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ABSTRACT. An approximate, analytic solution is found for the profile of a water-free crevasse in a field 
o f closely spaced crevasses. The depth of pene tration of the crevasses into the glac ier is found. lfthe frac ture 
strength of ice is taken to be ze ro, the pene tration d epth is equal to the va lue found by Nye and is independent 
of the crevasse spacing. This conclusion is in disagreement with res ults reported recently by R. A. Sm ith. 
1 f the fracture strength of iee is taken to be fini te, the penetration d epth is reduced if the spacing between 
crevasses is reduced. 

The results of the analysis can be applied to o ther craek probl ems. ln pa rti cula r , it can be applied to 
thermal , secondary cracking tha t it is hoped occurs when cooling fluid flows throug h th e cracks crea ted by 
h ydraulic frac ture for the purpose of ex trac ting geo thermal hea t from hot, dry rock m asses. 

R ESUME. ProJolldeur de penetratioll des crevasses libres d'eau ell reseau dellse. On donne une solution analytique 
du profil d ' une crevasse d epourvue d 'eau liquid e dans un ch a mp d e crevasses ra pprochees. On trouve la 
profond eur de pene tration d e la crevasse d ans le g lacier. Si la limite d e rupture d e la g lace es t prise egale a 
zero, la profondeur de p ene tra tion est egale a la va leur trou vee par Nye et indepcndan te de I'espaccmen t 
ent re les crevasses. Cette conclusion es t en d esaccord avec les resulta ts recemment ra pportes pa r R. A. Smith. 
Si la li mite d e rupture de la glace est prise a une va leur finie, la pro fondeur de pene tra ti on est n'duite lorsq ue 
I'espacement entre les crevasses es t reduit. 

L es resultats de l'ana lyse pem 'ent e tre appliques a d 'autres problemes de fi ssuration. En partieu lie r, on 
[Jeut l'appliquer aux fissura tions thermiques secondaires que l'on p ense devoir se produire lorsqu 'un fluide 
('roid s'ecoule a travel's d es fissures creees par rupture hydraulique da ns le but d' extraire la chaicur geo­
thermique a partir de masses rocheuses sech es e t chaudes. 

Z USAMM ENFASSUNG. D ie Eilldrillgtiife ellg bellachbarter, wasseifreier Spallen. Das Pro fil einer wasserfreien 
Spal te in einem Feid eng benachbarter Spalten liisst sich angen a hert berechnen. Dara us ergibt sich die 
Eindringticfe der Spalten in clas G letschereis. vVen n die Bruchfes tigkei t von Eis gle ich Null gese tzt \V ird , is t 
die Eindringtiefe gleich d em van Nyc gcfulldencn ,,'ert u nd un abhangig "om Spa ltenabstand. Diesel' 
Sch luss steht im VVicl erspruch zu Ergebnissen , di e unla ngst von R. A. Smith mitge tc ilt wurden. Wenn die 
Bruchfes tigkcit des Eises ungleich N ull gesetzt wird, nimmt die E inclringtiefe mit ve rringertem Spaltenab­
sta nd ab. 

Die Ergebnisse der Analyse lassen sich a uf a nderc Bruchprobleme anwencl en. E in speziell es Anwenclungs­
gebie t liegt in der thermischen, sekundaren Rissb ilclung, die - so hofft man - clann e intritt, wenn Ki.ihl­
fli.i ss igke it clurch Risse dringt, di e durch h yd ra ulischen Bruch zum Zwecke der Cewinnung der Erclwarme 
aus heissen , trockencn Fclsmasscn erzeugt wul'den. 

I NTRODUCTION 

One conclusion reached by Smith ( 19 76) in his recent paper is that even if the fracture 
strength of ice is zero, the d epth of pene tra tion of water-free crevasses in to a g lacier is reduced 
if the spacing between the crevasses is reduced. H e found that in the limit in which the spacing 
goes to zero, the penetration depth also goes to zero. Previously (Nye, 1955; R obin, 1974; 
W eertman, 1973, 1974) it had been concluded that the p enetration depth of closely spaced , 
water-free c revasses was equal to the Nye d epth of Tf pg where p is the d ensity of ice , g is the 
gravitational acceleration and T is the tensi le stress acting within the g lac ier. This depth is 
independent of the spacing. 

