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Abstract

Ishitsuka et al. [ ‘Explicit calculation of the mod 4 Galois representation associated with the Fermat quar-
tic’, Int. J. Number Theory 16(4) (2020), 881-905] found all points on the Fermat quartic Fy: x* + y* = z*
over quadratic extensions of Q({g), where (g is the eighth primitive root of unity "™/, Using Mordell’s
technique, we give an alternative proof for the result of Ishitsuka ef al. and extend it to the rational function
field Q(s)(T1, Ta, ..., Ty).
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1. Introduction
The problem of finding points on the Fermat quartic

Fu:x*+ y4 =z
over number fields has been studied by several authors. Fermat showed that F4 only has
trivial points over the rational numbers, where a trivial point on F4 is a point [x : y : ]
with xyz = 0. Aigner [1] showed that if 4 has nontrivial points in a quadratic number
field Q(\/E), then d = —7. Faddeev [5] later found all points on F, over all quadratic
number fields and all cubic number fields. Bremner and Choudhry [3] showed that Fy

only has trivial points in any cyclic cubic number field. Recently, Ishitsuka et al. found
all points on F, over quadratic extensions of Q({g).

THEOREM 1.1 (Ishitsuka et al. [6, Theorem 7.3]). There are 188 points on F4 defined
over quadratic extensions of Q({g):
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2 N. X. Tho 2]

(A) 12 trivial points defined over Q({3): [1 : {é :0],[0: %1 :1],[0: -0_-1;82 : 1], and
[+1:0:1],[x&*:0:11,j=1,3,5,7; _ _

(B) 48 points defined over QQY*&): V4G 1114 241,
(27142 27 AT 11,0 <4 j < 3 ‘ _

(C) 32 points defined over Q(3,43): B4 4 81+2] D10, (4548 {3{$+2} 1],
0<i,j<3; _ .

(D) 96 poinis defined over QV=T,4): [a¢d : @ o, @ @ 71, |
E)a i :gg calZl (gl 8@, (el Pag ™, 1 adl e,

<i1,j]<3,

where (3 = 23, o = (1 + V=7)/2 and @ = (1 — V=7)/2.

In this paper, we give an alternative proof for Theorem 1.1 and its extension to
rational function fields.

THEOREM 1.2. There are 188 points on F, defined over quadratic extensions of
Q(L)(Ty, Ty, ..., T,). These points are the 188 points in Theorem 1.1.

Before moving on to the proof of Theorem 1.2, we note that our approach is
completely different from the approach of Ishitsuka et al. In [6], the authors use
techniques from Galois representation theory and their proof relies on Rohrlich’s result
[11, Corollary 1, page 117] and Faddeev’s result [5, Section 3, page 1150]. This paper
is modelled on Mordell’s paper [9], where he reproved Faddeev’s result [5], see also
[10, Theorem 4, pages 116-118]. The advantage of Mordell’s approach is that it is
simple, easy to use and concrete in calculations. For some other applications of this
approach, see Li [7] and Manley [8].

2. Some preliminary results

LEMMA 2.1. Let k be a field of characteristic not 2. Let K = k(Ty,T>,...,T,) be the

function field over k generated by n algebraically independent variables Ty, T», ..., T,.
Let E be the elliptic curve over K given by y* = x> + Ax + B, where A,B € k. Then,
E(K) = E(k).

PROOF. The following proof of Lemma 2.1 is due to Professor Andrew Bremner (per-
sonal communication). We use induction on n. When n = 1, see Cohen [4, Proposition
7.3.2, pages 487—488]. Assume that Lemma 2.1 is true for n. Let K = k(T4, T3, ..., T,).
Consider the elliptic curve E over L = k(Ty,T,,...,T,+1) given by y2 =x>+Ax+B,
where A, B € k. Since L = K(T,41) and k C K, by induction,

E(L) = E(K(Ty+1)) = E(K) = E(k).

The proof is complete. i

Lemma 2.1 enables us to verify Lemmas 2.2, 2.3 and 2.4 using MAGMA [2].
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(31 Points on x* + y* = 74 3

LEMMA 2.2. All Q(G)(T1, Ts, ..., T,)-points on y* = 2x(x*> + 1) are
00, (0,0), (1,%2), (££%,0), (-1, £245°),

(L8 + &% + G £(24° + 247 = 2)), (88° — &% + &, £(24% — 245 +2),
(=& + &2 + &), £Q%% + 24 +2)), (=(&° — &2 + &), £24° — 247 +2)).

