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Abstract
An identity that is reminiscent of the Littlewood identity plays a fundamental role in recent proofs of the facts that
alternating sign triangles are equinumerous with totally symmetric self-complementary plane partitions and that
alternating sign trapezoids are equinumerous with holey cyclically symmetric lozenge tilings of a hexagon. We
establish a bounded version of a generalization of this identity. Further, we provide combinatorial interpretations of
both sides of the identity. The ultimate goal would be to construct a combinatorial proof of this identity (possibly via
an appropriate variant of the Robinson-Schensted-Knuth correspondence) and its unbounded version, as this would
improve the understanding of the mysterious relation between alternating sign trapezoids and plane partition objects.

1. Introduction

Littlewood’s identity reads as∑
𝜆

𝑠𝜆 (𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

1
1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1
1 − 𝑋𝑖𝑋 𝑗

, (1.1)

where 𝑠𝜆(𝑋1, . . . , 𝑋𝑛) denotes the Schur polynomial associated with the partition 𝜆 and the sum is over
all partitions 𝜆. In fact, the identity was already known to Schur (see [26, p. 163] or [27, p. 456]) and
written down by Littlewood in [21, p. 238]. This identity has a beautiful combinatorial proof that is
based on the Robinson-Schensted-Knuth correspondence and exploits its symmetry; see Appendix A
and, for example, [28] for details.

In recent papers [10, 11, 17], where ‘alternating sign matrix objects’ (namely, alternating sign trian-
gles and alternating sign trapezoids) have been connected to certain ‘plane partition objects’ (namely,
totally symmetric self-complementary plane partitions and column strict shifted plane partitions of fixed
class, which generalize the better known descending plane partitions), a very similar identity played
the crucial role to establish this still mysterious [12] connection. All these proofs are not of a combi-
natorial nature and involve rather complicated calculations, and so the study of the combinatorics of
our Littlewood-type identity is very likely to lead to a better understanding of the combinatorics of this
relation.

In order to formulate the identity, we rewrite (1.1) using the bialternant formula for the Schur
polynomial [28, 7.15.1]
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2 I. Fischer

𝑠 (𝜆1 ,...,𝜆𝑛) (𝑋1, . . . , 𝑋𝑛) =
det1≤𝑖, 𝑗≤𝑛

(
𝑋
𝜆 𝑗+𝑛− 𝑗
𝑖

)∏
1≤𝑖< 𝑗≤𝑛 (𝑋𝑖 − 𝑋 𝑗 )

=
ASym𝑋1 ,...,𝑋𝑛

[∏𝑛
𝑖=1 𝑋𝜆𝑖+𝑛−𝑖

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋𝑖 − 𝑋 𝑗 )

,

allowing zeros at the end section of (𝜆1, . . . , 𝜆𝑛), with

ASym𝑋1 ,...,𝑋𝑛
𝑓 (𝑋1, . . . , 𝑋𝑛) =

∑
𝜎∈S𝑛

sgn 𝜎 · 𝑓 (𝑋𝜎 (1) , . . . , 𝑋𝜎 (𝑛) )

as follows:

ASym𝑋1 ,...,𝑋𝑛

[∑
0≤𝑘1<𝑘2<...<𝑘𝑛 𝑋 𝑘1

1 𝑋 𝑘2
2 · · · 𝑋 𝑘𝑛

𝑛

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

1
1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1
1 − 𝑋𝑖𝑋 𝑗

.

Note that we have permuted the variables 𝑋1, . . . , 𝑋𝑛 in the denominator and numerator compared to
the above definition of Schur functions as we are using the transformation 𝑘𝑖 = 𝜆𝑛+1−𝑖 + 𝑖 − 1. We have
used the following identity in [10, 11]:

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛 (1 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛 𝑋 𝑘1

1 𝑋 𝑘2
2 · · · 𝑋 𝑘𝑛

𝑛

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

1
1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 + 𝑋𝑖 + 𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
. (1.2)

In that paper, the formula was proved by induction with respect to n. In [17], an additional parameter
has been introduced, which has to be set to 1 to obtain (1.2). The formula reads as

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛 (𝑄 + (𝑄 − 1)𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛

∏𝑛
𝑖=1

(
𝑋𝑖 (1+𝑋𝑖)
𝑄+𝑋𝑖

) 𝑘𝑖 ]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

𝑄 + 𝑋𝑖

𝑄 − 𝑋2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

𝑄(1 + 𝑋𝑖) (1 + 𝑋 𝑗 ) − 𝑋𝑖𝑋 𝑗

(𝑄 − 𝑋𝑖𝑋 𝑗 )
. (1.3)

While (1.2) does not generalize (1.1), (1.3) does generalize the classical Littlewood identity: after setting
𝑄 = 2, we can pull out

∏
1≤𝑖< 𝑗≤𝑛 (𝑄 + (𝑄 − 1)𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 ) since it is symmetric in 𝑋1, . . . , 𝑋𝑛, and

then (1.2) is obtained by an appropriate change of variables. Among other things, we will see in this
paper that we can also introduce another parameter in (1.2) as follows:

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛 (1 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛 𝑋 𝑘1

1 𝑋 𝑘2
2 · · · 𝑋 𝑘𝑛

𝑛

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

1
1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 + 𝑋𝑖 + 𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
. (1.4)
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In fact, there is even the following common generalization of (1.3) and (1.4):

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛 (𝑄 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛

∏𝑛
𝑖=1

(
𝑋𝑖 (1+𝑋𝑖)
𝑄+𝑋𝑖

) 𝑘𝑖 ]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

𝑄 + 𝑋𝑖

𝑄 − 𝑋2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

𝑄 +𝑄𝑋𝑖 +𝑄𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗

𝑄 − 𝑋𝑖𝑋 𝑗
.

The latter identity is equivalent to

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛 (𝑞 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑞𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛

∏𝑛
𝑖=1

(
𝑋𝑖 (1+𝑞𝑋𝑖 )

𝑞+𝑋𝑖

) 𝑘𝑖 ]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

1 + 𝑞−1𝑋𝑖

1 − 𝑋2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 + 𝑞𝑋𝑖 + 𝑞𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
, (1.5)

when performing the following replacements 𝑄 → 𝑞2 and 𝑋𝑖 → 𝑞𝑋𝑖 , for 𝑖 = 1, 2, . . . , 𝑛, and this is the
version of the identity we consider in this paper. For what follows, it is crucial that the right-hand side
of (1.5) can be written as

det1≤𝑖, 𝑗≤𝑛
(
𝑞− 𝑗𝑋𝑛−1

𝑖 (𝑞 + 𝑋𝑖) (𝑞𝑋
−1
𝑖 + 𝑤)𝑛− 𝑗 (1 + 𝑞𝑋𝑖)

𝑗−1)∏
1≤𝑖≤ 𝑗≤𝑛 (1 − 𝑋𝑖𝑋 𝑗 )

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

,

which follows from the Vandermonde determinant evaluation.
The main purpose of this paper is to derive bounded versions of these identities and to provide

combinatorial interpretations of the identities that would allow us to approach them with a combinatorial
proof, possibly by a variant of the Robinson-Schensted-Knuth correspondence that mimics the proof
for the classical Littlewood identity. By bounded version we mean that the sums

∑
0≤𝑘1<𝑘2<...<𝑘𝑛 are

restricted to, say,
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚. Macdonald [22] has provided such a bounded version of the
classical identity (1.1) – namely,

∑
𝜆⊆(𝑚𝑛)

𝑠𝜆(𝑋1, . . . , 𝑋𝑛) =
∑

0≤𝑘1≤𝑘2≤...≤𝑘𝑛≤𝑚

𝑠 (𝑘𝑛 ,𝑘𝑛−1 ,...,𝑘1) (𝑋1, . . . , 𝑋𝑛)

=
det1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−1
𝑖 − 𝑋

𝑚+2𝑛− 𝑗
𝑖

)∏𝑛
𝑖=1(1 − 𝑋𝑖)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 )

, (1.6)

which he used to prove MacMahon’s conjecture. Very recent work on bounded Littlewood identities
can be found in [24].

More specifically, we will prove the following.
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4 I. Fischer

Theorem 1.1. For 𝑛 ≥ 1, we have

1∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)
ASym𝑋1 ,...,𝑋𝑛

[ ∏
1≤𝑖< 𝑗≤𝑛

(𝑞 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑞𝑋𝑖𝑋 𝑗 )

×
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

(
𝑋1(1 + 𝑞𝑋1)

𝑞 + 𝑋1

) 𝑘1 ( 𝑋2 (1 + 𝑞𝑋2)

𝑞 + 𝑋2

) 𝑘2

· · ·

(
𝑋𝑛 (1 + 𝑞𝑋𝑛)

𝑞 + 𝑋𝑛

) 𝑘𝑛 ]
=

det1≤𝑖, 𝑗≤𝑛
(
𝑎 𝑗 ,𝑚,𝑛 (𝑄, 𝑤; 𝑋𝑖)

)∏
1≤𝑖≤ 𝑗≤𝑛

(1 − 𝑋𝑖𝑋 𝑗 )
∏

1≤𝑖< 𝑗≤𝑛
(𝑋 𝑗 − 𝑋𝑖)

, (1.7)

with

𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋) = 𝑞− 𝑗𝑋𝑛−1 (1 + 𝑞𝑋)𝑚+1(𝑞 + 𝑋)

×
(
(𝑞𝑋−1 + 𝑤)𝑛− 𝑗 (1 + 𝑞𝑋) 𝑗−𝑚−2 − (𝑞𝑋 + 𝑤)𝑛− 𝑗 (1 + 𝑞𝑋−1) 𝑗−𝑚−2

)
.

Setting 𝑞 = 1, we obtain, after simplifying the right-hand side, the following corollary.

Corollary 1.2. For 𝑛 ≥ 1, we have

1∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)
ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛

(1 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

𝑋 𝑘1
1 𝑋 𝑘2

2 · · · 𝑋 𝑘𝑛
𝑛

⎤⎥⎥⎥⎥⎦
=

det1≤𝑖, 𝑗≤𝑛
(
𝑋

𝑗−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

𝑚+2𝑛− 𝑗
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
∏

1≤𝑖< 𝑗≤𝑛
(1 − 𝑋𝑖𝑋 𝑗 ) (𝑋 𝑗 − 𝑋𝑖)

. (1.8)

In the second part of the paper, we will then provide combinatorial interpretations for both sides of
the identity in the corollary.

Outline

In Section 2, we give a proof of (1.1). In Appendix A, we discuss a point of view on the combinatorics
of the classical Littlewood identity (1.1) and its bounded version (1.6) that is beneficial for possible
combinatorial proofs of the Littlewood-type identities that we establish in this paper. Recall that this is of
interest because such identities have been used several times [11, 10, 17] to establish connections between
alternating sign matrix objects and plane partition objects. To approach this, we offer combinatorial
interpretations of the left-hand sides of (1.4) and (1.8) in Section 3 and in Appendix B. Then, in Section 4,
we offer a combinatorial interpretation of the right-hand sides of (1.4) and (1.8). These interpretations
are nicest in the cases 𝑤 = 0, 1. In Section 5, we offer an outlook on related work on the cases 𝑤 = 0,−1,
which will appear in a forthcoming paper with Florian Schreier-Aigner.

2. Proof of Theorem 1.1

Bressoud’s elementary proof [2] of (1.6) turned out to be useful to obtain the following (still elementary,
but admittedly very complicated) proof of Theorem 1.1 provided here. Conceptually, the proof is not
difficult: We use induction with respect to n and show that both sides satisfy the same recursion.
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Using the following three functions

𝑓 (𝑋) =
𝑋 (1 + 𝑞𝑋)

𝑞 + 𝑤𝑋
, 𝑔(𝑋) = 𝑞 + 𝑤𝑋, ℎ(𝑋) =

𝑋 (1 + 𝑞𝑋)

𝑞 + 𝑋
=

𝑓 (𝑋)𝑔(𝑋)𝑋−1

𝑓 (𝑋−1)𝑔(𝑋−1)𝑋
, (2.1)

it is easy to see that (1.7) is equivalent to

1∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)
ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛

( 𝑓 (𝑋−1
𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋

−1
𝑗 )𝑋2

𝑗

𝑞(1 − 𝑋𝑖𝑋 𝑗 )

×
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

𝑛∏
𝑖=1

ℎ(𝑋𝑖)
𝑘𝑖

]
=

det1≤𝑖, 𝑗≤𝑛
(
𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋𝑖)

)∏
1≤𝑖≤ 𝑗≤𝑛

(1 − 𝑋𝑖𝑋 𝑗 )
∏

1≤𝑖< 𝑗≤𝑛
(𝑋 𝑗 − 𝑋𝑖)

, (2.2)

with

𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋) = 𝑞− 𝑗𝑋𝑛−𝑚 𝑓 (𝑋)𝑚+1𝑔(𝑋)𝑚+1 𝑓 (𝑋−1)𝑔(𝑋−1)

×
(
𝑋−𝑛+𝑚+2 𝑓 (𝑋) 𝑗−𝑚−2𝑔(𝑋)𝑛−𝑚−2 − 𝑋𝑛−𝑚−2 𝑓 (𝑋−1) 𝑗−𝑚−2𝑔(𝑋−1)𝑛−𝑚−2

)
. (2.3)

2.1. The case 𝑚 → ∞.

We start by proving the 𝑚 → ∞ case of Theorem 1.1. We first show that this is equivalent to

ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛

( 𝑓 (𝑋−1
𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋

−1
𝑗 )𝑋2

𝑗

𝑞(1 − 𝑋𝑖𝑋 𝑗 )

𝑛∏
𝑖=1

ℎ(𝑋𝑖)
𝑖−1

𝑛∏
𝑖=1

1
1 −

∏𝑛
𝑗=𝑖 ℎ(𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦
=

𝑛∏
𝑖=1

𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )𝑋2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

(
𝑓 (𝑋𝑖) − 𝑓 (𝑋 𝑗 )

)
𝑔(𝑋𝑖)𝑔(𝑋 𝑗 )∏

1≤𝑖≤ 𝑗≤𝑛 𝑞(1 − 𝑋𝑖𝑋 𝑗 )
, (2.4)

which is just (1.5) multiplied on both sides with
∏

1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋 𝑗 ). To see this, we rewrite the left-
hand side of (1.7) by using the summation formula for the geometric series n times. As 𝑚 → ∞,
𝑎 𝑗 ,𝑚,𝑛 (𝑄, 𝑟; 𝑋𝑖) simplifies to

𝑋2 𝑓 (𝑋𝑖)
𝑗−1𝑔(𝑋𝑖)

𝑛−1 𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )

in a formal power series sense, and

det
1≤𝑖, 𝑗≤𝑛

(
𝑋2
𝑖 𝑓 (𝑋𝑖)

𝑗−1𝑔(𝑋𝑖)
𝑛−1 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )

)
can be computed using the Vandermonde determinant evaluation, we are led to the right-hand side of
(2.4) eventually.

We denote by 𝐿𝑛 (𝑋1, . . . , 𝑋𝑛) the left-hand side of (2.4) and observe that the following recursion is
satisfied:

𝐿𝑛 (𝑋1, . . . , 𝑋𝑛) =
𝑛∑

𝑘=1
(−1)𝑘−1 1

1 −
∏𝑛

𝑖=1 ℎ(𝑋𝑖)
𝐿𝑛−1 (𝑋1, . . . , 𝑋𝑘 , . . . , 𝑋𝑛)

×
∏

1≤ 𝑗≤𝑛,
𝑗≠𝑘

𝑓 (𝑋 𝑗 )𝑔(𝑋 𝑗 )𝑔(𝑋𝑘 )
(
1 − 𝑓 (𝑋−1

𝑗 )−1 𝑓 (𝑋𝑘 )
)

𝑞(1 − 𝑋 𝑗𝑋𝑘 )
, (2.5)
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where 𝑋𝑘 means that we omit 𝑋𝑘 . Indeed, suppose more generally that

𝑃(𝑋1, . . . , 𝑋𝑛) = ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛

𝑠(𝑋𝑖 , 𝑋 𝑗 )

𝑛∏
𝑖=1

𝑡 (𝑋𝑖)
𝑖−1

𝑛∏
𝑖=1

1
1 −

∏𝑛
𝑗=𝑖 𝑢(𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦ ,
then

𝑃(𝑋1, . . . , 𝑋𝑛) =
𝑛∑

𝑘=1

∑
𝜎∈S𝑛 :
𝜎 (1)=𝑘

sgn 𝜎
1

1 −
∏𝑛

𝑗=1 𝑢(𝑋 𝑗 )

∏
1≤ 𝑗≤𝑛,
𝑗≠𝑘

𝑠(𝑋𝑘 , 𝑋 𝑗 )𝑡 (𝑋 𝑗 )

× 𝜎

⎡⎢⎢⎢⎢⎣
∏

2≤𝑖< 𝑗≤𝑛

𝑠(𝑋𝑖 , 𝑋 𝑗 )

𝑛∏
𝑖=2

𝑡 (𝑋𝑖)
𝑖−2

𝑛∏
𝑖=2

1
1 −

∏𝑛
𝑗=𝑖 𝑢(𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦
=

𝑛∑
𝑘=1

(−1)𝑘−1 1
1 −

∏𝑛
𝑗=1 𝑢(𝑋 𝑗 )

𝑃(𝑋1, . . . , 𝑋𝑘 , . . . , 𝑋𝑛)

×
∏

1≤ 𝑗≤𝑛,
𝑗≠𝑘

𝑠(𝑋𝑘 , 𝑋 𝑗 )𝑡 (𝑋 𝑗 ),

(2.6)

where we use the notation

𝜎[ 𝑓 (𝑋1, . . . , 𝑋𝑛)] = 𝑓 (𝑋𝜎 (1) , 𝑋𝜎 (2) , . . . , 𝑋𝜎 (𝑛) ).

The last equality in (2.6) follows from the fact that the sign of 𝜎 is the product of (−1)𝑘−1 and the sign
of the restriction of 𝜎 to {2, 3, . . . , 𝑛}, assuming 𝜎(1) = 𝑘 and ‘identifying’ the preimage {2, 3, . . . , 𝑛}
as well as the image {1, . . . , 𝑛} \ {𝑘} with {1, 2, . . . , 𝑛 − 1} in the natural way.

We show (2.4) by induction with respect to n. The case 𝑛 = 1 is easy to check. It suffices to show
that the right-hand side of (2.4) satisfies the recursion (2.5) – that is,

𝑛∏
𝑖=1

𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )𝑋2
𝑖

∏
1≤𝑖< 𝑗≤𝑛

(
𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖)

)
𝑔(𝑋𝑖)𝑔(𝑋 𝑗 )∏

1≤𝑖≤ 𝑗≤𝑛 𝑞(1 − 𝑋𝑖𝑋 𝑗 )

=
𝑛∑

𝑘=1
(−1)𝑘−1 1

1 −
∏𝑛

𝑖=1 ℎ(𝑋𝑖)

∏
1≤ 𝑗≤𝑛,
𝑗≠𝑘

𝑓 (𝑋 𝑗 )𝑔(𝑋 𝑗 )𝑔(𝑋
−1
𝑗 )𝑔(𝑋𝑘 )

(
𝑓 (𝑋𝑘 ) − 𝑓 (𝑋−1

𝑗 )
)
𝑋2
𝑗

𝑞(1 − 𝑋 𝑗𝑋𝑘 )

×

∏
1≤𝑖< 𝑗≤𝑛,𝑖, 𝑗≠𝑘

(
𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖)

)
𝑔(𝑋𝑖)𝑔(𝑋 𝑗 )∏

1≤𝑖≤ 𝑗≤𝑛,𝑖, 𝑗≠𝑘 𝑞(1 − 𝑋𝑖𝑋 𝑗 )
.

