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FRACTAL DIMENSIONS OF k-AUTOMATIC SETS

ALEXI BLOCK GORMAN AND CHRIS SCHULZ

Abstract. This paper seeks to build on the extensive connections that have arisen between automata
theory, combinatorics on words, fractal geometry, and model theory. Results in this paper establish a
characterization for the behavior of the fractal geometry of “k-automatic” sets, subsets of [0, 1]d that are
recognized by Büchi automata. The primary tools for building this characterization include the entropy of
a regular language and the digraph structure of an automaton. Via an analysis of the strongly connected
components of such a structure, we give an algorithmic description of the box-counting dimension,
Hausdorff dimension, and Hausdorff measure of the corresponding subset of the unit box. Applications to
definability in model-theoretic expansions of the real additive group are laid out as well.

§1. Introduction.

1.1. Main results. In this paper, we consider the k-automatic subsets of R, and
analyze both the k-representations of such sets and the Büchi automata that
recognize their base-k representations. The methods used in this paper integrate
multiple perspectives previously taken regarding Büchi automata and k-automatic
subsets of finite-dimensional Euclidean spaces. These include the perspective given
by viewing automata as directed graphs, as well as characterizations of k-regular
�-languages coming from combinatorics on words.

Our primary result describes how to obtain the Hausdorff and box-counting
dimensions of k-automatic subsets of [0, 1]d ⊆ Rd (with d ∈ N) not quite in terms of
some of the induced subautomata, but by considering slight variants thereof. Further
results include a similar mechanism for computing Hausdorff measure (in the
appropriate dimension) in terms of the same variant of an induced subautomaton, as
well as a characterization of which expansions of the first order structure (R, <,+) by
k-automatic subsets of [0, 1]d have definable unary sets whose Hausdorff dimension
differs from its box-counting dimension.

Structures of this form are of some interest to tame geometers since they are “well-
behaved” from the perspectives of topology and computability theory. Though
they often fail to have stability and its generalizations (we will elaborate below),
they retain the decidability found in the real additive group (see [3, Theorem 6]).
It is moreover rare to find examples of structures with some geometric notion
of tameness in which there are definable sets whose Hausdorff and box-counting
dimensions differ.
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2 ALEXI BLOCK GORMAN AND CHRIS SCHULZ

Recall that an automaton is “trim” if each state is accessible from some start
state, and each state is also coaccessible from some accept state. Below, we use dH
to denote Hausdorff dimension, we use dB to denote box-counting dimension, and
h(X ) denotes the entropy of X ; for formal definitions of each, see Section 2. We show
that as a corollary of recent work of Evans [9], if X is a closed k-automatic subset of
[0, 1]n recognized by closed automaton A, then dH (X ) = dB(X ) = 1

log(k)h(L(A)),
where L(A) is the set of strings A recognizes.

To state our main theorem, we will briefly describe the “cycle language” associated
with a state q in an automaton A, the definition of which is stated with more detail
in Section 5. Suppose that A is an automaton (finite or Büchi) with Q as its set of
states. For state q ∈ Q, the cycle language Cq(A) is the language consisting of all
w ∈ Σ∗ such that there is a run of A from state q to itself via w.

Theorem A. Let A be a trim Büchi automaton with set of states Q, and let X be
the set of elements in [0, 1]d ⊆ Rd that have a base-k representation that A accepts.
Let F be the set of accept states of A. Then:

(i) dH (X ) = 1
log k maxq∈F h(Cq(A)).

(ii) dB(X ) = 1
log k maxq∈Q h(Cq(A)).

From this theorem, and using the crucial notion of “unambiguous” Büchi
automata, we establish a similar result that describes the Hausdorff measure of
a k-automatic set in terms of the structure of the automaton that recognizes it. For a
definition of unambiguous automata and details about the partition {Mq : q ∈ Q′}
of the language L in the theorem below, see Section 6.

Theorem B. Let A be an unambiguous Büchi automaton with set of states Q
and recognizing an �-language L. Let Q′ ⊆ Q be the set of states whose strongly
connected component contains an accept state. For each q ∈ Q′, let Aq be the
automaton created by moving the start state of A to q and removing all transitions out
of its strongly connected component, and let Lq be the �-language it accepts. Then we
can effectively partition L into sublanguages {Mq : q ∈ Q′} such that:

(i) dH (�k(L)) = maxq∈Q′ dH (�k(Lq)),
(ii) with α = dH (�k(L)), �αH (L) =

∑
q∈Q′ �αH (Mq).

