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Normalization of Closed Ekedahl–Oort
Strata

Jean-Stefan Koskivirta

Abstract. We apply our theory of partial �ag spaces developed with W. Goldring to study a group-
theoretical generalization of the canonical ûltration of a truncated Barsotti–Tate group of level 1. As
an application, we determine explicitly the normalization of the Zariski closures of Ekedahl–Oort
strata of Shimura varieties of Hodge-type as certain closed coarse strata in the associated partial �ag
spaces.

Introduction

Let H be a truncated Barsotti–Tate group of level 1 (BT1), over an algebraically closed
ûeld k of characteristic p, and let σ ∶ k → k denote the map x ↦ x p . Denote by
D ∶= D(H) its Dieudonné module, which is a ûnite-dimensional k-vector space D
endowed with a σ-linear endomorphism F and a σ−1-linear endomorphism V satis-
fying FV = VF = 0 and Im(F) = Ker(V). Oort [Oor01] showed that there exists
a �ag of D that is stable by V and F−1 and is coarsest among all such �ags, called
the canonical ûltration of D. A�er choosing a basis of D, we obtain a ûltration of kn

(where n = dimk(D) is the height of H). _e stabilizer of this �ag is a parabolic sub-
group P(H) ⊂ GLn , well-deûned up to conjugation. We want to emphasize that this
construction attaches a group-theoretical object P(H) to a truncated Barsotti–Tate
group of level 1.

_e theory of F-zips developed in [MW04,PWZ11,PWZ15] establishes the precise
link between BT1’s and group theory. Speciûcally, isomorphism classes of BT1’s of
height n and dimension d correspond bijectively to E-orbits in GLn , where E is the
zip group (see Section 4.1). _e stack of F-zips of type (n, d) can be deûned as the
quotient stack F-Zipn ,d = [E/GLn]. Moreover, there is a natural morphism of stacks
BTn ,d

1 → F-Zipn ,d , where BTn ,d
1 is the stack of BT1’s of height n and dimension d over

k. More generally, let G be a connected reductive group over Fp , and P,Q ⊂ G para-
bolic subgroups (deûned over some ûnite extension of Fp). Let L ⊂ P and M ⊂ Q be
Levi subgroups and assume that φ(L) = M, where φ∶G → G is the Frobenius homo-
morphism. One can deûne the stack of G-zips of type Z = (G , P, L,Q ,M , φ) as the
quotient stackG-ZipZ = [E/G], where E ⊂ P×Q is the zip group (see Section 1.1). For
example, if G is the automorphism group of a PEL-datum, then G-ZipZ(k) classiûes
BT1’s over k of type Z endowed with this additional structure. IfW denotes the Weyl
group of G, the E-orbits in G are parametrized by a subset IW ⊂W (see Section 1.3).
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Denote by Gw ⊂ G the E-orbit corresponding to w ∈ IW and put Zw ∶= [E/Gw] the
corresponding zip stratum.

In [GKb], we deûned for each parabolic P0 ⊂ P the stack of partial zip �ags
G-ZipFlag(Z,P0) endowed with a natural projection π∶G-ZipFlag(Z,P0) → G-ZipZ

thatmakes it a P/P0-bundle overG-ZipZ. _is deûnes a tower of stacks aboveG-ZipZ.
Moreover, the stack G-ZipFlag(Z,P0) admits two natural stratiûcations. In general,
one is ûner than the other, but they coincide when P0 is a Borel subgroup. _e ûne
strata ZP0 ,w are parametrized by w ∈ I0W , where I0W ⊂W is a subset containing IW
(see Section 2.1). _e strata ZP0 ,w attached to elements w ∈ IW are called minimal
and satisfy π(ZP0 ,w) = Zw , and the restriction π∶ ZP0 ,w → Zw is ûnite étale. When
P0 = P, the stack G-ZipFlag(Z,P) coincides with G-ZipZ and the ûne stratiûcation is
the stratiûcation by E-orbits, whereas the coarse stratiûcation is given by P×Q-orbits.
In general, we say that a stratum ZP0 ,w has coarse closure if it is open in the coarse
stratum containing it. If ZP0 ,w has coarse closure, its Zariski closure ZP0 ,w is normal.

In the formalism of G-zips, one can attach to each w ∈ IW a parabolic subgroup
Pw ⊂ P. In the case G = GLn , if H is a BT1 corresponding to w ∈ IW under the corre-
spondence between BT1’s and E-orbits, then Pw is the parabolic P(H) deûned above.
_is is proved in Proposition 4.3.1. Since Pw is canonically attached to w, it is natural
to ask what special property is satisûed by the stratum ZPw ,w ofG-ZipFlag(Z,Pw). Our
main theorem answers this question.

_eorem 1 (_. 3.1.3) Let w ∈ IW. _e following properties hold:
(i) π∶ ZPw ,w → Zw is an isomorphism.
(ii) ZPw ,w has coarse closure.
Furthermore, among all parabolic subgroups P0 such that zB ⊂ P0 ⊂ P, the parabolic
Pw is the smallest parabolic satisfying (i) and the largest one satisfying (ii).

_e Borel subgroup zB of the above theorem is deûned in Section 1.2. Note that
property (i) is obviously satisûed for P0 = P and property (ii) is satisûed for P0 = zB
because ûne and coarse strata coincide in this case. Hence, the canonical parabolic
Pw is the unique intermediate parabolic such that both properties are satisûed. As
a consequence, we deduce that the normalization of the Zariski closure Zw is Z̃w ∶=
Spec(O(ZPw ,w)) (see Corollary 3.3.2).