We multiply by
(
1 −

∏𝑛
𝑖=1 ℎ(𝑋𝑖)

) ∏
1≤𝑖≤ 𝑗≤𝑛 𝑞(1 − 𝑋𝑖𝑋 𝑗 ) and obtain(

𝑛∏
𝑖=1

𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )𝑋2
𝑖 −

𝑛∏
𝑖=1

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)

) ∏
1≤𝑖< 𝑗≤𝑛

( 𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋 𝑗 )

=
∏

1≤𝑖< 𝑗≤𝑛

( 𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋 𝑗 )

𝑛∑
𝑘=1

𝑞(1 − 𝑋2
𝑘 )

∏
1≤ 𝑗≤𝑛
𝑗≠𝑘

𝑓 (𝑋 𝑗 )𝑔(𝑋
−1
𝑗 ) ( 𝑓 (𝑋𝑘 ) − 𝑓 (𝑋−1

𝑗 ))𝑋2
𝑗

𝑓 (𝑋𝑘 ) − 𝑓 (𝑋 𝑗 )
.

(2.7)

Note that the sign (−1)𝑘+1 in the sum has disappeared as we have pulled out the factor
∏

1≤𝑖< 𝑗≤𝑛 ( 𝑓 (𝑋 𝑗 )−

𝑓 (𝑋𝑖)).
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By the definitions of 𝑓 (𝑋) and 𝑔(𝑋), this is( 𝑛∏
𝑖=1

(𝑞 + 𝑋𝑖) −

𝑛∏
𝑖=1

𝑋𝑖 (1 + 𝑞𝑋𝑖)

) ∏
1≤𝑖< 𝑗≤𝑛

𝑞(𝑋 𝑗 − 𝑋𝑖) (1 + 𝑞𝑋𝑖 + 𝑞𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗 )

=
∏

1≤𝑖< 𝑗≤𝑛

𝑞(𝑋 𝑗 − 𝑋𝑖) (1 + 𝑞𝑋𝑖 + 𝑞𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗 )

×

𝑛∑
𝑘=1

(𝑞 − 𝑋2
𝑘 )

∏
1≤ 𝑗≤𝑛
𝑗≠𝑘

𝑋 𝑗 (1 + 𝑞𝑋 𝑗 ) (1 − 𝑋 𝑗𝑋𝑘 ) (𝑞 + 𝑋 𝑗 + 𝑤𝑋𝑘 + 𝑞𝑋 𝑗𝑋𝑘 )

(𝑋 𝑗 − 𝑋𝑘 ) (1 + 𝑞𝑋 𝑗 + 𝑞𝑋𝑘 + 𝑤𝑋 𝑗𝑋𝑘 )
.

For each 𝑠 ∈ {1, 2, . . . , 𝑛}, both sides are polynomials in 𝑋𝑠 of degree not greater than 2𝑛. It is not hard
to see that both sides vanish for 𝑋𝑠 = 𝑋𝑡 and 𝑋𝑠 = −

𝑞 (1+𝑞𝑋𝑡 )
𝑞+𝑤𝑋𝑡

for any 𝑡 ∈ {1, 2, . . . , 𝑛} \ {𝑠}. Moreover,
it is also not hard to see that the evaluations also agree for 𝑋𝑠 = 0,−𝑞−1, which gives a total of 2𝑛
evaluations for each 𝑋𝑠: due to the factors 𝑋 𝑗 and 1 + 𝑞𝑋 𝑗 , all summands on the right-hand side vanish
when setting 𝑋𝑠 = 0,−𝑞−1, except for the one for 𝑘 = 𝑠. This summand can easily be seen to coincide
with the specialization of the left-hand side.

It follows that the difference of the left-hand side and the right-hand side is up to a constant inQ(𝑞, 𝑤)
equal to

𝑛∏
𝑖=1

𝑋𝑖 (1 + 𝑞𝑋𝑖)
∏

1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖) (1 + 𝑞𝑋𝑖 + 𝑞𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗 ). (2.8)

To show that this constant is indeed zero, we consider the following specialization

(𝑋1, 𝑋2, 𝑋3, 𝑋4, . . .) =

(
𝑋1,

1
𝑋1

, 𝑋3,
1
𝑋3

, . . .

)
.

Note first that (2.8) does not vanish at this specialization, and therefore, it suffices to show that the left-
hand side and the right-hand side of (2.7) agree on this specialization. If n is even, this is particularly
easy to see because both sides vanish (on the right-hand side, all summands vanish, which is due to the
factor 1 − 𝑋 𝑗𝑋𝑘 ). If n is odd, then only the last summand on the right-hand side remains, and it is not
hard to see that it is equal to the left-hand side.

2.2. The general case

In order to prove Theorem 1.1, we need to show

det
1≤𝑖, 𝑗≤𝑛

(
𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋𝑖)

)
= ASym𝑋1 ,...,𝑋𝑛

𝐹 (𝑚; 𝑋1, . . . , 𝑋𝑛), (2.9)

where

𝐹 (𝑚; 𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

(1 − 𝑋2
𝑖 )

∏
1≤𝑖< 𝑗≤𝑛

𝑞−1 ( 𝑓 (𝑋−1
𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋

−1
𝑗 )𝑋2

𝑗

×
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

ℎ(𝑋1)
𝑘1ℎ(𝑋2)

𝑘2 · · · ℎ(𝑋𝑛)
𝑘𝑛 .
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See also (2.2). Observe that we have the following recursion:

𝐹 (𝑚; 𝑋1, . . . , 𝑋𝑛) = (1 − 𝑋2
1 )

𝑛∏
𝑗=2

𝑞−1 ( 𝑓 (𝑋−1
𝑗 ) − 𝑓 (𝑋1))𝑔(𝑋1)𝑔(𝑋

−1
𝑗 )𝑋2

𝑗

×

𝑚∑
𝑙=0

ℎ(𝑋1)
−1

(
𝑛∏
𝑖=1

ℎ(𝑋𝑖)

) 𝑙+1

𝐹 (𝑚 − 1 − 𝑙; 𝑋2, . . . , 𝑋𝑛).

We set

𝐴(𝑚; 𝑋1, . . . , 𝑋𝑛) = ASym𝑋1 ,...,𝑋𝑛
𝐹 (𝑚; 𝑋1, . . . , 𝑋𝑛)

and observe that

𝐴(𝑚; 𝑋1, . . . , 𝑋𝑛) =
𝑛∑

𝑘=1

𝑚∑
𝑙=0

(−1)𝑘+1(1 − 𝑋2
𝑘 )ℎ(𝑋𝑘 )

−1

(
𝑛∏
𝑖=1

ℎ(𝑋𝑖)

) 𝑙+1

× 𝐴(𝑚 − 𝑙 − 1; 𝑋1, . . . , 𝑋𝑘 , . . . , 𝑋𝑛)

×
∏

1≤𝑖≤𝑛,𝑖≠𝑘
𝑞−1( 𝑓 (𝑋−1

𝑖 ) − 𝑓 (𝑋𝑘 ))𝑔(𝑋𝑘 )𝑔(𝑋
−1
𝑖 )𝑋2

𝑖 ,

by the same argument that has led to (2.6). By the induction hypothesis, we have

𝐴(𝑚 − 𝑙 − 1; 𝑋1, . . . , 𝑋𝑘 , . . . , 𝑋𝑛) = det
1≤𝑖≤𝑛,𝑖≠𝑘
1≤ 𝑗≤𝑛−1

(
𝑎 𝑗 ,𝑚−𝑙−1,𝑛−1 (𝑞, 𝑤; 𝑋𝑖)

)
.

Therefore, the right-hand side of (2.9) is

𝑛∑
𝑘=1

(−1)𝑘+1(1 − 𝑋2
𝑘 )

∏
1≤𝑖≤𝑛,𝑖≠𝑘

𝑞−1 ( 𝑓 (𝑋−1
𝑖 ) − 𝑓 (𝑋𝑘 ))𝑔(𝑋𝑘 )𝑔(𝑋

−1
𝑖 )𝑋2

𝑖

×

𝑚∑
𝑙=0

ℎ(𝑋𝑘 )
𝑙 det

1≤𝑖≤𝑛,𝑖≠𝑘
1≤ 𝑗≤𝑛−1

(
ℎ(𝑋𝑖)

𝑙+1𝑎 𝑗 ,𝑚−𝑙−1,𝑛−1 (𝑞, 𝑤; 𝑋𝑖)
)
, (2.10)

and we need to show that it is equal to det1≤𝑖, 𝑗≤𝑛
(
𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋𝑖)

)
.

Using (2.1) and (2.3), we note that

ℎ(𝑋)𝑙+1𝑎 𝑗 ,𝑚−𝑙−1,𝑛−1 (𝑞, 𝑤; 𝑋) = 𝑞− 𝑗
(
𝑓 (𝑋) 𝑗𝑔(𝑋)𝑛−1ℎ(𝑋)𝑙 − 𝑋2𝑛−2 𝑓 (𝑋−1) 𝑗𝑔(𝑋−1)𝑛−1ℎ(𝑋)𝑚+1

)
,

and thus, we can write the determinant in (2.10) as∑
𝜎,𝑆

(−1)𝐼 (𝜎)+ |𝑆 |
∏
𝑖∈𝑆

𝑞−𝜎 (𝑖)𝑋2𝑛−2
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∈𝑆

𝑞−𝜎 (𝑖) 𝑓 (𝑋𝑖)
𝜎 (𝑖)𝑔(𝑋𝑖)

𝑛−1ℎ(𝑋𝑖)
𝑙 ,

where the sum is over all bijections 𝜎 : {1, 2, . . . , 𝑛} \ {𝑘} → {1, 2, . . . , 𝑛 − 1}, all subsets S of
{1, 2, . . . , 𝑛} \ {𝑘} and 𝐼 (𝜎) is the number of all inversions (i.e., pairs 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑘} with
𝑖 < 𝑗 and 𝜎(𝑖) > 𝜎( 𝑗)). Moreover, 𝑆 denotes the complement of S in {1, 2, . . . , 𝑛} \ {𝑘}. Also note
that (−1)𝐼 (𝜎) is just the sign of the permutation as it appears in the Leibniz formula of the determinant
when expanding it over all permutations. Comparing with (2.10), we multiply by ℎ(𝑋𝑘 )

𝑙 and take the
sum over l. We obtain
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𝜎,𝑆

(−1)𝐼 (𝜎)+ |𝑆 |
∏
𝑖∈𝑆

𝑞−𝜎 (𝑖)𝑋2𝑛−2
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∈𝑆

𝑞−𝜎 (𝑖) 𝑓 (𝑋𝑖)
𝜎 (𝑖)𝑔(𝑋𝑖)

𝑛−1

×

𝑚∑
𝑙=0

ℎ(𝑋𝑘 )
𝑙
∏
𝑖∈𝑆

ℎ(𝑋𝑖)
𝑙 .

We evaluate the sum and rearrange some terms:

∑
𝑆

(−1) |𝑆 |𝑞−𝑛+1
1 −

∏
𝑖∈𝑆∪{𝑘 } ℎ(𝑋𝑖)

𝑚+1

1 −
∏

𝑖∈𝑆∪{𝑘 } ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛−2
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∈𝑆

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)
𝑛−1

×
∑
𝜎

(−1)𝐼 (𝜎)
∏
𝑖∈𝑆

[
𝑞−1 𝑓 (𝑋−1

𝑖 )
]𝜎 (𝑖)−1 ∏

𝑖∈𝑆

[
𝑞−1 𝑓 (𝑋𝑖)

]𝜎 (𝑖)−1
.

The inner sum is a Vandermonde determinant, which we evaluate. We obtain

∑
𝑆

(−1) |𝑆 |𝑞−𝑛+1
1 −

∏
𝑖∈𝑆∪{𝑘 } ℎ(𝑋𝑖)

𝑚+1

1 −
∏

𝑖∈𝑆∪{𝑘 } ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛−2
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∈𝑆

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)
𝑛−1

×
∏

1≤𝑖< 𝑗≤𝑛,𝑖, 𝑗≠𝑘

𝑞−1 ( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖)),

with 𝑌𝑖 = 𝑋𝑖 if 𝑖 ∈ 𝑆 and 𝑌𝑖 = 𝑋−1
𝑖 if 𝑖 ∈ 𝑆.

From (2.10), we add the remaining factors and the sum over all k and finally have the full right-hand
side of (2.9). We exchange the sum over k and S: now we sum over all proper subsets 𝑆 ⊆ [𝑛] and all k
not in S. If we write 𝑖 ∉ 𝑆, then we mean 𝑖 ∈ {1, 2, . . . , 𝑛} \ 𝑆. This gives

∑
𝑆

(−1) |𝑆 |𝑞−𝑛+1 1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)
𝑚+1

1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛−2
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)
𝑛−1

×
∑
𝑘∉𝑆

(−1)𝑘+1(1 − 𝑋2
𝑘 ) 𝑓 (𝑋𝑘 )

−1
∏

1≤𝑖≤𝑛,𝑖≠𝑘
𝑞−1( 𝑓 (𝑋−1

𝑖 ) − 𝑓 (𝑋𝑘 ))𝑔(𝑋
−1
𝑖 )𝑋2

𝑖

×
∏

1≤𝑖< 𝑗≤𝑛,𝑖, 𝑗≠𝑘

𝑞−1 ( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖)). (2.11)

We rearrange (2.11) slightly as follows

∑
𝑆

(−1) |𝑆 |𝑞−𝑛+1 1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)
𝑚+1

1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑔(𝑋𝑖)
𝑛−1

×
∑
𝑘∉𝑆

(−1)𝑘+1(1 − 𝑋2
𝑘 )

∏
𝑖∉𝑆∪{𝑘 }

𝑓 (𝑋𝑖)𝑔(𝑋
−1
𝑖 )𝑋2

𝑖

×
∏

1≤𝑖≤𝑛
𝑖≠𝑘

𝑞−1
(
𝑓 (𝑋−1

𝑖 ) − 𝑓 (𝑋𝑘 )
) ∏

1≤𝑖< 𝑗≤𝑛,𝑖, 𝑗≠𝑘

𝑞−1( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖)).
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This is further equal to

∑
𝑆

(−1) |𝑆 |𝑞−𝑛+1 1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)
𝑚+1

1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑔(𝑋𝑖)
𝑛−1

×
∏

1≤𝑖< 𝑗≤𝑛
{𝑖, 𝑗}∩𝑆≠∅

𝑞−1( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖))
∏

1≤𝑖< 𝑗≤𝑛
{𝑖, 𝑗}∩𝑆=∅

𝑞−1( 𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖))

×
∑
𝑘∉𝑆

(1 − 𝑋2
𝑘 )

∏
𝑖∉𝑆∪{𝑘 }

𝑓 (𝑋𝑖)𝑔(𝑋
−1
𝑖 )

(
𝑓 (𝑋𝑘 ) − 𝑓 (𝑋−1

𝑖 )
)
𝑋2
𝑖

𝑓 (𝑋𝑘 ) − 𝑓 (𝑋𝑖)
. (2.12)

We divide (2.7) by 𝑞
∏

1≤𝑖< 𝑗≤𝑛 ( 𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖))𝑔(𝑋𝑖)𝑔(𝑋 𝑗 ) and obtain

𝑞−1
( 𝑛∏
𝑖=1

𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )𝑋2
𝑖 −

𝑛∏
𝑖=1

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)

)
=

𝑛∑
𝑘=1

(1 − 𝑋2
𝑘 )

∏
1≤ 𝑗≤𝑛
𝑗≠𝑘

𝑓 (𝑋 𝑗 )𝑔(𝑋
−1
𝑗 ) ( 𝑓 (𝑋𝑘 ) − 𝑓 (𝑋−1

𝑗 ))𝑋2
𝑗

𝑓 (𝑋𝑘 ) − 𝑓 (𝑋 𝑗 )
.

By applying this to the variables (𝑋𝑖)𝑖∈𝑆 , we can use this to replace the sum over all 𝑘 ∉ 𝑆 in (2.12) by
something simpler:

∑
𝑆

(−1) |𝑆 |𝑞−𝑛
1 −

∏
𝑖∉𝑆 ℎ(𝑋𝑖)

𝑚+1

1 −
∏

𝑖∉𝑆 ℎ(𝑋𝑖)

∏
𝑖∈𝑆

𝑋2𝑛
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )𝑛ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑔(𝑋𝑖)
𝑛−1

×
∏

1≤𝑖< 𝑗≤𝑛
{𝑖, 𝑗}∩𝑆≠∅

𝑞−1 ( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖))
∏

1≤𝑖< 𝑗≤𝑛
{𝑖, 𝑗}∩𝑆=∅

𝑞−1 ( 𝑓 (𝑋 𝑗 ) − 𝑓 (𝑋𝑖))

×

(∏
𝑖∉𝑆

𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 )𝑋2
𝑖 −

∏
𝑖∉𝑆

𝑓 (𝑋𝑖)𝑔(𝑋𝑖)

)
.

We rearrange terms and take into account that 𝑌𝑖 = 𝑋𝑖 if 𝑖 ∉ 𝑆 (extending the definition slightly by
setting 𝑌𝑘 = 𝑋𝑘 ). After some cancellation, we obtain

𝑞−𝑛
∑
𝑆

(−1) |𝑆 | (1 −
∏
𝑖∉𝑆

ℎ(𝑋𝑖)
𝑚+1)

𝑛∏
𝑖=1

𝑋𝑛+1
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )

×
∏
𝑖∈𝑆

𝑋𝑛−1
𝑖 𝑔(𝑋−1

𝑖 )𝑛−1ℎ(𝑋𝑖)
𝑚+1

∏
𝑖∉𝑆

𝑋−𝑛+1
𝑖 𝑔(𝑋𝑖)

𝑛−1
∏

1≤𝑖< 𝑗≤𝑛

𝑞−1 ( 𝑓 (𝑌 𝑗 ) − 𝑓 (𝑌𝑖)).