LEMMA 2.3. All Q(s)(T1, Ts, . .., T,)-points on y* = 2x(x> — 1) are
o0, (0,0), (£1,0), (&%, £245%), (—¢s°, £243),

(£8° — &8 — L, £2(48° + 247 + 248)), (& — & + 1, £(24° — 245 +2)),

(—48° + &+ 1L, 22487 — 243 = 2)), (=&5° + & — 1, £(245° — 2457 + 243)).
LEMMA 2.4. All Q) Ty, Ts, ..., T,)-points on s* = t* — 1 are
o0, (0, ££5%), (£1,0), (££%,0), (£Ls, £(Ls° + &)y (2457, (457 + ).

3. Proof of Theorem 1.2

Let K = Q()(Ty, Ty, ..., T,). Let L = K(Vd) be a quadratic extension of K, where
d € K and Vd ¢ K. Assume [x:y:z] € Fa(L).
If x = 0, then y* = z*. Hence,

[x:y:zl=[0:+1:11,[0:+£ : 1]. (3.1)
Similarly, if y = 0, then

[x:y:z]:[iI:O:1],[1{%:0:1]. 3.2)
If z = 0, then x* + y4 = 0. Hence,

[x:y:z]l=[&/:1:0], j=13,5"7 (3.3)

Note that the 12 points in (3.1), (3.2) and (3.3) are the 12 points in Theorem 1.1(A).
Assume xyz # 0. Let z = 1. Then,

Pyt=1 (3.4)
Since x # 0, y? # =1. From (3.4), (1 + y*)/x* = x?/(1 — y?). Let
1 +y2 X2
t= = ) 35
x2 ( 1 —yz) (3-5)
Then, 1 # 0. If r = £2, by (3.5),
, 1+ y? x? 1+y?
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Hence, 1 +y?> = y? — 1, which is impossible. If ¢ = +1, by (3.5),

_1+y2 x? _1+y2

1=+ = :
¥ 1=y 1-y?

Hence, y = 0, which is impossible. Therefore,

t¢{0,£1, 43} (3.6)
It follows from (3.4) and (3.5) that
2t -1
2 2

== - , 3.7
o 2+1 Y 2+1 3.7)

Let X = x(? + 1) and Y = xy(#? + 1). From (3.7),
X2 =212 + 1), (3.8)
Y2 =217 - 1). (3.9)

Casel:te K. LetX=u+vVdand Y = u; + vl\/c_i, where u, v, u;,v; € K. From (3.8),
X2, Y? € K. Since Vd ¢ K, uv = uyv; = 0.

Case 1.1: v=0. Then, X = u € K. Thus, (¢,u) is a K-point on (3.8). Therefore, by
Lemma 2.2, 1 = £({5° + {s* + {3), (&s” — &6 + &s). If t = £5° + &s* + s, then

[x:y:z] = [24° : t+8s — &3 1 1] (3.10)

If t = —(3° + &g° + &), then

[x:y:z]l =[£lg: £/ —§33 2 1]. (3.11)

Ift = &° - &% + &, then

[x:y:z] =[x : i\/§g3 -3 1] (3.12)

If t = —(&3° — &% + &), then

[x:y:z] = [24° /3 — G 1 1] (3.13)

Case 1.2: vy =0. Then, (t,u;) is a K-point on (3.9). Therefore, by Lemma 2.3,
t==2(? =L — 1), 2(° — &+ ). If 1 = &> — &5 — 1, then

3 .3
[x:y:z]=[i\/§8 - o :i\/g8 258 :1]. (3.14)

If t = —({3° — &g — 1), then

.3 .3
[x:y:z]=[i\/§8 258 :i\/&‘ 258 :1]. (3.15)
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51 Points on x* + y* = 74 5

Ifr= 583 — {3+ 1, then

3 3
e:y:gl= [i\/gg - & :i\/gg - &, 1]. (3.16)

If t = —({3° — &g + 1), then

_ 7.3 3_
be:y:gl= [i\/gg 258 :i\/ﬁ‘ - % 1]. 3.17)

Case 1.3: vw; # 0. Since X2, Y? e K and X, Y ¢ K, we have u = u; = 0. It follows from
(3.8) and (3.9) that dv* = 2¢(* + 1) and dv} = 2t(* — 1). Hence,

s =@+ D -1, (3.18)
where s = dvv,/(21) € K. By Lemma 2.4, t = +{3, +{3. If t = 5°, then

reyal = [eyde - o 2’ 1L (319)
[x:yrz]=[iM1
[:y: 2l = [y -4 : 24s 1L (321)
[y 2l = [y - ot #dsc 1L (3:22)

Note that the 48 points in (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), (3.17),
(3.19), (3.20), (3.21) and (3.22) are the 48 points in Theorem (1.1)(B).

