuals (Schustack & Sternberg, 1981; Angrist & Pischke, 2008).

Figure 4 displays a visualization of the treatments as the interaction for teams and individuals
against time. In cell (a), we can see the main effects of time and treatment (i.e., the node knock-
out) for teams. In the upper right corner (outlined in black), is the interaction between those
main effects. This part of the graph only includes teams that experienced a knockout in the post-
knockout rounds, which constitutes approximately 32% of the observations. In cell (b), we can see
the main effects of time and the treatment (i.e., rewiring the network) for individuals. Likewise,
in the upper right corner (outlined in black), is the interaction between those main effects. This
part of the graph only includes individuals that rewire their network in the post-knockout rounds,
which constitutes approximately 20% of the observations.

4.2 Dependent variable
4.2.1 Team level
At the team level, we assess how exogenous shocks impact teams’ internal connectivity, or their
ability to coordinate behavior and disseminate information, as these processes are associated with
better team performance and outcomes (e.g., Bowers et al., 1992; Entin & Serfaty, 1999; Carron
& Chelladurai, 1981). We operationalize team coordination and information dissemination as the
teams’ records and the normalized volume of messages sent, respectively. We hypothesize that
a loss in internal connectivity brought on by a node knockout will decrease the ability of teams
to coordinate and internally share information which will reduce their record and lead to fewer
messages sent at the team level. In addition to these dependent variables, we assess our hypotheses
with alternative dependent variables in the appendix.

The team record variable is a dummy variable signifying if the team won in a given round.
In Figure 5a, we see the team record proportion by treatment and time. Notably, teams perform
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Figure 5. Dependent variables at the team level. In cell (a) we can see the proportions of wins and losses by treatment and
time. In cell (b), we can see the normalized volume of messages sent by treatment and time.

worse in the pre-knockout rounds for both the treatment and control trials, with control teams
winning 14% of their games and the treatment teams winning 21%. After the knockout, both
teams show improvements in their record, with the control teams winning 35 and the treatment
teams winning 41% of their games. The improvement in team records could be partially driven by
improved team coordination because they better understand how to beat the simulated opponent.

In Figure 5b, we see a boxplot of normalized volume of messages sent. The normalized volume
of messages sent is derived by dividing the total messages sent by a team in a given round by the
total number of players (eight players in the control trials and pre-knockout treatment trials and
seven in the post-knockout treatment trials). In both the control and treated experimental teams,
we see increases in the number of messages sent after the knockout, with a mean increase of 6.47–
7.93 messages sent by control teams and 6.18–6.91 messages sent by treated teams. Similar to the
team record, the increases in messages sent could be partially driven by improved communication
because the teams better understand how to beat the simulated opponent.

4.2.2 Individual level
At the individual level, we assess how the reaming teammates adapt and try to compensate
for the lost contributions of their knocked-out teammate. To do so, we analyze changes in the
treated teammates’ degree, betweenness, and eigenvector centrality in their teams’ communica-
tion frequency network after the knockout compared to the control teammates. Degree centrality
measures the count of messages sent and received by experiment participants in a given round.
Betweenness centrality is the number of shortest paths in the communication frequency network
that goes through a participant to total paths. And eigenvector centrality expands on degree cen-
trality by weighting the number of ties a vertex has by the importance of nodes in which they are
tied. These variables were selected because they are commonly associated with how influential a
node is within their network, with scholars finding that central nodes enjoy greater reputations
(e.g., Meo et al., 2017), higher social capital (e.g., Li et al., 2013; Zhang & Luo, 2017), and are
more likely to be identified as leaders (e.g., Dubois & Gaffney, 2014; Risselada et al., 2016; Sasaki
et al., 2017). We draw on this literature and argue that a teammate’s centrality within their team
communication frequency network is indicative of their influence and importance in disseminat-
ing information for their team. We hypothesize that teammates who rewire their network will
have increases in their centrality because they are compensating for the lost contributions of the
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Figure 6. Dependent variables at the individual level. In cell (a) we see degree centrality of all participants. In cell (b), we see
the betweenness centrality of all participants. And in cell (c), we see the eigenvector centrality of all participants.

knocked-out teammate. However, the loss in overall team connectivity will further reduce the
centrality of more isolated members.