Using the Vandermonde determinant formula and the fact that 𝑌𝑖 = 𝑋−1
𝑖 if 𝑖 ∈ 𝑆 and 𝑌𝑖 = 𝑋𝑖 if 𝑖 ∉ 𝑆,

this is equal to

𝑞−(
𝑛+1

2 )
∑
𝑆,𝜎

(−1) |𝑆 |+𝐼 (𝜎) (1 −
∏
𝑖∉𝑆

ℎ(𝑋𝑖)
𝑚+1)

𝑛∏
𝑖=1

𝑋𝑛+1
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 ),

×
∏
𝑖∈𝑆

𝑋𝑛−1
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)−1𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑋−𝑛+1
𝑖 𝑓 (𝑋𝑖)

𝜎 (𝑖)−1𝑔(𝑋𝑖)
𝑛−1,
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which we expand as follows:

𝑞−(
𝑛+1

2 )
∑
𝑆,𝜎

(−1) |𝑆 |+𝐼 (𝜎)
𝑛∏
𝑖=1

𝑋𝑛+1
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )

×
∏
𝑖∈𝑆

𝑋𝑛−1
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)−1𝑔(𝑋−1
𝑖 )𝑛−1ℎ(𝑋𝑖)

𝑚+1
∏
𝑖∉𝑆

𝑋−𝑛+1
𝑖 𝑓 (𝑋𝑖)

𝜎 (𝑖)−1𝑔(𝑋𝑖)
𝑛−1

− 𝑞−(
𝑛+1

2 )
∏
𝑖

𝑋𝑛+1
𝑖 𝑓 (𝑋−1

𝑖 )𝑔(𝑋−1
𝑖 )ℎ(𝑋𝑖)

𝑚+1∑
𝑆,𝜎

(−1) |𝑆 |+𝐼 (𝜎)
∏
𝑖∈𝑆

𝑋𝑛−1
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)−1𝑔(𝑋−1
𝑖 )𝑛−1

∏
𝑖∉𝑆

𝑋−𝑛+1
𝑖 𝑓 (𝑋𝑖)

𝜎 (𝑖)−1𝑔(𝑋𝑖)
𝑛−1, (2.13)

for reasons that become clear next. Recall that the sums are over all proper subsets S, but since the sums
are equal for 𝑆 = {1, 2, . . . , 𝑛}, we can also sum over all subsets S. The sum in the second term can be
written as∑

𝑆,𝜎

(−1) |𝑆 |+𝐼 (𝜎)
∏
𝑖∈𝑆

𝑋𝑛−1
𝑖 𝑓 (𝑋−1

𝑖 )𝜎 (𝑖)−1𝑔(𝑋−1
𝑖 )𝑛−1

∏
𝑖∉𝑆

𝑋−𝑛+1
𝑖 𝑓 (𝑋𝑖)

𝜎 (𝑖)−1𝑔(𝑋𝑖)
𝑛−1

= det
1≤𝑖, 𝑗≤𝑛

(
𝑋−𝑛+1
𝑖 𝑔(𝑋𝑖)

𝑛−1 𝑓 (𝑋𝑖)
𝑗−1 − 𝑋𝑛−1

𝑖 𝑔(𝑋−1
𝑖 )𝑛−1 𝑓 (𝑋−1

𝑖 ) 𝑗−1
)
.

By the definitions of 𝑓 (𝑋) and 𝑔(𝑋), this is equal to

𝑛∏
𝑖=1

𝑋−𝑛+1
𝑖 det

1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−1
𝑖 (𝑞 + 𝑤𝑋𝑖)

𝑛− 𝑗 (1 + 𝑞𝑋𝑖)
𝑗−1 − 𝑋

𝑛− 𝑗
𝑖 (𝑞𝑋𝑖 + 𝑤)𝑛− 𝑗 (𝑋𝑖 + 𝑞) 𝑗−1

)
.

The determinant can be seen to vanish as follows: First, observe that it is a polynomial in 𝑋1, . . . , 𝑋𝑛

of degree no greater than 2𝑛 − 2 in each 𝑋𝑖 . For 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, the i-th row and the j-th row of the
underlying matrix are collinear when setting 𝑋𝑖 = 𝑋 𝑗 or 𝑋𝑖 = 𝑋−1

𝑗 . Moreover, the i-th row vanishes
when setting 𝑋2

𝑖 = 1. It follows that
∏𝑛

𝑖=1(𝑋
2
𝑖 − 1)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 ) is a divisor of the

determinant, but since it is of degree 2𝑛 in each 𝑋𝑖 , the determinant vanishes. The first expression in
(2.13) is obviously equal to

det
1≤𝑖, 𝑗≤𝑛

(
𝑞− 𝑗𝑋2

𝑖 𝑓 (𝑋−1
𝑖 )𝑔(𝑋−1

𝑖 ) 𝑓 (𝑋𝑖)
𝑗−1𝑔(𝑋𝑖)

𝑛−1 − 𝑞− 𝑗𝑋2𝑛
𝑖 𝑓 (𝑋−1

𝑖 ) 𝑗𝑔(𝑋−1
𝑖 )𝑛ℎ(𝑋𝑖)

𝑚+1
)
,

and this is equal to det1≤𝑖, 𝑗≤𝑛
(
𝑎 𝑗 ,𝑚,𝑛 (𝑞, 𝑤; 𝑋𝑖)

)
; see (2.3) as well as the expression for ℎ(𝑋) in terms

of 𝑓 (𝑋) and 𝑔(𝑋). This concludes the proof of Theorem 1.1.

3. Combinatorial interpretations of the left-hand sides

3.1. Arrowed Gelfand-Tsetlin patterns

To continue the analogy with the ordinary Littlewood identity (1.1) and Macdonald’s bounded version
(1.6) of it, both sides of the identities (1.4) and (1.8) will be interpreted combinatorially. For the left-
hand side, this was accomplished in another recent paper [13], and we will describe the result and adjust
to our context next.

In order to motivate the definition for the combinatorial objects, recall the combinatorial interpretation
of the left-hand sides of (1.1) and (1.6) in terms of Gelfand-Tsetlin patterns, which is described in
Appendix A.3. We need to extend the discussion from there insofar that there is also a sensible extension
of the definition of Gelfand-Tsetlin patterns to arbitrary integers sequences (𝜆1, . . . , 𝜆𝑛). The notion of
signed intervals is crucial for this:
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[𝑎, 𝑏] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[𝑎, 𝑏], 𝑎 ≤ 𝑏

∅, 𝑏 = 𝑎 − 1
[𝑏 + 1, 𝑎 − 1], 𝑏 < 𝑎 − 1

.

If we are in the last case, then the interval is said to be negative. The condition that defines a Gelfand-
Tsetlin pattern can also be written as 𝑎𝑖, 𝑗 ∈ [𝑎𝑖+1, 𝑗 , 𝑎𝑖+1, 𝑗+1]. If the bottom row is weakly increasing,
we can replace this condition also by 𝑎𝑖, 𝑗 ∈ [𝑎𝑖+1, 𝑗 , 𝑎𝑖+1, 𝑗+1] (since we then have 𝑎𝑖+1, 𝑗 ≤ 𝑎𝑖+1, 𝑗+1 as
can be seen inductively with respect to n).

We use this now as the definition for arbitrary bottom rows: A (generalized) Gelfand-Tsetlin pattern
is a triangular array 𝐴 = (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛 of integers with 𝑎𝑖, 𝑗 ∈ [𝑎𝑖+1, 𝑗 , 𝑎𝑖+1, 𝑗+1] for all 𝑖, 𝑗 . Then the sign
of a Gelfand-Tsetlin pattern A is

(−1)# of negative intervals[𝑎𝑖+1, 𝑗 ,𝑎𝑖+1, 𝑗+1 ] =: sgn 𝐴.

Then

𝑠 (𝜆1 ,...,𝜆𝑛) (𝑋1, . . . , 𝑋𝑛) =
∑

𝐴=(𝑎𝑖, 𝑗)1≤ 𝑗≤𝑖≤𝑛

sgn 𝐴
𝑛∏
𝑖=1

𝑋
∑𝑖

𝑗=1 𝑎𝑖, 𝑗−
∑𝑖−1

𝑗=1 𝑎𝑖−1, 𝑗

𝑖 , (3.1)

where the sum is over all Gelfand-Tsetlin patterns 𝐴 = (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛 with bottom row (𝜆𝑛, 𝜆𝑛−1, . . . , 𝜆1)
and

𝑠 (𝜆1 ,...,𝜆𝑛) (𝑋1, . . . , 𝑋𝑛) =
det1≤𝑖, 𝑗≤𝑛

(
𝑋
𝜆 𝑗+𝑛− 𝑗
𝑖

)∏
1≤𝑖< 𝑗≤𝑛 (𝑋𝑖 − 𝑋 𝑗 )

.

This result is a special case of Theorem 3.4 below that will also cover the combinatorial interpretation
of the left-hand side of (1.4) and (1.8). However, this special case appeared essentially also earlier in
[8] (with some details missing).

Definition 3.1. An arrowed Gelfand-Tsetlin pattern (AGTP)1 is a triangular array of the following form:

𝑎1,1
𝑎2,1 𝑎2,2

. . . . . . . . .
𝑎𝑛−2,1 . . . . . . 𝑎𝑛−2,𝑛−2

𝑎𝑛−1,1 𝑎𝑛−1,2 . . . . . . 𝑎𝑛−1,𝑛−1
𝑎𝑛,1 𝑎𝑛,2 𝑎𝑛,3 . . . . . . 𝑎𝑛,𝑛,

,

where each entry 𝑎𝑖, 𝑗 is an integer decorated with an element from {↖,↗,↖↗, ∅} and the following
is satisfied for each entry a not in the bottom row: Suppose b is the ↙-neighbor of a and c is the
↘-neighbor of a, respectively – that is,

𝑎
𝑏 𝑐

.

Depending on the decoration of 𝑏, 𝑐, denoted by decor(𝑏) and decor(𝑐), respectively, we need to consider
four cases:

◦ (decor(𝑏), decor(𝑐)) ∈ {↖, ∅} × {↗, ∅}: 𝑎 ∈ [𝑏, 𝑐].
◦ (decor(𝑏), decor(𝑐)) ∈ {↖, ∅} × {↖,↖↗}: 𝑎 ∈ [𝑏, 𝑐 − 1].

1They appeared first in [13] as extended arrowed monotone triangles.
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◦ (decor(𝑏), decor(𝑐)) ∈ {↗,↖↗} × {↗, ∅}: 𝑎 ∈ [𝑏 + 1, 𝑐].
◦ (decor(𝑏), decor(𝑐)) ∈ {↗,↖↗} × {↖,↖↗}: 𝑎 ∈ [𝑏 + 1, 𝑐 − 1].

An example is provided next. We write ↖𝑒, 𝑒↗,↖ 𝑒↗, 𝑒 if the entry e is decorated with ↖,↗,↖↗, ∅,
respectively.

↖2
2 ↖3↗

↖2 2↗ 3↗
3 ↖2 ↖3↗ ↖3↗

2↗ 4 ↖2↗ 3↗ 2
↖6 ↖2↗ 5 1↗ ↖4 ↖2↗

We define the sign of an AGTP 𝐴 = (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛 as follows: Each negative interval
[𝑎𝑖+1, 𝑗 (+1), 𝑎𝑖+1, 𝑗+1 (−1)] with 𝑖 ≥ 1 and 𝑗 ≤ 𝑖 contributes a multiplicative −1, choosing 𝑎𝑖+1, 𝑗 + 1 iff
decor(𝑎𝑖+1, 𝑗 ) ∈ {↗,↖↗} and 𝑎𝑖+1, 𝑗 otherwise, and choosing 𝑎𝑖+1, 𝑗+1 − 1 iff decor(𝑎𝑖+1, 𝑗+1) ∈ {↖,↖↗}

and 𝑎𝑖+1, 𝑗+1 otherwise. There are no negative intervals in rows 1, 2, 3, two in rows 4, 5 and three in row
6, so that the sign of the pattern is −1.

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern 𝐴 = (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛:

W(𝐴) = sgn(𝐴)𝑡#∅𝑢#↗𝑣#↖𝑤#↖↗
𝑛∏
𝑖=1

𝑋
∑𝑖

𝑗=1 𝑎𝑖, 𝑗−
∑𝑖−1

𝑗=1 𝑎𝑖−1, 𝑗+#↗in row𝑖−#↖in row𝑖

𝑖 .

The weight of our example is

−𝑡5𝑢5𝑣5𝑤6𝑋1𝑋
3
2 𝑋

3
3 𝑋

3
4 𝑋

4
5 𝑋

6
6 .

For this paper, only arrowed Gelfand-Tsetlin patterns with weakly increasing bottom row are relevant,
and in this case, the description of the objects can be simplified considerably as follows.

Proposition 3.2. An arrowed Gelfand-Tsetlin pattern with weakly increasing bottom row is an ordinary
Gelfand-Tsetlin pattern (i.e., with weakly increasing rows), where each entry is decorated with an
element from {↖,↗,↖↗, ∅} such that the following is satisfied.

◦ Suppose an entry a is equal to its ↗-neighbor and a is decorated with either ↗ or ↖↗ (i.e., an arrow
is pointing from a to its ↗-neighbor). Then the entry right of a in the same row is also equal to a and
decorated with ↖ or ↖↗.

◦ Suppose an entry a is equal to its ↖-neighbor and a is decorated with either ↖ or ↖↗ (i.e., an arrow
is pointing from a to its ↖-neighbor). Then the entry left of a in the same row is also equal to a and
decorated with ↗ or ↖↗.

The sign is −1 to the number of entries a that are equal to their ↙-neighbor b as well as to their
↘-neighbor c, and b is decorated with ↗ or ↖↗ or c is decorated with ↖ and ↖↗.

Proof. Suppose (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛 is an AGTP. If 𝑎𝑖+1, 𝑗 < 𝑎𝑖+1, 𝑗+1 for particular 𝑖, 𝑗 , then 𝑎𝑖+1, 𝑗 ≤ 𝑎𝑖, 𝑗 ≤
𝑎𝑖+1, 𝑗+1. The first inequality has to be strict if the decoration of 𝑎𝑖+1, 𝑗 contains an arrow pointing toward
𝑎𝑖, 𝑗 (i.e., decor(𝑎𝑖+1, 𝑗 ) ∈ {↗,↖↗}), while the second inequality has to be strict if 𝑎𝑖+1, 𝑗+1 contains an
arrow pointing toward 𝑎𝑖, 𝑗 (i.e., decor(𝑎𝑖+1, 𝑗+1) ∈ {↖,↖↗}).
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However, if 𝑎𝑖+1, 𝑗 = 𝑎𝑖+1, 𝑗+1 for particular 𝑖, 𝑗 , then 𝑎𝑖+1, 𝑗 = 𝑎𝑖, 𝑗 = 𝑎𝑖+1, 𝑗+1. In this case,

(decor(𝑎𝑖+1, 𝑗 ), decor(𝑎𝑖+1, 𝑗+1)) ∈ {∅,↖} × {∅,↗}

or

(decor(𝑎𝑖+1, 𝑗 ), decor(𝑎𝑖+1, 𝑗+1)) ∈ {↗,↖↗} × {↖,↖↗}, (3.2)

where in the second case, there is a contribution of −1 to the sign of the object.
These observations imply that if the bottom row is weakly increasing, then the underlying undecorated

triangular array is an ordinary Gelfand-Tsetlin pattern and that the properties on the decoration stated
in the proposition are satisfied. The only instance when we have a contribution to the sign is in the case
of (3.2).

Conversely, a decoration of a given Gelfand-Tsetlin pattern that follows the rule as given in
the statement of the proposition is eligible for an arrowed Gelfand-Tsetlin pattern according to
Definition 3.1. �

Remark 3.3. In the case that the bottom row of an arrowed Gelfand-Tsetlin pattern is strictly increasing
and we forbid the decoration ∅, we have that all rows are strictly increasing, and we obtain a monotone
triangle. Recall that monotone triangles are defined as Gelfand-Tsetlin patterns with strictly increasing
rows; their significance comes from the fact that monotone triangles with bottom row 1, 2, . . . , 𝑛 are
in easy bijective correspondence with 𝑛 × 𝑛 alternating sign matrices; see, for example, [3]. In such a
case, there is no instance where we gain a −1 that contributes to the sign. These objects were used in
[13] to study alternating sign matrices. Among other things, the generating function of these decorated
monotone triangles can be interpreted as a generating function of (undecorated) monotone triangles,
and thus of alternating sign matrices.

The following explicit formula for the generating function of arrowed Gelfand-Tsetlin patterns with
fixed bottom row 𝑘1, 𝑘2, . . . , 𝑘𝑛 is proved in [13].

Theorem 3.4. The generating function of arrowed Gelfand-Tsetlin patterns with bottom row
𝑘1, . . . , 𝑘𝑛 is

𝑛∏
𝑖=1

(𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1
𝑖 + 𝑤)

∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E

−1
𝑘 𝑗

)
𝑠 (𝑘𝑛 ,𝑘𝑛−1 ,...,𝑘1) (𝑋1, . . . , 𝑋𝑛),

where E𝑥 denotes the shift operator, defined as E𝑥 𝑝(𝑥) = 𝑝(𝑥 + 1).

The formula has to be applied as follows: First interpret 𝑘1, . . . , 𝑘𝑛 as variables and apply the
operator

∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E−1

𝑘 𝑗

)
to 𝑠 (𝑘𝑛 ,𝑘𝑛−1 ,...,𝑘1) (𝑋1, . . . , 𝑋𝑛). This will result in a

linear combination of expressions of the form 𝑠 (𝑘𝑛+𝑖𝑛 ,𝑘𝑛−1+𝑖𝑛−1 ,...,𝑘1+𝑖1) (𝑋1, . . . , 𝑋𝑛) for some (varying)
integers 𝑖 𝑗 . The 𝑘 𝑗 are only specialized to the actual integers after that. Note that we do not necessarily
have 𝑘𝑛 + 𝑖𝑛 ≥ 𝑘𝑛−1 + 𝑖𝑛−1 ≥ . . . ≥ 𝑘1 + 𝑖1 even if 𝑘𝑛 ≥ 𝑘𝑛−1 ≥ . . . ≥ 𝑘1, so that the extension of the
Schur polynomial in (3.1) is necessary.

Example 3.5. We illustrate the theorem on the example (𝑘1, 𝑘2, 𝑘3) = (1, 2, 3). We list the 8 Gelfand-
Tsetlin pattern with bottom row 1, 2, 3 and indicate the possible decorations (one will be listed twice
with a disjoint set of decorations), where 𝐿 = {∅,↖ }, 𝑅 = {∅,↗} and 𝐿𝑅 = {∅,↖,↗,↖↗}, and
on the right, we indicate the generating function restricted to the particular underlying Gelfand-Tsetlin
patterns with the indicated decorations, where we use

𝐿(𝑋) = 𝑡 + 𝑣𝑋−1, 𝑅(𝑋) = 𝑡 + 𝑢𝑋 and 𝐿𝑅(𝑋) = 𝑡 + 𝑢𝑋 + 𝑣𝑋−1 + 𝑤.
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𝐿𝑅
1

𝐿
1

𝐿𝑅
2

𝐿
1

𝐿
2

𝐿𝑅
3

𝑋1𝑋
2
2 𝑋

3
3 𝐿𝑅(𝑋1)𝐿(𝑋2)𝐿𝑅(𝑋2)𝐿(𝑋3)

2𝐿𝑅(𝑋3)

𝐿𝑅
2

𝐿𝑅
1

𝑅
2

𝐿
1

𝐿
2

𝐿𝑅
3

𝑋2
1 𝑋2𝑋

3
3 𝐿𝑅(𝑋1)𝐿𝑅(𝑋2)𝑅(𝑋2)𝐿(𝑋3)

2𝐿𝑅(𝑋3)

𝐿𝑅
1

𝐿
1

𝐿𝑅
3

𝐿
1

𝐿𝑅
2

𝑅
3

𝑋1𝑋
3
2 𝑋

2
3 𝐿𝑅(𝑋1)𝐿(𝑋2)𝐿𝑅(𝑋2)𝐿(𝑋3)𝐿𝑅(𝑋3)𝑅(𝑋3)

𝐿𝑅
2

𝐿𝑅
1

𝐿𝑅
3

𝐿
1

𝐿𝑅
2

𝑅
3

𝑋2
1 𝑋

2
2 𝑋

2
3 𝐿𝑅(𝑋1)𝐿𝑅(𝑋2)

2𝐿(𝑋3)𝐿𝑅(𝑋3)𝑅(𝑋3)

𝐿𝑅
3

𝐿𝑅
1

𝑅
3

𝐿
1

𝐿𝑅
2

𝑅
3

𝑋3
1 𝑋2𝑋

2
3 𝐿𝑅(𝑋1)𝐿𝑅(𝑋2)𝑅(𝑋2)𝐿(𝑋3)𝐿𝑅(𝑋3)𝑅(𝑋3)

𝐿𝑅
2

𝐿
2

𝐿𝑅
3

𝐿𝑅
1

𝑅
2

𝑅
3

𝑋2
1 𝑋

3
2 𝑋3𝐿𝑅(𝑋1)𝐿(𝑋2)𝐿𝑅(𝑋2)𝐿𝑅(𝑋3)𝑅(𝑋3)

2

𝐿𝑅
3

𝐿𝑅
2

𝑅
3

𝐿𝑅
1

𝑅
2

𝑅
3

𝑋3
1 𝑋

2
2 𝑋3𝐿𝑅(𝑋1)𝐿𝑅(𝑋2)𝑅(𝑋2)𝐿𝑅(𝑋3)𝑅(𝑋3)

2

𝐿𝑅
2

𝐿
2

𝑅
2

𝐿𝑅
1

∅
2

𝐿𝑅
3

𝑋2
1 𝑋

2
2 𝑋

2
3 𝐿𝑅(𝑋1)𝐿(𝑋2)𝑅(𝑋2)𝑡𝐿𝑅(𝑋3)

2

𝐿𝑅
2

{↗,↖↗}
2

{↖,↖↗}
2

𝐿𝑅
1

∅
2

𝐿𝑅
3

−𝑋2
1 𝑋

2
2 𝑋

2
3 𝐿𝑅(𝑋1) (𝑤 + 𝑢𝑋2) (𝑤 + 𝑣𝑋−1

2 )𝑡𝐿𝑅(𝑋3)
2

It is convenient for us to rewrite the formula from Theorem 3.4 as follows.

