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1. Introduction 

In 1978 Roger Penrose opined that cosrnic censorship was "possibly the most im­
portant unsolved problem in classical general relativity theory" (1978, p. 230). Today 
the problem remains unsolved, but in the intervening years Penrose's sentiment about 
the importance of the problem has been shared by many leading researchers in relativis­
tic gravitation (see, for example, Eardley 1987, Israel 1984, and Wald 1984a). This sen­
timent can be traced to several considerations. First, if a suitable form of cosrnic censor­
ship obtains, then one can appeal to various "no hair" theorems for black holes to obtain 
a characterization of the final state of gravitationally collapsed bodies. The now Stan­
dard black hole thermodynarnics makes use of Hawking's area theorems, which in turn 
presuppose a form of cosmic censorship. Second, the proof of the positivity of total 
mass of an isolated gravitating system (the so-called ADM mass) presupposes censor­
ship of naked singularities, at least on the initial hypersurface. A third group of consid­
erations stems from the fact that cosmic censorship would lead to a breakdown in pre­
dictability and determinism. l Because of its connection with traditional philosophical 
concerns, it is this worry which will receive the most attention in this paper. 

A series of theorems due primarily to Stephen Hawking and Roger Penrose show 
that the laws of the general theory of relativity (GTR) entail that, under very general 
conditions, spacetime singularities can be ex{lected to develop in gravitational col­
lapse and cosmology (see Wald 1984a, Ch. 9). The hope of cosmic censorship is that 
these same laws preclude singularities of the naked variety, for otherwise these laws 
would perversely undermine themselves. Whatever their precise technical characteri­
zation, spacetime singularities signal the breakdown of classical relativhtic spacetime 
structure and, thus, of the laws that presuppose that structure. lf such a breakdown 
were naked in the sense of being visible to external observers, then those observers 
could be sprayed by unpredictable influences emerging from the singularities. Of . 
course, quantum mechanics (QM) has accustomed us to unpredictability and indeter­
minism, but not of the anything-goes variety. Perhaps it will turn out that naked singu­
larities are governed by some yet to be discovered regularities that restore a semblance 
of lawful predictability, perhaps of a statistical form to which QM has accustomed us; 
but if so, classical GTR gives no clue as to what these regularities are. Rather than 
having to appeal to something beyond the theory to clean up the mess that the theory 
has created, lt would be much neater if the theory could be shown to have built in 
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mechanisms to prevent the mess from occurring in the first place. Before we can begin 
to investigate the prospects of such a neat resolution, we need a better fix on exactly 
what goes into the mess of a naked singularity and how the mess might be censored. 

2. What is to be censored? 

The first step towards formulating a cosmic censorship hypothesis is to identify 
the kind of behavior that needs censoring. One approach would be to fashion a defini­
tion that says when a spacetime is nakedly singular as viewed from a given point. 
Letting N stand for the collection of all such points, we could then say that the space­
time satisfies strong cosmic censorship just in case N = 0. Gerach and Horowitz 
(1979) have suggested a definition along the following lines: M, g'lb is nakedly sin­
gular as viewed from p E M iff J·(p) contains a timelike curve y w1thout any future 
endpoint.(J-(p) stands for the causal past of p, i.e. the set of all points q such that 
there is a (possibly trivial) causal curve from q top.) How can it be that y, which is 
maximally extended in the future direction, fails to escape J·(p)? Intuitively, the fail­
ure results from the fact that y runs into a singularity. And since this fact is observable 
from p, the spacetime is therefore nakedly singular from that vantage point. Note that 
the standard Friedman-Walker-Robertson big bang models are not counted as nakedly 
singular by this definition even though the initial singularity is highly visible. 

There can be little doubt that N = 0 is sufficient for cosmic censorship/no naked sin­
gularities; in particular, on the proposed definition of N, N = 0 entails that the spacetime 
possesses a Cauchy surface. (A Cauchy surface for a spacetime M, gab is a spacelike hy­
persurface S c M such that every maximally extended causal curve intersects S exactly 
once. Such a hypersurface is the appropriate launching pad for Laplacian determinism. 
Of course, the existence of such a launching pad does not by itself show that global de­
terminism holds, but it does show that a breakdown in determinism is not due to some 
pathology in the spacetime.) If strong cosmic censorship fails, a weak.er form may still 
hold if each of the points in N is confined to the interior of a black hole. 2 For observers 
outside of the event horizon of the black hole, physics goes on as usual. 

