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An asymptotic matching modal model is established based on the singular perturbation
method for predicting mode evolution in single- and dual-mode interfaces accelerated by
a shock wave. The startup process is incorporated into the model to provide a complete
description of the mode evolution after the shock impact. Through considering the
feedback from high-order harmonic to the third-order harmonic, the model accuracy is
improved and the model divergence is prevented. In addition, the model can evaluate the
mutual-coupling effect on the amplitude variations of high-order harmonics besides the
‘beat modes’. To validate the model, experiments on both light–heavy and heavy–light
interfaces subject to a shock wave are conducted, and both single- and dual-mode
interfaces formed by the soap-film technique are involved. The interface profiles extracted
from mode decomposition and predicted by the model show high consistency with the
experimental counterparts. Good agreement of the mode amplitude growths between the
experiments and theoretical predictions shows the superiority of the model, especially for
the heavy–light interface.
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1. Introduction

Richtmyer–Meshkov instability (RMI) arises when a perturbed interface separating fluids
with disparate physical properties is accelerated by a shock wave (Richtmyer 1960;
Meshkov 1969). It is generally considered as an impulsive version of Rayleigh–Taylor
instability (RTI), which occurs only when a heavy fluid is accelerated by a light fluid
(Rayleigh 1882; Taylor 1950); RMI is an important phenomenon occurring in many
applications (Prestridge 2018; Zhou et al. 2019). For example, in inertial confinement
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fusion reactions, the mixing induced by RMI results in fuel contamination and limits the
fusion energy gain (Chu et al. 2022; Hurricane et al. 2023). It is therefore essential to
comprehend the evolution of RMI on the target interface (Zhou 2017; Zhai et al. 2018;
Liang & Luo 2023).

The RMI of a single-mode interface has been widely investigated theoretically.
In the linear stage, the interface profile is dominated by the fundamental mode,
which exists on the initial interface. As the interface evolves into nonlinear stages,
higher-order harmonics with wavenumbers being integer multiples of the fundamental
mode wavenumber are generated and grow. This process is referred to as the self-coupling
of the fundamental mode. Richtmyer (1960) first derived the linearized governing equation
for the single-mode RMI growth. Subsequently, various models for linear growth (Meyer
& Blewett 1972; Yang, Zhang & Sharp 1994; Wouchuk & Nishihara 1997; Wouchuk 2001)
and nonlinear growth (Dimonte & Ramaprabhu 2010; Zhang & Guo 2016) have been
established through diverse physical hypotheses. Recently, a unified theoretical model for
spatiotemporal development of Richtmyer–Meshkov fingers was proposed by combining
the classical potential flow theory with a dual-source model (Liu, Zhang & Xiao 2023). In
addition, by incorporating different physical mechanisms into the analytical models, the
three-dimensional (3-D) effect (Chapman & Jacobs 2006; Luo et al. 2016), the geometric
effect (Luo et al. 2019; Ge et al. 2022), the high-amplitude effect (Wang et al. 2023b;
Dimonte et al. 2024), the Atwood number (defined as A = (ρ2 − ρ1)/(ρ2 + ρ1), with ρ2
and ρ1 being the fluid densities at each side of the interface) effect (Chen et al. 2019,
2023), the interface coupling effect (Liang & Luo 2023; Schalles 2023) and the Mach
number effect (Motl et al. 2009) have been evaluated.

In practical situations, random multi-mode perturbations are commonly present on
initial interfaces, which means that more than one fundamental mode exists on the initial
interface. Therefore, besides self-coupling of each individual fundamental mode, the
different fundamental modes will also couple together in the multi-mode RMI, which is
referred to as the mutual coupling between two fundamental modes. To characterize the
perturbation growth of the multi-mode RMI, several theoretical approaches were adapted
and improved from single-mode situations (Vandenboomgaerde, Gauthier & Mügler
2002). A single bubble potential model was developed by Layzer (1955), and various
models have been derived since then through the potential flow method with different
potential functions and mathematical treatments. Starting from the potential flow method,
the perturbation expansion technique was employed to model the modal evolution of the
single-mode RMI by considering the interface perturbation as a superposition of various
Fourier modes (Zhang & Sohn 1997). Besides, Haan (1991) proposed a second-order
solution for multi-mode classical RTI growth (the Haan model). The Haan model and
its variations have been verified extensively through simulations and high energy density
experiments (Remington et al. 1995; Ofer et al. 1996; Di Stefano et al. 2017; Elbaz &
Shvarts 2018).

In the models mentioned above, the linear growth of the amplitude was satisfied
after the shock impact, while the starting point of theoretical prediction was chosen
artificially. Note that an implicit initial condition for shock–interface interaction is that
the perturbation growth rate is zero, not a finite value, immediately after the shock
impact (Fraley 1986; Yang et al. 1994). This means that the amplitude growth rate will
experience an acceleration from zero to an asymptotic value after the shock impact,
which is referred to as the startup process. In some linear compressible analytical models
(Richtmyer 1960; Yang et al. 1994; Wouchuk & Nishihara 1997; Wouchuk 2001; Cobos
Campos & Wouchuk 2014, 2016), the authors have already discussed the startup process,
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and have identified two main contributions to the asymptotic growth rate: the vorticity
deposited at the interface by shock refraction, and the acoustic interaction of the perturbed
interface with the shock front. This interaction is responsible for the oscillatory evolution
of the growth rate. However, in some linear compressible analytical models (Richtmyer
1960; Yang et al. 1994), the startup process was solved numerically, and there are no
analytical solutions. Although there are infinite series solutions to the startup process in
the linear model proposed by Wouchuk & Nishihara (1997), the form of the solutions is
complicated. In addition, the startup process is rarely considered in previous nonlinear
analytical models, many of which were derived based on the initial conditions of linear
growth. Vandenboomgaerde et al. (2002) matched their nonlinear theory to the early-time
compressible phase without considering the startup process, which may lead to an obvious
shift between theoretical predictions and numerical data, as given in figure 2(a) in their
work. As a result, the nonlinear evolution of the perturbation immediately after the shock
impact cannot be fully described by the existing nonlinear models due to the ignorance of
the startup process.