If r = (3%, then

I+

&1 1. (3.20)
If t = g, then

If t = —{3, then

Case II: t ¢ K. Let P(T) € K[T] be the monic minimal polynomial of ¢ over K. Then,
degP(T) = 2.

Step 1: There exist a,b € K such that X =ar+b. By (3.8), the polynomial
2T(T? + 1) — (aT + b)* has aroot T = t. Therefore, there exist ¢,d € K such that

2T(T? + 1) = (aT + b)*> = P(T)(cT + d). (3.23)
Then, ¢ = 2 and (—d/c,—ad/c + b) is a K-point on (3.8). Hence, by Lemma 2.3,
—dfc € {0, 1, +45%, £(85* + &5 + &), £(&5° - &7 + &)
Case 1.1: —=d/c = 0. Then, b = d = 0. From (3.23),

2
P(T)=T? - %T + 1. (3.24)
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Case 1.2: —d/c = 1. Then, d = -2 and a + b = +2. By changing the signs of a and b,
we can assume that a + b = —2. From (3.23),

2 @ a’
P(T) =T+ (—? + 1)T ot 2a + 2. (3.25)

Case 13: —-d/c=-1. Then, d=2 and a-b= 124’82. We can assume that
a—b = 25 From (3.23),

2 a a’ 2
PT) =1+ (-5 1) - % - 262a+2 (3.26)

Case 1.4: —d/c = {3*. Then, d = —2¢3* and b = —als*. From (3.23),

2
P(T) =T+ (—% + 4“82)T + %fsQaz. (3.27)

Case 1.5: —d/c = —3*. Then, d = 23* and b = al3?. From (3.23),
2 a? 2 1. 55
P(T) =T + (—3 _l )T— sS4k, (3.28)
Case 1.6: —d/c = {3° + &3 + (3. Then, d = =2(&5° + &% + &3). It follows that

G+ &P+ &)a+b =250+ &7 - 1)

We can assume that b = 2({83 + {82 -1- ({83 + {gz + {g)a. From (3.23),

PO =1+ (- @ & ) S 8 o
+ (=248 = 2487 + 2)a + 208° — 245 - 2. (3.29)
Case 1.7 —d/c = —({5° + &3> + (3). Then, d = 2(45° + &3 + (3). Then,
—(P+ &GP+ Ga+b =22+ G+ D).
We can assume that b = 2(&g? + (g + 1) + (&8> + &2 + g)a. From (3.23),
P(T) =T + (—a; ~& -5 §8)T + %(—483 ~ &7 - )’
+(=2051 =285 — 2)a + 285° - 285 - 2. (3.30)
Case 1.8: —=d/c = (3> — (3> + ¢3. Then, d = —2({3° — ¢3% + &3) and
(& = &% + L)a+b = +2(55° — Lz + 1).
We can assume that

b=2L7— G+ D)= (&7 — &7 + Ga
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7] Points on x* + _\'4 =z 7
From (3.23),

a’ 1
P =T+ (-5 + @7 - &2+ W7 + 567 - & + L)
+ (=207 + 205 — 2)a — 208> + 205 - 2. (3.31)
Case 1.9: —d/c = —({s* — {s* + {s). Then, d = 2({s° — s + ¢s) and
—({s? — &P+ G)a+b =22 - &R+ D).
We can assume that b = 2(3> — &% + 1) + (&° — &&% + ¢3)a. From (3.23),

2 a’ 3 2 1 3 2 2
P =T+ (-5 - &7 + 62 = &7 + 547 + &2~ a
(=203 + 2857 = 2)a — 208° + 205 - 2. (3.32)

Step 2: There exist aj,by € K such that Y = at+ b;. Then, (3.9) shows that the
polynomial 2T(T? — 1) — (i T + b;)? has a root T = . Hence, there exist ¢,d; € K
such that