Let X be the special ûber of a good reduction Hodge-type Shimura variety, and
let G be the attached reductive Fp-group (see Section 3.4). In [Zha], Zhang has con-
structed a smooth map of stacks ζ ∶X → G-ZipZ , where Z is the zip datum attached
to X as in [GKb, §6.2]. _e Ekedahl–Oort stratiûcation of X is deûned as the ûbers of
ζ . For w ∈ IW , set Xw ∶= ζ−1(Zw). For any parabolic zB ⊂ P0 ⊂ P, deûne the partial
�ag space XP0 as the ûber product

XP0

ζP0 //

π
��

G-ZipFlag(Z,P0)

πP0
��

X
ζ

// G-ZipZ .
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For w ∈ I0W , deûne the ûne stratum XP0 ,w ∶= ζ−1
P0
(ZP0 ,w) of XP0 . _e space XP0 is a

generalization of the �ag space considered by Ekedahl and Van der Geer [EvdG09],
where they consider �ags reûning the Hodge ûltration of an abelian variety.

Corollary 1 (Cor. 3.4.1) Let w ∈ IW. _e normalization of Xw is the Stein factoriza-
tion of the map π∶XPw ,w → Xw . It is isomorphic to Xw ×G-ZipZ Z̃w .

For Siegel-type Shimura varieties, an analogous result to Corollary 1 was proved
by Boxer in [Box15, _m. 5.3.1] using diòerent methods.

We now give an overview of the paper. In Section 1, we review the theory ofG-zips
and prove a result on point stabilizers for later use. Section 2 is devoted to the stack
of partial G-zips and its stratiûcations. We deûne minimal strata and give an explicit
form for the restriction of the map π to a minimal stratum (Proposition 2.2.1). In
Section 3, we deûne the notion of canonical parabolic and explain its relevance with
respect to the normalization of a closed stratum of G-ZipZ. We prove _eorem 3.1.3
a�er giving criteria for properties (i) and (ii) above. Finally, we explain in Section 4
the correspondence between the classical theory of BT1’s and the theory of G-zips,
following [PWZ11]. We establish the link between the parabolic Pw and the canonical
parabolic of a BT1.

1 Review of G-zips

We will need to review some facts about the stack of G-zips found in [PWZ11] and
prove a result on the stabilizer of an element by the group E.

1.1 The Stack G-ZipZ

We ûx an algebraic closure k of Fp . A zip datum is a tuple Z = (G , P, L,Q ,M , φ),
where G is a connected reductive group over Fp , φ∶G → G is the Frobenius homo-
morphism, P,Q ⊂ G are parabolic subgroups of Gk , L ⊂ P and M ⊂ Q are Levi
subgroups of P and Q, respectively. One imposes the condition φ(L) = M. One can
attach to Z a zip group E deûned by

E ∶= {(p, q) ∈ P × Q , φ(p) = q}

where p ∈ L and q ∈ M denote the projections of p and q via the isomorphisms
P/Ru(P) ≃ L and Q/Ru(Q) ≃ M. We let G × G act on G via (a, b) ⋅ g ∶= agb−1, and
we obtain by restriction an action of E on G. _e stack of G-zips is then isomorphic
to the quotient stack G-ZipZ ≃ [E/G]. When we want to specify the zip datum Z, we
sometimes write EZ for the zip group E.

1.2 Frame

A frame forZ is a triple (B, T , z), where (B, T) is a Borel pair and z ∈ G(k) satisfying
the following conditions:
(a) B ⊂ Q,
(b) zT ⊂ L,
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(c) zB ⊂ P,
(d) φ(zB ∩ L) = B ∩M,
(e) φ(zT) = T .
We ûx throughout a frame (B, T , z), and we deûne the following:
(1) Φ ⊂ X∗(T) : the set of T-roots of G.
(2) Φ+ : the set of positive roots with respect to B.
(3) ∆ ⊂ Φ+ : the set of positive simple roots.
(4) For α ∈ Φ, let sα ∈ W be the corresponding re�ection. _en (W , {sα}α∈∆) is a

Coxeter group, and we denote the length function by ℓ∶W → N.
(5) For K ⊂ ∆, Let WK ⊂ W be the subgroup generated by the sα for α ∈ K. Let

w0 ∈W be the longest element and w0,K the longest element in WK .
(6) If R ⊂ G is a parabolic subgroup containing B and D is the unique Levi subgroup

of R containing T , then the type of R (or of D) is the unique subset K ⊂ ∆ such
thatW(D, T) =WK . _e type of an arbitrary parabolic R is the type of its unique
conjugate containing B. Let I ⊂ ∆ (resp. J ⊂ ∆) be the type of P (resp. Q).

(7) For K ⊂ ∆, KW (resp. WK) : the subset of elements w ∈ W that are minimal in
the coset WKw (resp. wWK).

(8) For K , R ⊂ ∆, KWR ∶= KW ∩WR .
(9) For an element x ∈ IW J , deûne Ix ∶= J ∩ x−1

I. By [PWZ11, Proposition 2.7], any
element w ∈WIxWJ can be uniquely written as

(1.2.1) w = xwJ , with wJ ∈ IxWJ .

For w ∈W , one has an equivalence:

(1.2.2) w ∈ IW ⇐⇒ zB ∩ L = zwB ∩ L.

1.3 Stratification

For w ∈ W , choose a representative ẇ ∈ NG(T) such that (w1w2)⋅ = ẇ1ẇ2 when-
ever ℓ(w1w2) = ℓ(w1) + ℓ(w2) (this is possible by choosing a Chevalley system; see
[ABD+66, Exp. XXIII, §6]). For h ∈ G(k), denote by OZ(h) the E-orbit of h in G
and deûne oZ(h) ∶= [E/OZ(h)]. By [PWZ11, _eorem 7.5], there is a bijection

(1.3.1) IW → {E-orbits in G}, w ↦ Gw ∶= O(zẇ).