But the following examples raise doubts about whether N = 0 (or the weaker condi­
tion that N is contained in black holes) is necessary for the censorship of naked singu­
larities. Ex. J. Let C be a compact ball about the origin of Minkowski spacetime. 
Choose a scalar field n which blows up as C is approached, and define a spacetime 
metric gab= n 2i,ab, where Tlab is the Minkowski metric. The new spacetime M (= 9{4 -
C), gab, which contains an "internal infinity," is counted as nakedly singular by the defi­
nition under discussion; in fact, N contains all points p such that in Minkowski space­
time C c J·(p). Ex. 2. For the covering space of anti-de Sitter spacetime, N is the entire 
spacetirne, not because there are internal infinities but because for each p, J·(p) contains 
timelike curves that accelerate off to spatial infinity. In both examples there is a break­
down in predictability and determinism. And yet both spacetimes are arguably non-sin­
gular: there is no "blow up" of curvature, and both spacetimes are geodesically com­
plete (indicating that there are no "missing points" corresponding to singularities that 
have been cut out of the manifold). Here one sirnply has to make a choice: if a break­
down in predictability and determinism is the mam concern behind cosmic censorship, 
then the behavior illustrated in Exs. 1 and 2 should be censored; but if one's concern is 
with, say, curvature singularities that are visible to external observers, then the defini­
tion of N has to be strengthened in some appropriate way. 

Another approach to cosmic censorship/naked singularities is motivated by the 
hope that in physically reasonable cases of gravitational collapse, singularities will not 
develop from regular initial data. Thus, negative mass Schwarzschild spacetime, which 
contains a naked singularity on any reasonable definition of that terrn, would not be 
counted as a violation of cosmic censorship since the singularity has existed for all 
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past times. To explore this approach, a definition is needed to identify the cases of 
spacetimes where a singularity develops from the data posed on some initial value hy­
persurface. Towards this end, define a time slice (aka partial Cauchy surface) as a 
spacelike hypersurface that is achronal and edgeless. The future Cauchy horizon H+(S) 
of such an S is the future boundary of the future domain of dependence D+(S) of S, the 
region of spacetime where one can reasonably hope to determine the state of things 
from initial data on S. (More precisely, for a spacetime M, &ib thefuture domain of 
dependence of S c M consists of all p e M such that every causal curve which passes 
through p and which has no past endpoint meets S. The past domain of dependence 
D·(S) of S is defined analogously. S is a Cauchy surface for M, gab iff M = 
(D+(S)uD-(S)).) Then following ideas of Geroch and Horowitz (1979) and Horowitz 
(1979) we could try: M, gab isfuture nakedly Singular (FNS) with respect to the partial 
Cauchy surface Sc M iff :lp e H+(S) such that the closure of J·(p)nS is compact. If 
H+(S) *0, prediction from initial data on S eventually breaks down. But the break­
down may not be due to any pathology in the spacetirne but to a bad choice of S, as il­
lustrated in the example of a spacelike but asymptotically null surface in Minkowski 
spacetime (see Fig. 1). However, the proposed definition does not count Minkowski 
spacetirne as FNS since in the illustration the closure of J·(p)nS is non-compact. 
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Figure 1 