Recently, Zhang, Deng & Guo (2018) proposed a quantitative theory for the single-mode
RMI that covers the entire time domain from early to late times based on the two-point
Padé approximation method. This is the first nonlinear model that considers the startup
process, to our best knowledge. However, it should be noted that the matching technique
employed by Zhang et al. (2018) introduces the nonlinear trend from the beginning of
the interface evolution, not after the startup process, which may be inappropriate for the
potential flow method. The startup process was investigated in detail, respectively, for a
light–heavy interface (Lombardini & Pullin 2009) and a heavy–light interface (Li et al.
2024), and it was concluded that the startup time is in proportion to the perturbation
wavelength. Therefore, for an initially multi-mode interface, the fundamental modes have
diverse startup times since the wavelengths for the fundamental modes are different.
In particular, for a heavy–light interface, there is a unique phenomenon, called phase
inversion, that may occur during or after the startup process (Li et al. 2024). The prediction
of the phase inversion has never been achieved in previous modal models. Considering
the presence of complex processes such as phase inversion in the early evolution of
RMI, the startup process must be considered in the model. Also, the lower accuracy
of the modal model will cause divergence for predicting the amplitude growths of the
high-order harmonics. Considering the startup process will not only make the model more
approximate to the physical assumptions of initial conditions of linear growth, but also
improve the accuracy of the theoretical predictions. Nevertheless, it is challenging to
establish a model that can characterize the diverse startup times of different fundamental
modes to give a complete mode evolution after the shock impact, and demonstrate the
mode-coupling effects on different harmonics. These concerns motivate the current work.

In this study, an asymptotic matching modal model is established for RMI. The startup
process is incorporated into the model to provide a complete description of the mode
evolution after the shock impact. Through considering the feedback from high-order
harmonic to the third-order harmonic, the model accuracy is improved and the model
divergence is prevented. In addition, the model can evaluate the mutual-coupling effect
on the amplitude variations of high-order harmonics besides the ‘beat modes’. In the
following, first the derivation of the model is provided. Then experiments on single-
and dual-mode interfaces subject to a shock wave are conducted to verify the model. In
experiments, both the light–heavy and heavy–light interfaces are involved. The amplitudes
of different modes are extracted from the experiments and compared with the predictions
from the model.
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2. Theoretical derivation

2.1. Classical modal models
Modal models are a class of potential flow models that are capable of describing the
Fourier mode evolution. The amplitude of jth-order interface mode is defined as

aj(t) = λ−1
∫

exp(−2ijπx/λ) a(x, t) dx, (2.1)

where λ is the perturbation wavelength for one period, kj = 2jπ/λ is the jth-order
perturbation wavenumber, i is the imaginary unit, and a(x, t) represents the interface
profile. Starting from the potential flow method, the perturbation expansion technique
was employed to model the modal evolution of the single-mode RMI by considering the
interface perturbation as a superposition of various Fourier modes (Zhang & Sohn 1997).
The first three orders of this model, hereafter referred to as the ZS model, can be expressed
as

vZS
1 (t) = v1 − 1

8 k2
1v

2
1[(4A2 + 1)v1t2 + 2a10t], (2.2)

vZS
2 (t) = −Ak1v

2
1 t + 1

6 k3
1v

2
1(8A3v2

1 t3 + 3Aa2
10t), (2.3)

vZS
3 (t) = 3

8 k2
1v

2
1[(4A2 − 1)v1t2 − 2a10t], (2.4)

where v1 and a10 are the initial velocity and amplitude for the linear RMI growth,
respectively. Note that the direction of the incident shock movement is considered to be
the positive direction of coordinate z. Consequently, the symbols for the even-order terms
are different from those used by Zhang & Sohn (1997). However, except for the variable
vZS

3 (t), the variables vZS
1 (t) and vZS

2 (t) can receive the feedback from higher-order variables
under the accuracy considered by Zhang & Sohn (1997). This may result in the divergence
for predicting vZS

3 (t) under certain circumstances.
To characterize the perturbation growth of the multi-mode RMI, several theoretical

approaches were adapted and improved from single-mode situations. For example, the
ZS model was extended by Vandenboomgaerde et al. (2002) to predict the early nonlinear
amplitude growth of multi-mode interfaces. Besides, Haan (1991) proposed a second-order
solution for multi-mode classical RTI growth, which is referred to as the Haan model. The
Haan model in the ordinary differential equation form for RTI growth rate can be expressed
as

äj(t) = γ 2kj aj(t)+ Akj
∑

l

[
äl(t) aj−l(t) (1 − k̂l · k̂j)

+ ȧl(t) ȧj−l(t)
(

1
2

− k̂l · k̂j − 1
2

k̂l · k̂′
)]
, (2.5)

where
k′ = kj − kl, (2.6)

and γ (k) = √
gkA is the linear growth rate for the RTI perturbation, with g the

acceleration. Here, k is the wave vector for mode k, and k̂ = k/k is the unit vector. The
subscripts j and l denote the corresponding modes. The first term on the right-hand side
represents the contribution from the linear growth of the mode kj itself, and the other
terms represent the contribution from the second-order mode coupling between modes kl
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and kj−l. Ofer et al. (1996) solved (2.5) under the assumption that g is a constant, and a
solution for aj(t) up to second-order accuracy was given as

aj(t) = alin
j (t)+ 1

2
Akj

⎛
⎝∑

l

alin
l (t) alin

j+l(t)− 1
2

∑
l<j

alin
l (t) alin

j−l(t)

⎞
⎠ , (2.7)

where alin
j (t) denotes the first-order amplitude of mode kj, which is zero when mode

kj is not a fundamental mode. The second and third terms represent the generation
of mode kj from shorter-wavelength modes (coupling between modes kl and kj+l) and
longer-wavelength modes (coupling between modes kl and kj−l), respectively. Note that
(2.5)–(2.7) have second-order accuracy for both self-coupling and mutual coupling. If
j = 2l, then the third term in (2.7) reduces to the first term in (2.3). Although RMI and
RTI share the same linearized governing equations, whether the acceleration g equals
zero or not leads to significant differences in the properties of solutions (Zhou 2017).
The linearized governing equation for RMI gives a linear solution (Richtmyer 1960).
Specifically, alin

j (t) = aj0 cosh(γ (kj) t) establishes when g /= 0 in the RTI situation, while
alin

j (t) = aj0 + vjt stands when g = 0 in the RMI situation. The initial conditions aj0 and
vj are the amplitude and velocity of the mode kj at the time when the perturbation growth
enters the linear regime. Note that the derivation from (2.5) to (2.7) is not restricted
to exponential growth, and (2.7) holds for RMI too. Therefore, the solutions for the
mutual-coupling part of RMI can be simplified into (Remington et al. 1995)

aj±l(t) ≈ ∓1
2 (kj ± kl)vjvlt2, A ≈ 1, (2.8)

with vj and vl being the linear growth rates of modes kj and kl, respectively. The modes
kj ± kl are referred to as the ‘beat modes’ generated from the coupling between two modes
kj and kl. Equation (2.8) equals 0 when mode kj or kl is not a fundamental mode. The Haan
model has concise expressions and can predict the generations of beat modes.