None of the papers that considered the question of the p enetration depth of closely spaced, 
water-free crevasses actually presented the analytical solution (nor even a numerical solution) 
of the profile of a crevasse in a field of closely spaced crevasses. The solution of this problem 
obviously could resolve the controversy b etween Smith's work and the o lder work on the 
ques tion of penetration d epth. In this paper I wish to present an ana lytical solution of the 
crevasse profile. This solution supports the older conclusion that the p ene tration depth of 
closely spaced , water-free crevasses is equa l to T j pg and is independent of the crevasse spacing. 
Only if ice has a finite fracture strength can the crevasse penetration d epth be reduced by 
reducing the crevasse spacing. I solve first the problem of parallel, closely spaced cracks in an 
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infinite elastic medium. I t is then shown that the solution to this problem is essentially the 
same as the solution to the problem of closely spaced crevasses. The latter problem is one of 
closely spaced, parallel edge cracks in an elastic half-space. 

ANALYSIS 

Consider an infinite set of vertical, equally spaced, parallel cracks in an infinite solid. 
Let the spacing between the cracks be equal to h and let the centers of the cracks be situated 
at y = 0 and x = 0, ± h, ± 2h, ±3h, .. . . The cracks extend in the vertical y direction 
between - a :« y :« a. Because the cracks will be considered to be closely spaced the ratio 
hla ~ 1. 

It is assumed that before the cracks were introduced into the solid the stress crxx(Y) was 
given by 

crxx(Y) = T -pglyl· 
I t is further assumed that cryy (y) is a function only of y and that the other stress components 
are zero with the exception of crzz (y) , which is equal to v(cr xx+ cryy) where v is Poisson 's ratio. 

After the cracks are introduced into the solid, the normal and shear stresses a cross the crack 
surfaces, that is the surface tractions, are set equal to zero. Let D(y) represent the crack 
opening displacement across anyone of the cracks and let B (y) = - dD (y) jdy. (A crack 
can be considered to be a collection of infinitesimal dislocations. If it is, then B (y) represents 
the density of these dislocations .) 

In order for the crack surfaces to be traction-free the following fundamental equation that 
applies to the problem of an infinite set of parallel cracks must be satisfied in the region 
-a :« y :« a: 

a 

[fL j27T ( I - V)] f B(y' ) G(y-y') dy' = - crxx(Y) 

where 

G(y-y') (7T jh){2 sinh [7T (y -y')/h] cosh [7T (y-y') jh] -
- [7T (Y-Y') jh]} js~nh2 [7T (Y-y') jh], 

and fL is the shear modulus . Equation (2) was derived by Smith ( Ig66[a], Cb]) and by 
Yokobori and co-workers (Ichikawa and others, Ig65 ; Yokobori and Ichikawa, Ig67[a] , Cb] ) . 
It is valid for all values of the ratio hja. Equation (2) deter.mines the crack profile D(y) . 

An approximate solution of Equation (2) now will be constructed for the case of interest, 
that is, when hla ~ I. The solution of the crack profile is determined separately in three 
regions: for values ofy within the limits h < Iyl < (a- h), within the limits - h < y < h, 
and within the limits (a- h) < IYI < a. 

The region h < IYI < (a-h) 

Note that when the ratio ly-y'l /h is large, the function G ~ 27T jh when y > y' and 
G ~ - 27T jh when y < y'. Thus when y has a value such that both of the terms IYI and 
(a-Iy I) are large compared with the spacing h, the integral that appears in Equation (2) 
is given by 

a 

I (y) = f B (y') G(y-y') dy' 
-a 

- a + h -h h 

~ f (27T jh) B(y') dy' + f B(y') G(y-y') dy' ± f (27T jh) B (y') dy' + 
-a . -a+h - h 
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a-h a 

+ J B (y') G(y-y') dy' + J (- 27TJh) B(y') dy' 
h a - /i 

- h a - h 

- (4TT /h) D(a- h) + J B (y') G(y-y') dy' + J B (y') G(y-y') dy' , 
- a + /i h 

where use has been made of the symmetry relationship D (y) = D ( - y) a nd D(a) = 
D( - a) = o. The plus sign is used in Equa tion (4) if Y > 0 and the minus sign if y < o. 

h 

Since J B (y') dy' = 0 it makes no difference which sign is used. 