Figure 6 displays boxplots of the individual level dependent variables. Across all measures,
we see high similarity in participants’ degree, betweenness, and eigenvector centrality measures
in the control teams, pre-knockout treatment, and post-knockout treatment rounds. For degree
centrality, participants had a mean centrality of 7.15 in the control trials, 6.52 in the pre-knockout
treatment trials, and 6.97 in the post-knockout treatment trials. For betweenness centrality, par-
ticipants had a mean centrality of 5.01 in the control trials, 4.91 in the pre-knockout treatment
trials, and 3.72 in the post-knockout treatment trials. And last, for eigenvector centrality, partici-
pants had a mean centrality of 0.60 in the control trials, 0.60 in the pre-knockout treatment trials,
and 0.66 in the post-knockout treatment trials.

4.3 Nuisance parameter
In the team-level models, we include the communication network density and degree central-
ization as control variables. Previous researchers have used these variables as measures for the
centralization of teams, with denser networks indicating that a team is more decentralized and
higher degree centralization indicating that a team has a hierarchical structure (see Landers &
Lüschen, 1974; Carron & Chelladurai, 1981; Evans & Dion, 1991; Mullen & Copper, 1994; Beal
et al., 2003; Argote et al., 2018, for research on how density and centralization affect team perfor-
mance). The communication network density is the proportion of connections over the number
of potential connections, with dense communication networks indicating more ties within the
team. Degree centralization is a group-level measure of the dispersion of nodes’ degree centrality
scores, with higher scores indicating a more hierarchical network structure.

In addition to controlling for team performance, these variables are also included to help us
further assess how the node knockouts affect teammessaging, as teams’ communication networks
constrain with whom players can interact. Thus, the communication network density and degree
distribution may be especially relevant for the post-knockout treated teams, as these teams have
fewer players and more decentralized communication networks, with a mean communication
network density of 0.63 for the control teams, 0.64 for the pre-knockout treated teams, and 0.70
for the post-knockout treated teams, and a mean degree centralization measure of 0.27 for the
control teams, and 0.28 for the pre-knockout treated teams, and 0.23 for the post-knockout treated
teams (see appendix for additional descriptive information on the communication networks).
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Thus, network density and degree distribution directly affect the normalized volume of messages
sent by teams. In the appendix, we replicate these models with alternative control variables.

4.4 Methods
We use difference in difference regressions to measure changes in the teams and individuals from
the node knockout. The equation follows:

yit = β0 + λt + αi + γit + εit

γit = λtαi

εit ∼N (0, σiid),

where β0 is the intercept, λt is the time trend, αi is the treatment, and γit (the interaction effect
between λt and αi) is the difference in difference estimate. For our experiment, the difference in
difference estimate is the average treatment effect because it accounts for time-varying processes
in the experiment and the impact of the treatment. At the team level, the difference in difference
interaction effect is if the team experienced a knockout and it is a post-knockout experimen-
tal round (see Figure 4a). Likewise, at the individual level, the difference in difference interaction
effect is if the teammate rewired their network and if it is a post-knockout experimental round (see
Figure 4b). Through this approach, we can control for teams adjusting and learning the experi-
ment over time. This allows us to more cleanly estimate the average treatment effect for the node
knockout on teams and individuals that rewire their network.

All presented regressions are estimated via 2,500 bootstrap simulations.5 To test the robustness
of our findings, we run both standard and random effects difference in difference regressions.
Specifically, we include a random effect for teams. The random effects help account for unob-
served heterogeneity between teams not captured by the other independent variables. In addition
to the presented regressions, the appendix contains alternative model specifications.