For the dual-mode RMI (Luo et al. 2020), the Haan model is reformulated through some
mathematical treatments to obtain the weakly nonlinear solutions when the fundamental
modes include k1 and k2:

vwn
1 (t) = v1 + k1A

(√
2v1a20 + 3

2v1v2t
)
, (2.9)

vwn
2 (t) = v2 − k1A(v1a10 + v2

1 t), (2.10)

vwn
3 (t) = −3

8 k2A[2v1v2t + v1a20 + (1 +
√

2)v2a10], (2.11)

vwn
4 (t) = −k2A(v2

2 t + 2v2a20). (2.12)

However, these weakly nonlinear solutions were derived on the premise that the
exponential growth is satisfied. This may lead to an overestimation of the weakly nonlinear
solutions. To suppress this overestimation, a nonlinear model proposed by Zhang & Guo
(2016) for single-mode RMI (the ZG model), was introduced. The ZG model was used in
previous work (Luo et al. 2020) to suppress the nonlinear terms, because previous work
(Liu et al. 2018) has verified that the ZG model can give reasonable predictions under
similar physical parameters, and can suppress the rapid growth of the mode amplitudes
from the weakly nonlinear stages. However, the ZG model is not a solution to the complete
perturbation problem, because it stems from a plausible closure of the solution expanded
near the tip of the bubble, which may or may not provide an accurate approximation to the
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actual solution. In some cases, the ZG model does not work and needs to be modified. The
modified ZG model (mZG model) can be expressed as

vmZG
i (t) = vwn

i (t)
1 + âki v

wn
i (t) t

, (2.13)

where i = 1, 2, 3, 4, and

â = 3
4

(1 + A)(3 + A)

3 + A + √
2(1 + A)1/2

4(3 + A)+ √
2(9 + A)(1 + A)1/2

(3 + A)2 + 2
√

2(3 − A)(1 + A)1/2
. (2.14)

The Haan and mZG models are both capable of giving reasonable predictions for the
evolution of RMI at a light–heavy interface. Under second-order accuracy, the divergence
of these two models in late stages may be inevitable. Although the ZG model was
introduced into the mZG model to suppress the overestimation, when the initial velocity is
negative, the denominator of (2.13) may approach 0, which will also cause divergence.

2.2. Asymptotic matching modal model
We will establish a modal model based on the ideal gas equation of state for predicting
the RMI development using an asymptotic matching method. After the shock impact, the
amplitude growth will experience a startup process, which can be treated as a boundary
layer on the time axis caused by the contradiction between the initial conditions and the
linear solutions. This kind of problem can be solved by the singular perturbation method
(Vasil’Eva, Butuzov & Kalachev 1995). Based on this property, the general solution vgs(t)
can be decomposed into three parts: the internal solution vin(t), the external solution
vex(t), and the uniform approximation vuni(t) (Lin & Segel 1988), i.e.

vgs(t) = vin(t)+ vex(t)− vuni(t). (2.15)

It is clear that the uniform approximation part is the linear growth rate. For a light–heavy
interface accelerated by a weak shock wave, the impulsive model proposed by Richtmyer
(1960) has been proven to provide a good prediction to the linear growth (Chen et al.
2023). For a heavy–light interface accelerated by a weak shock wave, the irrotational
model proposed by Wouchuk and Nishihara (WN model) can give an excellent prediction
for the linear growth rate (Wouchuk 2001; Li et al. 2024). As a result, the impulsive model
and the WN model are used here to predict the linear growth rates vuni(t) of the light–heavy
and heavy–light interfaces, respectively. The impulsive model can be written as

vimp = ka+
0 A�V, (2.16)

and the WN model can be expressed as

vWN = ka−
0

[
1 − A

2

(
1 + VRW

VIS

)
(U1 −�V)+ 1 + A

2

(
1 − VTS

VIS

)
�V

]
, (2.17)

where a−
0 is the initial amplitude, a+

0 = (1 −�V/VIS)a−
0 is the post-shock amplitude, VIS,

VTS, VRW and �V are the velocities of the incident shock, transmitted shock, reflected
wave and shocked interface under laboratory coordinates, respectively, and U1 is the
flow velocity behind the incident shock. Given the incident shock Mach number and the
physical properties of the fluids, these quantities can be solved by one-dimensional (1-D)
gas dynamics theory (Anderson 1990).
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The internal solution should capture the rapid acceleration of the amplitude growth
immediately after the shock impact. The linear theory (Yang et al. 1994) or the startup
process model (SP model) (Li et al. 2024) can be used to calculate the internal solution.
The linear theory can capture the global rapid acceleration and the local vibration caused
by pressure perturbations, but it has no explicit expression and must be solved numerically.
The SP model has an explicit expression and can characterize the overall growth trend
during the startup process. When the incident shock is not strong, and the local vibration
caused by pressure perturbations is less obvious, the SP model is therefore chosen for
clarity (Li et al. 2024). The SP model can be expressed as

vin(t) = 2vuni(t)
(1 − A) coth[k × LRW(t)] + (1 + A) coth[k × LTS(t)]

, (2.18)

where vuni(t) results from either (2.16) or (2.17), depending upon the interface type, and
LRW(t) and LTS(t) are the distances of the reflected wave and transmitted shock from the
shocked interface, which can be calculated as

LRW(t) = (VRW +�V)t,
LTS(t) = (VTS −�V)t.

}
(2.19)

The external solution should describe the nonlinear evolution following the startup
process, namely, after the amplitude reaches linear growth. At this stage, the shock is
sufficiently apart from the interface and compressibility can be ignored (Zhang et al.
2018). Previously, the approach proposed by Haan (1991) was employed to investigate the
nonlinear evolution of multi-mode RMI. However, this approach has only second-order
accuracy (Haan 1991; Luo et al. 2020). In the present work, a perturbation expansion
method is used to obtain a series solution for the external solution. One advantage of
this method is that the accuracy can be controlled to any desired degree. Since the external
solution should primarily capture the characteristics of incompressible nonlinear evolution
in the late stage, the potential flow approach can be applied. This is done by starting from
the governing equations for incompressible, inviscid, and irrotational fluids (Layzer 1955;
Zhang & Sohn 1997):

∇2φq(t, x, z) = 0, (2.20)

∂a
∂t

+ ∂φq

∂x
∂a
∂x

− ∂φq

∂z
= 0 at z = a, (2.21)