- h 
Assume next that the displacement D (y) is given approximately by 

D(y) = rx(T -pglyi), (5) 

where rx is a constant. (The reason for choosing this function is obvious. If a long thin strip 
of material were subjected to a normal stress equal to T - pgl yl the surfaces of the strip would 
be displaced by an amount approximately proportional to T - pglyl.) If Equation (5) 
is used to determine B(y) and B (y) is then inserted into Equation (4) and u se is made of the 
standard integrals 

J (cosh x/sinh x) dx = log Isinh xl 

and 

J (x/sinh2 x) dx = -x coth x+ log Isinh x l 

the integral I (y) of Equation (4) becomes 

I (y) = - (4TT/h) D(a- h) + (rxpg ) (TTfh){(y+h) coth [TT (y+ h)/h] + 
+(y-h) coth [TT(y- h)/h] - (y+ a- h) coth [TT (y+ a- h)/h] ­
- (y- a+ h) coth [TT(y- a+ h) /h] + 
+ (h/TT) log I{sinh [TT(y + h)/h] sinh [TT (y-h)/h]} /{sinh [TT(y+ a- h)Jh] X 
X sinh [TT(y- a+ h)/h]}} 

::::: (4TT/h){rxpg( IYI-a)-D (a- h)}. (6) 

If Equation (6) is inserted into Equation (2) it is seen that the constant rx mu'st be given by 

rx = h( r- v) /2JL , 

and the displacement D (a- h) by 

D (a-h) = [h ( r -v)/2JL][T -pg(a-h)]. (8) 

The fact that the displacement D(y) given by Equations (5) and (7) when inserted into 
Equations (2) and (4) produces a self-consistent solution justifies a posteriori the use of Equation 
(5) on mathematical as well as physical grounds. 

The region - h < y < h 

Consider next the region - h < y < h. Note that when ly -y'l /h is small the function G 
is approximately equal to rJ(y-y' ). Thus the integral I (y) is approximately equal to 
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- h h a 

I (y) ~ f ('2 77 /h) B (y') dy' + f (y-y ' )- 'B(y') dy' + f (- 277 /h) B(y ' ) dy ' 
- h h 

h 

= - (477 /h) D(h)+ f (y - y' )-'B (y ') dy'. 
- h 

If Equation (9) is inserted in to Equation (2) the following equation is found 
h 

f (y-y' )- 'B (y') dy' = {'2 77 (1 - v)/fLH - T + pg lyl} +(477 /h) D(h) 
- h 

~ {'277 ( I - V)/fL }{ pg ( lyl-h}. 

(9) 

( 10) 

The solution of Equation ( 10) can be found using tables of Hilbert transforms. T he solution 
for D is 

D(y ) = [hT(1 - V)/2fL][1 + O(pgh/T) ] ~ hT(1 - v)/'2fL . 

The region (a- h) < Iyl < a 

Finally, consider the crack tip regions (a - h) < Iy l < a. The integral I (y ) in this region 
can be expressed as 

a - h a 

I (y) ~ f ('277 /h) B (y' ) dy' + f (y - y ' )- 'B (y ' ) dy' 
a- h 

a 

= -('2 77 /11 ) D (a- h) + f (y-:y ' )- 'B (y ') dy'. 

a- h 

Substitution into Equation (2) produces 
a f (y-y' )- 'B (y ' ) dy' ::::: [17 (1 - v)/fL][ - T + 2pgIY I- pga+ pgh] . (13) 

a- h . 