Furthermore, for all w ∈ IW , one has

(1.3.2) dim(Gw) = ℓ(w) + dim(P).

For w ∈ IW , we endow the locally closed subset Gw with the reduced structure, and
we deûne the corresponding zip stratum of G-ZipZ by Zw ∶= [E/Gw].

1.4 Point Stabilizers

Deûnition 1.4.1 ([PWZ11]) Let w ∈ IW . _ere is a largest subgroup Mw of w
−1z−1

L
satisfying φ(zwMw) = Mw .
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In [PWZ11, §5.1], this subgroup is denoted by Hw . It is a Levi subgroup of G con-
tained in M. We also deûne

Lw ∶= zwMw ⊂ L(1.4.1)

Pw ∶= Lw
zB ⊂ P

Qw ∶= MwB ⊂ Q(1.4.2)

Since φ(Lw) = Mw , we obtain a zip datum Zw ∶= (G , Pw , Lw ,Qw ,Mw , φ). Note
that (B, T , z) is again a frame for Zw . If an algebraic group G acts on a k-scheme
X and x ∈ X(k), we denote by StabG(x) the scheme-theoretical stabilizer of x. For
an algebraic group H, we denote by Hred the underlying reduced algebraic group and
by H○ the identity component of H.

Lemma 1.4.2
(i) One has StabE(zẇ)red = A⋉ R, where A ⊂ Lw ×Mw is the ûnite group

(1.4.3) A ∶= {(x , φ(x)), x ∈ Lw , zẇφ(x) = x}

and R is a unipotent smooth connected normal subgroup.
(ii) One has StabE(zẇ)○ ⊂ zB × B.

Proof _e ûrst part is _eorem 8.1 in [PWZ11]. To prove (ii), it suõces to show
that StabE(zẇ)○ ⊂ zB ×G, or, equivalently, Lie(StabE(zẇ)) ⊂ Lie(zB) × Lie(G). We
follow the proof of _eorem 8.5 of [PWZ11]. An arbitrary tangent vector of E at 1 has
the form (1+ dp, 1+ dv) for dp ∈ Lie(P) and dv ∈ Lie(V). _is element stabilizes zẇ
if and only if dp = Adzẇ(dv). Hence,

dp ∈ Lie(P) ∩Adzẇ(Lie(V)) = Lie(P ∩ zwV).

Hence, it suõces to show P ∩ zwV ⊂ zB. _is amounts to L ∩ zwV ⊂ L ∩ zB and
equivalently M ∩ φ(zwV) ⊂ M ∩ φ(zB) = M ∩ B. _is is proved in Proposition
4.12 of [PWZ11]. More precisely, the authors deûne in construction 4.3 a group Vx
(note that the element z is denoted by g there), where w = xwJ is a decomposition as
in (1.2.1). One has Vx = M ∩ φ(zẋV) = M ∩ φ(zwV) because wJ ∈ WJ , so w JV = V .
Proposition 4.12 of [PWZ11] shows that (M∩B, T , 1) is a frame forZẋ , so, in particular,
one has Vx ⊂ M ∩ B. _is terminates the proof of the lemma.

2 The Stack of Partial Zip Flags

We recall in this section some of the results of [GKb].

2.1 Fine and Coarse Flag Strata

For each parabolic subgroup P0 satisfying zB ⊂ P0 ⊂ P, in [GKb, §2] we deûned a
stackG-ZipFlag(Z,P0) that parametrizes G-zips of type Z endowed with a compatible
P0-torsor. _ere is an isomorphism

G-ZipFlag(Z,P0) ≃ [E/(G × P/P0)] ,
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where E acts on G × P/P0 by (a, b) ⋅ (g , xP0) ∶= (agb−1 , axP0). Furthermore, there
is a natural projection map π∶G-ZipFlag(Z,P0) → G-ZipZ that is a P/P0-bundle.
Denote by L0 ⊂ P0 the Levi subgroup containing zT (note that L0 ⊂ L). We deûne

a second zip datum Z0 = (G , P0 , L0 ,Q0 ,M0 , φ) by setting:

M0 ∶= φ(L0) ⊂ M and Q0 ∶= M0B ⊂ Q .

Note that (B, T , z) is again a frame ofZ0. By [GKb, §3.1], there is a natural morphism
of stacks

ΨP0 ∶G-ZipFlag(Z,P0) Ð→ G-ZipZ0

which is an År-bundle for r = dim(P/P0) ([GKb, Proposition 3.1.1]). It is induced by
the map G × P → G, (g , a) ↦ a−1gφ(a). Let I0 and J0 denote respectively the types
of P0 and Q0. For w ∈ I0W , we deûne the ûne �ag stratum ZP0 ,w of G-ZipFlag(Z,P0)

as the locally closed substack

ZP0 ,w ∶= Ψ−1
P0
(oZ0(zẇ))

endowed with the reduced structure. Explicitly, one has ZP0 ,w = [E/GP0 ,w where
GP0 ,w is the algebraic subvariety of G × P/P0 deûned by

GP0 ,w ∶= {(g , aP0) ∈ G × P/P0 , a−1gφ(a) ∈ OZ0(zẇ)} .

Denote by BrhZ0 the quotient stack [P0/G/Q0], called the Bruhat stack. Since EZ0 ⊂
P0×Q0, there is a natural projectionmorphism β∶G-ZipZ0 → BrhZ0 . _e composition
ΨP0 ○ β gives a smooth map of stacks

ψP0 ∶G-ZipFlag(Z,P0) Ð→ BrhZ0 .