2T(T* - 1) = (i T + by)* = P(T)(\T + dy). (3.33)
Thus, ¢; =2 and (—d,/cy, —a1d;/ci + by) is a finite K-point on (3.9). Hence
—di /e €40, 1, 24%, £ = &g — 1), £(&7 = &+ D)
Case 2.1: —dy/c| = 0. Then, b, = d; = 0. From (3.33),

a2
P(T) =T - ?lT -1 (3.34)
Case 2.2: —dy/c; = 1. Then, d; = -2 and by = —a,. From (3.33),
2 “% a%
P(T) =T+ (—3 + I)T +L (3.35)
Case 2.3: —dy/c; = —1. Then, d; = 2 and b; = a;. From (3.33),
2 a% a%
P(T) =T+ (—3 - 1)T -3 (3.36)

Case 2.4: —d; /¢y = &g° — &3 — 1. Then, d; = —2({3> — &3 — 1) and
(¢5° =& = Dar + by = 22457 + &6° + 8.
By changing the signs of a; and b;, we can assume that
br=20s° + 45 + &)~ (¢&° = &5 — Da.
From (3.33),

a% 3 1
PT) =T+ (-3 + @ = &= DT+ 5@ - & - D
+ (=203 = 2887 = 209)ar — 288° + 245 + 2. (3.37)
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Case 2.5: —d;/c) = (&3> — {3 — 1). Then, d; = 2({5° — &3 — 1) and
~(8* = &5 — Day + by = £2(8° — &5 — 1).
We can assume that b; = 2({83 -L-D+ ({83 — {3 — Da,. From (3.33),

a? 1
PN =T+ (<5 = &7 + G+ )T + 567 + & + Dl
+(=208% + 285 + 2)ay — 288° + 205 + 2. (3.38)
Case 2.6: —d,/ci = (3°. Then, d; = —2{3° and g%a; + by = +23°. We can assume
that b, = 2¢3* — a1 3>, From (3.33),
a 1
P(T) =T + (—3 + ggz)T + 3000 = 2 =2, (3.39)

Case 2.7- —dy/ci = —=(3%. Then, d; = 2£3% and —s%a; + by = +203. We can assume
that by = 243 + (3a;. From (3.33),

a? 1
P(T) =T - (?’ + ggz)T - 34 - 2yar =2 (3.40)

Case 2.8: —di/ci = {3° — &z + 1. Then, d; = —2({3> — & + 1) and

& -G+ Dag+by = 2257 - & + 1),
We can assume that b; = 2({3> — &g + 1) — (&&° — &3 + 1)a;. From (3.33),
P(T)=T2+(—ﬁ+{3—{ +1)T+1(g3—§ + Dad?
> 3 3 ) 8 8 1
+ (=247 + 205 — Day + 248° — 205 + 2. (3.41)
Case 2.9: —d /¢y = (&3> — {3 + 1). Then, d; = 2(&° — &3 + 1) and
(¢8> = &+ Day + by = £2(5° — &7 + &)

We can assume that b; = 2({3> — &3> + &) + ((5° — &3 + 1)ay. From (3.33),

2 af 3 1 3 2
P(T) =T +(—3 & 4l 1|T+ 56+ G - D

+(=208% + 2857 = 209)ay + 288 — 245 + 2. (3.42)

Step 3: One polynomial from (3.24), (3.25), (3.26), (3.27), (3.28), (3.29), (3.30), (3.31)
and (3.32) needs to match with one polynomial from (3.34), (3.35), (3.36), (3.37),
(3.38), (3.39), (3.40), (3.41) and (3.42), resulting in 81 systems of equations in a, a;.
For each of these systems, MAGMA [2] is used to find a and a;. MAGMA codes
are available from the author on request. Even though a,a; € K, each of these 81
systems of equations has coefficients in Q({3), so if a solution with a,a; € K exists,
then a,a; € Q(s). Our computation shows that only 20 of these 81 systems have
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9] Points on x* + y* = z* 9
solutions and only 16 of these 20 systems give an irreducible polynomial P(T). All
of the remaining 61 systems have no solutions a, a; € Q({3).

Case 3.1: (3.24) and (3.35). Then,

Thus, (a,a;) =(0,+V2). Hence P(T)=T*+1=(T+&>)(T -4&?), which is
reducible in K[T].

Case 3.2: (3.24) and (3.36). Then,

az_ a% |- a%
27 2 7 T2

Thus, (a,a;) = (0,+V-2). Hence, P(T) =T+ 1= (T + &>)(T — &?), which is
reducible in K[T].