2∑
q=1

(−1)qρq

(
∂φq

∂t
+ 1

2

[(
∂φq

∂x

)2

+
(
∂φq

∂z

)2
])

= f (t) at z = a. (2.22)

Here, φq represents the velocity potential in fluid q, and the velocity field in fluid q is
given by vq = ∇φq. The subscripts q = 1, 2 denote the fluids separated by the interface,
and z = a(x, t) represents the interface profile at a given time t, with x and z referring to the
spanwise and normal directions of the interface, respectively. The selection of the velocity
potential functions is significant for the potential flow method. By using the perturbation
expansion technique, the interface and velocity potentials can be expanded into (Zhang &
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Sohn 1997)

a(x, t) .=
N∑

n=1

an(t) cos(nkx) =
N∑

n=1

εn
�(n+1)/2�∑

m=0

an,n−2m(t) cos(n − 2m)kx, (2.23)

φq(x, z, t) .=
N∑

n=1

εn
�(n+1)/2�∑

m=0

φi,n,n−2m(t) exp((−1)q+1(n − 2m)kz) cos(n − 2m)kx,

(2.24)

where ε is the auxiliary perturbation quantity used to construct the nth-order perturbation
expansion equations with dimension 1. This ε will be eliminated in the procedure and
will not appear in the final expressions. In addition, The amplitude a(x, t) in (2.23) is
defined only at the interface, thus the far-field conditions do not exist. The potential
function φq(x, z, t) in (2.24) is defined in the fluids on both sides of the interface. The
separation of variables form of (2.24) is set to be exp((−1)q+1(n − 2m)kz) for the normal
direction coordinate z, which ensures that the perturbation potential diminishes far from
the interface. Here, N is the expansion order of the perturbation expansion method, and
the ZS model is established based on N = 4. The initial profile of a multi-mode interface
can be expressed as

a−(x) = a(x, 0−) =
∑

j

a−
j cos ( jkx). (2.25)

We specify the mode kj as the fundamental mode for clarity hereafter because in the
subsequent derivation, if mode kj is not the fundamental mode, then the evolution results
will degenerate to 0. The initial conditions at the nonlinear starting point for the interface
can be expressed as

an,n−2m(t = 0) =
∑

j

aj0δn,jδn−2m,j, (2.26)

vn,n−2m(t = 0) =
∑

j

vjδn,jδn−2m,j, (2.27)

where δ is the Kronecker symbol. The value of startup time t = τ when the perturbation
evolution enters the linear growth regime can be calculated as (Lombardini & Pullin 2009;
Li et al. 2024)

τ = 1
k

(
1 − A

VRW +�V
+ 1 + A

VTS −�V

)
. (2.28)

Because τ relates to k, the startup times are different for fundamental modes with different
wavenumbers. The treatment for different startup times will be discussed later. Here, vj
is equal to the linear growth rate, and aj0 in previous work has different criteria such as
(a+

j + a−
j )/2 (Zhang et al. 2018) or 0 (Niederhaus & Jacobs 2003). To approximate the

amplitude at t = τ as much as possible, aj0 = a+
j + vjτ/2 is used in the present work

since the perturbation growth at the early stage of the startup process is approximately
quadratic (Lombardini & Pullin 2009). The diversity among various criteria is small when
the initial amplitude is small, but may be significant when the initial amplitude is high.

Subsequently, each order of equations with a balanced order of ε can be provided, and
the solutions can be derived directly. However, the expressions for the direct solutions
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Asymptotic matching modal model on RMI

are very complicated. In addition, the fundamental modes have varying startup times
due to their disparate wavenumbers, and the solutions for the development of the
fundamental modes have disparate orders of accuracy. To overcome these difficulties, the
external solution can be decomposed into two components, i.e. the self-coupling of each
fundamental mode and the mutual coupling between different fundamental modes. Here
we define the self-coupling of the fundamental mode kj as the nonlinear evolution of the
mode kj itself and the generation of its integer-multiple modes of mode kj, namely, modes
2kj, 3kj, and so on under the single mode case. Mutual coupling between two fundamental
modes is the additional effect when the initial interface has more than one fundamental
mode.

By considering N = 4, Zhang & Sohn (1997) proposed the ZS model for single-mode
RMI development. The expressions for the first three modes of self-coupling of mode
kj ( j = 1) are given by (2.2)–(2.4). As described earlier, because the feedback from
high-order harmonics to the third-order harmonic is ignored, the ZS model may diverge
in predicting the third-order harmonic growth. To prevent this divergence, the equation
is expanded to N = 5 to include higher-order terms, enabling the feedback from the
fifth-order harmonic to the third-order harmonic. In addition, because kai 	 O(1), the
high-order kai terms can be reduced for each order of t, thereby the simplified solutions
can be provided. The self-coupling parts of our new model are

v
(s)
j (t) = vj − 1

8 k2
j v

2
j [(4A2 + 1)vjt2 + 2aj0t], (2.29)

v
(s)
2j (t) = −Akjv

2
j t + 4

3 A3k3
j v

4
j t3, (2.30)

v
(s)
3j (t) = −3

4 k2
j aj0v

2
j t + 3

8 k2
j v

3
j (4A2 − 1)t2

+ 1
32(15 + 32A2)k4

j aj0v
4
j t3 + 3

128 (5 + 40A2 − 144A4)k4
j v

5
j t4.

(2.31)

The superscript ‘(s)’ represents the self-coupling of a single fundamental mode. Note
that our model is improved based on the ZS model. In the ZS model, only the leading
term feedbacks of high-order harmonics to the first- and second-order harmonics were
considered. In our model, similarly, we consider only the leading term feedbacks of
high-order harmonics in the case of self-coupling, i.e. only the feedback from the
third-order harmonic to the first-order harmonic is considered, and only the feedback from
fifth-order harmonic to the third-order harmonic is considered. As a result, the feedback
from the fifth-order harmonic is present in (2.31) but is absent in (2.29). Actually, the
divergence of the nonlinear perturbation series for self-coupling is a serious issue, and
a partial sum of this diverging series is not an accurate approximation to the solution.
However, it is difficult to determine the number of high-order terms to achieve the best
prediction. Taking kj ( j = 1, 2) as an example of fundamental modes combination to
illustrate mutual coupling and eliminating the small quantities by scale comparison, the
generations from mutual coupling are

v
(m)
112 (t) = k1Av1v2t + 1

4 k2
1(−2A2 − 3)v1v

2
2 t2

− 1
3 k3

1(A
3 + A)v3

1v2t3, (2.32)

v
(m)
212 (t) = −4A2v2

1v2k2
1t2 + 1

3 (4A3 + 5A)k3
1v

2
1v

2
2 t3

+ 1
24(72A4 + 33A2 − 4)k4

1v
4
1v2t4, (2.33)
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v
(m)
312 (t) = −3k1Av1v2t + 3