By [Wed14, Lem. 1.4], the set {zẋ , x ∈ I0W J0} is a set of representatives of the P0 ×
Q0-orbits in G (pay attention to the fact that zB ⊂ P). For x ∈ I0W J0 , write b(x) ∶=
[P0/(P0zẋQ0)/Q0] (locally closed substack of BrhZ0 ) and deûne the coarse �ag stra-
tum ZP0 ,x as ZP0 ,x ∶= ψ−1

P0
(b(x)) endowed with the reduced structure. Explicitly, one

has ZP0 ,x = [E/GP0 ,x] where GP0 ,x is the subvariety of G × P/P0 deûned by

GP0 ,x ∶= {(g , aP0) ∈ G × P/P0 , agφ(a)−1 ∈ P0zẋQ0} .

All ûne and coarse �ag strata are smooth. A coarse stratum is a union of ûne strata
and the Zariski closure of a coarse �ag stratum is normal. In each coarse stratum there
is a unique open ûne stratum.

Deûnition 2.1.1 We say that a ûne �ag stratum Z has coarse closure if it is open in
the coarse stratum that contains it, equivalently, if its Zariski closure coincides with
the Zariski closure of a coarse �ag stratum.

In particular, the Zariski closure Z of such a stratum is normal ([GKb,
Prop. 2.2.1(1)]).
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2.2 Minimal Strata

Recall that we deûned in [GKb] a minimal �ag stratum as a �ag stratum ZP0 ,w para-
metrized by an element w ∈ IW . For a minimal stratum one has π(ZP0 ,w) = Zw
and the induced morphism π∶ ZP0 ,w → Zw is ûnite ([GKb, Proposition 3.2.2]). _e
following proposition shows that it is also étale. Forw ∈ IW , denote by π̃∶GP0 ,w → Gw
the ûrst projection; it is an E-equivariant map.

Proposition 2.2.1 Let w ∈ IW and denote by S ∶= StabE(zẇ) the stabilizer of zẇ in
E and deûne SP0 ∶= S ∩ (P0 ×G).
(i) _ere is a commutative diagram

ZP0 ,w
≃ //

π
��

[1/SP0]

��

Zw
≃ // [1/S]

where the horizontal maps are isomorphisms and the right-hand side vertical map
is the natural projection.

(ii) _e map π∶ ZP0 ,w → Zw is ûnite étale.
(iii) _emap π∶ ZP0 ,w → Zw is an isomorphism if and only if the inclusion S ⊂ P0 ×G

holds.

Proof We ûrst prove (i). _ere is a natural identiûcation Gw ≃ [E/S], because Gw is
the E-orbit of zẇ. It follows that Zw ≃ [E/E/S] ≃ [1/S]. Similarly, we claim that the
variety GP0 ,w consists of a single E-orbit. _is was proved in [GKa] Proposition 5.4.5
in the case when P0 is a Borel subgroup. For a general P0, we can reduce to the Borel
case as follows: By [GKb, Proposition 3.2.2], we have a natural E-equivariant surjec-
tive projection map GzB ,w → GP0 ,w , hence GP0 ,w consists of a single E-orbit. We thus
can identify ZP0 ,w ≃ [E/E/S′] where S′ = StabE(zẇ , 1). It is clear that S′ = SP0 , so the
result follows.

We now show (ii). By [GKb, Proposition 3.2.2 ], we know that π∶ ZP0 ,w → Zw is
ûnite. By (i), it is equivalent to show that S/SP0 is an étale scheme. By Lemma 1.4.2 (ii),
we have S○ ⊂ S ∩(zB×G) ⊂ SP0 . Hence, the quotient map S → S/SP0 factors through
a surjective map π0(S) → S/SP0 , which shows that S/SP0 is étale.
Finally, the last assertion follows immediately from (i).

3 The Canonical Parabolic

We ûx an element w ∈ IW . Recall that we deûned in (1.4.2) a parabolic subgroup
Pw ⊂ P.

3.1 Definition

Let P0 be a parabolic subgroup of G such that zB ⊂ P0 ⊂ P.
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Deûnition 3.1.1 We say that P0 is a canonical parabolic subgroup for w if the fol-
lowing properties are satisûed:
(i) _e map π∶ ZP0 ,w → Zw is an isomorphism.
(ii) _e stratum ZP0 ,w has coarse closure.

Using the notations of Proposition 2.2.1, property (i) is equivalent to S ⊂ P0 ×G.
_e justiûcation of this deûnition is the following: For P0 = P, condition (i) is ob-
viously satisûed. On the other hand, if P0 = zB, then (ii) is satisûed, because coarse
and ûne strata coincide. For a given w, a canonical parabolic for w is an intermediate
parabolic subgroup P0 satisfying both conditions. A priori neither the existence nor
the uniqueness of such a parabolic is clear.

We give justiûcation for this deûnition. Let P0 be a canonical parabolic subgroup
for w. We have morphisms

π∶ ZP0 ,w → Zw and π̃∶GP0 ,w → Gw ,

which yield isomorphisms ZP0 ,w ≃ Zw and GP0 ,w ≃ Gw . Since ZP0 ,w has coarse clo-
sure, the stack (resp. variety) ZP0 ,w (resp. GP0 ,w) is normal. We deduce the following
proposition.

Proposition 3.1.2 Let P0 be a canonical parabolic subgroup for w ∈ IW. Write w =
xwJ as in (1.2.1). _en the normalization of Gw is the Stein factorization of the map
π̃∶GP0 ,w → Gw . It is isomorphic to Spec(O(GP0 ,x)), where

GP0 ,x = GP0 ,w = {(g , aP0) ∈ G × P/P0 , a−1gφ(a) ∈ P0zẇQ0}
and the ûrst projection induces an isomorphism GP0 ,w ≃ Gw .