Corollary 3.6. The generating function of arrowed Gelfand-Tsetlin patterns with bottom row
𝑘1, . . . , 𝑘𝑛 is

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖≤ 𝑗≤𝑛

(
𝑣 + 𝑤𝑋𝑖 + 𝑡𝑋 𝑗 + 𝑢𝑋𝑖𝑋 𝑗

) ∏𝑛
𝑖=1 𝑋 𝑘𝑖−1

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

. (3.3)

Proof. Observe that
𝑛∏
𝑖=1

(𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1
𝑖 + 𝑤)

∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E

−1
𝑘 𝑗

)
𝑠 (𝑘𝑛 ,𝑘𝑛−1 ,...,𝑘1) (𝑋1, . . . , 𝑋𝑛)

=
𝑛∏
𝑖=1

(𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1
𝑖 + 𝑤)

∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E

−1
𝑘 𝑗

) ASym𝑋1 ,...,𝑋𝑛

[∏𝑛
𝑖=1 𝑋 𝑘𝑖+𝑖−1

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

.
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This is further equal to

𝑛∏
𝑖=1

(𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1
𝑖 + 𝑤)

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E−1

𝑘 𝑗

) ∏𝑛
𝑖=1 𝑋 𝑘𝑖+𝑖−1

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

(𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1
𝑖 + 𝑤)

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢𝑋𝑖 + 𝑣𝑋−1

𝑗 + 𝑤𝑋𝑖𝑋
−1
𝑗

) ∏𝑛
𝑖=1 𝑋 𝑘𝑖+𝑖−1

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖≤ 𝑗≤𝑛

(
𝑣 + 𝑤𝑋𝑖 + 𝑡𝑋 𝑗 + 𝑢𝑋𝑖𝑋 𝑗

) ∏𝑛
𝑖=1 𝑋 𝑘𝑖−1

𝑖

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

,

and the assertion follows. �

Remark 3.7. Suppose (𝑘1−1, 𝑘2−1, . . . , 𝑘𝑛−1) is a partition (allowing zero parts). Then, when setting
𝑢 = 𝑣 = 0 and 𝑤 = 1, and replacing t by −𝑡 in (3.3), we obtain the Hall-Littlewood polynomials [22] up
to a factor that is a rational function in t.

3.2. Generating function with respect to a Schur polynomial weight

We are now ready to obtain our first interpretation. Multiplying (1.4) and (1.8) with
∏𝑛

𝑖=1(𝑋
−1
𝑖 +1+𝑤+𝑋𝑖)

gives

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖≤ 𝑗≤𝑛 (1 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛 𝑋 𝑘1−1

1 𝑋 𝑘2−1
2 · · · 𝑋 𝑘𝑛−1

𝑛

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

(𝑋−1
𝑖 + 1 + 𝑤 + 𝑋𝑖)

𝑛∏
𝑖=1

1
1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 + 𝑋𝑖 + 𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
, (3.4)

and

ASym𝑋1 ,...,𝑋𝑛

[∏
1≤𝑖≤ 𝑗≤𝑛 (1 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚 𝑋 𝑘1−1

1 𝑋 𝑘2−1
2 · · · 𝑋 𝑘𝑛−1

𝑛

]∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖)

=
𝑛∏
𝑖=1

(𝑋−1
𝑖 + 1 + 𝑤 + 𝑋𝑖)

×
det1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

𝑚+2𝑛− 𝑗
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
∏

1≤𝑖< 𝑗≤𝑛
(1 − 𝑋𝑖𝑋 𝑗 ) (𝑋 𝑗 − 𝑋𝑖)

, (3.5)

respectively, and we can now interpret the left-hand sides as the generating function of arrowed Gelfand-
Tsetlin patterns with non-negative strictly increasing bottom row, where we need to specialize 𝑡 = 𝑢 =
𝑣 = 1 in the weight, and in the second case, the entries in the bottom row are less than or equal to m.

Remark 3.8.

1. For X = (𝑋1, . . . , 𝑋𝑛), letAGT P (𝑡, 𝑢, 𝑣, 𝑤; k; X) denote the generating function of arrowed Gelfand-
Tsetlin patterns with bottom row k = (𝑘1, . . . , 𝑘𝑛). Then, using (3.3), it follows by changing
(𝑋1, . . . , 𝑋𝑛) to (𝑋𝑛, 𝑋𝑛−1, . . . , 𝑋1) that

AGT P (𝑡, 𝑢, 𝑣, 𝑤; k; X) = (−1) (
𝑛
2)AGT P (𝑤, 𝑢, 𝑣, 𝑡; k; X),
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where k = (𝑘𝑛, . . . , 𝑘1). Therefore, the left-hand sides are up to the sign (−1) (
𝑛
2) also the generating

function of AGTPs with strictly decreasing bottom row of non-negative integers, where we need to
set 𝑢 = 𝑣 = 𝑤 = 1 and replace t by w in the weight, and, in the case of (1.8), the entries in the bottom
row are less than or equal to m.

2. For the case 𝑡 = 0, there is worked out a possibility in [13] to get around the multiplication with the
extra factor

∏𝑛
𝑖=1(𝑋

−1
𝑖 +1+𝑤+𝑋𝑖) by working with ‘down arrows’ as decorations. In our application,

this can be used in combination with our second combinatorial interpretation concerning AGTPs
with strictly decreasing bottom row to give combinatorial interpretations of the left-hand sides of
(1.4) and (1.8) in the special case 𝑤 = 0. It is an open problem to explore whether the down-arrowed
array can be extended to general t.
In Appendix B, we develop some other (maybe less interesting) combinatorial interpretations of the

left-hand sides, which we include for the sake of completeness.

4. Combinatorial interpretations of the right-hand sides of (3.4) and (3.5)

4.1. Right-hand side of (3.4)

For the right-hand side of (3.4), which is

𝑛∏
𝑖=1

𝑋−1
𝑖 + 1 + 𝑤 + 𝑋𝑖

1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1 + 𝑋𝑖 + 𝑋 𝑗 + 𝑤𝑋𝑖𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
, (4.1)

it is straightforward to give a combinatorial interpretation as a generating function. Recall that, in the
ordinary case (1.1), the right-hand side

∏𝑛
𝑖=1

1
1−𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛

1
1−𝑋𝑖𝑋 𝑗

is interpreted as two-line arrays with
entries in {1, 2, . . . , 𝑛}, ordered lexicographically, with the top element of each column being greater
than or equal to its bottom element. The exponent of 𝑋𝑖 in the weight is computed by subtracting from
the total number of i’s in the two-line array the number of columns with i as top and bottom element.

To extend this to an interpretation of (4.1), we have one additional column
( 𝑗
𝑖

)
for all pairs 𝑖 ≤ 𝑗 ,

which are either overlined, underlined, both or neither. An overlined column
( 𝑗
𝑖

)
with 𝑖 < 𝑗 contributes

an additional multiplicative 𝑋 𝑗 to the weight, while an underlined column with i as bottom element
contributes an additional 𝑋𝑖 , and if a column is overlined and underlined, then such a column contributes,
in addition to 𝑋𝑖𝑋 𝑗 , w. Moreover, an overlined column

(𝑖
𝑖

)
contributes an additional 𝑋𝑖 to the weight,

and if it is underlined, then it contributes 𝑋−1
𝑖 to the weight, and, again, if the column is overlined and

underlined, then it contributes also w. In both cases, if the column is neither underlined nor overlined,
it contributes nothing in addition.

4.2. Right-hand side of (3.5)

The following theorem provides an interpretation of the right-hand side of (3.5) as a weighted count of
(partly non-intersecting) lattice paths. This right-hand side differs from the right-hand side of (1.8) by a
simple multiplicative factor. We work as long as possible with general w; however, it will turn out that
we need to specialize to 𝑤 = 0, 1 at some point to obtain a nicer interpretation. We present two different
proofs to obtain the result, where the second one is only sketched.

Figure 1 seeks to illustrate the theorem in the case that m is odd.
Theorem 4.1. (1) Assume that 𝑚 = 2𝑙 + 1. Then the right-hand side of (3.5) has the following interpre-
tation as weighted count of families of n lattice paths.
◦ The i-th lattice path starts in one point in the set 𝐴𝑖 = {(−3𝑖+1,−𝑖+1), (−𝑖+1,−3𝑖+1)}, 𝑖 = 1, 2, . . . , 𝑛,

and the end points of the paths are 𝐸 𝑗 = (𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2), 𝑗 = 1, 2, . . . , 𝑛.
◦ Below and on the line 𝑥 + 𝑦 = 0, the step set is {(1, 1), (−1, 1)} for steps that start in (−3𝑖 + 1,−𝑖 + 1),

and it is {(1, 1), (1,−1)} for steps that start in (−𝑖 +1,−3𝑖 +1). Steps of type (−1, 1) and (1,−1) with
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Figure 1. An example of families of lattice paths in Theorem 4.1.

distance 0, 2, 4, . . . from 𝑥 + 𝑦 = 0 are equipped with the weights 𝑋1, 𝑋2, 𝑋3, . . ., respectively, while
such steps with distance 1, 3, 5, . . . are equipped with the weights 𝑋−1

1 , 𝑋−1
2 , 𝑋−1

3 , . . ., respectively.
◦ Above the line 𝑥 + 𝑦 = 0, the step set is {(1, 0), (0, 1)}. Above the line 𝑥 + 𝑦 = 𝑗 − 1, horizontal steps

of the path that ends in 𝐸 𝑗 are equipped with the weight w.
◦ The paths can be assumed to be non-intersecting below the line 𝑥 + 𝑦 = 0. In case 𝑤 = 1, we can

also assume them to be non-intersecting above the line 𝑥 + 𝑦 = 0. In case 𝑤 = 0, 𝐸 𝑗 can be replaced
by 𝐸 ′

𝑗 = (𝑛 − 𝑗 + 𝑙 + 1, 2 𝑗 − 𝑛 − 𝑙 − 2), 𝑗 = 1, 2, . . . , 𝑛, and then we can also assume the paths to be
non-intersecting above the line 𝑥 + 𝑦 = 0.

◦ The sign of family of paths is the sign of the permutation 𝜎 with the property that the i-th path connects
𝐴𝑖 to 𝐸𝜎 (𝑖) with an extra contribution of −1 if we choose (−𝑖 + 1,−3𝑖 + 1) from 𝐴𝑖 . Moreover, we
have an overall factor of

(−1) (
𝑛+1

2 )
𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) (1 + 𝑋𝑖).

◦ In case 𝑤 = 0, 1, when restricting to non-intersecting paths, let 1 ≤ 𝑖1 < 𝑖2, . . . < 𝑖𝑚 < 𝑛 be the
indices for which we chose (−3𝑖 + 1,−𝑖 + 1) from 𝐴𝑖 . Then the sign can assumed to be (−1)𝑖1+...+𝑖𝑚 ,
and the overall factor is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) (1 + 𝑋𝑖).

(2) Assume that 𝑚 = 2𝑙. Then, to obtain an interpretation for the right-hand side of (3.5), we only need
to replace 𝐸 𝑗 by a set of two possible endpoints 𝐸 𝑗 = {(𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2), (𝑛 − 𝑗 + 𝑙, 𝑗 − 𝑙 − 1)}.
The overall factor is
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(−1) (
𝑛+1

2 )
𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖)

in the case when we do not specialize w. The endpoints are replaced by 𝐸 ′
𝑗 = {(𝑛 − 𝑗 + 𝑙 + 1, 2 𝑗 − 𝑛 −

𝑙 − 2), (𝑛 − 𝑗 + 𝑙, 2 𝑗 − 𝑛 − 𝑙 − 1)} if 𝑤 = 0. In case 𝑤 = 0, 1 if we restrict to non-intersecting paths and
the sign is taken care of as above, then the overall factor is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖).

We discuss the weight and the sign on the example in Figure 1. The weights that come from the
individual paths are

𝑋−1
1 · 𝑋−1

1 · 𝑋2 · 𝑋1𝑋3 · 𝑋2𝑋
−1
3 · 𝑋−2

5 ,

where the factors are arranged in a manner that the i-th factor is the weight of the path that starts in the
set 𝐴𝑖 . To compute the sign, observe that 𝜎 = (6 5 4 3 2 1) in one-line notation so that sgn 𝜎 = −1 and
that we choose the second starting point in 𝐴𝑖 except for 𝑖 = 1, so that the total sign is (−1) · (−1)5 = 1.

In the case that m is odd, we always need to choose the second lattice point in 𝐴𝑖 if 𝑙 ≥ 𝑛− 2 because
then all 𝐸𝑖 have a non-positive y-coordinate, and this implies that they cannot be reached by any of the
first lattice points in 𝐴𝑖 since any lattice path starting from the first lattice point in 𝐴𝑖 intersects the line
𝑥 + 𝑦 = 0 in a lattice point with positive y-coordinate. This implies that, in the non-intersecting case,
the sign is always 1. In the case that m is even, the condition is 𝑙 ≥ 𝑛 − 1.

In theses cases and when we have in addition 𝑤 = 0, we can translate the lattice paths easily into pairs
of plane partitions. The case 𝑚 = 2𝑙 + 1 is illustrated in Figure 2, while the case 𝑚 = 2𝑙 is illustrated in
Figure 3. A similar result can in principle be derived for the case 𝑤 = 1, but we omit this here.

Corollary 4.2. Let 𝑤 = 0.
(1) Assume that 𝑚 = 2𝑙 +1. In case 𝑙 ≥ 𝑛−2, the right-hand side of (3.5) is the generating function of

plane partitions (𝑃,𝑄) of shapes 𝜆, 𝜇, respectively, where 𝜇 is the complement of 𝜆 in the 𝑛×𝑙-rectangle,
P is a column-strict plane partition such that the entries in the i-th row are bounded by 2𝑛 + 2 − 2𝑖, and
Q is a row-strict plane partition of positive integers such that the entries in the i-th row are bounded by
𝑛 − 𝑖. The weight is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑋𝑖) (1 + 𝑋𝑖)𝑋

# of 2𝑖−1 in 𝑃
𝑖 𝑋

− # of 2𝑖 in 𝑃
𝑖 .

(2) Assume that 𝑚 = 2𝑙. In case 𝑙 ≥ 𝑛−1, the right-hand side of (3.5) is the generating function of plane
partitions (𝑃,𝑄) of (straight) shape 𝜆 and skew shape 𝜇, respectively, such that 𝜇 is the complement
of 𝜆 in the 𝑛 × (𝑙 − 1)-rectangle after possibly deleting the first column of 𝜇, P is a column strict plane
partition such that the entries in the i-th row are bounded by 2𝑛 + 2 − 2𝑖, and Q is a row-strict plane
partition such that the entries in the i-th row are bounded by 𝑛 − 𝑖. The weight is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑋𝑖)𝑋

# of 2𝑖−1 in 𝑃
𝑖 𝑋

− # of 2𝑖 in 𝑃
𝑖 .

Proof. We consider the case m is odd. Assume that 1 ≤ 𝑘1 < 𝑘2 < . . . < 𝑘𝑛 are chosen such that
(𝑘𝑖 ,−𝑘𝑖) is the last point in the intersection of the line 𝑥 + 𝑦 = 0 with the path that connects 𝐴𝑖 to 𝐸 ′

𝑛+1−𝑖
when traversing the path from 𝐴𝑖 to 𝐸 ′

𝑛+1−𝑖 . Note that the portion of the path from 𝐴𝑖 to (𝑘𝑖 ,−𝑘𝑖) has
𝑘𝑖−𝑖 steps of type (1,−1) and 2𝑖−1 steps of type (1, 1). These portions correspond to the plane partition
P is follows: The i-th path corresponds to the (𝑛 + 1 − 𝑖)-th row where the (1,−1)-steps correspond to
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Figure 2. Illustration of Corollary 4.2 (1) for 𝑛 = 7 and 𝑙 = 12.

the parts, where we fill the cells in the Ferrers diagram from left to right when traversing the path from
𝐴𝑖 to (𝑘𝑖 ,−𝑘𝑖), and a (1,−1)-step at distance d from 𝑥 + 𝑦 = 0 gives the entry 𝑑 + 1. It follows that the
length of row i is 𝑘𝑛+1−𝑖 − 𝑛 − 1 + 𝑖 and that the entries in row i are bounded by 2𝑛 + 2 − 2𝑖.

Now the portion of the path from (𝑘𝑖 ,−𝑘𝑖) to 𝐸 ′
𝑛+1−𝑖 corresponds to the i-th row of the plane partition

Q. More precisely, the horizontal steps correspond to the parts, where we fill the cells in the Ferrers
diagram from right to left when traversing the path from (𝑘𝑖 ,−𝑘𝑖) to 𝐸 ′

𝑛+1−𝑖 , where the j-th step gives
the entry j. Note that there are 𝑖 − 𝑘𝑖 + 𝑙 steps of type (1, 0) in this portion, while there are 𝑛 − 𝑖 steps in
total, so that the length of the i-th row is 𝑖 − 𝑘𝑖 + 𝑙, and the entries in row i are bounded by 𝑛 − 𝑖.

The case m is even is very similar, and it is therefore omitted here. �
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Figure 3. Illustration of Corollary 4.2 (1) for 𝑛 = 7 and 𝑙 = 13.

Remark 4.3. (1) The plane partitions P in the corollary are in easy bijection with symplectic tableaux
as defined in [19, Section 4]. Also the weight is up to an overall multiplicative factor essentially just the
weight that is used for symplectic tableaux. As a consequence, the corollary can be interpreted as to
provide the expansion of the generating function of arrowed Gelfand-Tsetlin into symplectic characters.
This is in the vein of main results in [14] and in [7, Remark 2.6].