The solution of Equation ( 13) can be found wi th the aid of a table of Hilbert transforms a nd 
the condition that Equation (8) be satisfied . T he solution is 

D (y) ~ [( I - v)/fL]{ (h/4)[T - pg(a- h) - 17pgh] [I - ('2 /17) sin- ' (Y* /h* )] + 
h* 

+ f ([T - pg(a- h)][y*/(h*2_ y *2)!]+ (2pg)(h*2-y*2)!} dy*}, ( 14) 

y* 

where h* = h/'2 ,y* = Iy l - a+ h*, and y * is res tricted to the range of values - h* < y* < h*. 
The displacement D (y) must always b e a positive quantity. Therefore, the value of a is 

restricted to the range 
0 < a < T/ pg. (15) 

The tensile stress T* across the crack plane ahead of, but very close to the crack tip is 

T* = K /( '2 7TT )\ ( 16) 

where r is distance from the crack tip and K is a constant known as the stress intensity facto r. 
The tensile stress becomes infinitely large a s r ~ o. T he stress intensity fac tor K is equa l to 
the limit 

(17) 
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If Equation ( 14) is substituted into Equa tion (17) 

K ~ (7Th j2)l [ (77+ I ) j27T](T - pga). ( IS) 

If the fracture streng th of the solid is effectively zero, the cracks will propaga te until the 
stress intensity facto r K becomes equal to zero . In other words, the crack half-length a will 
increase until 

a = T jpg. ( 19) 

T his half-length is equal to the Nye depth of a crevasse. I t should be noted tha t th e ha lf­
leng th a given by Equation ( 19) is independen t of th e spacing h between the cracks. 

If the solid has a finite fracture strength the crack half-length will depend on h. Let Kc 
represent the critical K value for crack propagation in the solid . Then according to Equation 
( IS) a crack will propaga te until its ha lf-length a takes on the value 

The half-length a will be equa l to zero for any spacing smaller tha n 

h ~ [S7Tj(7T + I )2](Kcj T)2 ~ 'HKcj T)2. 

Estimate of error of the approximate solution 

There is one difficulty with the approximate solution given by Equations (5), (7), ( 11 ) 
a nd ( 14)' Although D (y ) is continuous throughout the range - a ~y ~ a its d erivative 
- B (y ) changes discontinuously at y = ± h and at y = ± (a- h). H owever, the jumps in the 
value of B(y ) a t the " joints" between the segments of the approximate solution can be elimi­
na ted by smoothing the value of D (y ) a t the transition so that its d erivative is con tinuous at 
y = ± h and y = ±(a- h). 

Consider now how much the unsmoothed approxima te solu tion might differ from the 
cxact solu tion . G o back to Equation (2) and integra te the integral of the left-hand side of the 
equa tion by parts, keeping in mind tha t the Cauch y principal value of the integral is to be 
used. Equa tion (2) becomes (in the limit of E --+ 0) 

y - ( a 

-( J + J) D (y') G' (y - y' ) dY'} = - T + pgIYI, (22) 
- a Y+ E 

where G'(y - y') = oG(y - y' )joy = - oG(y - y' )joy' a nd it should be noted that G' (y-y') = 
G' (y' - y ) and G(y - y ' ) = -G(y' - y ). 

Equation (22 ) can be rewritten with negligible error as 

[/-L j27T ( I - v)] {D (Y+ E) G( - E) - D (Y- E) G(E)-

y - ' y + H 

-( J + J) D (y ' ) G' (y - y') dy'} = - T + pg ly l, (23) 
y - H y + , 

because G' (y - y') ~ - S(7T jh)2 exp (- 27T ly - y' I jh) ~ 0 when ly - y' l jh is large . H ere 
H = nh where n is a constant taken to be su ffic iently large (n ~ 3) to make G' (H ) very small. 
N ear the upper crack tip Equation (23) becomes (for y in the range a- H ~y ~ a) 
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[,u/21T(I-V)] {D(Y+€) G(-€)-D(y-€) G(€)-
Y - E a 

-( f + f) D(y') G'(y-y') dy'} = - T +pglyl· (24) 
a - 2H Y+ f; 