_e following theorem is the main result of this paper. Its proof will follow from
the results of §3.2 and §3.3.

_eorem 3.1.3 Let w ∈ IW. _e parabolic subgroup Pw is the unique canonical
parabolic subgroup for w. More precisely, among all parabolic subgroups zB ⊂ P0 ⊂ P,
the following hold:
(i) Pw is the smallest parabolic P0 such that π∶ ZP0 ,w → Zw is an isomorphism.
(ii) Pw is the largest parabolic P0 such that ZP0 ,w has coarse closure.

3.2 A Criterion for Condition (i)

Lemma 3.2.1 Let zB ⊂ P0 ⊂ P be a parabolic subgroup. _e following assertions are
equivalent:
(i) the map π∶ ZP0 ,w → Zw is an isomorphism;
(ii) one has Pw ⊂ P0.

Proof Using the notation of Proposition 2.2.1, we know that π∶ ZP0 ,w → Zw is an
isomorphism if and only if SP0 ∶= S∩(P0×G) = S. By the same proposition, we know
that the quotient S/SP0 is a ûnite aõne étale scheme over k. In particular, we have
S ⊂ P0 ×G if and only if Sred ⊂ P0 ×G.
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By Lemma 1.4.2, we canwrite Sred = A⋉RwithA the ûnite group given by equation
(1.4.3) of Lemma 1.4.2 and R a smooth unipotent connected normal subgroup. Write
RP0 ∶= R∩(P0×G). _e inclusion R ⊂ S induces a closed embedding R/RP0 → S/SP0 .
Hence, R/RP0 is a ûnite, smooth, connected k-scheme, so R/RP0 = Spec(k), hence
R ⊂ P0 ×G. It follows that S ⊂ P0 ×G if and only if A ⊂ P0 ×G, which is equivalent to
A1 ⊂ P0, where

A1 ∶= {x ∈ Lw , zẇφ(x) = x}.

By Steinberg’s theorem we can write zẇ = a−1φ(a) with a ∈ G(k). _en it is easy to
see that the subgroup aLw is deûned over Fp , and the inclusion A1 ⊂ P0 is equivalent
to

(3.2.1) (aLw)(Fp) ⊂ aP0 .

Note that both aLw and aP0 contain the torus azT , which is deûned over Fp . _us,
Lemma 3.2.2 below shows that (3.2.1) is equivalent to aLw ⊂ aP0, hence Lw ⊂ P0,
which is the same as Pw ⊂ P0. _is terminates the proof.

Lemma 3.2.2 Let G be a connected reductive group over Fp . Let L be a Levi Fp-sub-
group of G and P be a parabolic subgroup of Gk . Assume that there exists a maximal
Fp-torus T contained in L ∩ P and that L(Fp) ⊂ P. _en one has L ⊂ P.

Proof Deûne a subgroup of G by

H ∶= L ∩ ⋂
i∈Z

σ i(P) = ⋂
i∈Z

L ∩ σ i(P).

It is clear that H ⊂ L, H is deûned over Fp , and L(Fp) = H(Fp). Furthermore, H is
an intersection of parabolic subgroups of L containing T . Hence, it suõces to prove
the following claim. Let G be a connected reductive group over Fp , T ⊂ G a maximal
Fp-torus, and T ⊂ H ⊂ G an Fp-subgroup, which is an intersection of parabolic
subgroups ofGk containingT , and assume thatH(Fp) = G(Fp). _enone hasH = G.

We now prove the claim. Using inductively [DM91, Prop. 2.1], one shows that an
intersection of parabolic subgroups P1 , . . . , Pm containing T is connected and can be
written as a semidirect product

m
⋂
i=1

Pi = L0 ⋉U0 ,

where L0 is a Levi subgroup of G containing T and U0 is a unipotent connected sub-
group of G, normalized by L0. Applying this to H, we can write H = L0 ⋉ U0. Since
H is deûned over Fp , so are L0 and U0.
By [Car93, _m. 3.4.1], the highest power of p dividing ∣G(Fp)∣ is pN , where N =

∣Φ+∣ is the dimension of any maximal unipotent subgroup of Gk . Since G(Fp) =
H(Fp) = L0(Fp)×U0(Fp), we deduce that for all maximal unipotent subgroupU ′ in
L0, the subgroupU ′×U0 is unipotent maximal inG. In particular,H contains a Borel
subgroup, so H is a parabolic subgroup. _en H = G follows from [ABD+66, XXVI,
5.11]
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3.3 A Criterion for Condition (ii)

We examine Deûnition 3.1.1(ii). Let zB ⊂ P0 ⊂ P be a parabolic subgroup and let L0,
M0, Q0, Z0 as deûned in Section 2.1.

Lemma 3.3.1 Let zB ⊂ P0 ⊂ P be a parabolic subgroup. _e following assertions are
equivalent:
(i) ZP0 ,w has coarse closure;
(ii) one has zẇM0 = L0.

Proof _e stratum ZP0 ,w has coarse closure if and only ifOEZ0
(zẇ) ⊂ P0zẇQ0 is an

open embedding, which is equivalent to the equality of their dimensions. Note that
(B, T , z) is again a frame of Z0, so formula (1.3.2) shows that

dim(OEZ0
(zẇ)) = dim(P0) + ℓ(w).

On the other hand, we have

dim(P0zẇQ0) = 2dim(P0) − dim(StabP0×Q0(zẇ)) .

_e stabilizer StabP0×Q0(zẇ) is the subgroup

StabP0×Q0(zẇ) = {(a, b) ∈ P0 × Q0 , azẇ = zẇb}
≃ {a ∈ P0 , (zẇ)−1azẇ ∈ Q0} = P0 ∩ zẇQ0 .