Case 3.3: (3.25) and (3.35). Then,

a aj @ aj
-——+1l=—=+1, —+2a+2=—.
2 2 2 T 2
Thus, (a,a1) = (-1, +1). Hence, P(T) = T? + T + 1. So > + 1t + 1 = 0. Therefore,
x:y:z]=[+Q+1): £2¢: 1]. (3.43)

Case 3.4: (3.25) and (3.36). Then,

a® at a a?
-——+1l=—=-1, —+4+2a+2=—-——.
2" R 2
Hence, (a,a;) = (-2,0), (0, i2§82). The first solution gives P(T) = T — T, which is
reducible in K[T]. The second solution gives P(T) = T?> + T +2. So > +t+2 =0.

Therefore,

x:y:zl =[x 20+ D& 1. (3.44)
Case 3.5: (3.25) and (3.39). Then,
a2 a’ a? 1
-+ 1= —71 + 052, >+ 2a+2 = 548%& —20%a - 2.

Hence, (a,a;) = (&> — 1,45 + &5%), (—(&s + 3), 353 — £3*). The first solution gives
P(T) = T? + (4" + DT + &5* = (T + (T + &),

which is reducible in K[T]. The second solution gives P(T) = T? — (343% + 3)T + (3.
So 12 — (343” + 3)t + £3% = 0. Therefore,

L& 1)t4+ GP+3 . gj)(z -3

[x:y:z]z[ il 34
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Case 3.6: (3.25) and (3.40). Then,

2
2 a2

a a 2 L 55
—?4—1:_?_58, ?+2a+2=—§§8a1—2§8(11—2.

Hence, (a,a;) = (&% — 1,45 + &5%), (&% — 3,348 — &3). The first solution gives
P(T) =T? + (=& + DT - &% = (T + (T = &),

which is reducible in K[T]. The second solution gives P(T) = T + (3£s* — 3)T — £5°.
So 2 + (343> — 3)t — £3% = 0. Therefore,

G2+ Dt + 4% -3 : i(&é +4)(E-3)

yiz]l =+ 1. 4
[x:y:z] =% 7 1 (3.46)
Case 3.7: (3.26) and (3.35). Then,
@ a @ aj
———1l=-2 41, —-=-24%+2=—2.
2 p thomymaata=g

Hence, (a,a;) = (243%,0), (0,+2). The first solution gives PT)=T>+T =
T(T + 1), which is reducible in K[T]. The second solution gives P(T) = T?> = T + 2. So
2 —t+2 = 0. Therefore,

br:y:z]l =[x : (- D&? 1. (3.47)

Case 3.8: (3.26) and (3.36). Then,
2 2 2 2

a a; a 2 a;
———l=--1 -=-2 2=--1,
2 ; b Ty ar 2
Hence, (a,ar) = ({s* +{s?). Therefore, P(T)=T>-31T+1. So #-1r+1=0.
Therefore,
[x:y:z] = [+Q2r — D>« +21: 1], (3.48)

Case 3.9: (3.26) and (3.39). Then,

a* a% 2 a’ 2 L 55 3
—?—12—?4'{3, —?+2§861+2=§§ga1—2§ga1—2.

Hence, (a,a,) = ({82 -1,4 - 583), (3{82 + 1,33 + (3°). The first solution gives
P(T) =T+ (&* = DT = &% = (T = (T + &),

which is reducible in K[T]. The second solution gives P(T) = T? + (—3{82 +3)T — 4’82.
So 1% + (=345 + 3)t — &3> = 0. Therefore,
G- Dr+302+1 (@ +EE+3)

[x:y:z]l=|+ 1 T+ 1

1. (3.49)
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Case 3.10: (3.26) and (3.40). Then,

2
a’ a’

a 1
—— 1=t 5% ——+24%+2 = - - 2a; - 2.
2 > &3, >t {3"a+ 258 ay —24a
Hence, (a,a;) = (> + 1,43 — &8%), (3¢3% — 1,3 + 33%). The first solution gives

P(T) =T + (=& = DT + & = (T - DT - &°),
which is reducible in K[T]. The second solution gives P(T) = T? + (342 + 3T + &2
So 2 + (343” + 3)t + £3% = 0. Therefore,

L@ GE - G+ ) +3)

ty:iz]= 1]. 3.50
[x:y:z] 2 1 (3.50)
Case 3.11: (3.27) and (3.34). Then,
2 2
a 2 a 1.,
-—— =—-—, = = -1
> * {3 > 258 a
Hence, (a,a;) = (a,ay) = (1\5{8,0)). Therefore, P(T) = T? — 1, which is reducible in
K[T].
Case 3.12: (3.27) and (3.35). Then,
2 2 2
a 2 9 1 ,5_ 4
- =—=+1, = = —.
> s >+l 2§s a=-