5. Results
5.1 Team level
Table 2 reports the team difference in difference regression results. In total, we find some evidence
for our hypotheses. Across all models on changes in the normalized volume of messages sent, the
effect of the node knockout is statistically significant and negative, with teams sending 1.03 fewer
messages per round, holding all else constant.6 This corresponds to 5 fewer messages sent during
the post-knockout rounds for treated teams.

Aside from the effect of node knockouts on messages sent, we also find three notable null find-
ings. First, the teams that experience a node knockout were 2% less likely to win games compared
to the control and pre-knockout teams. However, the estimated effect of the node knockout on
teams’ records is not statistically significant at the 0.05 level. In addition to the aforementioned
results, we also find that the effect of communication network density is positively associated with
both teams’ records and their volume of messages sent, with a one-unit increase in communica-
tion density increasing the team probability of winning by 12% and the volume of messages sent
by 5.04. However, in both models, the effect is not statistically significant at the 0.05 level, suggest-
ing that greater internal connectivity has an indeterminate effect on team performance. This null
finding is notable given that previous scholarship has found a positive association between inter-
nal connectivity (i.e., network density) and team performance (e.g., Landers & Lüschen, 1974;
Carron & Chelladurai, 1981; Evans & Dion, 1991; Mullen & Copper, 1994; Beal et al., 2003). Last,
we similarly find null results for degree centralization and team records on the normalized volume
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Table 2. Average treatment effect for the changes in team performance using the team record and the normalized messages
sent. Across both models, teams that experience a node knockout send less messages compared to the control teams

Dependent variable

Team record Normalized messages

(1) (2) (3) (4) (5) (6)

Inter. effects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Diff-in-diff ATE −0.02 −0.02 −0.02 −0.71∗ −0.72∗∗ −1.01∗∗∗


[−0.17; 0.13] [−0.18; 0.15] [−0.19; 0.15] [−1.35; − 0.11] [−1.22; − 0.24] [−1.62; − 0.40]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Main effects


Time 0.21∗∗∗ 0.21∗∗∗ 0.21∗∗∗ 1.45∗∗∗ 1.45∗∗∗ 1.45∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0.09; 0.34] [0.08; 0.34] [0.08; 0.34] [1.01; 1.93] [1.07; 1.83] [1.07; 1.83]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Knockout 0.07 0.06 0.06 −0.29 −0.29 −0.36


[−0.03; 0.16] [−0.05; 0.18] [−0.05; 0.18] [−0.73; 0.18] [−1.05; 0.46] [−1.10; 0.38]


Constant 0.15∗∗∗ 0.15∗∗∗ 0.07∗∗ 6.47∗∗∗ 6.47∗∗∗ 3.27∗


[0.08; 0.23] [0.06; 0.24] [−0.44; 0.59] [6.13; 6.79] [5.83; 7.11] [0.09; 6.61]


Control


Comm. density – – 0.12 – – 4.97


[−0.64; 0.90] [−0.37; 10.03]


Deg. central. – – −0.03 – – 0.30


[−0.54; 0.50] [−2.47; 3.03]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observations 520 520 520 520 520 520


R2 0.06 0.07 0.08 0.10 0.52 0.52


Team ran. effects – � � – � �

Brackets are 95% bootstrap confidence intervals. ∗∗∗p< 0.001; ∗∗p< 0.01; ∗p< 0.05. Estimated with 2,500 boot-strap simulations. Models (2), (3),
(5), and (6) include team random effects.

of messages sent, with a negative relationship between degree centralization and team record and
a positive association between degree centralization and volume of messages sent.