Hence, ZP0 ,w has coarse closure if and only if dim(P0/(P0 ∩ zẇQ0)) = ℓ(w). Since
the property is satisûed when P0 = zB, we have dim(zB/(zB ∩ zẇB)) = ℓ(w), so we
can rewrite the property as

(3.3.1) dim ((P0 ∩ zẇQ0)/(zB ∩ zẇB)) = dim(P0/zB).

Since (B, T , z) is a frame for Z0 and IW ⊂ I0W , equation (1.2.2) shows that P0 ∩ zB =
P0 ∩ zẇB, thus the inclusion P0 ∩ zẇQ0 ⊂ P0 induces an embedding

(P0 ∩ zẇQ0)/(zB ∩ zẇB) Ð→ P0/zB.

Hence, (3.3.1) is satisûed if and only if the image of P0 ∩ zẇQ0 is open in P0/zB.
Since P0/zB ≃ L0/(zB ∩ L0) it is also equivalent to L0 ∩ zẇQ0 having open image
in L0/(zB ∩ L0).
Denote by B′ the opposite Borel in G of B with respect to T . _en zB′ ∩ L0 is the

opposite Borel of zB∩L0 in L0 with respect to zT . _us, the image of L0∩zẇQ0 is open
in L0/(zB ∩ L0) if and only if zB′ ∩ L0 ⊂ zẇQ0. It follows immediately from equation
(1.2.2) that zB′ ∩ L0 = zẇB′ ∩ L0. Finally, we ûnd that ZP0 ,w has coarse closure if and
only if

(3.3.2) B′ ∩ (zẇ)
−1
L0 ⊂ Q0 .

_e groups B′ ∩ (zẇ)−1
L0 and B ∩ (zẇ)

−1
L0 are opposite Borel subgroups of (zẇ)

−1
L0

containing T . Since B ⊂ Q0, equation (3.3.2) is simply equivalent to (zẇ)
−1
L0 ⊂ Q0,

which is equivalent to (zẇ)
−1
L0 = M0. _is terminates the proof.
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Proof of_eorem 3.1.3 _e result follows immediately by combining Lemmas 3.2.1
and 3.3.1.

Corollary 3.3.2 Write w = xwJ as in (1.2.1). _e normalization of the Zariski closure
Gw is the Stein factorization of the map π̃∶GPw ,w → Gw . It is isomorphic to Z̃w ∶=
Spec(O(GPw ,x)), where

GPw ,x = GPw ,w = {(g , aPw) ∈ G × P/Pw , a−1gφ(a) ∈ PwzẇQw} ,

and the ûrst projection induces an isomorphism GPw ,w ≃ Gw .

3.4 Shimura Varieties and Ekedahl–Oort Strata

Let X be the special ûber of a Hodge-type Shimura variety attached to a Shimura
datum (G,X) with hyperspecial level at p. Write G ∶= GZp × Fp , where GZp is a
reductive Zp-model of GQp . By Zhang [Zha], there exists a smooth morphism of
stacks ζ ∶X → G-ZipZ, where Z is the zip datum attached to (G,X) as in [GKb, §6.2].
_e Ekedahl–Oort stratiûcation of X is deûned as the ûbers of ζ . For w ∈ IW , set
Xw ∶= ζ−1(Zw). By the smoothness of ζ , this deûnes a stratiûcation of X. Let zB ⊂
P0 ⊂ P be a parabolic subgroup and deûne the partial �ag space XP0 as the ûber
product

XP0

ζP0 //

π

��

G-ZipFlag(Z,P0)

πP0

��

X
ζ

// G-ZipZ .

_e map π∶XP0 → X is a P/P0-bundle. For w ∈ I0W and x ∈ I0W J0 deûne

XP0 ,w ∶= ζ−1
0 (ZP0 ,w) and XP0 ,x ∶= ζ−1

0 (ZP0 ,x).

We call XP0 ,w the ûne stratum attached to w ∈ I0W and XP0 ,x the coarse stratum
attached to x ∈ I0W J0 . All coarse and ûne strata are smooth and locally closed, they
deûne stratiûcations of XP0 , and the Zariski closure of a coarse stratum is normal.
Recall that we deûned Z̃w ∶= Spec(O(GPw ,w)) (Corollary 3.3.2).

Corollary 3.4.1 Let w ∈ IW. _e normalization of Xw is the Stein factorization of
the map π∶XPw ,w → Xw . It is isomorphic to Xw ×G-ZipZ Z̃w .

4 The Canonical Filtration

Most of the content of this section can be found in [PWZ11]. Wemerely unwind their
proofs tomake the link between the canonical ûltration of a Dieudonné space and the
group Lw deûned previously. See also [Moo01, §4.4] and [Box15] for related results.
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4.1 Dieudonné Spaces and GLn-zips

Let H be a truncated Barsotti–Tate groups of level 1 over k of height n. Set d ∶=
dim(Lie(H)) and write D ∶= D(H) for its Dieudonné space. It is a k-vector space
of dimension n endowed with a σ-linear endomorphism F∶D → D, a σ−1-linear en-
domorphism V∶D → D satisfying the conditions:
(a) Ker(F) = Im(V),
(b) Ker(V) = Im(F),
(c) rk(V) = d .
We say that (D,F,V) is a Dieudonné space of height n and dimension d. Let M(r)n (k)
be the set of matrices in Mn(k) of rank r. A�er choosing a k-basis of D, we can write
F = a ⊗ σ and V = b ⊗ σ−1, where (a, b) is in the set

X ∶= {(a, b) ∈ M(n−d)n (k) ×M(d)n (k), aσ(b) = σ(b)a = 0} .