(2) In the case m is odd, the plane partitions Q are in easy bijective correspondence with 2𝑛×2𝑛×2𝑛
totally symmetric self-complementary plane partitions. The bijection is provided in [7, Remark 2.6]. In
the case m is even, we place the part 𝑛+1− 𝑖 into the cell in the i-th row of the inner shape, and that way,
we obtain plane partitions that are in easy bijective correspondence with (2𝑛 + 2) × (2𝑛 + 2) × (2𝑛 + 2)
totally symmetric self-complementary plane partitions.
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4.3. The cases 𝑛 = 2 and 𝑚 = 2, 3

In this section, we give a list of all objects for the left-hand side and right-hand side of (3.5) in the case
𝑛 = 2 and 𝑚 = 2, 3. We start with the case that 𝑚 = 3, since this is easier on the right-hand side.

Note that 𝑚 = 3 implies 𝑙 = 1. The arrowed monotone triangles are as follows, using the notation
from Section 3.

𝐿𝑅
0

𝐿
0

𝐿𝑅
1

,
𝐿𝑅
1

𝐿𝑅
0

𝑅
1
,

𝐿𝑅
0

𝐿
0

𝐿𝑅
2

,
𝐿𝑅
1

𝐿𝑅
0

𝐿𝑅
2

,
𝐿𝑅
2

𝐿𝑅
0

𝑅
2
,

𝐿𝑅
0

𝐿
0

𝐿𝑅
3

,

𝐿𝑅
1

𝐿𝑅
0

𝐿𝑅
3

,
𝐿𝑅
2

𝐿𝑅
0

𝐿𝑅
3

,
𝐿𝑅
3

𝐿𝑅
0

𝑅
3
,

𝐿𝑅
1

𝐿
1

𝐿𝑅
2

,
𝐿𝑅
2

𝐿𝑅
1

𝑅
2
,

𝐿𝑅
1

𝐿
1

𝐿𝑅
3

,

𝐿𝑅
2

𝐿𝑅
1

𝐿𝑅
3

,
𝐿𝑅
3

𝐿
1

𝐿𝑅
3

,
𝐿𝑅
2

𝐿
2

𝐿𝑅
3

,
𝐿𝑅
3

𝐿𝑅
2

𝑅
3

The weights are

𝑋2(1 + 𝑋−1
2 ), 𝑋1(1 + 𝑋2), 𝑋

2
2 (1 + 𝑋−1

2 ), 𝑋1𝑋2 (𝑋
−1
2 + 1 + 𝑤 + 𝑋2), 𝑋

2
1 (1 + 𝑋2), 𝑋

3
2 (1 + 𝑋−1

2 ),

𝑋1𝑋
2
2 (𝑋

−1
2 + 1 + 𝑤 + 𝑋2), 𝑋

2
1 𝑋2 (𝑋

−1
2 + 1 + 𝑤 + 𝑋2), 𝑋

3
1 (1 + 𝑋2), 𝑋1𝑋

2
2 (1 + 𝑋−1

2 ), 𝑋2
1 𝑋2(1 + 𝑋2),

𝑋1𝑋
3
2 (1 + 𝑋−1

2 ), 𝑋2
1 𝑋

2
2 (𝑋

−1
2 + 1 + 𝑤 + 𝑋2), 𝑋

3
1 𝑋2 (1 + 𝑋2), 𝑋

2
1 𝑋

3
2 (1 + 𝑋−1

2 ), 𝑋3
1 𝑋

2
2 (1 + 𝑋2), (4.2)

up to the overall factor 𝐿𝑅(𝑋1)𝐿𝑅(𝑋2), setting 𝑡 = 𝑢 = 𝑣 = 1.
The corresponding paths from Theorem 4.1 are as follows.

https://doi.org/10.1017/fms.2024.70 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.70


Forum of Mathematics, Sigma 23

The weights are

−𝑤,−𝑋1,−𝑋−1
1 ,−𝑋2,−𝑋−1

2 ,−𝑋−1
1 − 𝑋2,−𝑋−1

1 𝑋−1
2 ,−1,−𝑋1𝑋2,−𝑋1𝑋

−1
2 , (4.3)

up to the overall factor

− 𝑋1𝑋2 (1 + 𝑋1) (1 + 𝑋2) (𝑋
−1
1 + 1 + 𝑤 + 𝑋1) (𝑋

−1
2 + 1 + 𝑤 + 𝑋2)

= −𝑋1𝑋2 (1 + 𝑋1) (1 + 𝑋2)𝐿𝑅(𝑋1)𝐿𝑅(𝑋2),

and, as can easily be seen, the sum of weights agrees with those for the arrowed Gelfand-Tsetlin
patterns.

Now we consider the case 𝑚 = 2. We have 𝑙 = 1. The arrowed monotone triangles are as follows:

𝐿𝑅
0

𝐿
0

𝐿𝑅
1

,
𝐿𝑅
1

𝐿𝑅
0

𝑅
1
,

𝐿𝑅
0

𝐿
0

𝐿𝑅
2

,
𝐿𝑅
1

𝐿𝑅
0

𝐿𝑅
2

,
𝐿𝑅
2

𝐿𝑅
0

𝑅
2
,

𝐿𝑅
1

𝐿
1

𝐿𝑅
2

,
𝐿𝑅
2

𝐿𝑅
1

𝑅
2.

The weights are

𝑋2 (1 + 𝑋−1
2 ), 𝑋1 (1 + 𝑋2), 𝑋

2
2 (1 + 𝑋−1

2 ), 𝑋1𝑋2 (𝑋
−1
2 + 1 + 𝑤 + 𝑋2), 𝑋

2
1 (1 + 𝑋2), 𝑋1𝑋

2
2 (1 + 𝑋−1

2 ),

𝑋2
1 𝑋2 (1 + 𝑋2),

up to the overall factor 𝐿𝑅(𝑋1)𝐿𝑅(𝑋2), setting 𝑡 = 𝑢 = 𝑣 = 1.
As for the lattice paths, the situation is very similar to the case 𝑚 = 3, 𝑙 = 1, only 𝐸1 = (3,−2) is

replaced by the set 𝐸1 = {(2,−1), (3,−2)} and 𝐸2 = (2,−1) is replaced by the set 𝐸2 = {(1, 0), (2,−1)}.
It follows that all the families of paths from the case 𝑚 = 3 and 𝑙 = 1 also appear here. In addition, we
have the following families of lattice paths.
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x

y

x + y = 0
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y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1

E2

x

y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1

E2 x

y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1

E2

x

y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1

E2 x

y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1

E2

x

y

x + y = 0

x + y = 1

A1

A2

A1

A2

E1 = E2

Thus, in addition to the weights in (4.3), these families of lattice paths give

−1,−𝑤,−𝑋1,−𝑋−1
1 ,−𝑋2,−𝑋−1

2 ,−1, 𝑤,

up to the overall factor

−𝑋1𝑋2 (𝑋
−1
1 + 1 + 𝑤 + 𝑋1) (𝑋

−1
2 + 1 + 𝑤 + 𝑋2) = −𝑋1𝑋2𝐿𝑅(𝑋1)𝐿𝑅(𝑋2),

where the last two weights come from the last picture, first by interpreting the endpoint of the path that
starts in 𝐴1 as element of 𝐸2 and second as element of 𝐸1.
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4.4. First proof of Theorem 4.1

The approach of the first proof of Theorem 4.1 is closely related to the approach we used in the proof
of Theorem 2.2 in [7].

We consider the following bases for Laurent polynomials in X that are invariant under the transfor-
mation 𝑋 → 𝑋−1: let

𝑞𝑖 (𝑋) =
𝑋 𝑖 − 𝑋−𝑖

𝑋 − 𝑋−1 and 𝑏𝑖 (𝑋) = (𝑋 + 𝑋−1)𝑖 .

Then (𝑞𝑖 (𝑋))𝑖≥0 and (𝑏𝑖 (𝑋))𝑖≥0 are two such bases. It is not hard to verify that

𝑞𝑚(𝑋) =
(𝑚−1)/2∑

𝑟=0
(−1)𝑟

(
𝑚 − 𝑟 − 1

𝑟

)
𝑏𝑚−1−2𝑟 (𝑋). (4.4)

In order to derive a combinatorial interpretation of the right-hand side of (3.5), consider

det
1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

𝑚+2𝑛− 𝑗
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
. (4.5)

We start by considering the case where m is odd: We set 𝑚 = 2𝑙 + 1, and pull out
∏𝑛

𝑖=1 𝑋 𝑙+𝑛
𝑖 , and obtain

𝑛∏
𝑖=1

𝑋 𝑙+𝑛
𝑖 det

1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
. (4.6)

The entry in the i-th row and j-th column of the matrix underlying the determinant is obtained from

𝑋 𝑗−𝑙−𝑛−1 (1 + 𝑋) 𝑗−1 (1 + 𝑤𝑋)𝑛− 𝑗 − 𝑋− 𝑗+𝑙+𝑛+1 (1 + 𝑋−1) 𝑗−1(1 + 𝑤𝑋−1)𝑛− 𝑗

𝑋 − 𝑋−1

=
∑
𝑝,𝑞≥0

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 𝑋 𝑗−𝑙−𝑛+𝑝+𝑞−1 − 𝑋− 𝑗+𝑙+𝑛−𝑝−𝑞+1

𝑋 − 𝑋−1

by multiplying with 𝑋 − 𝑋−1 and then setting 𝑋 = 𝑋𝑖 . Note that this expression is invariant under
replacing X by 𝑋−1. From (4.4), it follows that this is further equal to∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−1−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1)(−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
×

(
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
𝑏 | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−1−2𝑟 (𝑋).

We apply the following lemma. A proof can be found in [13, Lemma 7.2]. Note that the lemma also
involves complete homogeneous symmetric polynomials ℎ𝑘 with negative k as defined in [13, Section 5].
Concretely, we define ℎ𝑘 (𝑋1, . . . , 𝑋𝑛) = 0 for 𝑘 = −1,−2, . . . ,−𝑛 + 1 and

ℎ𝑘 (𝑋1, . . . , 𝑋𝑛) = (−1)𝑛+1𝑋−1
1 . . . 𝑋−1

𝑛 ℎ−𝑘−𝑛 (𝑋
−1
1 , . . . , 𝑋−1

𝑛 ) (4.7)

for 𝑘 ≤ −𝑛. Note that a consequence of this definition is that the latter relation is true for any k.

Lemma 4.4. Let 𝑓 𝑗 (𝑌 ) be formal Laurent series for 1 ≤ 𝑗 ≤ 𝑛, and define

𝑓 𝑗 [𝑌1, . . . , 𝑌𝑖] =
∑
𝑘∈Z

〈𝑌 𝑘〉 𝑓 𝑗 (𝑌 ) · ℎ𝑘−𝑖+1(𝑌1, . . . , 𝑌𝑖),
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where 〈𝑌 𝑘〉 𝑓 𝑗 (𝑌 ) denotes the coefficient of 𝑌 𝑘 in 𝑓 𝑗 (𝑌 ) and ℎ𝑘−𝑖+1 denotes the complete homogeneous
symmetric polynomial of degree 𝑘 − 𝑖 + 1. Then

det1≤𝑖, 𝑗≤𝑛
(
𝑓 𝑗 (𝑌𝑖)

)∏
1≤𝑖< 𝑗≤𝑛 (𝑌 𝑗 − 𝑌𝑖)

= det
1≤𝑖, 𝑗≤𝑛

(
𝑓 𝑗 [𝑌1, . . . , 𝑌𝑖]

)
.

Noting that a Laurent polynomial in X that is invariant under the replacement 𝑋 → 𝑋−1 can be
written as a polynomial in 𝑋 + 𝑋−1, we use the lemma to basically rewrite (4.6) as follows:

det1≤𝑖, 𝑗≤𝑛
(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
∏

1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 + 𝑋−1
𝑗 − 𝑋𝑖 − 𝑋−1

𝑖 )

=
𝑛∏
𝑖=1

(𝑋𝑖 − 𝑋−1
𝑖 ) det

1≤𝑖, 𝑗≤𝑛

 !!"
∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−𝑖−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
×

(
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
ℎ | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 )

)
.

Now, as 𝑋 𝑗+𝑋
−1
𝑗 −𝑋𝑖−𝑋−1

𝑖 = (𝑋𝑖−𝑋 𝑗 ) (1−𝑋𝑖𝑋 𝑗 )𝑋
−1
𝑖 𝑋−1

𝑗 , in order to find a combinatorial interpretation
for the right-hand side of (3.5), we need to find a combinatorial interpretation of

(−1) (
𝑛
2)

𝑛∏
𝑖=1

𝑋 𝑙+1
𝑖 (𝑋−1

𝑖 + 1 + 𝑤 + 𝑋𝑖) (𝑋𝑖 − 𝑋−1
𝑖 ) (1 − 𝑋𝑖)

−1

× det
1≤𝑖, 𝑗≤𝑛

 !!"
∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−𝑖−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)

×

(
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
ℎ | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 )

#$$%
= (−1) (

𝑛+1
2 )

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) (1 + 𝑋𝑖)

× det
1≤𝑖, 𝑗≤𝑛

 !!"
∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−𝑖−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)

×

(
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
ℎ | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 )

#$$%.
For this purpose, we find a combinatorial interpretation of the entry of the underlying matrix – that is,∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−𝑖−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

) (
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
× ℎ | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 )
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in terms of a lattice paths generating function. We simplify the expression using the transformation
𝑞 → 𝑛 − 𝑗 − 𝑞:∑

𝑝,𝑞,𝑟≥0
|𝑝−𝑞−𝑙−1|−𝑖−2𝑟≥0

sgn(𝑝 − 𝑞 − 𝑙 − 1) (−1)𝑟𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

) (
|𝑝 − 𝑞 − 𝑙 − 1| − 𝑟 − 1

𝑟

)
× ℎ |𝑝−𝑞−𝑙−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 ). (4.8)

We simplify the expression further using the following lemma. A combinatorial proof of it using a
sign-reversing involution is provided in [7, Lemma 7.7].

Lemma 4.5. Let 𝑎, 𝑖 be positive integers with 𝑖 ≤ 𝑎. Then

(𝑎−𝑖)/2∑
𝑟=0

(−1)𝑟
(
𝑎 − 𝑟 − 1

𝑟

)
ℎ𝑎−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 ) = ℎ𝑎−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ).

Therefore, the sum in (4.8) is equal to∑
𝑝,𝑞

sgn(𝑝 − 𝑞 − 𝑙 − 1)𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
ℎ |𝑝−𝑞−𝑙−1 |−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ). (4.9)

We claim the following: If 𝑝 − 𝑞 − 𝑙 − 1 ≥ 0, then (4.9) is the generating function of lattice paths
from (−3𝑖 + 1,−𝑖 + 1) to (𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2) such that the following is satisfied.

◦ Below and on the line 𝑥 + 𝑦 = 0, the step set is {(1, 1), (−1, 1)}. Steps of type (−1, 1) with distances
0, 2, 4, . . . from 𝑥 + 𝑦 = 𝑛 are equipped with the weights 𝑋1, 𝑋2, 𝑋3, . . ., respectively, while steps of
type (−1, 1) with distances 1, 3, 5, . . . are equipped with the weights 𝑋−1

1 , 𝑋−1
2 , 𝑋−1

3 , . . ., respectively.
◦ Above the line 𝑥 + 𝑦 = 0, the step set is {(1, 0), (0, 1)}. Above the line 𝑥 + 𝑦 = 𝑗 − 1, horizontal steps

are equipped with the weight w.

Namely, if we assume that there are q steps of type (0, 1) above the line 𝑥 + 𝑦 = 𝑗 − 1, and therefore,
𝑛 − 𝑗 − 𝑞 steps of type (1, 0), then the path intersects the line 𝑥 + 𝑦 = 𝑗 − 1 in the lattice point
(𝑙 + 1 + 𝑞, 𝑗 − 𝑙 − 2 − 𝑞), assuming that the endpoint of the path is (𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2), and there
are

(𝑛− 𝑗
𝑞

)
of such paths each of them contributing 𝑤𝑛− 𝑗−𝑞 to the weight. Note that this weight depends

on j if 𝑤 ≠ 0, 1, and this causes complications when applying the Lindström-Gessel-Viennot lemma.
If we further assume that there are p steps of type (1, 0) below the line 𝑥 + 𝑦 = 𝑗 − 1, and therefore,

𝑗 − 𝑝 steps of type (0, 1), then the last lattice point of such a path on the line 𝑥 + 𝑦 = 0 when traversing
the path from (−3𝑖 + 1,−𝑖 + 1) to (𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2) is (−𝑝 + 𝑞 + 𝑙 + 1, 𝑝 − 𝑞 − 𝑙 − 1). Note that
by the assumption 𝑝 − 𝑞 − 𝑙 − 1 ≥ 0, the lattice point (−𝑝 + 𝑞 + 𝑙 + 1, 𝑝 − 𝑞 − 𝑙 − 1) is in the second
quadrant – that is, {(𝑥, 𝑦) |𝑥 ≤ 0, 𝑦 ≥ 0}.

Finally, lattice paths from (−3𝑖+1,−𝑖+1) to (−𝑝+𝑞+ 𝑙+1, 𝑝−𝑞− 𝑙−1) with step set {(1, 1), (−1, 1)}
have 𝑝 − 𝑞 − 𝑙 − 1 − 𝑖 steps of type (−1, 1) and 2𝑖 − 1 steps of type (1, 1). The generating function of
such paths is clearly ℎ𝑝−𝑞−𝑙−1−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ) = ℎ |𝑝−𝑞−𝑙−1 |−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ).

The situation is very similar if 𝑝 − 𝑞 − 𝑙 − 1 ≤ 0, except that we need to replace the starting point
(−3𝑖+1,−𝑖+1) by (−𝑖+1,−3𝑖+1), and the step set is {(1, 1), (1,−1)} below the line 𝑥+𝑦 = 0. Again, we
can assume that (−𝑝 +𝑞 + 𝑙 +1, 𝑝−𝑞− 𝑙 −1) is the last lattice point on the line 𝑥 + 𝑦 = 0 when traversing
the path from (−𝑖 +1,−3𝑖 +1) to (−𝑝 + 𝑞 + 𝑙 +1, 𝑝− 𝑞− 𝑙 −1). In this case, (−𝑝 + 𝑞 + 𝑙 +1, 𝑝− 𝑞− 𝑙 −1)
lies in the fourth quadrant {(𝑥, 𝑦) |𝑥 ≤ 0, 𝑦 ≤ 0}. We have −𝑝 + 𝑞 + 𝑙 + 1 − 𝑖 = |𝑝 − 𝑞 − 𝑙 − 1| − 𝑖
steps of type (1,−1) and 2𝑖 − 1 steps of type (1, 1); thus, the generating function in this segment is also
ℎ |𝑝−𝑞−𝑙−1 |−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ).

Consequently, we can conclude that the right-hand side of (3.5) has the following combinatorial
interpretation: We consider families of n lattice paths from 𝐴𝑖 = {(−3𝑖 + 1,−𝑖 + 1), (−𝑖 + 1,−3𝑖 + 1)},
𝑖 = 1, 2, . . . , 𝑛, to 𝐸 𝑗 = (𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2), 𝑗 = 1, 2, . . . , 𝑛, with steps sets and weights as
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described above. By the Lindström-Gessel-Viennot lemma [20, 15, 16], the paths can be assumed to be
non-intersecting on and below the line 𝑥 + 𝑦 = 0.