5.2 Individual contributions
Table 3 reports the individual difference in difference regression results. In total, we find strong
evidence for our hypothesis that teammates who rewire their network after the node knockout
become more integral, while peripheral members become more isolated within their teams’ com-
munication frequency network. Across all models, the effect of the node knockout and adaptation
is statistically significant and positive, with an increase in 0.21 degree, 0.12 betweenness, and 0.31
eigenvector centrality for the teammates that rewired their network compared to the control par-
ticipants.7 Figure 7 helps us further understand the estimated effect of rewiring the network by
visualizing a distribution of all bootstrapped estimates. In total, zero of the bootstrapped treat-
ment effect estimates are below zero in the degree and eigenvector centrality regressions, while
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Table 3. Average treatment effect for the knockout on the communication frequency network. Across all models, we
see that players connected to the knocked out player becomemore central to the team following the knockout

Dependent variable

Degree centrality Betweenness centrality Eigenvector centrality

(1) (2) (3) (4) (5) (6)

Inter. effects


Diff-in-diff ATE 0.24∗∗∗ 0.21∗∗∗ 0.14∗ 0.12∗ 0.33∗∗∗ 0.31∗∗∗


[0.12; 0.36] [0.10; 0.33] [0.02; 0.26] [0.00; 0.25] [0.20; 0.45] [0.19; 0.43]


Main effects


Time 0.09 0.11∗∗ −0.17∗∗∗ −0.16∗∗∗ 0.02 0.04


[−0.00; 0.17] [0.03; 0.19] [−0.27; −0.08] [−0.24; −0.08] [−0.06; 0.11] [−0.04; 0.12]


Knockout −0.44∗∗∗ −0.63∗∗∗ −0.40∗∗∗ −0.46∗∗∗ −0.22∗∗∗ −0.34∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[−0.53; −0.36] [−0.73; −0.53] [−0.49; −0.31] [−0.55; −0.37] [−0.31; −0.14] [−0.44; −0.24]


Constant 0.11∗∗ 0.20∗∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.02 0.07


[0.05; 0.18] [0.09; 0.31] [0.17; 0.31] [0.20; 0.33] [−0.04; 0.08] [−0.01; 0.15]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Observations 3,995 3,995 3,995 3,995 3,995 3,995


R2 0.04 0.18 0.02 0.06 0.03 0.06


Team ran. effects – � – � – �

Brackets are 95%bootstrap confidence intervals. ∗∗∗p< 0.001; ∗∗p< 0.01; ∗p< 0.05. Estimatedwith 2,500 bootstrap simulations. Models (2),
(4), and (6) include team and treatment random effects.

Figure 7. The difference in difference estimates for the changes in centrality for the treated individual participants from the
standard difference in difference regressions. Following the knockout, the treated experiment participants became more
central to their team communication frequency networks.

1.4% of the bootstrapped treatment effect estimates are below zero in the betweenness centrality
regression.

At the same time that the treated participants become more central to their team’s communi-
cation, the knockout treatment reduces the degree, betweenness, and eigenvector centrality of all
remaining teammates compared to the control teammates on the teams that did not experience
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the knockout, with a decrease in 0.63 degree, 0.46 betweenness, and 0.34 eigenvector centrality.
This means that the remaining control participants on the knockout teams see reductions in their
influence within their team’s communication network frequency (i.e., internal information shar-
ing). These individual-level findings relate to the team-level models on changes in the normalized
volume ofmessages sent. Specifically, this suggests that node knockouts cause the remaining influ-
ential participants to become more influential, while the remaining less influential participants
become less influential.

6. Discussion
The present findings provide a deeper understanding and contribute to the existing literature on
network resiliency and team performance. We find that teams that experience a network knock-
out send fewer messages, all else equal. However, while the teams send fewer messages overall,
the remaining members that adapted their network after the knockout see increases in their com-
munication frequency network centrality. Put another way, node knockouts appear to decrease
their team’s internal connectivity while increasing the connectivity of other central members.
These conflicting findings help us infer the role of the knocked-out participant in the experiment.
Specifically, this suggests the knocked-out participant helped communicate the team strategy to
their teammates during an experimental round. Therefore, their removal from the team reduced
overall team connectivity, with central teammembers becomingmore central and peripheral team
members becoming more peripheral within their team’s communication frequency network. This
finding adds to the growing body of research on how network centrality can help us understand
leadership and network adaptation (e.g., Li et al., 2013; Zhang & Luo, 2017; Dubois & Gaffney,
2014; Risselada et al., 2016; Sasaki et al., 2017). Further, it suggests that even if teammates adjust
their behaviors after a node knockout, it may not fully compensate or offset the lost contributions
of the removed node in the short term.