Note that for (a, b) ∈ X , we have

Ker(a) = Im(σ(b)) = σ( Im(b)) and Im(a) = Ker (σ(b)) = σ( Ker(b)) .
It is easy to see that two such pairs (a, b) and (a′ , b′) yield isomorphic Dieudonné

spaces if and only if there exists M ∈ GLn(k) such that

a′ = Maσ(M)−1 and b′ = Mbσ−1(M)−1 .

_is deûnes an action of GLn(k) on X and we obtain a bijection between iso-
morphism classes of Dieudonné spaces of height n and dimension d and the set of
GLn(k)-orbits in X .

Let (e1 , . . . , en) the canonical basis of kn and deûne

V1 ∶= Span(e1 , . . . , en−d) and V2 ∶= Span(en−d+1 , . . . , en)
Deûne P ∶= Stab(V2), Q ∶= Stab(V1), L ∶= P ∩ Q, U ∶= Ru(P), and V ∶= Ru(Q).
Consider the set

Y ∶= {(a, b) ∈ X , Ker(a) = V2} .

_e action of GLn(k) on X restricts to an action of P(k) on Y and the inclusion
Y ⊂ X induces a bijection between P(k)-orbits in Y and GLn(k)-orbits in X .

Lemma 4.1.1 _ere is a natural bijection Ψ∶Y → GLn(k)/V.

Proof Let (a, b) ∈ Y and choose a subspace H ⊂ kn such that Im(a) ⊕ H = kn .
Deûne a matrix fH ∈ GLn(k) by the following diagram

(4.1.1) kn

fH
��

= V1

a
��

⊕ V2

σ(b)−1

��

kn = Im(a) ⊕ H.

In other words, fHv = av for v ∈ V1, and if v ∈ V2, then fHv is the only element h ∈ H
such that σ(b)h = v (note that Im(a) = Ker(σ(b)), so this element is well deûned).
It is clear that fH is invertible.
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If H′ denotes another subspace such that Im(a) ⊕ H′ = kn , then we can write
fH′ = fHα, for some α ∈ GLn(k). It is clear that α(v) = v for all v ∈ V1. Furthermore,
for v ∈ V2, one must have σ(b)( fH′v − fHv) = 0, thus fH(α(v) − v) ∈ Ker(σ(b)) =
Im(a), so α(v) − v ∈ V1. _is shows that α ∈ V . It follows that (a, b) ↦ fH induces
a well-deûned map Ψ∶Y → GLn(k)/V . We leave it to the reader to check that this
map is a bijection.

Deûne a subgroup of P × Q by

E ∶= {(M1 ,M2) ∈ P × Q , φ(M1) = M2} .

Let this group acts on GLn(k) by the rule (M1 ,M2) ⋅ g ∶= M1gM−1
2 .

Proposition 4.1.2 _e map Ψ induces a bijection P(k)/Y → E/GLn(k). Hence
there is a bijection between isomorphism classes of Dieudonné spaces of height n and
dimension d and the set of E-orbits in GLn(k).

Proof Let M ∈ P(k), (a, b) ∈ Y and set (a′ , b′) ∶= (Maσ(M)−1 ,Mbσ−1(M)−1).
Note that Im(a′) = M(Im(a)). Choose a subspace H such that Im(a) ⊕H = kn and
set H′ ∶= M(H). Let M ∈ L(k) denote the Levi component of M ∈ P(k). Finally,
write fH and f ′H′ for the maps attached to (a, b,H) and (a′ , b′ ,H′), respectively, by
the previous construction. We claim that one has the relation

M fH = f ′H′σ(M).
First assume that v ∈ V1. _en f ′H′σ(M)v = Maσ(M)−1Mv. Since σ(M)−1M ∈ U ,
we have σ(M)−1Mv − v ∈ V2, hence f ′H′σ(M)v = Mav = M fHv.

Now if v ∈ V2, the element fHv is the only element h ∈ H satisfying σ(b)h = v.
Similarly, fH′σ(M)v is the only element h′ ∈ H′ = M(H) such that σ(b′)h′ = σ(M)v.
Hence, σ(M)−1σ(M)σ(b)M−1h′ = v. But σ(M)−1σ(M) ∈ U and σ(b)M−1h′ ∈ V2,
so we deduce σ(b)M−1h′ = v, and ûnally M−1h′ = h as claimed.

_is shows that Ψ induces a well-deûned map P(k)/Y → E/GLn(k). We leave it
to the reader to check that it is bijective.

4.2 The Canonical Filtration

Let (D,F,V) be a Dieudonné space. _e operators V and F−1 act naturally on the set
of subspaces of D. It can be shown that there exists a �ag of D that is stable by V and
F−1 and is coarsest among all such �ags. _is �ag is called the canonical ûltration of
D. It is obtained by applying all ûnite combinations of V,F−1 to the �ag 0 ⊂ D.
Choose a basis of D and write F = a ⊗ σ and V = b ⊗ σ−1 with (a, b) ∈ X . By

choosing an appropriate basis, we will assume that (a, b) ∈ Y .

Remark 4.2.1 Actually, there exists a basis such that (a, b) ∈ Y and such that the
coeõcients of a, b are either 0 or 1 and each column and each row has at most one
non-zero coeõcient.

Let H ⊂ kn be a subspace such that Im(a) ⊕ H = kn and let fH ∈ GLn(k) be the
element deûned in diagram (4.1.1). We have the following easy lemma.
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Lemma 4.2.2 For any subspace W ⊂ kn , one has the relations

V(W) = V2 ∩ (σ−1( f −1
H W) + V1) ,

F−1(W) = V2 + (σ−1( f −1
H W) ∩ V1) .