8 k2
1[(4A2 − 1)v2

1 + (−12A2 + 1)v2
2]v1t2

+ 1
4 k3

1[(54A3 − 11A)v2
1 + (48A3 + 9A)v2

2]v1v2t3, (2.34)

v
(m)
412 (t) = k2

1(8A2 − 2)v2
1v2t2 + 1

3 k3
1(96A3 − 28A)v2

1v
2
2 t3

+ 1
12 k4

1(−512A4 + 223A2 + 3)v4
1v2t4. (2.35)

The superscript ‘(m)’ represents the mutual coupling between two different fundamental
modes. The subscript ‘ijl’ denotes that the velocity of the mode ki is generated from
mutual coupling between the fundamental modes kj and kl. Three terms for each mode
considering the mutual coupling are reserved. Series solutions with more than one term
can provide convenience for further mathematical treatments such as Padé approximations.
The previous studies have shown that the beat mode with wavenumber kj ± kl appears
when more than one mode is initially present (Haan 1991; Remington et al. 1995; Luo
et al. 2020). At lowest order of accuracy of time O(t) and initial amplitude O[(kai)

0],
this new model can reduce to (2.7). It can be found from the new model that the other
modes will also be affected by mutual coupling at higher order. This phenomenon will be
verified by experiments hereinafter. By deriving a higher-accuracy model, the divergence
of solutions is prevented until the profile of interface is multi-valued.

The complete form for our new model to predict the mode ki evolution can be written as

v
gm
i =

∑
j

⎧⎨
⎩
[
vin

i (t)− vuni
i

]
δi,j + v

(s)
i
[
(t − τj)H(t − τj)

]+
∑
l /= j

v
(m)
ijl

[
(t − τ

(m)
jl )H(t − τ

(m)
jl )

]⎫⎬
⎭ ,

(2.36)

where H(t) is the Heaviside function, τi is the time scaling for the startup process for each
fundamental mode ki, and τ (m)jl = (τj + τl)/2 is the startup time of the mode generated
from the mutual coupling between the fundamental modes kj and kl. The first term in
the sum is used to match the startup process with the nonlinear growth; the second term
represents the self-coupling of fundamental mode kj, and it exists only when ki is an
integer multiple of kj; the last term represents the mutual coupling between two different
fundamental modes kj and kl. Note that this asymptotic matching method is not restricted
to this nonlinear model, but is also applicable to other nonlinear models on RMI.

Note that the new model is established assuming that the different fundamental modes
have small initial perturbation amplitudes, i.e. kai 	 O(1), because there are existing
theoretical models for predicting the linear and nonlinear growth rates of the amplitude. If
the shock hits the interface with high initial perturbation amplitudes, then complicated
phenomena, such as unsteady shock refraction and Mach stems, arise, and there are
no analytical solutions for the linear and nonlinear growths, to the best of the authors’
knowledge. In the present work, the relative phase difference of two different fundamental
modes should be integer multiples of π, such that the dual-mode interface can be
expressed in the form z = a01 cos(k1x)± a02 cos(k2x). For high-frequency multi-mode
initial conditions (with fundamental modes greater than 2), provided that the relative
phase differences of the different fundamental modes are integer multiples of π, the
different startup processes of the different fundamental modes can still be captured by the
asymptotic matching method proposed, and (2.36) still holds. Besides, the perturbation
expansion method for nonlinear evolution can still be applied although the specific
expressions for the nonlinear part are different.

In addition, the new model should be effective for a wide range of Atwood numbers as
it is derived directly from potential flow models without empirical parameters and has a
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Asymptotic matching modal model on RMI

series form of Atwood number, but it may lose validity at extreme Atwood numbers such
as |A| < 0.1 or |A| > 0.9. For light–heavy interfaces, the model may be applicable only
for low shock Mach numbers because the shock proximity effect will significantly flatten
the bubble front when the incident shock is strong (Motl et al. 2009). The change in the
bubble morphology will alter the modal evolution, which affects the validity of the model.
For heavy–light interfaces, since the transmitted shock wave will quickly move away from
the interface due to the high acoustic velocity of the fluid on the transmitted side, the shock
proximity effect is very weak, and the model is expected to be effective for relatively high
Mach numbers.

To verify the model proposed, experiments are performed. Note that very limited
data are available on the startup process in the literature. Moreover, RMI of a
dual-mode heavy–light interface has never been considered previously. Consequently,
both single-mode and dual-mode interfaces are considered, and both light–heavy and
heavy–light interfaces are involved in our present experiments. In the following,
experimental methods and results are first described and discussed, then comparison of
experimental results with theoretical results is made.

3. Experimental methods

In experiments, five different interface profiles are designed, including three kinds of
single-mode interface with different wavenumbers, and two kinds of dual-mode interface
with different phase combinations. The profiles of the initial interfaces can be expressed
as

SM_lh z = a01 cos(k1x), x ∈ [0, 120] mm,
SM_hl z = −a01 cos(k1x), x ∈ [−30, 90] mm,
AP_lh z = a01 cos(k1x)− a02 cos(k2x), x ∈ [−90, 30] mm,
IP_lh z = a01 cos(k1x)+ a02 cos(k2x), x ∈ [−60, 60] mm,
AP_hl z = −a01 cos(k1x)+ a02 cos(k2x), x ∈ [−30, 90] mm,
IP_hl z = −a01 cos(k1x)− a02 cos(k2x), x ∈ [−60, 60] mm,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

where k1 and k2 are wavenumbers of two fundamental modes, and a01 and a02 are initial
amplitudes of two fundamental modes at the boundary plane. Note that the initial negative
amplitude of the mode k1 in dual-mode heavy–light cases is designed to maintain a positive
velocity. The width of the flow field is 140 mm, consisting of perturbation with two to
four periods and two straight segments on both sides to eliminate the boundary effects
(Luo et al. 2018). For each interface configuration, both air–SF6 and SF6–air interfaces are
involved.