Equation (23) in turn can be integrated by parts to give 

-[,u/h(I -v)] [D(y+H) +D(y-H)] + 
y + H 

+ [,u/21T(I -v)] f B(y') G(y-y') dy' = - T +pgIYI, (25) 
y - H 

and Equation (24) to give 
a 

-[,u/h( I-V)] D(a-2H)+[,u/21T(I-Jl)] f B(y') G(y-y') dy' = -T+pgIYI· (26) 
a - 2H 

The displacement D (y) given by Equations (5) and (7) is an exact solution of Equations 
(23) and (25). Hence, the approximate solution for D(y) is valid in the range H ~ Iy I ~ a-H 
to within an error limit of the order of D(y) exp (-2n1T) or smaller. 

If the approximate solution were inserted into Equation (2) (or Equations (22) through 
(26)) the left-hand side of the equation would not equal the right-hand side except for the 
values of y in the range H ~ IYI ~ a-H in which E(y) :::::: 0 to a high approximation. 
Here E(y) represents the function that must be added to the right-hand side of Equation (2) 
in order to restore equality between the two sides. The term E (y) is the stress that would 
have to be applied to the crack walls in order that the approximate solution becomes an exact 
solution (but now, of course, for a problem with a different set of conditions). 

Let <E) be given by 
y+H* 

<E ) = (I/2H*) f E(y') dy'. 
y - H* 

If the term <E ) , which is the average value of E(y) near y over a distance 2H* where H* is 
of the order of h/2, is small in magnitude compared with - T + pgly I the hypothetical problem 
for which our approximate solution is an exact solution is virtually identical to the real 
problem. That is, the forces that must be exerted on the crack faces to turn the approximate 
solution into an exact one would be so small that were these forces then removed the change 
of the displacement of the crack faces would be small in magnitude compared with the dis­
placement itself. 

The stress E(y) is largest at the "joints" of the approximate solution where its different 
segments meet. To find E(y) near the joint y :::::: h set the approximate solution into Equation 
(25). The stress E(y) is 

E(y) :::::: (pgh/41T) log I (y-h) /(y+h) 1+ pgh, 

near the joint. (Smoothing the approximate solution at the joint will eliminate the logarithmi­
cally infinite value of E(y) aty = h.) Aty = h: 

I<E)I :::::: pgh. (29) 

The average value of E(y) is small compared with T. Moreover, <E ) is of the order of or less 
than the value given by Equation (29) only over a distance of at most a few units of h. Thus, 
the exact and the approximate solution of D(y) must differ near the joint at y = h by an 
amount of the order of or less than (pgh/ T) D(y). 
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Now consider E (y) near the j oint y = a- h which is close to the crack tip. Equation (26) 
can be rewritten to give E (y) as 

a 

E (y) = [fL/27T ( I -v)] f B (y'){G(y -y' ) + (27T/h)} dy' + T - pgy. (30) 
a-2H 

For)' > a- h Equation (30) becomes 
a- h 

E (y) ~ [h /47T] f pg{G(y - y') + (27T/h)} dy', 
a-2 H 

and for y < a - h it becomes . 
E(y) ~ [fL/27T (I -v) ] f B (y'){G(y -y') + (27T/h)} dy' , 

a-h 

where B (y') is given by the derivative of Equation (14). The average value of E (y) near the 
joint is given by 

. - hl, 

( E ) = (x/h) f E (y) dy. 

' -3h/, 

From Equation (3 1) when a- h <y < a- h/2 : 

E (y) ~ pg(H-h/2)- (pgh/47T)[Z coth z+ log Isinh zm;, 

where ZI = (7T /h)(y-a+ 2H) and Zz = (7T/h)(y-a+ h). From Equations (32) and (14) 
when a-3h/2 <y < a-h : 