The fi.rst thing that needs to be shown in order to establish that this definition is 
doing its job is that if M, gab is FNS with respect to S, then there is a pathology in the 
spacetime structure to the future of S. This can be done in the minimal sense that it 
can be shown that J+(S) is not globally hyperbolic.3 (The proof proceeds by way of 
contradiction. Supposing that the spacetime is FNS with respect to S and that J+(S) is 
globally hyperbolic implies that 3p e H+(S) such that J+(J·(p)nS)nJ·(p) is compact. 
This compact set past traps the null geodesic which is the generator of H+(S) through 
p, which contradicts global hyperbolicity. The reader can fill in the details using the 
results in Hawking and Ellis 1973, Ch. 6.) But note that failure of global hyperbolicity 
may be due the development of acausal features, such as closed causal curves, as il­
lustrated by Taub-NlIT spacetime where H+(S) for a time slice S of the Taub portion 
of the spacetime is a null surface ruled by closed null geodesics. If it is naked curva­
ture singularities that one wants to censor rather than acausal behavior, then a clause 
could be added to the definition of FNS, requiring that one of the generators of H+(S) 
(which are null geodesics) is past incomplete (see Newman 1986). In this case an ob­
server who crosses over H+(S) could look back and see the singularity. 
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The real concem about the proposed definition focuses on the converse direction: 
Does the fact that M, gab is not FNS imply that the spacetime is free of naked singu­
larities in the intended sense? Cases have to be divided. If M, gab is not FNS with re­
spect to a compact S, that is because S is a Cauchy surface, so the spacetime is surely 
singularity free. However, if S is non-compact the story is quite different. Reissner­
Nordstrom spacetirne is not FNS with respect to a maximal slice S (see Fig. 12.4 of 
Wald 1984) even though there is a curvature singularity to the future of S which an 
observer can see when she crosses H+(S). Of course, this example can be dismissed as 
"physically unreasonable." For any p e H+(S), J-(p)nS fails to have compact closure 
because J-(p)nS extends to spatial infinity; and because p can be influenced by an in­
finite range of initial data on S, it is not surprising that small changes in the initial 
conditions can lead to divergences on H+(S) ("blue shift instability"). But to defend 
the proposed definition in this way is to treat it as doing two jobs at once: defining 
singular behavior that develops from regular initial data and sirnultaneously excluding 
cases of physically unreasonable behavior. I for one would prefer a definition that 
does the first job and leaves the second to a further discussion. 

Another potential defect of this second approach emerges in comparison with the 
first. The first approach provided for a fall-back position should strong cosmic cen­
sorship fail; namely, a weak form of censorship would hold if the members of the set 
N ofpoints from which the spacetime is detectability nakedly singular are all con­
tained within black holes. The second approach does not attempt to characterize the 
set N; but perhaps the beginnings of a fall back position for this approach can be pro­
vided by the idea that if the spacetime is FNS with respect to S, then for weak cosmic 
censorship to hold it should be the case that the generators of H+(S) do not reach l+. 

The overarching irnpression I hope this all too brief discussion leaves with the 
reader is this. There are relatively clear cases of the type of behavior a proponent of 
cosmic censorship would want to proscribe. But attempts to sharpen up the fuzzy 
boundaries of the concepts of cosmic censorship and naked singularities by means of 
precise mathematical definitions inevitably pinch preanalytic intuitions. If all the pro­
cess of sharpening called for was a sacrifice of intuitions, the sacrifice could be made 
happily; but there does not seem to be any one way of sharpening up the boundaries 
that is obviously preferable to all the others . Such situations are, of course, familiar to 
philosophers of science. What is interesting about the present case is that it occurs not 
at the meta-level at which philosophers of science work but at the object level of ac­
tive research in relativistic gravitation. 

3. The cosmic censorship hypothesis 

Supposing that we have settled on a specific content for the concept of naked sin­
gularity, the cosrnic censorship hypothesis (CSH) becomes the claim that GTR has a 
built in mechanism for preventing the development of such singularities. If the CSH is 
to be part of physics, as opposed to the philosophy of physics, then this vague claim 
has to be replaced by a claim about solutions to Einstein 's field equations (EFE) that 
is precise enough that it lends itself to proof or, altematively, to refutation by coun­
terexample. Finding such a statement of cosmic censorship that fits this bill while es­
caping obvious counterexamples has proven difficult. 

To illustrate the difficulty, begin with the observation that it is easy to produce so­
lutions to EFE that contain naked singularities on any reasonable definition of that 
term. But many of the known examples can be dismissed as being physically uninter­
esting, either because of the nature of the singularity itself or because the presence of 
the singularity can be chalked up as an artifact of idealizations. Consider, for example, 
dust solutions to EFE. (Here the stress-energy tensor takes the form Tab= µvayb 
where µ is the mass-energy density and va is the normed four-velocity of the dust.) lt 
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is possible to arrange spherically symmetric collapse of a dust cloud so that the outer 
shells fall in ward faster than the inner shells, leading to the development of infinite 
density singularities that are visible to extemal observers. Such "shell crossing singu­
larities," however, are relatively mild, and the solution can (perhaps) be extended 
through the singularity in some physically reasonable way. This·caveat can be re­
moved by exhibiting dust solutions that develop much stronger and, hence, irremov­
able "shell focusing singularities." But another caveat immediately arises to take the 
place of the fust: by definition, dust models neglect pressure, and it is not initially im­
plausible to think that if pressure p is incorporated into the description and if the 
equation of state p = p(µ) specifies that p diverges as µ becomes infinite, then the sin­
gularity can be avoided. This qualm can be overcome by exhibiting nakedly singular 
solutions to EFE for a perfect fluid source (Tab=(µ+ p)vayb + pgab) with the equa­
tion of state p = aµ, a = constant > 0 (see Ori and Piran 1990). One can still worry that 
the naked singularity is a consequence of the perfect fluid idealization. But if this 
worry is allowed to become too obsessive it can undercut any potential counterexam­
ple to the CSH since all physics involves some idealizations. What is needed, there­
fore, is a criterion for when the level of description has become fundamental enough 
that potential counterexamples cannot be dismissed as artifacts of the analysis. 