The soap-film technique (Liu et al. 2018; Gao et al. 2024) is used to form
the discontinuous interfaces in this work. The super-hydrophobic-oleophobic surface
technique developed by Li et al. (2023) instead of filaments is used to constrain the
soap-film interface. Due to the surface tension, the soap-film interface is a 3-D surface
with a minimum-surface feature (Luo, Wang & Si 2013). The multi-mode 3-D surface can
be expressed as

z =
∑

j

fj( y) cos(kjx). (3.2)

When only one fundamental mode exists, the interface reduces to a single-mode one, and
the governing function for fj( y), according to the work of Luo et al. (2013), is

f ′′
j = k2fj(1 + f ′2

j ), f ′
j |y=0 = 0, fj|y=0 = asp

j , (3.3a–c)
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Case λ1 a01 av1 λ2 a02 av2 a ab as θb θs

SM30_hl 30 1 0.89 — — — 0.89 0.89 0.89 π 0
SM40_hl 40 1.33 1.24 — — — 1.24 1.24 1.24 π 0
SM60_hl 60 2 1.94 — — — 1.94 1.94 1.94 π 0
AP_lh 60 2 1.94 30 1 0.89 2.12 1.42 2.82 0.32π π

IP_lh 60 2 1.94 30 1 0.89 2.12 2.82 1.42 0 0.68π

AP_hl 60 2 1.94 30 1 0.89 2.12 1.42 2.82 0.68π 0
IP_hl 60 2 1.94 30 1 0.89 2.12 2.82 1.42 π 0.32π

Table 1. Initial interface parameters, where ‘_lh’ or ‘_hl’ indicate that the interfaces are light–heavy or
heavy–light, respectively. For single-mode cases, the parameters for light–heavy and heavy–light interfaces
are the same except for θb and θs. For a light–heavy interface, θb = 0 and θs = π. Also, ‘AP’ and ‘IP’ denote
anti-phase and in-phase of two basic modes, λ is the perturbation wavelength, a0 is the perturbation amplitude
on the constraint boundary, and av is the integral average amplitude of the 3-D surface. The subscripts 1 and 2
denote the first and second basic modes on the initial interface, ab, as, a are the initial heights of the bubble,
spike and amplitude, respectively, and θb and θs are the angular locations of bubble and spike. The unit of
length is mm.

where asp
j is the perturbation amplitude of the fundamental mode kj at the symmetry plane

y = 0. Note that (3.3a–c) is a homogeneous ordinary differential equation, and each fj( y)
should satisfy (3.3a–c) for a multi-mode interface. For different fundamental modes in a
multi-mode soap-film interface, the 3-D effect is different, therefore the 3-D correction of
the perturbation amplitude is obligatory. The average amplitude of the fundamental mode
kj is calculated by

avj =

∫ h/2

−h/2
fj( y) dy

h
. (3.4)

The initial interface parameters, including the average amplitudes of the fundamental
modes, are provided in table 1.

The experiments are conducted in a horizontal shock tube (Guo et al. 2022). For air–SF6
interfaces, the Mach number of the incident shock moving in air is 1.26 ± 0.01. For
SF6–air interfaces, the Mach number of the incident shock moving in SF6 is 1.31 ± 0.01.
The physical parameters of the background flow of ten cases are listed in table 2.
The experimental measurements agree well with the theoretical calculations from 1-D
theory. The post-shock flow is recorded by high-speed schlieren photography. The frame
rate of the high-speed video camera (FASTCAM SA-Z, Photron Limited) is 50 000
frames per second, and the exposure time is 1/2 880 000 s. The spatial resolution of the
schlieren image is 0.26 ± 0.01 mm pixel−1. The ambient pressure and temperature are
101.3 ± 0.1 kPa and 297.5 ± 0.7 K, respectively.

4. Results and discussion

4.1. Qualitative results
Developments of wave patterns and interface morphologies of the shock-accelerated
air–SF6 interfaces and SF6–air interfaces obtained from experiments are shown in figures 1
and 2, respectively. The time origin t = 0 is defined as the moment when the transmitted
shock wave leaves the interface. When the interface and waves are away from the initial
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Interface type Case Ma VIS ψ �Ve �V1-D Ve
TS V1-D

TS A

Light–heavy SM30 1.26 435.5 98 % 92.1 88.9 192.6 192.3 0.70
SM40 1.26 436.8 99 % 91.3 89.6 195.1 191.6 0.70
SM60 1.26 436.2 99 % 92.1 89.1 194.3 191.2 0.70

AP 1.26 435.5 98 % 92.1 89.2 195.1 191.7 0.70
IP 1.26 435.5 97 % 90.4 88.9 192.6 192.3 0.70

Heavy–light SM30 1.31 179.75 98 % 96.9 95.0 403.78 407.44 −0.68
SM40 1.32 180.28 99 % 99.4 96.8 406.93 408.73 −0.69
SM60 1.30 177.04 100 % 96.0 92.1 405.31 405.51 −0.69

AP 1.30 181.58 96 % 96.7 96.0 408.03 408.13 −0.68
IP 1.31 179.47 99 % 95.0 96.0 405.74 408.14 −0.69

Table 2. Physical parameters of background flow: Ma is the incident shock Mach number, ψ is the volume
fraction of SF6 on the heavy gas side of the interface, and VIS, �V and VTS are the velocities of the incident
shock, shocked interface and transmitted shock, respectively. The superscripts e and 1-D denote the data
obtained from experimental measurements and 1-D gas dynamics theory, respectively. The unit of velocity
is m s−1.
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(a) SM30 (b) SM40 (c) SM60 (d) AP (e) IP

Figure 1. Sequences of schlieren images of air–SF6 interface evolution and wave propagation for five cases:
(a–c) single-mode interfaces, (d,e) dual-mode interfaces. Here, IS means incident shock, RS means reflected
shock, TS means transmitted shock, and SI means shocked interface.

position, the shadows of the initial interface are erased from experimental images for
clarity.

The developments of a single-mode air–SF6 interface and SF6–air interface accelerated
by a planar shock have been widely investigated, and only a brief description is provided
here. Taking case SM40 as an example, after the incident shock passes through the air–SF6
interface, as shown in figure 1, the perturbation amplitude begins to grow, and the spikes
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(a) SM30 (b) SM40 (c) SM60 (d) AP (e) IP
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Figure 2. Sequences of schlieren images of SF6–air interface evolution and wave propagation for five cases:
(a–c) single-mode interfaces, (d,e) dual-mode interfaces.

(heavier fluid penetrating lighter fluid) and bubbles (lighter fluid penetrating heavier fluid)
arise quickly (t = 1127 μs). At the late stages, vortices are generated on both sides of the
spikes (t = 1667 μs). For a shock-accelerated SF6–air interface, as shown in figure 2, after
the shock impact, reflected rarefaction waves (RW) are clearly observed, and become wider
in width (t = 86–206 μs). No additional reflected waves are generated benefiting from the
new interface formation method. The shocked interface experiences a phase inversion,
then develops continuously. Later, vortices also arise at the spike head (t = 1446 μs).