• 
E(y) ~ [ ( T -pga)/47T] f {G(y-y') + (27T/h)}{2Y'-2a+h+ (h/7T)} X 

.-h 

X {(a-y')-I (y' -a+h)-I} dy' 
h* 

= [ ( T - pga)/27T] f {G(y*-y'*)+ (7T /h*)}{y'*+(h*/7T )}{(h*z -y'*z )-I} dy'* , (35 ) 
- h* 

where again h* = h/2 and y * =y-a+ h* andy'* =y'-a+ h*. 
For y < y' (or y* < y'*) it can be verified by graphical plotting or by numerical tabulation 

that the kernel G(y* -y'*) lies between the limits 

-(7T/h*) + (c*/h*) +(y*_y'*) - I < G(y*-y'*) < -(7T/h*)+(c*/h*), (36) 

when - 2h* < y * < -h* and - h* < y'* < h*. Here c* = 0.3352 . 
If Equation (36) is inserted into Equation (35) the following limits on E (y) is found for 

y in the region a-3h/2 < y < a- h (or - 2h* <y* < - h*) 
h* 

[ (T - pga) /2 7T] {c*+ f y'*{(y*_y'*)-I(h*z_y'*z)-l} dY'*} < 
o 

< E(y) < [(T -pga)/27T] X 

o 

X {c*+ I y'*{y*_y'*)-I(h*Z_y'*z)-I} dY'*} . (37) 
- h* 
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Equation (37) reduces to 

[ ( T - pga)/27T]{C* - (7T /2) _y* (y*2 _h*2) -~ COS - I ( - h*/y * )} 
< E (y) < [(T - pga)/27T] X 

X {C* - (7T/2) +y* (y*2 _h*2)-~ cos ( - h* /y *) - 7Ty *(y *2_ h*2)-:}. (38) 

If Equations (34) and (38) are inserted into Equation (33) and use is made of the numeri cal 
2 

evaluation of the integral J x(x2 - I )- } COS- I ( I Ix) dx = 1.12 I the following limits on <E ) 

are found : 
- 0.009 12 ( T - pga) < ( E ) < 0.245 ( T - pga). 

Using numerically calculated values of G(y * - y'*) it can be shown that the left-hand limit 
of Equation (39) can be raised to a value greater than zero . T hus 

o < ( E ) < 0.245 ( T - pga ) . 

Moreover , examina tion of numerical values of C(y * -f* ) m akcs it cl ear that while <E ) is 
smaller than the right-hand limit of Equation (40), the term ( E ) is of the ord er of magnitudc 
of this limit. 

Th e average stress <E ) differs from the stress (T - pga) by 24.5 % or lcss. This differen ce 
is considerabl y larger than that at the joint y = h but it is not so large that if makes the 
approximate solution an unreasonable one. The implication of the positive value of <E ) is 
that a tensile stress would have to be applied at the crack faces near the j oint y = a - h in 
order to make the approxima te solution an exact one. In other words, forces that tend to 
close up the crack faces near the crack tips must be applied a t the crack faces in order to m a ke 
the approximate solution an exact one. Thus, the stress intensity factor K given by Equation 
( 18) is a ctually somewhat smaller than the true stress intensity factor. Suppose the value of T 
were inc reased so that the value of the expression T - pga is increased b y 24. 5 %. The value 
of K given by Equation ( 18) also is increased by 24.5 % . Now this increase in K, which is 
produced by increasing the tensile stress at all values of y , must be larger than that produced 
by changing the stress by 24-5 % over only a limited range of y of the order of h. Hence, the 
value of true stress intensity factor will lie between that given by Equation ( 18) and a value 
24.5% greater than it. 

I believe that the equations of this section have demonstrated that our approximate 
solution is not an unreasonable one. They show that the approximate solution gives a con­
servative estimate of the stress in tensity factor K. The a c tual value of K is somewhat higher 
than the value we ha ve calcula ted . 