In case 𝑤 = 0, 1, we can also assume them to be non-intersecting. This is clear for 𝑤 = 1. In case
𝑤 = 0, we can assume that there are no steps of type (1, 0) above the line 𝑥 + 𝑦 = 𝑗 − 1, and, therefore,
we can also have (𝑛 − 𝑗 + 𝑙 + 1, 2 𝑗 − 𝑛 − 𝑙 − 2) on the line 𝑥 + 𝑦 = 𝑗 − 1 as endpoint since above the line
all the 𝑛 − 𝑗 steps have to be of type (0, 1). Whenever we choose (−𝑖 + 1,−3𝑖 + 1), this contributes −1
to the weight.

In the non-intersecting setting, suppose we choose (−𝑖+1,−3𝑖+1) from 𝐴𝑖 for 1 ≤ 𝑖1 < . . . < 𝑖𝑚 ≤ 𝑛,
then the sign of the permutation 𝜎 such that 𝐴𝑖 is connected to 𝐸𝜎 (𝑖) via the paths is (−1)𝑖1+𝑖2+...+𝑖𝑚−𝑚.
This gives a total sign of (−1)𝑖1+𝑖2+...+𝑖𝑚 . Recall also that we have an additional overall weight of

(−1) (
𝑛+1

2 )
𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) (1 + 𝑋𝑖).

Combining the sign from above with (−1) (
𝑛+1

2 ) = (−1)1+2+...+𝑛, the sign can also be computed as follows:
suppose we choose (−3𝑖 + 1,−𝑖 + 1) from 𝐴𝑖 precisely for 𝑖1, . . . , 𝑖𝑚. Then the sign is (−1)𝑖1+𝑖2+...+𝑖𝑚 ,
and in this setting, the overall weight is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) (1 + 𝑋𝑖).

This concludes the proof of the first part of Theorem 4.1.
Now we consider the case where m is even: We set 𝑚 = 2𝑙 in (4.5), pull out

∏𝑛
𝑖=1 𝑋 𝑙+𝑛

𝑖 and obtain

𝑛∏
𝑖=1

𝑋 𝑙+𝑛
𝑖 det

1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
.

The entry in the i-th row of the j-th column of the matrix underlying the determinant is obtained from

𝑋 𝑗−𝑙−𝑛−1 (1 + 𝑋) 𝑗−1(1 + 𝑤𝑋)𝑛− 𝑗 − 𝑋− 𝑗+𝑙+𝑛 (1 + 𝑋−1) 𝑗−1(1 + 𝑤𝑋−1)𝑛− 𝑗

1 − 𝑋−1

=
∑
𝑝,𝑞≥0

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 𝑋 𝑗−𝑙−𝑛+𝑝+𝑞−1 − 𝑋− 𝑗+𝑙+𝑛−𝑝−𝑞

1 − 𝑋−1 ,

when multiplying with 1 − 𝑋−1 and then setting 𝑋 = 𝑋𝑖 . Now note that

𝑋𝑚 − 𝑋−𝑚−1

1 − 𝑋−1 = 𝑞𝑚+1(𝑋) + 𝑞𝑚 (𝑋)

for any integer m, so that we obtain∑
𝑝,𝑞≥0

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (𝑞 𝑗−𝑙−𝑛+𝑝+𝑞 (𝑋) + 𝑞 𝑗−𝑙−𝑛+𝑝+𝑞−1 (𝑋)

)
.

It follows from (4.4) that this is∑
𝑝,𝑞,𝑟≥0

| 𝑗−𝑙−𝑛+𝑝+𝑞 |−1−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

)
×

(
𝑛 − 𝑗

𝑞

) (
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 | − 𝑟 − 1

𝑟

)
𝑏 | 𝑗−𝑙−𝑛+𝑝+𝑞 |−1−2𝑟 (𝑋)
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+
∑

𝑝,𝑞,𝑟≥0
| 𝑗−𝑙−𝑛+𝑝+𝑞−1|−1−2𝑟≥0

sgn( 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1) (−1)𝑟𝑤𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
×

(
| 𝑗 − 𝑙 − 𝑛 + 𝑝 + 𝑞 − 1| − 𝑟 − 1

𝑟

)
𝑏 | 𝑗−𝑙−𝑛+𝑝+𝑞−1 |−1−2𝑟 (𝑋).

Also, here we simplify the expression using the replacement 𝑞 → 𝑛 − 𝑗 − 𝑞 and obtain∑
𝑝,𝑞,𝑟≥0

|−𝑙+𝑝−𝑞 |−1−2𝑟≥0

sgn(−𝑙 + 𝑝 − 𝑞) (−1)𝑟𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

) (
| − 𝑙 + 𝑝 − 𝑞 | − 𝑟 − 1

𝑟

)
𝑏 |−𝑙+𝑝−𝑞 |−1−2𝑟 (𝑋)

+
∑

𝑝,𝑞,𝑟≥0
|−𝑙+𝑝−𝑞−1|−1−2𝑟≥0

sgn(−𝑙 + 𝑝 − 𝑞 − 1) (−1)𝑟𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

) (
| − 𝑙 + 𝑝 − 𝑞 − 1| − 𝑟 − 1

𝑟

)
× 𝑏 |−𝑙+𝑝−𝑞−1 |−1−2𝑟 (𝑋).

This implies the following:

det1≤𝑖, 𝑗≤𝑛
(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
∏

1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 + 𝑋−1
𝑗 − 𝑋𝑖 − 𝑋−1

𝑖 )

=
𝑛∏
𝑖=1

(1 − 𝑋−1
𝑖 ) det

1≤𝑖, 𝑗≤𝑛

(
𝑎𝑖, 𝑗

)
,

with

𝑎𝑖, 𝑗 =
∑

𝑝,𝑞,𝑟≥0
|𝑝−𝑞−𝑙 |−1−2𝑟≥0

sgn(𝑝 − 𝑞 − 𝑙) (−1)𝑟𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
×

(
|𝑝 − 𝑞 − 𝑙 | − 𝑟 − 1

𝑟

)
ℎ |𝑝−𝑞−𝑙 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 )

+
∑

𝑝,𝑞,𝑟≥0
|𝑝−𝑞−𝑙−1|−1−2𝑟≥0

sgn(𝑝 − 𝑞 − 𝑙 − 1) (−1)𝑟𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
×

(
|𝑝 − 𝑞 − 𝑙 − 1| − 𝑟 − 1

𝑟

)
ℎ |𝑝−𝑞−𝑙−1 |−𝑖−2𝑟 (𝑋1 + 𝑋−1

1 , . . . , 𝑋𝑖 + 𝑋−1
𝑖 ).

Using Lemma 4.5, we see that this is equal to

𝑏𝑖, 𝑗 =
∑
𝑝,𝑞≥0

sgn(𝑝 − 𝑞 − 𝑙)𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
ℎ |𝑝−𝑞−𝑙 |−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 )

+
∑
𝑝,𝑞≥0

sgn(𝑝 − 𝑞 − 𝑙 − 1)𝑤𝑛− 𝑗−𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
ℎ |𝑝−𝑞−𝑙−1 |−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ). (4.10)

Here we need to find a combinatorial interpretation of

(−1) (
𝑛+1

2 )
𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖) det

1≤𝑖, 𝑗≤𝑛

(
𝑏𝑖, 𝑗

)
.
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The only modification compared to the odd case is that the endpoints have to be replaced by the following
set of two endpoints 𝐸 𝑗 = {(𝑛 − 𝑗 + 𝑙 + 1, 𝑗 − 𝑙 − 2), (𝑛 − 𝑗 + 𝑙, 𝑗 − 𝑙 − 1)} and that the overall factor is

𝑛∏
𝑖=1

𝑋 𝑙
𝑖 (𝑋

−1
𝑖 + 1 + 𝑤 + 𝑋𝑖),

given that the sign is taken care of as above.
This concludes the proof of Theorem 4.1.

4.5. Right-hand side of (3.5), second proof

In this section, we sketch a second proof of Theorem 4.1. It is closely related to the proof of Theorem 2.4
in [7]. We only study the case 𝑚 = 2𝑙 + 1. Again, we need to consider

det
1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
. (4.11)

We have the following lemma.

Lemma 4.6. For 𝑛 ≥ 1 and 𝑙 ∈ Z, we have

1∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (𝑋

−1
𝑗 − 𝑋−1

𝑖 )
∏𝑛

𝑖, 𝑗=1(𝑋
−1
𝑗 − 𝑋𝑖)

× det
1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 − 𝑋

− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
× det

1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗 + 𝑋

− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
=

(−1)𝑛

2
det

1≤𝑖, 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘−𝑖+1 − ℎ𝑘+𝑖−1−2𝑛)

#$%
× det

1≤𝑖, 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−𝑛 + ℎ𝑘−𝑖+1−𝑛)

#$%.
Proof. We use

det (𝐴 − 𝐵) det(𝐴 + 𝐵) = det
(
𝐴 − 𝐵 𝐵

0 𝐴 + 𝐵

)
= det

(
𝐴 − 𝐵 𝐵
𝐵 − 𝐴 𝐴

)
= det

(
𝐴 𝐵
𝐵 𝐴

)
to see that the product of determinants on the left-hand side in the assertion of the lemma is equal to

det
 !!"

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1 (1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
1≤𝑖, 𝑗≤𝑛

(
𝑋
− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1 (1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
1≤𝑖, 𝑗≤𝑛(

𝑋
− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1 (1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
1≤𝑖, 𝑗≤𝑛

(
𝑋

𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1 (1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
1≤𝑖, 𝑗≤𝑛

#$$%.
Setting 𝑋𝑛+𝑖 = 𝑋−1

𝑖 for 𝑖 = 1, 2, . . . , 𝑛, we can also write this is as

det
( (

𝑋
𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

(
𝑋
− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

)
.
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We apply Lemma 4.4 to

det
( (

𝑋
𝑗−𝑙−𝑛−1
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

(
𝑋
− 𝑗+𝑙+𝑛+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

)
∏

1≤𝑖< 𝑗≤2𝑛 (𝑋 𝑗 − 𝑋𝑖)

and obtain

det
 !!"
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1(𝑋1, . . . , 𝑋𝑖)

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

&&&&&&&
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 − 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1(𝑋1, . . . , 𝑋𝑖)

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

#$$%.
We multiply from the left with the following matrix:

(ℎ 𝑗−𝑖 (𝑋 𝑗 , 𝑋 𝑗+1, . . . , 𝑋2𝑛))1≤𝑖, 𝑗≤2𝑛

with determinant 1. For this purpose, note that

2𝑛∑
𝑙=1

ℎ𝑙−𝑖 (𝑋𝑙 , 𝑋𝑙+1, . . . , 𝑋2𝑛)ℎ𝑘−𝑙+1(𝑋1, . . . , 𝑋𝑙) = ℎ𝑘−𝑖+1(𝑋1, . . . , 𝑋2𝑛),

and therefore, the multiplication results in

det
 !!"
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1(𝑋1, . . . , 𝑋2𝑛)

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

&&&&&&&
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 − 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1(𝑋1, . . . , 𝑋2𝑛)

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

#$$%.
We set 𝑋𝑖+𝑛 = 𝑋−1

𝑖 for 𝑖 = 1, 2, . . . , 𝑛 (so that the arguments of all complete symmetric functions
are (𝑋1, . . . , 𝑋𝑛, 𝑋

−1
1 , . . . , 𝑋−1

𝑛 )) and omit the 𝑋𝑖’s now. Also note that, under this specialization, the
denominator

∏
1≤𝑖< 𝑗≤2𝑛 (𝑋 𝑗 − 𝑋𝑖) specializes to the denominator on the left-hand side in the assertion

of the lemma. We obtain

det
( (∑

𝑘,𝑞

( 𝑗−1
− 𝑗+𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

(∑
𝑘,𝑞

( 𝑗−1
− 𝑗−𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

)
.

With this specialization, we have ℎ𝑘 = −ℎ−𝑘−2𝑛 using (4.7). Therefore, the above is

(−1)𝑛 det
( (∑

𝑘,𝑞

( 𝑗−1
− 𝑗+𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

(∑
𝑘,𝑞

( 𝑗−1
− 𝑗−𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ−𝑘+𝑖−1−2𝑛

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

)
= (−1)𝑛 det

( (∑
𝑘,𝑞

( 𝑗−1
− 𝑗+𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ𝑘−𝑖+1

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

(∑
𝑘,𝑞

( 𝑗−1
− 𝑗+𝑘+𝑙+𝑛−𝑞+1

) (𝑛− 𝑗
𝑞

)
𝑤𝑞ℎ𝑘+𝑖−1−2𝑛

)
1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

)
.
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Now, for 𝑗 = 1, 2, . . . , 𝑛, we subtract the ( 𝑗 + 𝑛)-th column from the j-th column, and this gives

(−1)𝑛 det
 !!"
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘−𝑖+1 − ℎ𝑘+𝑖−1−2𝑛)

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

&&&&&&&
 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘+𝑖−1−2𝑛

#$% 1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

#$$%.
For 𝑖 = 𝑛 + 2, 𝑛 + 3, . . . , 2𝑛, we add the (2𝑛 + 2 − 𝑖)-th row to the i-th row. This gives a zero block for
{(𝑖, 𝑗) |𝑛 + 1 ≤ 𝑖 ≤ 2𝑛, 1 ≤ 𝑗 ≤ 𝑛}, since∑

𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘−𝑖+1 − ℎ𝑘+𝑖−1−2𝑛 + ℎ𝑘−(2𝑛+2−𝑖)+1 − ℎ𝑘+(2𝑛+2−𝑖)−1−2𝑛) = 0.

The lower right block is

det
𝑛+1≤𝑖≤2𝑛

1≤ 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−2𝑛 + [𝑖 ≠ 𝑛 + 1]ℎ𝑘+2𝑛+2−𝑖−1−2𝑛)

#$%
= det

𝑛+1≤𝑖≤2𝑛
1≤ 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−2𝑛 + [𝑖 ≠ 𝑛 + 1]ℎ𝑘−𝑖+1)

#$%
=

1
2

det
1≤𝑖, 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−𝑛 + ℎ𝑘−𝑖+1−𝑛)

#$%.
This concludes the proof of the lemma. �

The identity in the lemma involves, up to factors, a product of two determinants on the left-hand side
and also a product of two determinants on the right-hand side. This suggests that each of the determinants
on the left-hand side equals up to factors a determinant on the right-hand side. This is indeed the case.

More specifically, one can show that (4.11) is up to factors equal to

(−1)𝑛
𝑛∏
𝑖=1

(1 + 𝑋𝑖)𝑋
𝑙
𝑖 det

1≤𝑖, 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−𝑛 + ℎ𝑘−𝑖+1−𝑛)

#$%.
This can be shown by induction with respect to n as suggested in [7, Remark 7.4]. Thus, Lemma 4.6
would actually not have been necessary; however, it explains how the expression was obtained much
better than the proof by induction.

Using Lemma 7.5 from [7], we can conclude further that the expression is equal to

(−1)𝑛
𝑛∏
𝑖=1

(1 + 𝑋𝑖)𝑋
𝑙
𝑖

× det
1≤𝑖, 𝑗≤𝑛

 !"
∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞ℎ𝑘+𝑖−1−𝑛 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑛−𝑖+1, 𝑋

−1
𝑛−𝑖+1)

#$%.
Also, this formula can be proven directly by induction with respect to n.
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Our next goal would be to give a combinatorial interpretation of∑
𝑘,𝑞

(
𝑗 − 1

− 𝑗 + 𝑘 + 𝑙 + 𝑛 − 𝑞 + 1

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑞 (ℎ𝑘+𝑖−1−𝑛 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑛−𝑖+1, 𝑋

−1
𝑛−𝑖+1).

We replace i by 𝑛 − 𝑖 + 1 and q by 𝑛 − 𝑗 − 𝑞, and then we get rid of k by setting 𝑝 = 𝑘 + 𝑙 + 𝑞 + 1:∑
𝑝,𝑞

(
𝑗 − 1
𝑝

) (
𝑛 − 𝑗

𝑞

)
𝑤𝑛− 𝑗−𝑞ℎ𝑝−𝑞−𝑙−1−𝑖 (𝑋1, 𝑋

−1
1 , . . . , 𝑋𝑖 , 𝑋

−1
𝑖 ).

This is equal to (4.9) when taking into account the definition of complete symmetric functions ℎ𝑘 for
negative k’s as given in (4.7).

5. Explicit product formulas in case (𝑋1, . . . , 𝑋𝑛) = (1, . . . , 1) and 𝑤 = 0,−1

When evaluating the specializations of the LHS or RHS of (1.8) at (𝑋1, . . . , 𝑋𝑛) = (1, . . . , 1) in the
cases 𝑤 = 0,−1 for small values of n, one observes that the numbers involve only small prime factors,
and therefore, it is likely that they are expressible by product formulas. (A similar observation is true
for the case 𝑤 = 1, but there the explanation is simple, since

∏
1≤𝑖< 𝑗≤𝑛 (1 + 𝑤𝑋𝑖 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 ) on the

left-hand side of (1.8) is symmetric then.) For the LHS and the case 𝑚 = 𝑛 − 1, these are unpublished
conjectures of Florian Schreier-Aigner from 2018. For instance, in the case 𝑤 = −1 and 𝑚 = 𝑛 − 1, we
obtain the numbers

1, 4, 60, 3328, 678912, . . . = 2𝑛(𝑛−1)/2
𝑛−1∏
𝑗=0

(4 𝑗 + 2)!
(𝑛 + 2 𝑗 + 1)!

that have also appeared in recent work of Di Francesco [4].
Related conjectures for arbitrary m have now been proven and will appear in forthcoming work with

Florian Schreier-Aigner. The approach we have been successful with involves the transformation of
the bialternant formula on the RHS of (1.8) into a Jacobi-Trudi type determinant. Then we can easily
set 𝑋𝑖 = 1, and we were able to guess the LU-decompositions of the relevant matrices. Proving these
guesses involves the evaluation of certain triple sums, which is possible using Sister Celine’s algorithm
[5] and the fabulous Mathematica packages provided by RISC [25]. We state the results next. First, we
deal with the case 𝑤 = 0.
Theorem 5.1. The specialization of the generating function of arrowed Gelfand-Tsetlin patterns with
n rows and strictly increasing non-negative bottom row where the entries are bounded by m at
(𝑋1, . . . , 𝑋𝑛) = (1, . . . , 1), 𝑢 = 𝑣 = 𝑡 = 1 and 𝑤 = 0 is equal to

3(
𝑛+1

2 )
𝑛∏
𝑖=1

(2𝑛 + 𝑚 + 2 − 3𝑖)𝑖
(𝑖)𝑖

.

Now we turn to the case 𝑤 = −1.
Theorem 5.2. The specialization of the generating function of arrowed Gelfand-Tsetlin patterns with
n rows and strictly increasing non-negative bottom row where the entries are bounded by m at
(𝑋1, . . . , 𝑋𝑛) = (1, . . . , 1), 𝑢 = 𝑣 = 𝑡 = 1 and 𝑤 = −1 is equal to

2𝑛
𝑛∏
𝑖=1

(𝑚 − 𝑛 + 3𝑖 + 1)𝑖−1(𝑚 − 𝑛 + 𝑖 + 1)𝑖(
𝑚−𝑛+𝑖+2

2

)
𝑖−1

(𝑖)𝑖
.