For the dual-mode interfaces, we take case AP as an example to detail the process. The
air–SF6 interface in figure 1 has a large spike at the centre and small ones located on
both sides. After the shock wave accelerates the interface, the large spike rolls up with
a pair of vortices formed at its neck, and bubbles develop with an obvious inclination
to the large spike (t = 855 μs). At late times, the difference between the sizes of the
different spikes becomes more significant, but the interface profile remains relatively thin
and distinct (t = 1535 μs). The SF6–air interface in figure 2 has a large bubble at the centre
and small ones located on both sides. Because different fundamental modes have different
phase-inversion times, a moment when the amplitude reduces to zero does not exist. The
mode with a short wavelength finishes phase inversion earlier, and the interface appears to
be a single-mode one with λ = 60 mm (t = 86 μs). Then the mode with a long wavelength
finishes phase inversion, causing the dual-mode interface to resemble a single-mode
interface with λ = 30 mm (t = 166 μs). Later, both large and small bubbles appear on
the interface (t = 526 μs), and the small spikes develop with an apparent inclination to the
large bubble (t = 946 μs).

To perform modal analysis, in the previous work, Fourier analysis on the interface profile
is made. However, for each x pixel, we will choose a certain single z pixel during the data
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(a) SM40_lh (b) AP_lh (c) IP_lh

(d) SM40_hl (e) AP_hl ( f ) IP_hl

906 526 597

947 515 557

Figure 3. Comparisons between experimental schlieren images and interface profiles extracted from mode
decomposition (solid lines) and theoretical prediction (dotted lines).

processing since Fourier analysis is executed on a single-valued function, and only one
period of the interface is involved. In the present work, the cosine series function is used to
fit the experimental profiles using the nonlinear least squares method. This method allows
us to retain all the dark pixels near the interface during the binarization process rather
than choosing an individual pixel for each x coordinate. In addition, this procedure can
be conducted over the whole observation area rather than for a single period. Therefore,
more information from the experimental images is utilized, and the human subjectivity
is reduced. A remarkable advantage of the modal model is that the direct profile of the
interface can be predicted, whereas the other models based on a selected linear start
point cannot give this prediction. Figure 3 shows comparisons between the experimental
schlieren images and the interface profiles extracted from mode decomposition and
predicted from the theoretical model for different cases. From comparison, the modal
model can predict the profile very well, although some small localized features cannot
be predicted due to the ignorance of higher-order harmonics in the model.

4.2. Quantitative comparisons
To verify our model, comparisons of the amplitude variations between experimental
measurements and theoretical predictions from the new model for single-mode cases are
given in dimensionless form in figure 4. Note that as the small-amplitude asymptotic
RMI growth rate is itself proportional to the initial ripple amplitude, by the time the
startup process ends, we need to ensure that the linear theory is still applicable, i.e. the
small-amplitude conditions should be satisfied. For light–heavy interfaces, perturbation
amplitudes will continue to grow after the shock impact. The amplitude (ai) at the time
of the startup process ending (t = τi) will be larger than the value at the initial time.
For heavy–light interfaces, however, due to the presence of the phase-inversion process,
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Figure 4. Comparisons of the normalized amplitude developments between experimental measurements and
theoretical predictions for single-mode cases. The pink zone indicates the startup process of the fundamental
mode.

the amplitude will first reduce and then grow in the opposite phase, which leads to
|ai(t = τi)| < |ai(t = 0)|. In our present single-mode and dual-mode experiments, the
dimensionless amplitude of each fundamental mode after the startup process |kai(t =
τi)| < 0.3 holds. Under this condition, the high-amplitude effect is negligible for the
linear and nonlinear growths of both light–heavy and heavy–light interfaces (Dimonte
& Ramaprabhu 2010; Wang et al. 2023a), and linear theory is still valid to provide a
linear growth rate. Therefore, the small-amplitude conditions hold for the nonlinear modal
evolution in our experiments. The amplitudes of the first three harmonics are provided
since the amplitudes of other higher-order harmonics are too small. The time and nth-order
harmonic amplitude are normalized as kvlint and kan, respectively, where vlin is the linear
growth rate of the total perturbation amplitude, which can be calculated by

vlin =
∑

j

[vj cos( jθs)− vj cos( jθb)]/2, (4.1)

where θb and θs are the phase positions of the bubble and spike, respectively, as listed
in table 1. Benefiting from the asymptotic matching model, the development of harmonic
amplitude can be predicted from the moment when the shock impact is finished, namely
t = 0, rather than from an artificially selected startup time. Note that the ZS model cannot
predict the startup process, and the start point of the prediction by the ZS model is given
by our new model. As mentioned before, relative to the ZS model, the correction is made
only to the third harmonic in the new model. Therefore, for the amplitude growths of the
first and second harmonics, the new model provides predictions similar to those of the
ZS model. One can observe some obvious differences regarding normalized a1 between
experiments and theoretical predictions in light–heavy cases. Previous works have verified
that the ZS model slightly overestimates the evolution of a1 in single-mode situations with
Atwood number smaller than 0.75 (Liu et al. 2018; Chen et al. 2023), generally because
the amplitude growth rate predicted by the ZS model satisfies a 1/t2 law when the Atwood
number is smaller than 0.75, but the late-time 1/t law of the amplitude growth rate is
expected from the potential flow model, and has been validated in previous numerical
and experimental works (Dimonte & Ramaprabhu 2010; Mansoor et al. 2020). The early
overestimation results in the divergence of the ZS model in predicting a1. In figure 4,
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the predictions to the amplitude growth of the third harmonic from the ZS model and
the new model are provided for comparison. For an air–SF6 interface, the predictions
from the ZS model and the new model almost coincide except in the late stages. For
SF6–air interfaces, the phase-inversion process can be well predicted by the model. For
the third-order harmonic, the prediction from the ZS model coincides with the prediction
from the new model before kvlint = 0.8. Afterwards, the prediction from the ZS model
diverges, whereas the new model can still give a reasonable prediction.

Note that in the derived model, the divergence is well inhibited in the late stages
by considering the fifth-order feedback to the third-order harmonic evolution. It is also
possible for considering higher-order feedback to the higher-order (larger than 3) harmonic
evolution, but it may not be meaningful. First and most importantly, the present modal
model can already reasonably describe the profile evolution of the interface before the
interface enters a non-single-valued period, and it is not necessary to consider more
high-order harmonics. Second, the mathematical treatment becomes quite complicated if
higher-order feedback to the higher-order (larger than 3) harmonic evolution is considered
without obviously improving the accuracy. For further analysis of multi-mode perturbation
fingers, it may be more effective to apply Padé approximations than higher-order
expansion.