In particular, the right-hand terms are independent of the choice ofH. _is obser-
vation suggests the following deûnition.

Deûnition 4.2.3 For f ∈ GLn(k), there exists a unique coarsest �ag Fl( f ) of kn

satisfying the following properties:
(i) For anyW ∈ Fl( f ), the following inclusions hold

(4.2.1) V2 ∩ (σ−1( f −1W) + V1) ⊂W ⊂ V2 + (σ−1( f −1W) ∩ V1) .
(ii) For anyW ∈ Fl( f ), all subspaces appearing in (4.2.1) are in Fl( f ).

_e �ag Fl( f ) is simply the canonical �ag attached to the Dieudonné space corre-
sponding to the le�-coset f V under the bijection Ψ.

Lemma 4.2.4 Let f ∈ GLn(k). _e following assertions hold
(i) for all v ∈ V, one has Fl( f v) = Fl( f );
(ii) for M ∈ P, one has Fl(M f σ(M)−1) = M Fl( f ).

We leave the veriûcation of the lemma to the reader. In particular, the conjugation
class of Fl( f ) depends only on the E-orbit of f . Denote by P( f ) ∶= Stab(Fl( f )). Since
Fl( f ) contains Im(V) = V2, we have P( f ) ⊂ P. Furthermore, for v ∈ V and M ∈ P,
one has

P( f v) = P( f ) and P(M f σ(M)−1) = MP( f ).

4.3 The Canonical Flag Versus Pw

Denote by T the diagonal torus ofG ∶= GLn , and let B be the Borel subgroup of upper-
triangular matrices. _e Weyl group W(G , T) is the symmetric group Sn , which we
identify with a subgroup of G(k) be letting it act on kn by τ(e i) = eτ(i) for all τ ∈ Sn
and i ∈ {1, . . . , n}.

Using the notations of Section 1.2, deûne a permutation

z ∶= w0w0,I = ( 0 In−d
Id 0 ) .

_en (B, T , z) is a frame for the zip datum (G , P,Q , L,M , φ). For w ∈ IW , set fw ∶=
zw. By the parametrization (1.3.1), the set {zw ,w ∈ IW} is a set of representatives of
the E-orbits in G. For w ∈ IW , it is easy to see that any W ∈ Fl( fw) is spanned by
(e i)i∈CW for some subset CW ⊂ {1, . . . , n}. In particular we have T ⊂ P( fw). Note
that for all w ∈ IW , we have simpliûed formulas:

V2 ∩ (σ−1( f −1
w W) + V1) = V2 ∩ f −1

w W ,

V2 + (σ−1( f −1
w W) ∩ V1) = V2 + f −1

w W .
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_ere is a unique Levi subgroup L( fw) ⊂ P( fw) containing T . Finally, forw ∈ IW ,
denote by Lw ⊂ L and Pw ⊂ P the subgroups deûned in (1.4.1) and (1.4.2).

Proposition 4.3.1 We have P( fw) = Pw and L( fw) = Lw .

Proof Wewill show ûrst that zB ⊂ P( fw). Clearly, it suõces to show zB∩L ⊂ P( fw).
Note that since w ∈ IW , we have zB ∩ L = B ∩ L = zwB ∩ L. From this it follows that
if W ⊂ kn is a subspace such that zB ∩ L ⊂ Stab(W), then zB ∩ L stabilizes also
σ−1( f −1

w (W)). From this it follows easily by induction that zB ∩ L stabilizes Fl( fw);
hence, zB ∩ L ⊂ P( fw), as claimed.

To ûnish the proof, it suõces to show the second assertion. By deûnition, we
have fwφ(Lw) = Lw . Hence, if W ⊂ kn is a subspace such that Lw ⊂ Stab(W) then
Lw ⊂ Stab(σ−1( f −1

w (W))). From this, it follows again by an easy induction that Lw
stabilizes Fl( fw), so Lw ⊂ P( fw). Since Lw contains the torus T , we deduce that
Lw ⊂ L( fw).
Finally, we must show that fwφ(L( fw)) = L( fw). Since L( fw) is clearly deûned

over Fp , this is the same as fwL( fw) = L( fw). Let kn = D1 ⊕ ⋅ ⋅ ⋅ ⊕ Dm denote the
decomposition attached to L( fw), numbered so that the ûltration Fl( fw) is composed
of the subspaces Wj ∶= ⊕i

j=1 D j for 1 ≤ i ≤ m. _ere exists an integer 1 ≤ r ≤ m
such that Wr = V2 (and then necessarily V1 = ⊕m

j=r+1 D j). We need to show that fw
permutes the (D i)1≤i≤m . For this, it suõces to show that if fw(D i) ∩ D j /= 0, then
D j ⊂ fw(D i) for all 1 ≤ i , j ≤ m.
First assume that 1 ≤ j ≤ r and let 1 ≤ i ≤ m be the smallest integer such that

D j ∩ fw(D i) /= 0. He have 0 /= D j ∩ fw(D i) ⊂ V2 ∩ fw(Wi), which implies D j ⊂
V2 ∩ fw(Wi). By minimality of i, we deduce D j ⊂ fw(D i).

Now assume that r < j ≤ m and let 1 ≤ i ≤ m be the smallest integer such that
D j ∩ fw(D i) /= 0. _en 0 /= D j ∩ fw(D i) ⊂ V2 + fw(Wi), which implies

D j ⊂ (V2 + fw(Wi)) ∩ V1 = fw(Wi) ∩ V1 ⊂ fw(Wi).

By minimality of i, we deduce D j ⊂ fw(D i), which terminates the proof.
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