In addition to this finding, our study also contributes to the extant research on team per-
formance and network structure. Although teams are often able to outperform individuals,
researchers have recently analyzed the conditions under which individuals can outperform teams.
The presented analysis contributes to this literature. Based on our results, we estimate that the
node knockout decreases a team’s probability of winning by 2%. With that estimated treatment
effect, we would have to sample approximately 7,000 teams to detect a statistically significant effect
of node knockouts on team performance more than 80% of the time (see Figure 8 for visualization
of simulated p-values by sample size). This suggests that although node knockoutsmay have a neg-
ative impact on teams, teams may not be greatly affected by a node knockout if the coordination
task is similar to the generalization of the Colonel Blotto game presented in this paper.

The null finding of node knockouts on team performance is consistent with previous research
analyzing how individuals and teams differentially perform on tasks with varying difficulty.
Almaatouq et al. (2020b) conduct a two-stage experiment. In the first stage, participants com-
plete tasks with varying levels of complexity. In the second stage, the experiment participants
are randomly assigned into a group or individual treatment and perform similar tasks. They find
that individuals are able to outperform teams when the task is simple. The Colonel Blotto game
may be a similarly simple task wherein individuals can outperform groups. Thus, the loss of a
member may have a nominal effect on the team despite influencing the teams’ messaging and
communication.

We also find that decentralized communication, communication network density, and hierar-
chy may not affect team performance. These findings conflict with several studies that demon-
strate that greater network density improves team performance (e.g., Landers & Lüschen, 1974;
Carron & Chelladurai, 1981; Evans & Dion, 1991; Mullen & Copper, 1994; Beal et al., 2003).
Although most studies have found a positive relationship between network density and team
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Figure 8. Simulated p-values by sample size. Starting at sample sizes over 7,000 is when the average treatment effect starts
of−0.02 starts to be detected in more than 80% of the simulations.

performance, several studies have found that team performance and network density may have a
curvilinear relationship, with very sparse and dense networks performing worse than networked
teams with an intermediate number of internal connections (e.g., Burt, 1999; Wise, 2014). We
explore this effect in the appendix but similarly find no effect of communication network density
on team records or the volume of messages sent. This finding, combined with the node knock-
out effect on team records, may be an interesting area for future study, as the null effect of the
exogenous shock on team record may be related to experimental teams engaging in a simple task
(Almaatouq et al. 2020b).

7. Conclusion
The present study makes four notable contributions to extant research on network structure,
resiliency, and adaption. First, we show the conditions under which node knockouts affect the
performance of real-world teams, with the removal of a central teammate reducing the internal
dissemination of information. This suggests that leaders (i.e., central nodes) play a crucial role
in connecting disparate parts of their team’s network. Second, we analyze how the remaining
players adapt to node knockouts to offset the lost contributions of the removed teammate, with
secondary, but central, members becomingmore central and peripheral members becoming more
peripheral within their team’s communication network. This finding suggests that knockouts dif-
ferentially influence the remaining teammates by further integrating influential members while
simultaneously isolating non-influential members. Together, the first and second findings help
us understand how networked systems adapt at the macro and micro levels to node knockouts,
with a loss in overall connectivity at the network level and some retrenchment and integration
at the nodal level. Third, the present analysis contributes to the growing body of work on how
team structure and coordination may not be beneficial in certain situations. Indeed, the null effect
of the exogenous shock on team records may be because teams were tasked with a simple coor-
dination game instead of working on a more difficult task. And fourth, the experiment offers a
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novel methodological contribution for experiments on networked systems. Specifically, by recruit-
ing preexisting groups, we conduct experiments on real social networks, which gives us critical
insights into network adaptation at the team and individual levels.