Comparisons of the amplitudes of the first four harmonics between experimental
measurements and theoretical predictions for dual-mode cases are given in figure 5. The
dimensionless time is shorter than that in single-mode cases because the interface enters
a multi-valued period earlier. Here, the predictions from the Haan model (Haan 1991)
and from the mZG model (Luo et al. 2020) are provided as references, and they start
from the end of the startup process, i.e. from t = τ , whereas the predictions from the new
model start from t = 0. Note that the same asymptotic method is applied for our model
as for the previous models. For air–SF6 interfaces, the predictions for the first harmonic
from the new model are less accurate than those from the mZG model, which is probably
ascribed to the overestimation of the ZS model to the first harmonic. Nevertheless,
the new model generally gives good predictions to the amplitude developments of first
four harmonics, especially for the high-order harmonics. For SF6–air interfaces, the
new model provides better predictions to the amplitude developments of the first four
harmonics than the other two models. Specifically, the different phase-inversion times
for different fundamental modes are also well captured by the new model, which is
never considered in the previous models, to the best of our knowledge. Note that the
fourth-order harmonic is not the beat mode, therefore the Haan model cannot capture
the mutual-coupling effect on the amplitude evolution of the fourth-order harmonic. In the
Haan model, the fourth-order harmonic comes from the self-coupling of the fundamental
second mode. Consequently, the Haan model gives the same results for the amplitude
growths of the fourth-order harmonic in AP and IP cases. However, the amplitude growths
of the fourth-order harmonic in AP and IP cases are obviously different in experiments.
This fact shows that the mutual-coupling effect cannot be ignored when predicting the
amplitude growth of the fourth-order harmonic, and the new model is able to quantify this
effect.

As for the mZG model (Luo et al. 2020), the amplitude growth rates of the third-
and fourth-order harmonics can be calculated using (2.13) and (2.14). Here, when the
fundamental modes are kj ( j = 1, 2), the third- and fourth-order expressions for the weakly
nonlinear solutions to initiate the mZG model are given by (2.11) and (2.12). Note that the
mZG model provides different initial velocities for the amplitude growths of the third- and
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Figure 5. Comparisons of the amplitude developments between experimental measurements and theoretical
predictions for dual-mode interfaces. The coloured zones indicate the startup processes of the fundamental
modes.

fourth-order harmonics compared to the early evolution trends of experimental results. For
example, when the two fundamental modes of the dual-mode heavy–light interface are
in phase, the initial velocity calculated by (2.11) is negative, while the initial velocities
predicted by the Haan model and our new model are both zero. This is because the
weakly nonlinear solution for the mZG model is based on the RTI frame, which leads to
an artificial initial velocity for higher-order harmonics generated from mutual coupling.
However, the linearized governing equation for the RMI problem is a homogeneous
ordinary differential equation, which means that the RMI problem within the linear regime
satisfies the linear superposition principle. Namely, the higher-order harmonics generated
from mutual coupling do not own their initial velocities. This is also consistent with
the experimental results and theoretical predictions from the Haan model and the new
model.

5. Conclusions

For a shock-accelerated single-mode interface, previous works have shown that there is
a startup process before the amplitude growth enters the linear and nonlinear regimes.
In particular, there is a phase-inversion process for a shock-accelerated heavy–light
interface. Previous models were generally established based on an artificially selected
initial conditions to predict the linear and nonlinear growth rates. The startup process and
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the phase-inversion process cannot be described by the models. If multiple fundamental
modes are present on the initial interface, then the startup times and phase-inversion times
are distinct for different fundamental modes, which bring about more challenges for the
model to predict each mode evolution.

In this work, an asymptotic matching modal model was established for predicting
mode evolution in single- and dual-mode interfaces accelerated by a shock wave. The
key to establishing the new model is the treatment of the startup process. The startup
process can be treated as a boundary layer on the time axis caused by the contradiction
between the initial conditions and the linear solutions. This kind of problem can be
solved by the singular perturbation method. By decomposing the general solution into
three parts – i.e. the internal solution, external solution and the uniform approximation –
a modal model that can characterize the complete evolution of the perturbed interface
after the shock impact is established. In the new model, the diverse startup times of
the fundamental modes and higher-order harmonics are considered by asymptotically
matching the nonlinear evolution of each mode separately. Relative to the previous modal
model proposed by Haan (1991), in which only one term is reserved, three terms for each
mode generated from mode coupling are reserved in the new model, which provides a
convenience for further mathematical treatments. To the best of the authors’ knowledge,
the new model can characterize the complete evolution of various-order modes for single-
and multi-mode perturbations, whereas the previous models cannot. In addition, the
asymptotic matching method established in this work is not restricted to the new model
but is also applicable to other nonlinear models.

To validate the model, experiments on the developments of single- and dual-mode
interfaces accelerated by a shock wave are conducted, and both light–heavy and
heavy–light interfaces are involved. To obtain the interface profiles, the cosine series
function is used to fit the experimental profile using the nonlinear least squares method.
This method allows for utilizing more information from the experimental images, and
reduces the human subjectivity. The interface profiles extracted from mode decomposition
and predicted by the new model show high consistency with the experimental schlieren
images.

For the shocked single-mode interface evolution, the ZS model (Zhang & Sohn 1997)
predicts the amplitude growth from the end of the startup process. The ZS model contains
higher-order feedback only to the first- and second-order harmonics, which leads to
the divergence in predicting the third-order harmonic evolution in the late stages. This
divergence is well inhibited by considering the fifth-order feedback to the third-order
harmonic evolution in the new model. For the shocked dual-mode interface evolution,
the new model provides thorough solutions and characterizes the diverse startup times
and phase inversion times for different fundamental modes for the first time. Relative to
the modal model proposed by Haan (1991), the new model has a higher-order accuracy,
and can evaluate the effect of mutual coupling between the fundamental modes on the
amplitude variations of higher-order harmonics besides the ‘beat modes’. Relative to the
mZG model (Luo et al. 2020), the new model provides better predictions to the amplitude
growths of the first four harmonics for the heavy–light interfaces, because the mZG
model provides inappropriate velocities to initiate the developments of the higher-order
harmonics, and gives completely different growth trends due to the presence of the
phase-inversion process.

However, the present experiments were conducted only with weakly incident Mach
number 1.2–1.3 and specific gas combinations of air and SF6 to validate the new model.
In future work, more experiments, including different shock Mach numbers, different
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gas combinations, and more fundamental modes (greater than two) existing at the initial
interface, will be conducted to further verify the new model.
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