Other future work concerns extending results that have been obtained using (1.2) by replacing this
identity by Theorem 1.1 or specializations thereof.
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A. Aspects of the combinatorics of the classical Littlewood identity and its bounded version

A.1. The combinatorics of the classical Littlewood identity (1.1)

We start by reviewing the classical combinatorial proof of (1.1): one can interpret the Schur polynomial
𝑠𝜆 (𝑋1, . . . , 𝑋𝑛) as the (multivariate) generating function of semistandard Young tableaux of shape 𝜆
with entries in {1, 2, . . . , 𝑛}, where the exponent of 𝑋𝑖 is just the number of occurrences of i in a
given semistandard Young tableau. Then the left-hand side of (1.1) is simply the generating function
of all such semistandard Young tableaux of any shape 𝜆. The right-hand side can be interpreted as the
generating function of symmetric 𝑛× 𝑛 matrices with non-negative integer entries: expanding 1

1−𝑋𝑖𝑋 𝑗
=∑

𝑎𝑖, 𝑗 ≥0(𝑋𝑖𝑋 𝑗 )
𝑎𝑖, 𝑗 corresponds to the entries 𝑎𝑖, 𝑗 = 𝑎 𝑗 ,𝑖 for 𝑖 < 𝑗 , while expanding 1

1−𝑋𝑖
=
∑

𝑎𝑖,𝑖≥0 𝑋
𝑎𝑖,𝑖
𝑖

corresponds to the diagonal entries 𝑎𝑖,𝑖 . Then such a matrix determines a two-line array with 𝑎𝑖, 𝑗

occurrences of the pair
(
𝑖
𝑗

)
such that the pairs are ordered lexicographically. The semistandard Young

tableau P is simply obtained by applying the Robinson-Schensted-Knuth (RSK) algorithm to the bottom
row of the two-line array. It suffices to construct the so-called insertion tableau because by the symmetry
of the RSK algorithm, it is equal to the recording tableau. Thus, to reconstruct the two-line array, we
apply the inverse Robinson-Schensted-Knuth algorithm to (𝑃, 𝑃).

A.2. Simpler description of the classical bijection

Now we discuss a related but simpler bijective proof of (1.1) that does not invoke the symmetry of
the RSK algorithm. After its description, we will actually discover that ‘only’ the description of the
algorithm is simpler as we will show that the bijection agrees with the classical one. However, this
second version could be of interest for developing the combinatorics of (1.4) and (1.8).

As discussed above, the right-hand side of (1.1) can be interpreted as the generating function of
symmetric 𝑛 × 𝑛 matrices 𝐴 = (𝑎𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 with non-negative integer entries. They are also equivalent
to lexicographically ordered two-line arrays with the property that the upper entry in each column is no
smaller than the lower entry: For 𝑖 ≤ 𝑗 , let 𝑎𝑖, 𝑗 = 𝑎 𝑗 ,𝑖 be the number of columns of type

(
𝑗
𝑖

)
. Comparing

to the two-line array from the classical proof, we just have to delete all columns
(
𝑗
𝑖

)
with 𝑖 > 𝑗 .

Now we apply the following variant of RSK, which transforms a lexicographically ordered two-line
array such that no upper element is smaller than the corresponding lower element into a semistandard
Young tableau.

◦ As usual, we work through the columns of the two-line array from left to right.
◦ Suppose

(
𝑗
𝑖

)
, 𝑖 ≤ 𝑗 , is our current column. We use the usual RSK algorithm to insert i in to the

current tableau.
◦ If 𝑖 < 𝑗 , we additionally place j into the tableau as follows: Suppose that the insertion of i ends with

adding an entry to row r. Then we add j to row 𝑟 + 1 in the leftmost column where there is no entry
so far.

Example A.1. To give an example, observe that the symmetric matrix

𝐴 =
 !!!"
1 0 2 1
0 0 1 4
2 1 2 0
1 4 0 1

#$$$%
is equivalent to the two-line array (

1 3 3 3 3 3 4 4 4 4 4 4
1 1 1 2 3 3 1 2 2 2 2 4

)
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and that the algorithm results in the following semistandard Young tableau:

1 1 1 1 2 2 2 2 4
2 3 3 3 3 4 4
3 4 4
4

Well-definedness of the algorithm. We argue that the resulting tableau is always a semistandard Young
tableau. For this, we need an observation that can be deduced from [28, Lemma 7.11.2 (b)], which says
that if we insert a weakly increasing sequence of positive integers 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝑟 from left to right
into a semistandard Young tableau, then the ‘insertion path’ of an earlier element lies strictly to the left
of a later element. Moreover, for 𝑝 < 𝑞, the insertion path of 𝑖𝑝 ends in a row below and to the left of
the end of the insertion path of 𝑖𝑞 , or in the same row to the left of the end of the insertion path of 𝑖𝑞 .
This implies that if the 𝑖𝑘 ’s are the bottom elements of the columns with top element j in the two line
array, then, if the insertion path of an 𝑖𝑘 with 𝑖𝑘 < 𝑗 ends in row r, the elements in row 1, 2, . . . , 𝑟 are in
{1, 2, . . . , 𝑗 − 1}.

We show by induction on the number of elements in the tableau that our algorithm always leads to a
semistandard Young tableau. Now, if we insert the element i of the column

(
𝑗
𝑖

)
using the classical RSK

algorithm into the current semistandard Young tableau, then we obtain another semistandard Young
tableau; see [28, Lemma 7.11.3]. Placing the top element j in case 𝑗 > 𝑖 into the next row will also not
destroy the columnstrictness, as the elements above the row of j are in {1, 2, . . . , 𝑗 − 1}, as discussed in
the previous paragraph.
Remark A.2. Note that from the proof of well-definedness it follows that we may also add all top j’s at
once after we have inserted the bottom entries of columns that have j’s as top entries in our algorithm:
Consider the skew shape 𝜆/𝜇, where 𝜇 is the shape of the tableau that we had before the insertion of all
these bottom entries and 𝜆 is the shape of the tableau we obtain after the insertion (but not yet adding the
j’s from the top row of the two-line array) except that we exclude in the latter tableau all j’s that come
from the bottom of the two-line array. Now, if there are c cells in row r of the skew shape, then we add
𝑐 𝑗’s in row 𝑟 + 1 to the semistandard Young tableaux with the bottom entries inserted, now including
also those that come from columns

(
𝑗
𝑗

)
. This is because the cells of the skew shape are added to the

tableau in the course of insertion from bottom to top and within a row from left to right.
Reverse algorithm. We construct the inverse algorithm inductively, where the induction is with respect

to the largest element in the tableau. Suppose n is the largest element in the semistandard Young tableau.
Then we want to recover the part of the two-line array that has n in the top row (which is an ending
section of the array). Suppose (

𝑛 𝑛 . . . 𝑛
𝑖1 𝑖2 . . . 𝑖𝑠

)
is this section, which implies 𝑖1 ≤ 𝑖2 ≤ . . . ≤ 𝑖𝑠 , and let r be maximal with 𝑖𝑟 < 𝑛 so that 𝑖𝑟+1 = 𝑖𝑟+2 =
. . . = 𝑖𝑠 = 𝑛. Now, from the algorithm it follows that 𝑠 − 𝑟 is just the number n’s in the top row of the
tableau, and we can delete these elements. Again, it follows from [28, Lemma 7.11.2 (b)] that we need
to determine the number u of n’s in the second row, remove them and the apply the inverse bumping
algorithm to the last u element in the first row, from right to left (which means that we just remove them
and put them in the bottom row of the two-line array). We continue by counting (and removing) the n’s
in the third row, and, if v is this number, apply the inverse bumping to the last v elements in the second
row, from right to left. We work through the rows from top to bottom in this way.

Finally, we discover that this algorithm is just another description of the classical bijection.
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Proposition A.3. The algorithm just described establishes the same bijection between symmetric
𝑛 × 𝑛 matrices A with non-negative integer entries and semistandard Young tableaux with entries in
{1, 2, . . . , 𝑛} as the classical one.

Sketch of proof. The proof is by induction with respect to n. For 𝑛 = 1, there is nothing to prove since
the two algorithms coincide in this case.

We perform the step from 𝑛 − 1 to n. We can assume 𝑎𝑛,𝑛 = 0 since increasing 𝑎𝑛,𝑛 has the same
effect in both algorithms, as in both cases, we just add 𝑎𝑛,𝑛 columns

( 𝑛
𝑛

)
at the end of the two-line arrays

and apply the same procedure to these columns, in both cases at the end of the algorithm.
Suppose B is the restriction of A to the first 𝑛 − 1 rows and the first 𝑛 − 1 columns. By the induction

hypothesis, we know that B is transformed into the same semistandard Young tableau P under both
algorithms. Moreover, let a be the two-line array that corresponds to A in the classical algorithm and
𝑎′ be the initial section that disregards all columns with an n in the top row. Clearly, we can obtain P
also by applying RSK to the bottom row of 𝑎′ and then deleting all n’s because the two-line array b that
corresponds to B under the classical algorithm is obtained from 𝑎′ by deleting all columns that have an
n in the bottom row, and the n’s will never bump an element, but at most be bumped in final steps of
insertions. Let Q denote the semistandard Young tableau where the n’s are kept (i.e., what we obtain
after applying RSK to the bottom row of 𝑎′).

Now note that the final sections of the two-line array with n in the top row agree for both two-line
arrays, and denote it by s. Since we assume 𝑎𝑛,𝑛 = 0, the bottom row of s does not contain any n. It is
also clear that we will obtain the same tableau if we apply the following two different procedures: Insert
the bottom row of s to P or insert the bottom row of s to Q and then delete the n’s. This is because P
and Q agree on all entries different from n, and n’s are at most bumped in final steps in the second case.

This implies that the two procedures (namely, the ‘classical’ one and the one that is the subject of this
section) result in the same two tableaux when disregarding the n’s. Therefore, it remains to show that
they also agree on the n’s. Now we use the fact that the positions of the n’s (as for any other entry) can
also be determined by considering the recording tableau (which is due to the symmetry of the classical
RSK algorithm); in particular, we need to study how the recording tableau is built up when adding s
since this is the only time when n’s are added to the recording tableau. These n’s are added in the final
cells of the insertion paths when inserting the bottom row of s into Q. Such an insertion path can either
agree with the corresponding insertion path in P or it has one additional step where an n gets bumped.
As we already know that up to the n’s, we obtain the same tableaux in both cases, we are always in the
case that n’s are bumped, and this proves the assertion.

A.3. RSK in terms of Gelfand-Tsetlin patterns

It is well known that semistandard Young tableaux can be replaced by Gelfand-Tsetlin patterns in the
definition of Schur polynomials (and thus in the combinatorial interpretation of the left-hand sides
of (1.1) and (1.6)) as there is an easy bijective correspondence, which will be described next. This
point of view is valuable for us because the left-hand sides of our Littlewood-type identities can
also be interpreted combinatorially as generating functions of Gelfand-Tsetlin-pattern-type objects (see
Section 3). The purpose of the current section is to indicate how the classical RSK algorithm works
on (classical) Gelfand-Tsetlin patterns, with the hope that something similar can be established for our
variant (i.e., arrowed Gelfand-Tsetlin patterns; see Section 3.1).

A Gelfand-Tsetlin pattern is a finite triangular array of integers with centered rows as follows:

𝑎1,1
𝑎2,1 𝑎2,2

. .
.

. . .
. . .

𝑎𝑛,1 𝑎𝑛,2 . . . 𝑎𝑛,𝑛
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such that we have a weak increase in↗-direction as well as in↘-direction (i.e., 𝑎𝑖+1, 𝑗 ≤ 𝑎𝑖, 𝑗 ≤ 𝑎𝑖+1, 𝑗+1,
for all 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛−1). The bijection between semistandard Young tableaux of shape (𝜆1, 𝜆2, . . . , 𝜆𝑛)

(we allow zero entries here) and parts in {1, 2, . . . , 𝑛}, and Gelfand-Tsetlin patterns with bottom row
(𝜆𝑛, 𝜆𝑛−1, . . . , 𝜆1) is as follows: reading the i-th row of a Gelfand-Tsetlin pattern in reverse order gives
a partition, and this is precisely the shape constituted by the entries less than or equal to i in the
corresponding semistandard Young tableau. Under this bijection, the number of entries equal to i in the
semistandard Young tableau is equal to the difference of the i-th row sum and the (𝑖 − 1)-st row sum in
the Gelfand-Tsetlin pattern. Therefore,

𝑠 (𝜆1 ,...,𝜆𝑛) (𝑋1, . . . , 𝑋𝑛) =
∑ 𝑛∏

𝑖=1
𝑋

∑𝑖
𝑗=1 𝑎𝑖, 𝑗−

∑𝑖−1
𝑗=1 𝑎𝑖−1, 𝑗

𝑖 ,

where the sum is over all Gelfand-Tsetlin patterns (𝑎𝑖, 𝑗 )1≤ 𝑗≤𝑖≤𝑛 with bottom row (𝜆𝑛, 𝜆𝑛−1, . . . , 𝜆1).
To give an example, observe that the Gelfand-Tsetlin pattern corresponding to the following semis-

tandard Young tableaux:

1 1 1 2 2 3 5
2 2 4 5 7 8
4 5 5 7 8
5 6 6 8
7 8

(A.1)

is

3
2 5

0 2 6
0 1 3 6

0 1 3 4 7
0 0 3 3 4 7

0 0 1 3 4 5 7
0 0 0 2 4 5 6 7

.

Now suppose we use the RSK algorithm to insert the integer m into a semistandard Young tableau.
On the corresponding Gelfand-Tsetlin pattern, we have to do the following.

◦ If the number n of rows of the pattern is less than m and the bottom row of the pattern is 𝑘1, . . . , 𝑘𝑛,
then we add rows of the form 0, . . . , 0, 𝑘1, . . . , 𝑘𝑛 with the appropriate number of 0’s until we have
m rows.

◦ Now we start a path in the pattern that starts at the last entry in row m with (unit) steps in ↘-direction
or ↙-direction progressing from one entry to a neighboring entry in this direction. The rule is as
follows: Whenever the ↘-neighbor of the current entry is equal to the current entry, we extend our
path to the next entry in ↘-direction; otherwise, we go to the next entry in ↙-direction. We continue
with this path until we reach the bottom row.

◦ Finally, we add 1 to all entries in the path.

To give an example, if we use RSK to insert 3 into the semistandard Young tableau from (A.1), we
obtain the following tableau, where the insertion path is indicated in red:
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1 1 1 2 2 3 3
2 2 4 5 5 8
4 5 5 7 7
5 6 6 8 8
7 8

On the corresponding Gelfand-Tsetlin pattern, we obtain the following:

3
2 5

0 2 7
0 1 3 7

0 1 3 5 7
0 0 3 3 5 7

0 0 1 3 5 5 7
0 0 0 2 5 5 6 7

It corresponds to the tableau with the 3 inserted.
Now suppose in our simplified algorithm to prove (1.1), we ‘insert’ the column

(
𝑗
𝑖

)
into the Gelfand-

Tsetlin pattern. At this point, the Gelfand-Tsetlin pattern should have j rows. Then we apply the algorithm
just described to insert i into the pattern. To insert also j (in case 𝑗 ≠ 𝑖), add 1 to the entry immediately
left of the entry that is the end of the path that is induced by the insertion of i. Whenever we progress
to the first column with j as top element in the two-line array, we add one row to the Gelfand-Tsetlin by
copying the current bottom row and adding one 0 at the beginning.

A.4. The right-hand side of the bounded Littlewood identity (1.6)

The irreducible characters of the special orthogonal group 𝑆𝑂2𝑛+1 (C) associated with the partition
𝜆 = (𝜆1, . . . , 𝜆𝑛) are

𝑠𝑜odd
𝜆 (𝑋1, . . . , 𝑋𝑛) =

𝑛∏
𝑖=1

𝑋𝑛−1/2
𝑖

det1≤𝑖, 𝑗≤𝑛
(
𝑋
−𝜆 𝑗−𝑛+ 𝑗−1/2
𝑖 − 𝑋

𝜆 𝑗+𝑛− 𝑗+1/2
𝑖

)
(1 + [𝜆𝑛 = 0])

∏𝑛
𝑖=1(1 − 𝑋𝑖)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 )

;

see [6, Eq. (24.28)]. These characters can be seen as generating functions of certain halved Gelfand-
Tsetlin patterns that are defined next. This can even be extended to so-called half-integer partitions
as will be explained also. A half-integer partition is a finite, weakly decreasing sequence of positive
half-integers.

Definition A.4. For a positive integer n, a 2𝑛-split orthogonal (Gelfand-Tsetlin) pattern is an array of
non-negative integers or non-negative half-integers with 2𝑛 rows of lengths 1, 1, 2, 2, . . . , 𝑛, 𝑛, which
are aligned as follows for 𝑛 = 3:

𝑎1,1
𝑎2,1

𝑎3,1 𝑎3,2
𝑎4,1 𝑎4,2

𝑎5,1 𝑎5,2 𝑎5,3
𝑎6,1 𝑎6,2 𝑎6,3

,
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such that the entries are weakly increasing along ↗-diagonals and ↘-diagonals, and in which the
entries, except for the first entries in the odd rows (called odd starters), are either all non-negative
integers or all non-negative half-integers. Each starter is independently either a non-negative integer or
a non-negative half-integer. The weight of a 2𝑛-split orthogonal pattern is

𝑛∏
𝑖=1

𝑋𝑟2𝑖−2𝑟2𝑖−1+𝑟2𝑖−2
𝑖 ,

where 𝑟𝑖 is the sum of entries in row i and 𝑟0 = 0.

The following theorem is the first part of Theorem 7.1 in [23].

Theorem A.5. Let 𝜆 = (𝜆1, . . . , 𝜆𝑛) be a partition (allowing zero entries) or a half-integer partition.
Then the generating function of 2𝑛-split orthogonal patterns with respect to the above weight that have
𝜆 as bottom row, written in increasing order, is

𝑛∏
𝑖=1

𝑋𝑛−1/2
𝑖

det1≤𝑖, 𝑗≤𝑛
(
𝑋
−𝜆 𝑗−𝑛+ 𝑗−1/2
𝑖 − 𝑋

𝜆 𝑗+𝑛− 𝑗+1/2
𝑖

)
(1 + [𝜆𝑛 = 0])

∏𝑛
𝑖=1(1 − 𝑋𝑖)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 )

.

Now the right-hand side of (1.6) can be written as

det1≤𝑖, 𝑗≤𝑛
(
𝑋

𝑗−1
𝑖 − 𝑋

𝑚+2𝑛− 𝑗
𝑖

)∏𝑛
𝑖=1(1 − 𝑋𝑖)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 )

=
𝑛∏
𝑖=1

𝑋 (𝑚−1)/2+𝑛
𝑖

det1≤𝑖, 𝑗≤𝑛
(
𝑋

𝑗−𝑛−(𝑚+1)/2
𝑖 − 𝑋

− 𝑗+𝑛+(𝑚+1)/2
𝑖

)∏𝑛
𝑖=1(1 − 𝑋𝑖)

∏
1≤𝑖< 𝑗≤𝑛 (𝑋 𝑗 − 𝑋𝑖) (1 − 𝑋𝑖𝑋 𝑗 )

,

so that we can deduce from Theorem A.5 that it is equal to

𝑛∏
𝑖=1

𝑋𝑚/2
𝑖 𝑠𝑜odd

(𝑚/2,𝑚/2,...,𝑚/2) (𝑋1, . . . , 𝑋𝑛).