Wald (1984a, p. 303) proposed that a necessary condition for the matter fields to 
be fundamental in the intended sense is that the coupled Einstein-matter equations can 
be put in a special form (technically, quasilinear diagonal second-order hyperbolic) 
that holds for paradigm examples of fundamental fields , such as electromagnetism 
and gravity. The coupled Einstein-Euler equations for a finite ball of perfect fluid can­
not be put in this preferred form . However, the main virtue of the preferred form is 
that it guarantees that the coupled gravity-matter system admits of a well-posed initial 
value problem; and the work of Rendall (1992) indicates that for suitable equations of 
state, initial data should deterrnine a unique solution for the Einstein-Euler equations, 
at least locally. Perhaps the perfect fluid description should be denied fundamental 
status on the grounds that, by contrast to the electromagnetic field , in Minkowski 
spacetime such a fluid can develop shock wave singularities . 

Yet another way of dealing with the potential counterexamples mentioned above 
points to another way of forrnulating the CSH. Someone who wanted to violate cos­
mic censorship by taking advantage of these examples would have tobe extremely 
lucky since in any realistic case it is not be to expected that perfect spherical symme­
try can be achieved. To put the matter less anthropomorphically, the CSH would state 
that violations of cosmic censorship are of "measure zero" among the solutions to 
EFE. Given our presently limited knowledge of generic features of EFE, the prospects 
of proving such a censorship theorem (even if true) do not seem bright. But numerical 
simulations of generic cases of gravitational collapse can furnish evidence pro or con. 

Tue time symmetry of EFE poses a threat to the "measure zero" version of cosrnic 
censorship. Suppose that in a typical case of gravitational collapse only a weak fonn of 
cosmic censorship obtains; that is, suppose the associated set of points N from which the 
spacetime can be detected to be nak.edly singular is non-empty but that N is contained 
within a black hole. By the time symmetry of EFE, every such solution is matched by a 
time reversed solution, and the latter solution represents a white hole that is as naked as 
can be. Here we add another verse to the refrain of the problem of the direction of time, 
which asks why we encounter certain solutions to the fundamental laws of physics but not 
their time reverses. lt is tempting to sweep the present threat to cosmic censorship under 
the rug of this ubiquitous problern, and, in line with the second approach outlined in sec­
tion 2, take cognizance only of naked singularities that arise from regular initial data. 

lt seems fair to say that the evidence on cosmic censorship that has been amassed to 
date does not point strongly in either the pro or the con direction. On the pro side, very 
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few positive censorship theorems have been proved, and the significance of the ones 
that have been proven is hard to assess. For example, Newman (1984) has established 
a version of cosmic censorship by assuming that all incomplete null geodesics (which 
are taken tobe indicative of the presence of a singularity) satisfy a persistent curvature 
condition; but the applicability of this condition to generic cases of gravitational col­
lapse remains uncertain. Proponents of cosmic censorship can take comfort from the 
failure of attempts to produce counterexamples. Consider, for example, the condition 
that separates the black hole version of Kerr-Newman farnily of spacetimes from a 
nakedly singular version: M2;?: Q2 + J2, where M, Q, and J are respectively the mass, 
electric charge, and the angular momentum. Wald (1973) showed that attempts to vio­
late this inequality by, for instance, injecting electric charge into the black hole cannot 
succeed. This confirms the stability of a generic black hole configuration but does not 
reach the question of whether a black hole will form in the first instance. 