ApPLICATION TO CLOSELY SPACED , WATER-FREE CREVASSES 

The analysis so far has d ealt with closely spaced , parall el cracks in an infinite solid. What 
changes would be need ed in this ana lys is if the infinite solid is cut on the y = 0 plane to make 
two infinite half-spaces with an infinite se t of parallel edge cracks that pen etrate to a distance 
a from the surface? To a first approximation no change at a ll need be made. This claim is 
Justified as follows. For the moment let Gy y(y ) be equal to zero before the cracks were intro­
duced into the infinite medium . Next let the se t of closely spaced cracks be placed in the 
infinite m edium. The presence of the cracks will give rise to a stress component Gyy (x,)!). 
On the y = 0 plane the value of cr yy averaged over a distance h in the x direction must eq ual 
zero. (If it were no t equal to zero there would be a net vertical force on a block of material 
bounded by the planesy = 0 and y = Yo , whereyo is a distance very large compared with the 
length a.) Now the crack faces are traction-free and the cracks extend in they direction for a 
di stance large compared with h. H ence, it is unlikely for the derivative ocryy /ox to have a 
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large magnitude on the y = 0 plane . The maximum magnitude of Gyy on the y = 0 plane 
is of the order of (h/a) T. (Estimated from the stress fields of the collec tion of infinitesimal 
dislocations that would produce the crack opening displacement D (y).) Thus, as a first 
approximation Gyy ( x, 0) as well as the average value o f Gyy (x, 0) can be taken equal to zero. 
As a result the infinite medium can be cut along they = 0 plane without altering the solution. 
(By a symmetry argument the shear stress Gxy is equal to zero across the y = 0 plane.) 

In a solid in the Earth's gravitational field, a body force pg acts on any unit volum e 
element. In a glacier this body force sets up the hydrostat ic stress compon ents Gyy = Gxx = 
- pgy, where y is distance measured downwards from the upper surface of the glacier. The 
stress component Gyy cannot alter the crack solution just found. The crack planes are normal 
to the planes across which the stress component Gy y acts. Thus the stress component Gyy can 
set up no surface traction on the crack faces . 

If, in addition to the hydrostatic stress, a tensile stress Gxx = T exists in a glacier, creva sses 
can be opened up in the glacier. The profil e of these crevasses, if they are closely spaced , are 
given by Equations (5), ( 11 ) and ( 14) , If they are widely spaced their profiles will be given 
by equations derived in my older paper (vVeertman, 1973). 

CONCLUSION 

The profile of a crevasse which is one of a set of closely spaced, water-free crevasses in a 
glacier that is subjected to a tensi le stress T in addi tion to the hydrosta ti c pressure is given by 
Equations (5), ( 11 ) and ( 14) of the text. If the fracture strength of ice is essentia lly zero the 
depth o f penetration o f the crevasses is equal to T/pg, the d epth first d ed uced by Nye. The 
depth is independent of the spacing between the crevasses. T his conclusion is in disagree­
ment with the resul ts of the analysis by R. A. Smith. If the fracture strength of ice is finite the 
depth of penetrat ion is g iven by Equation (20) and it does depend on the crevasse spacing. 
No penetration occurs if the spacing is smaller than the value HKc/ T)2, where Kc is the 
fracture toughness of ice. For a perfec tly brittle so lid the value of Kc = {2Ey /( I - V 2 )}; 

where E is Young's modulus and y is the surface energy of the solid . If ice is cons idered to be 
a perfectly brittle so lid the value of Kc is approximately 45 kN/m~ (using E = 9 GN/m 2 

and y = 0.1 I 1 /m2) . For T = 0.1 MN/m2 ( I bar) no crevasses will form for spacings smaller 
than 0.3 m. 

The resu lts of the analysis of this paper are not restricted to the problem of elosely spaced 
crevasses in glaciers. Thcy can a lso describc the behavior of cracks at the surface of I he Earth. 
A prac t ical application of the analysis exists in the field of geothermal energy. To extract h ea l 
from hot, dry rock masses it is necessary to fracture the rock hyd raulically and let fluid flow 
through the large cracks that are created . It is hoped that secondary cracks will form spon­
taneous ly on the surfaces of these large c racks because of the large tensile thermal strcsses that 
are se t up whcn thc fl owing fluid cools the rock. The ( tensile) therma l stresses decay with 
distance from the crack faces in an a nalogous manner to that by which the stress in a glacier 
can change rrom tensile at the upper surface to compressive at depth. (T h e secondary cracks 
are very d esi rable because they increase the transfer efficiency of hea t from the rock to the 
fluid .) Our equations set limits on the spacing between the secondary cracks. 
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