However, before further discussing the implications of the study, we wish to note four potential
limitations. First, several of the individual and teammodels have low R2 values, meaning that little
of the variance in the dependent variable is explained by the independent variables. This suggests
that other factors omitted from the models may help us understand team performance and par-
ticipants’ contributions.8 Second, exogenous shocks outside of a laboratory experiment may affect
individuals and teams differently than a simulated knockout. Namely, the experiment imposed
some restrictions on how the experimental team could adapt their communication network after
an exogenous shock, whereas real-world networked teams may have a broader range of ways to
respond to a node knockout. Third, our experiment asked participants to compete in a simple
coordination game. The effect of exogenous shocks on teams may differ if teams perform harder,
more intensive tasks. And fourth, the communication of the participants was restricted to their
pre-selected social network ties. Although the communication network reflected their real social
networks, the messaging network between the participants would have likely differed if they could
communicate with any of their teammates during the experimental game. The third and fourth
limitations offer areas for future research. Subsequent studies can investigate how teams adapt to
exogenous shocks when performing more challenging tasks, or allow teammates to communicate
with all other participants team through dyadic messaging windows.

The limitation notwithstanding, this study offers several significant contributions to research
on team performance, leadership, individual motivation, and how teams adapt to exogenous
shocks. Through our analysis, we provide greater clarity on how teams respond to exogenous
shocks. In so doing, we precisely demonstrate how teammates respond to exogenous shocks in
the form of node knockouts. In particular, the individual level and teammessaging results provide
key insight into how teams adapt to node knockouts. Specifically, the treated teams become more
disconnected despite the increases in connectivity from the remaining central participants that
rewire their networks. This suggests that node knockouts reduce internal team communication
at the expense of the more disconnected teammates. In addition to our substantive contributions,
we also offer a novel methodological contribution to experimental studies in network science. Our
present experiment design uses real networked teams in the experiment. This gives us a more pre-
cise and realistic understanding of how social networks respond to exogenous shocks. This design
may benefit other researchers who want to understand how real social networks affect different
phenomena.

In addition to our research contributions, our analysis also has direct policy implications,
including criminal justice, military, counter-terrorism, and counter-insurgency policies. For
example, law enforcement can use these results to construct more proficient teams and more
resilient to exogenous shocks. Conversely, policymakers can use these findings to disrupt criminal
and terrorist organizations by understanding how teams adapt after leaders are removed.
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Notes
1 Several experimental studies on networked groups have called into question key findings based on computational models
(Mason et al., 2008; Mason &Watts, 2012).
2 The volume of normalized messages is the total number of messages sent by a team divided by the number of teammates.
3 There was noise added to the troop placement count per battlefield so that it was not always a perfect placement of 60%
and 40% on each battlefield.
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4 Because the experiment networks are small, the communication network degree centrality of experiment participants are
highly correlated with their betweenness and eigenvector centrality. In total, 96% of the knocked out participants had the
highest betweenness and 81% had the highest eigenvector centrality in their team’s communication network.
5 The random effects models use parametric bootstrapping (see Halekoh & Højsgaard, 2014), while the standard difference
in difference regressions are estimated with nonparametric bootstrapping. Previous research has found that parametric boot-
strap for mixed effect regressions provide robust standard errors and also maintains the data structure (i.e., our teams) (Thai
et al., 2013).
6 The reported results use the full random effects regression.
7 The reported results use the random effect regression estimates.
8 Although the R2 value is low we are primarily concerned with our treatment effect explaining the outcome of interest (see
Schustack & Sternberg, 1981; Lewis-Beck & Skalaban, 1990; Kincaid, 2021, for a discussion of R2 values in experiments).
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