From (1.6), it now follows that∑
𝜆⊆(𝑚𝑛)

𝑠𝜆(𝑋1, . . . , 𝑋𝑛) =
𝑛∏
𝑖=1

𝑋𝑚/2
𝑖 𝑠𝑜odd

(𝑚/2,𝑚/2,...,𝑚/2) (𝑋1, . . . , 𝑋𝑛). (A.2)

A combinatorial proof of this fact can be found in [29, Corollary 7.4].
It would be interesting to see whether there is a bijective proof of (A.2) that uses RSK. More concretely,

under the bijection that is used in the classical bijective proof of (1.1), semistandard Young tableaux
whose shape is in (𝑚𝑛) correspond to two-line arrays such that the longest increasing subsequence of
the bottom row has at most m elements; see [28, Proposition 7.23.10].

Next, we argue that we can also read off the m from the two-line array we use for our simplified proof
of (1.1), in the following sense. The longest increasing subsequence of the bottom row of the ‘classical’
two-line array can be read off the corresponding matrix A with non-negative integers as follows: we
consider walks through the matrix with unit →-steps and unit ↓-steps and add up the entries we traverse.
The maximal sum we can achieve with such a path is the length of the longest increasing subsequence
of the bottom row of the classical two-line array. Now, if the matrix A is symmetric, we can confine
such walks to be weakly above the main diagonal, and the two-line array of the simplified algorithm is
constituted by this part of the matrix.
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Finally, we give a bijective proof of (A.2) in the case 𝑛 = 2. The left-hand side can be seen as the
generating function of semistandard Young tableaux with entries in {1, 2}, with the weight

𝑋# of1′𝑠
1 𝑋# of2′

2 .

Such tableaux have at most 2 rows and can be encoded by three non-negative integers 𝑥, 𝑦, 𝑧: let y be
the number of 2’s in the second row, z be the number of 2’s in the first row and 𝑥 + 𝑦 be the number of
1’s, which are necessarily in the first row. The two-line array that corresponds to such a tableau under
our simplified algorithm is constituted by x columns

(
1
1

)
, y columns

(
2
1

)
and z columns

(
2
2

)
, ordered

lexicograhpically. The corresponding 4-split pattern can be obtained as follows: Add 𝑥+𝑦+𝑧
2 to all entries

of the following 4-split pattern:

−𝑥−𝑦−min(𝑥,𝑧)
2

−min(𝑥, 𝑧)
−𝑦−𝑧−min(𝑥,𝑧)

2 0
0 0.

B. Further combinatorial interpretations of the left-hand sides

B.1. Generating function of AGTPs with respect to the bottom row

Setting 𝑋1 = 𝑋2 = . . . = 𝑋𝑛 = 1 in Theorem 3.4, we see that the generating function of AGTPs with
bottom row 𝑘1, . . . , 𝑘𝑛 and with respect to the weight

sgn(𝐴)𝑡 ∅𝑢↗𝑣↖𝑤↖↗ (B.1)

is

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
∏

1≤𝑖< 𝑗≤𝑛

(
𝑡 + 𝑢E𝑘𝑖 + 𝑣E−1

𝑘 𝑗
+ 𝑤E𝑘𝑖E

−1
𝑘 𝑗

) ∏
1≤𝑖< 𝑗≤𝑛

𝑘 𝑗 − 𝑘𝑖 + 𝑗 − 𝑖

𝑗 − 𝑖

= (𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
∏

1≤𝑖< 𝑗≤𝑛

(
𝑡E𝑘 𝑗 + 𝑢E𝑘𝑖E𝑘 𝑗 + 𝑣 + 𝑤E𝑘𝑖

) 𝑛∏
𝑗=1

E− 𝑗+1
𝑘 𝑗

∏
1≤𝑖< 𝑗≤𝑛

𝑘 𝑗 − 𝑘𝑖 + 𝑗 − 𝑖

𝑗 − 𝑖

= (𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
∏

1≤𝑖< 𝑗≤𝑛

(
𝑡E𝑘 𝑗 + 𝑢E𝑘𝑖E𝑘 𝑗 + 𝑣 + 𝑤E𝑘𝑖

) ∏
1≤𝑖< 𝑗≤𝑛

𝑘 𝑗 − 𝑘𝑖

𝑗 − 𝑖
, (B.2)

using the fact 𝑠 (𝑘𝑛 ,𝑘𝑛−1 ,...,𝑘1) (1, . . . , 1) =
∏

1≤𝑖< 𝑗≤𝑛
𝑘 𝑗−𝑘𝑖+ 𝑗−𝑖

𝑗−𝑖 , which follows from [28, (7.105)] when
taking the limit 𝑞 → 1.

Generalizing a computation in Section 6 of [9] slightly, it can be seen that the coefficient of
𝑋 𝑘1

1 𝑋 𝑘2
2 · · · 𝑋 𝑘𝑛

𝑛 in

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
𝑛∏
𝑖=1

𝑋−𝑛+1
𝑖 (1 − 𝑋𝑖)

−𝑛
∏

1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖) (𝑢 + 𝑡𝑋𝑖 + 𝑤𝑋 𝑗 + 𝑣𝑋𝑖𝑋 𝑗 )

is the generating function of AGTPs with bottom row 𝑘1, 𝑘2, . . . , 𝑘𝑛 as given in (B.2), when interpreting
the rational function as a formal Laurent series in 𝑋1, 𝑋2, . . . , 𝑋𝑛 with (1 − 𝑋𝑖)

−1 =
∑

𝑘≥0 𝑋 𝑘
𝑖 and

assuming (𝑘1, 𝑘2, . . . , 𝑘𝑛) ≥ 0. Phrased differently, for any (𝑘1, . . . , 𝑘𝑛), (𝑚1, . . . , 𝑚𝑛) ∈ Z𝑛 with
(𝑘1 + 𝑚1, . . . , 𝑘𝑛 + 𝑚𝑛) ≥ 0, the coefficient of 𝑋𝑚1

1 · · · 𝑋𝑚𝑛
𝑛 in

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
𝑛∏
𝑖=1

𝑋−𝑛+1−𝑘𝑖
𝑖 (1 − 𝑋𝑖)

−𝑛
∏

1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖) (𝑢 + 𝑡𝑋𝑖 + 𝑤𝑋 𝑗 + 𝑣𝑋𝑖𝑋 𝑗 )
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is the generating function of AGTPs with bottom (𝑘1 + 𝑚1, . . . , 𝑘𝑛 + 𝑚𝑛). Therefore, the coefficient of
𝑋𝑚1

1 · · · 𝑋𝑚𝑛
𝑛 in

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛

× Sym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
𝑛∏
𝑖=1

𝑋−𝑛+1−𝑘𝑖
𝑖 (1 − 𝑋𝑖)

−𝑛
∏

1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖) (𝑢 + 𝑡𝑋𝑖 + 𝑤𝑋 𝑗 + 𝑣𝑋𝑖𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦
is the generating function of pairs of AGTPs and permutations 𝜎, where the difference of the bottom
row and (𝑘1, . . . , 𝑘𝑛) is the permutation of {𝑚1, . . . , 𝑚𝑛} given by 𝜎, assuming (𝑘1 + 𝑚𝜎 (1) , . . . , 𝑘𝑛 +
𝑚𝜎 (𝑛) ) ≥ 0 for every permutation 𝜎. The latter is always satisfied if (𝑘1, . . . , 𝑘𝑛), (𝑚1, . . . , 𝑚𝑛) ≥ 0.
The above expression is equal to

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
−𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)

× ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
𝑛∏
𝑖=1

𝑋−𝑘𝑖
𝑖

∏
1≤𝑖< 𝑗≤𝑛

(𝑣 + 𝑤𝑋−1
𝑖 + 𝑡𝑋−1

𝑗 + 𝑢𝑋−1
𝑖 𝑋−1

𝑗 )

⎤⎥⎥⎥⎥⎦ .
We sum over all 0 ≤ 𝑘1 < 𝑘2 < . . . < 𝑘𝑛 ≤ 𝑚.

(𝑡 + 𝑢 + 𝑣 + 𝑤)𝑛
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
−𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)

× ASym𝑋1 ,...,𝑋𝑛

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛

(𝑣 + 𝑤𝑋−1
𝑖 + 𝑡𝑋−1

𝑗 + 𝑢𝑋−1
𝑖 𝑋−1

𝑗 )
∑

0≤𝑘1<𝑘2<...<𝑘𝑛≤𝑚

𝑋−𝑘1
1 𝑋−𝑘2

2 · · · 𝑋−𝑘𝑛
𝑛

⎤⎥⎥⎥⎥⎦
For (𝑚1, . . . , 𝑚𝑛) ≥ 0, the coefficient of 𝑋𝑚1

1 · · · 𝑋𝑚𝑛
𝑛 is the generating function of pairs of AGTPs

A and permutations 𝜎 of {1, 2, . . . , 𝑛} such that if (𝑚𝜎 (1) , . . . , 𝑚𝜎 (𝑛) ) is added to the bottom row of
A, we obtain a strictly increasing sequence of non-negative integers. In particular, the constant term is
the generating function of AGTPs (with respect to the weight (B.1)), whose bottom row is a strictly
increasing sequence of non-negative integers, multiplied by 𝑛!. Setting 𝑡 = 𝑢 = 𝑣 = 1, this is by (1.8)
equal to

(3 + 𝑤)𝑛
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
−𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)

×
det1≤𝑖, 𝑗≤𝑛

(
𝑋
− 𝑗+1
𝑖 (1 + 𝑋−1

𝑖 ) 𝑗−1(1 + 𝑤𝑋−1
𝑖 )𝑛− 𝑗 − 𝑋

−𝑚−2𝑛+ 𝑗
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
𝑛∏
𝑖=1

(1 − 𝑋−1
𝑖 )

∏
1≤𝑖< 𝑗≤𝑛

(1 − 𝑋−1
𝑖 𝑋−1

𝑗 )

= (3 + 𝑤)𝑛
𝑛∏
𝑖=1

(1 − 𝑋𝑖)
−𝑛

∏
1≤𝑖< 𝑗≤𝑛

(𝑋 𝑗 − 𝑋𝑖)

×
det1≤𝑖, 𝑗≤𝑛

(
𝑋
− 𝑗+2
𝑖 (1 + 𝑋𝑖)

𝑗−1(𝑤 + 𝑋𝑖)
𝑛− 𝑗 − 𝑋

−𝑚−𝑛+ 𝑗
𝑖 (1 + 𝑋𝑖)

𝑗−1(1 + 𝑤𝑋𝑖)
𝑛− 𝑗

)
𝑛∏
𝑖=1

(𝑋𝑖 − 1)
∏

1≤𝑖< 𝑗≤𝑛
(𝑋𝑖𝑋 𝑗 − 1)

.
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B.2. Generating function of alternating sign triangles with respect to the positions of the 1-columns

Alternating sign triangles have been introduced recently in [1].

Definition B.1. An alternating sign triangle (AST) with 𝑛 ≥ 1 rows is a triangular array with n centered
rows of the following shape:

𝑎1,1 𝑎1,2 . . . . . . . . . . . . 𝑎1,2𝑛−1
𝑎2,2 . . . . . . . . . 𝑎2,2𝑛−2

. . . . . . . . .
𝑎𝑛,𝑛

such that 𝑎𝑖, 𝑗 ∈ {0, 1,−1}, nonzero entries alternate in each row and column, all rows sum to 1 and the
topmost nonzero entry (if any) in each column is 1.

Next, we give an example of an AST with 5 rows:

0 0 0 1 0 0 0
0 1 −1 0 1

0 0 1
1.

It is known that there is the same number of 𝑛 × 𝑛 ASMs as there is of ASTs with n rows, but no
bijection is known so far. It has even been possible to identify certain equidistributed statistics; see
[11, 10, 1].

The columns of an AST sum to 0 or 1. A column that sums to 1 is said to be a 1-column. The central
column is always a 1-column. Since the sum of all entries in an AST with n rows is n, there are precisely
𝑛 − 1 other 1-columns. A certain type of generating function with respect to the 1-columns has been
derived in [11, Theorem 7]. It involves one other statistic, which we introduce next: A 11-column is a
1-column with 1 as bottom element, while a 10-column is a 1-column with 0 as bottom element. For an
AST, T we define

𝜌(𝑇) = #11-columns left of the central column
+ #10-columns right of the central column + 1.

Theorem B.2. Let n be a positive integer, 0 ≤ 𝑟 ≤ 𝑛 − 1 and 0 ≤ 𝑗1 < 𝑗2 < . . . < 𝑗𝑛−1 ≤ 2𝑛 − 3. The
coefficient of 𝑡𝑟−1𝑋

𝑗1
1 𝑋

𝑗2
2 · · · 𝑋

𝑗𝑛−1
𝑛−1 in

𝑛−1∏
𝑖=1

(𝑡 + 𝑋𝑖)
∏

1≤𝑖< 𝑗≤𝑛−1
(1 + 𝑋𝑖 + 𝑋𝑖𝑋 𝑗 ) (𝑋 𝑗 − 𝑋𝑖) (B.3)

is the number of ASTs T with n rows, 𝜌(𝑇) = 𝑟 and 1-columns in positions 𝑗1, 𝑗2, . . . , 𝑗𝑛−1, where we
exclude the central column and count from the left starting with 0.

For what follows, the crucial question is whether we can give the coefficient of 𝑡𝑟−1𝑋
𝑗1

1 𝑋
𝑗2

2 · · · 𝑋
𝑗𝑛−1
𝑛−1

of (B.3) also a meaning if ( 𝑗1, . . . , 𝑗𝑛−1) is not strictly increasing. Such an interpretation does not exist
so far.
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Phrased differently, the theorem states that the coefficient of 𝑋𝑚1
1 𝑋𝑚2

2 · · · 𝑋𝑚𝑛−1
𝑛−1 in

𝑛−1∏
𝑖=1

(𝑡 + 𝑋−1
𝑖 )𝑋

𝑗𝑖
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(1 + 𝑋−1
𝑖 + 𝑋−1

𝑖 𝑋−1
𝑗 ) (𝑋−1

𝑗 − 𝑋−1
𝑖 )

=
𝑛−1∏
𝑖=1

(1 + 𝑡𝑋𝑖)𝑋
𝑗𝑖−2𝑛+1
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(1 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 ) (𝑋𝑖 − 𝑋 𝑗 )

is the generating function of ASTs with 1-columns in positions 𝑗1 −𝑚1, 𝑗2 −𝑚2, . . . , 𝑗𝑛−1 −𝑚𝑛−1 with
respect to 𝜌(𝑇) − 1, provided that 𝑗1 −𝑚1 < 𝑗2 −𝑚2 < · · · < 𝑗𝑛−1 −𝑚𝑛−1. Therefore, the coefficient of
𝑋𝑚1

1 𝑋𝑚2
2 · · · 𝑋𝑚𝑛−1

𝑛−1 in

Sym𝑋1 ,...,𝑋𝑛−1

⎡⎢⎢⎢⎢⎣
𝑛−1∏
𝑖=1

(1 + 𝑡𝑋𝑖)𝑋
𝑗𝑖−2𝑛+1
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(1 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 ) (𝑋𝑖 − 𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦
is the generating function of pairs of ASTs and permutations of {1, 2, . . . , 𝑛 − 1}, such that
𝑗1 −𝑚𝜎 (1) , 𝑗2 −𝑚𝜎 (2) , . . . , 𝑗𝑛−1 −𝑚𝜎 (𝑛−1) are the positions of 1-columns, provided that ( 𝑗1 −𝑚𝜎 (1) ,
𝑗2 − 𝑚𝜎 (2) , . . . , 𝑗𝑛−1 − 𝑚𝜎 (𝑛−1) ) is strictly increasing for all 𝜎. Note that it is possible to satisfy the
strictly increasing condition – for instance, if ( 𝑗1, . . . , 𝑗𝑛−1) is strictly increasing and the differences
between consecutive 𝑗𝑙 are large while the 𝑚𝑙 are small.

The expression is equal to

𝑛−1∏
𝑖=1

(1 + 𝑡𝑋𝑖)𝑋
−2𝑛+1
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(𝑋𝑖 − 𝑋 𝑗 ) ASym𝑋1 ,...,𝑋𝑛−1

⎡⎢⎢⎢⎢⎣
𝑛−1∏
𝑖=1

𝑋
𝑗𝑖
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(1 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

⎤⎥⎥⎥⎥⎦ .
We sum over all 𝑝 ≤ 𝑗1 < 𝑗2 < . . . < 𝑗𝑛−1 ≤ 𝑞 and obtain

𝑛−1∏
𝑖=1

(1 + 𝑡𝑋𝑖)𝑋
−2𝑛+1+𝑝
𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

(𝑋𝑖 − 𝑋 𝑗 )

× ASym𝑋1 ,...,𝑋𝑛−1

⎡⎢⎢⎢⎢⎣
∏

1≤𝑖< 𝑗≤𝑛−1
(1 + 𝑋 𝑗 + 𝑋𝑖𝑋 𝑗 )

∑
0≤ 𝑗1< 𝑗2< · · ·< 𝑗𝑛−1≤𝑞−𝑝

𝑋
𝑗1

1 · · · 𝑋
𝑗𝑛−1
𝑛−1

⎤⎥⎥⎥⎥⎦ . (B.4)

Now, the coefficient of 𝑋𝑚1
1 𝑋𝑚2

2 · · · 𝑋𝑚𝑛−1
𝑛−1 in this expression is the generating function of pairs of, let

us say, extended ASTs and permutations of {1, 2, . . . , 𝑛 − 1} such that if 𝑚𝜎 (1) , . . . , 𝑚𝜎 (𝑛−1) is added
to the positions of the 1-columns, we obtain a strictly increasing sequence of integers between p and q.
Extended refers to the fact that we now would need an extended version of Theorem B.2 as indicated
above, as we cannot guarantee that ( 𝑗1 −𝑚𝜎 (1) , 𝑗2 −𝑚𝜎 (2) , . . . , 𝑗𝑛−1 −𝑚𝜎 (𝑛−1) ) are strictly increasing
when we sum over all 𝑝 ≤ 𝑗1 < 𝑗2 < . . . < 𝑗𝑛−1 ≤ 𝑞.

An exception in this respect is the case when all 𝑚𝑙 = 0. It follows that the constant term of (B.4) is
the generating function of ASTs with n rows whose 1-columns are between p and q. Using (1.8), this is
equal to

𝑛−1∏
𝑖=1

(1 + 𝑡𝑋𝑖)𝑋
−2𝑛+1+𝑝
𝑖

1 − 𝑋𝑖

∏
1≤𝑖< 𝑗≤𝑛−1

𝑋𝑖 − 𝑋 𝑗

1 − 𝑋𝑖𝑋 𝑗
det

1≤𝑖, 𝑗≤𝑛−1

(
𝑋

𝑗−1
𝑖 (1 + 𝑋𝑖)

𝑗−1 − 𝑋
𝑞−𝑝+2𝑛−2 𝑗+1
𝑖 (1 + 𝑋𝑖)

𝑗−1
)
.
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