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ON COUNTING TYPES OF SYMMETRIES IN FINITE
UNITARY REFLECTION GROUPS

C. L. MORGAN

Let K be a field of characteristic zero. Let 7 be an n-dimensional vector
space over K. A linear automorphism of V is said to be of ¢type ¢ if it leaves fixed
a subspace of dimension 7. A reflection is a linear automorphism of type n — 1
which has finite order. A finite reflection group is a finite group of linear auto-
morphisms which is generated by reflections. These groups are especially
interesting because the full group of symmetries of a regular polytope is always
a finite reflection group. There is also a strong connection between these groups
and Lie groups.

Shephard and Todd [2] have discovered and verified and L. Solomon [3]
has given a general proof of the following counting principle: Let G be a finite
reflection group. Let g; denote the number of elements in G of type ¢; then the
polynomial

2" 4 g™ 4L+ g0

always factors into the form
x4+ m1)(x 4+ me) ... (x + m,),

where my, ..., m, are positive integers such that m; + 1,...,m, + 1 are
the degrees of a minimal generating set for the homogeneous polynomial
invariants of G. From now on let d, = m; + 1. The my, . .., m, are called the
exponents of the group. See Coxeter [1, pp. 149-150] for an historical discus-
sion of this principle.

In this paper we extend the above result to a counting principle on the eigen-
values of the elements of a finite reflection group. We shall prove the following
theorem:

THEOREM. Let G be a finite reflection group, let p be a positive integer, and let u
be a primitive pth root of unity. If g, is the number of elements in G for which the
ergenvalue u occurs with multiplicity 1, then the polynomial

2X" + g™V L+ 2o
factors into the form
clx+my)x+my) ... (x+my,),
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The referee remarks that this theorem was proved by lan G. Macdonald in a seminar at the

Institute for Advanced Study, Princeton, in 1968. Macdonald’s proof, along the same lines,
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where my,, . .., m,, are the exponents of G for which p|dy and ¢ is the product of
the remaining d.

Note: If u = 1, then the above statement reduces to the original counting

principle.
Proof. Let wi(g), wa(g), ..., w,(g) be the eigenvalues of g € G. According
to Solomon [3], we can write
1 Onp(@i(g), - ., walg)) on,kgt"“, ey t"'”)d
IG] i@ 1 —wilg)t) ... 1 —wulg)t) (1 —1t7)... (1 —1™)
for k. = 0,...,n, where g, ; is the kth elementary symmetric function in »
variables.
A computation shows that
1 o ol —wi(@t, ., 1 —w,(2)t) o — " .., 1 —1t™
Gl 7@ (1 —wi(g)) ... (1 — w,(2)t) Q= 1 =™
By expanding and canceling within each term, we get:
1 ( 1 1 )
61 2 -\ T @ T w
gt
_o-n,n—kl__tdly~"11_tdn .

Thus the average over the group of any elementary symmetric function in the
1/(1 — w;(g)t) is the same elementary symmetric function in the 1/(1 — %),
Using these elementary symmetric functions as coefficients of a polynomial
in X gives us:
1 & ( 1 1 ) §
= —, ..., X
G| kgﬁ g;a T = wig)t 1 — w,(g)t
2 1 1 ) "
- ];) Un,k(l_tdly"'yl_tdn Xv

which factors into:
: ( = ) ( 2 )
— — 4 1).. . \—+1
G| gw 1 — wi(g) + 1 — w,(g)t +

S -

If, in the above expression, we let X = (1 — ut) ¥, set t = u~1, then on the
left each X/(1 — w;(g)t) + 1yields ¥ 4+ 1 if u = w;(g) and 1 if not. Thus for
each g € G, the product (X/(1 — wi(g)t) +1)... (X/(A — w,(g)t) + 1)
yields (¥ 4 1)° where ¢ is the multiplicity of the eigenvalue « in g. Thus on
the left we get:

|1?l > eV + 1)

i=0
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On the right, for each k = 1, ..., n, we have
1 1 &
1— " 4, g 1—,,,
where 7, . . . , 7, are the di-th roots of unity. Hence the factor X (1 — t%) + 1
yields (Y/d;) + Lif u € {no, ..., nn,}, and 1 otherwise.

Since u is a primitive pth root of unity, u € {no, ..., ny,} if and only if
pldi. Thus on the right we get ((YV/d,) +1)...((V/d,,) + 1}, where
My, ...,m, are the exponents of G such that p|d;. Equating the two sides
yields:

S g+ 1) = s (Ve da) o (V4 d)
! @) ... @) " "

Now it follows from the original result that |G| = d;...d, Setting

= YV + 1 gives:

Z:O g’ =clx +my) ... (x +my),
where ¢ is the product of the remaining d;’s.
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