Hence, (a,a1) = (£({s + £5°), £(¢s* — 1)). Therefore, P(T) = T? + (&% + DT — 2. So
2 + (Lg% + Dt — 3% = 0. Therefore,

G-+ @ - — &~ &)
2 o 2 )

[x:y:z]l=|% 1]. (3.51)

Case 3.13: (3.27) and (3.36). Then,
2 2 2
AN S R P S B
2 +§g = > 1, 258 a” = 2 .
Hence, (a,a1) = (£(&° — &), (&2 — 1)). Therefore, P(T) = T2 + ({s> — DT + ¢3%. So
P+ ({g2 - D+ g“gz = 0. Therefore,

o (& + &)1 -1 . (3 -G-8 - &s .
[x.y.z]—[i( : ).i : 1], (3.52)
Case 3.14: (3.27) and (3.39). Then,
2 at 1 1
—% +47 = —?l + 457 5582612 = §§825l% -205%a; - 2.
Hence, (a,b) = (+{3,{3). Therefore, P(T) = T? + %{ng - % So % + %{gzt - % =0.
Therefore,
ey 2l = |- Zi3) (ai- )01 (3.53)
iy + > ) E 5) 1) )
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Case 3.15: (3.27) and (3.40). Then,

2 2
a 2 4 s .o, L 4,5
—7+§8 =—7—§8, 55861 =—§§8 aj — 203ay - 2.

Hence, (a,b) = (0,24%), (£245,0). The first solution gives P(T) = T? + 3°T =
T(T + {3%), which is reducible in K[T]. The second solution gives P(T)=
T? — 2T — 2. So 1* — {3t — 2 = 0. Therefore,

1 ¢
r:y:z] = [i(—ggt— 4“83) el 1]. (3.54)
2 2
Case 3.16: (3.28) and (3.34). Then,
2 2
a 2 a; I 55
_ = = —— —_— =—1
2 {3 5 258 a

Hence, (a,ay) = (J_rx/igg, 0). Therefore, P(T) = T? — 1, which is reducible in K[T7].

Case 3.17: (3.28) and (3.35). Then,
2 2
a 2 a L 5, 4
- = =——+1, -—= = —.
> s >+l 258 a 5
Hence, (a,a1) = (£({s + &), (1 + ¢s?). Thus, P(T)=T*+ (1 - )T + &% So
2+ (1 - {gz)T + {gz = 0. Therefore,

(& -G+ 1) +(§83 — L+ 08+ G
2 T 2

2

2 1. (3.55)

[x:y:z] ==

Case 3.18: (3.28) and (3.36). Then,

2 2 2

a 2 a; L 55 a;
R R R i
> s > 258 a 5

Hence, (a,a;) = (+({3° — &3), (s> + 1)). Thus, P(T) = T? — (&> + DT — 42, So
2 — (32 + Dt — &% = 0. Therefore,

(L3 + &) - 1) : i(§83 — G+ + G

[x:y:z] == 5 5 2 1. (3.56)
Case 3.19: (3.28) and (3.39). Then,
a aj 1 1
_3 _ 482 - _?1 + 4829 _Eggzaz = Eggza% - 2{83a1 - 2

Hence, (a,a;) = (0,203), (£2{3°,0). The first solution gives P(T)=T?- T,
which is reducible in K[T]. The second solution gives P(T) = T? + 3°T — 2. So
2 + {3°t — 2 = 0. Therefore,

N~

e:y:gl= [i(%gg%—gg) .l 1]. (3.57)
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Case 3.20: (3.28) and (3.40). Then,

2 2
a 2 a 2 1. 55 1 5,

_L —_1_ _Z —__ ) -9,
) s 3 257, 258 a 258 ay {zay

Hence, (a,a;) = (x{s°,¢s%). Thus, P(T) =T? - 1°T - 1. So 2 - 142 —1 =0.
Therefore,

1
iy idl = |+{a - %) (et 5) ), (3.58)
Note that the 32 points in (3.51), (3.52), (3.55) and (3.56) are the 32 points in
Theorem 1.1(C) and the 96 points in (3.43), (3.44), (3.45), (3.46), (3.47), (3.48), (3.49),
(3.50), (3.53), (3.54), (3.57) and (3.58) are the 96 points in Theorem 1.1(D).
The proof of Theorem 1.2 is complete.
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