On the negative side of the ledger one could cite the recent numerical simulation 
by Shapiro and Tukolsky (1991) of the collapse of a prolate spheroid. However, in 
view of the investigation of Wald and lyer (1991) it is too early to take the Shapiro­
Tukolsky result as a counterexample to cosmic censorship, and the simulation would 
have to be continued forward in time to verify that the absence of an apparent horizon 
means the absence of an event horizon clothing the singularity.4 

In sum, the strongest evidence we have in favor of the CSH is the absence of solid 
counterexample despite many attempts to construct them, which is not much evidence 
at all unless we assume that we are clever enough to have found whatever counterex­
amples that may exist.5 

4. Quantum considerations 

Will a quantum theory of gravity provide a more friendly or a more hostile envi­
ronment for cosmic censorship? Since we can only dimly perceive the shape of a suc­
cessful marriage of QM and GTR, the answers that can be provided at present are 
necessarily speculative and quite probably unreliable. Nevertheless, some speculation 
is useful in defining the issues. 

Ordinary QM shows an amazing ability to smooth out singularities from classical 
physics. Consider, for example, Newtonian point mass particles interacting via a l/r2 
force. A Newtonian solution can break down either because of collision or non-colli­
sion singularities (see Earman 1986). By contrast, in the quantum version of this prob­
lem the Hamiltonian operator is (essentially) self-adjoint, with the result that the evolu­
tion operator, formed by exponentiating the Harniltonian, is unitary and is defined for 
all -oo < t < +<><>. The singularities have completely disappeared! Similarly, one might 
hope that the singularities of classical GTR will disappear in a fully quantized theory 
of gravity. Such a hope might be based on the attitude that the only singularities that 
will occur in classical gravity are those that a forced to occur by the Hawking-Penrose 
singularity theorems. One then points to the conjunction of two facts; viz. that these 
theorems rely on energy constraints on pb (such as the null energy condition which 
requires that Pbkakb ;?: 0 for every null vector ka) and that these energy constraints can 
be violated in relativistic quantum field theory. However, quantum field theory does 
satisfy an averaged null energy condition (see Wald and Yurtsever 1991), and it my be 
that singularity results can be generated from these weaker constraints. 

If quantum gravity doesn't banish singularities altogether, then a more fri ghtening 
prospect opens up, even if cosmic censorship is true at the level of classical GTR. For 
according to calculations from semi-classical quantum gravity, black holes will even­
tually evaporate due to Hawking radiation. And assuming that classical relativistic 
spacetime concepts can be applied to the outcome, naked singularities can be expect-
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ed to emerge. To discuss the reasons for that expectation, 1 will review a technical re­
sult due to Geroch and Wald (see Wald 1984b). 

Theorem (Geroch and Wald). Let M, gab be a time oriented spacetime, and Jet S1 
and Si be closed achronal sets with S1 connected and S~ edgeless. Suppose that (i) 
there 1s a point p e D+(S1) such that p e: (J·(Si)uJ+(Si)J, and (ii) J+(K)nS 1 has 
compact closure, where K = S1 - (D·(Si)nS1). Then S2 <t. D+(S1). 

The Penrose diagram of (one half) of a generic black hole configuration of a gravita­
tionally collapsed body with center of symmetry r = 0 is shown in Fig. 2(a). In this 
case D+(S1) for the time slice S1 includes every point to the future of S1 so !hat there 
won 't be any slice S2 to the future such !hat S2 <t. D+(S l). Here the conclusion of the 
Theorem fails because neither of the conditions (i) or (i1) is applicable. Fig. 2(b) pic­
tures the evaporation of a black hole by means of a catastrophic burst of electromag­
netic radiation. No naked singularity develops since again D+(S1) includes everything 
to the future of S1. The Theorem fails to apply since although condition (i) holds, (ii) 
fails . Presumably, however, Hawking radiation does not produce the catastrophic 
evaporation of Fig. 2(b) but something more akin to !hat of Fig. 2( c) where conditions 
(i) and (ii) both apply. The Theorem can then be invoked to conclude that there will 
be a violation of cosmic censorship in the form of a breakdown in predictability. 

What 1 would like to briefly explore is the prospect of proving !hat black hole evapo­
ration will produce a violation of cosmic censorship in the stronger sense of a singularity 
visible from t+, as Fig. 2(c) would suggest Tue Theorem already teils us !hat the future 
boundary H+(S 1) of D+(S 1) is non-empty. Tue generators of H+(S 1) are null geodesics. 1 
will simply assume !hat these generators extend to f +. It may also be assumed without 
loss of generality !hat S1 is a partial Cauchy surface and also !hat s1 <t. J-( l+), for S1 is 
supposed to correspond to a time before the black hole evaporates. Because S1 is edge­
less, the generators of H+(S1) are past endless and, thus, past inextendible (Hawking and 
Ellis 1973, Prop. 6.5.3). There are now two main possibilities to consider. (1) Some of the 
generators of H+(S 1) are totally or partially past imprisoned in a compact set of the space­
time. This possibility can be ruled out by imposing the requirement of strong causality 
which says intuitively !hat there do not exist any almost closed causal curves (Hawking 
and Ellis 1973, Prop. 6.4.7). (2) With (1) ruled out, the generators of H+(S 1) must in some 
sense "run off the edge" of spacetime in the past direction. There are two main sub-cases 
to consider. (a) Some of the generators run into a singularity, i.e. are past incomplete. 
Since, by assumption, the generators extend to l+, we have our naked singularity. To rest 
content with this sub-case, we need to rule out the other. (b) Tue generators are all past 
complete. Again we have two sub-cases to consider. (i) Tue generators run into an mternal 
infinity, such as illustrated in Ex. 1 of section 2. (This notion can perhaps be captured by 
the following definition. M, gab possess an internal injinity iff there is a neighborhood N 
c M with compact boundary and a geodesic half-curve yc N of infinite affme length.6) 
lmposing a suitable condition to rule out such pathologies we should arrive at the second 
sub-case. (ü) Tue generators of H+(S 1) all run to l -. But in this case we should be able to 
show that S1 c J·( t+) , which is contrary to assumption. ln sum Jet me emphasize !hat 
there is no pretense of a proof here. But the considerations reviewed do seern to me to 
!end credence to the notion that, excluding the process of Fig. 2(b), physically reasonable 
cases of black hole evaporation can be expected to produce singularities, in the sense of 
geodesic incompleteness, that are visible from t+. 

The upshot is fairly disturbing. lf we believe the classical GTR, it is likely that black 
holes have formed throughout the universe. lf semi-classical quantum gravity has any 
validity, then these black hole are evaporating. And the above discussion indicates that 
the evaporation will eventuale in naked singularities at least in the sense of a breakdown 
in predictability and quite possibly a stronger sense as weil. Perhaps we are saved by the 
fact that evaporation time for black holes as massive as our sun is very long indeed. 
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5. Conclusion 

On the physics side, the issue of cosmic censorship connects directly to current re­
search in relativistic gravitation and to some of the deepest foundations in general rel­
ativity. On the philosophy side, it connects directly to issues of prediction and deter­
minism and to the nature and function of scientific theories. lt is therefore surprising 
that cosmic censorship has received so little attention in the philosophy of science lit­
erature. My hope in arranging the symposium on this topic is that enough interest will 
be stimulated in our Association to end the neglect. 

Notes 

1 In his presentation to the Cosmic Censorship Symposium, Bob Gerach noted 
that, in a certain sense, predictability is impossible in most relativistic spacetimes; for 
typically an observer will be able to obtain enough information to make a determinis­
tic prediction of an event only after the event has already occurred, in which case the 
prediction isn 't really prediction (see Earman 1986). (An exception occurs in general 
relativistic spacetimes which {lOSsess compact Cauchy surfaces; see below for defini­
tions of the relevant concepts.) Nevertheless, in classical relativistic physics, deter­
minism is thought to hold at least locally. Whether it breaks down in the large because 
of the development of pathologies in the spacetime structure is part and parcel of the 
problem of cosmic censorship. 

2 The notion of a black hole is well-defined for asymptotically flat spacetirnes that 
permit the construction offuture null infinity f.+, which is intuitively the terminus of 
outgoing light ravs. The interior of the black hole is then that part of spacetime that is 
not visible from f.+ , i.e. the complement of J·( f.+). The boundary between the interior 
and exterior regions ofthe black hole, called the (absolute) event horizon, is a one­
way causal membrane that shields extemal observers from whatever craziness might 
on inside the black hole. 

3 Fora technical definition of global hyperbolicity, see Hawking and Ellis (1973, 
pp. 206ff). Global hyperbolicity is equivalent to the existence of a Cauchy surface. 

4 The absence of an event horizon entails the absence of an apparent horizon but 
not conversely. Shapiro and Tukolsky's sirnulation shows the absence of an apparent 
horizon. Wald and Iyer (1991) show that in Schwarzschild spacetime there is a slicing 
that passes as near to the black hole singularity as you like for which there is no ap­
parent horizon although, of course, there is an event horizon. 

5 See Earman (1993) for a more detailed discussion of the evidence pro and con. 

6 This definition was suggested to me by Al Janis. 
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