Finally, we give a dividing line for the fractal dimensions of definable sets in certain
first-order structures related to Büchi automata. This dividing line has implications
for the model-theoretic tameness of structures of the form (R, <,+, X ) where X ⊆
[0, 1]n is k-automatic, since Hieronymi and Walsberg have shown in [12] that if C is a
Cantor set (a subset ofR that is compact, has no interior, and has no isolated points),
then (R, <,+, C) is not tame with respect to any notion coming from Shelah-style
generalizations of stability, including NIP and NTP2.

Theorem C. Suppose X ⊆ [0, 1]n is k-automatic. There exists a set A ⊆ [0, 1]
definable in (R, <,+, X ) such that dB(A) �= dH (A) if and only if either a Cantor set
is definable in (R, <,+, X ) or a set that is both dense and codense on an interval is
definable in (R, <,+, X ).

1.2. Background. In his seminal work [4], Büchi introduced the notion of what
we now call a Büchi automaton, and he identified a connection between these
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FRACTAL DIMENSIONS OF k-AUTOMATIC SETS 3

automata and the monadic second-order theory of the natural numbers with the
successor function. Notably, Büchi automata take countably infinite-length inputs,
unlike standard automata (which we will also call “finite automata”), which only
accept or reject finite-length input strings. In addition to the work of Büchi to extend
the notion of automatic sets to infinite words, McNaughton broadened the realm of
generating infinite sequences by a finite automaton in [15], and many more notions
of automatic or regular sets of infinite words arose.

There is natural topological structure on the space of infinite words on a
finite alphabet; hence, the topological features of subsets of such a space that is
recognized by an appropriate Büchi automaton have been investigated since the
1980s. Languages recognized by Büchi automata are commonly called regular
�-languages. One topological property that was first introduced in the context
of information theory by Shannon in [19] is that of entropy, also called “topological
entropy” in some settings.

Staiger established in [20] that extending the definition of entropy to�-languages
yields compelling topological characterizations of closed regular �-languages. For
example, he shows in [20] that a closed regular �-language is countable if and only
if the entropy is 0 and that the entropy of regular �-languages is countably additive.
From another perspective, in [6], the authors Charlier, Leroy, and Rigo show that
there is a close connection between regular�-languages and Graph Directed Iterated
Function Systems, or GDIFSs for brevity. Due to the work in [14], there have
long existed means of computing geometric properties like Hausdorff measure and
Hausdorff dimension for GDIFSs.

In light of the connection between Büchi automata and GDIFSs, the connections
between fractal dimensions and entropy for automatic sets of real numbers can now
yield a total characterization, as our paper illuminates. The work of Staiger and
Charlier, Leroy, and Rigo focus on computing fractal dimensions and equality of
fractal dimensions in the case of either closed or deterministic k-automatic sets (with
the Cantor space as the setting for Staiger and the reals as the setting for Charlier,
Leroy, and Rigo), and in this paper we extend such results to the non-deterministic
and non-closed cases, while also illustrating precisely when the equality of such
dimensions fails. The new methods we introduce also are applied to computing
Hausdorff measure, which has been relatively explored for k-automatic sets of real
numbers.

§2. Preliminaries.

2.1. Definition of Büchi automata. Below, for a set X we use X ∗ to denote the
Kleene star of X, i.e., X ∗ = {x1x2 ... xn : n ∈ N, x1, ... , xn ∈ X}, and we similarly
useX� to denote the set {x1x2 ... : x1, x2, ... ∈ X}. For a language L of finite strings,
we will use �L to denote the limit language of L, i.e., the set of infinite strings with
infinitely many prefixes in L.

Definition 2.1. A finite automaton is a 5-tuple A = (Q,Σ, �, S, F ) where:

• Q, the set of states, is a finite set;
• Σ, the alphabet, is a finite set;
• �, the transition function, is a function Q × Σ → P(Q);
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4 ALEXI BLOCK GORMAN AND CHRIS SCHULZ

• S, the set of start states or initial states, is a nonempty subset of Q;
• F, the set of accept states or final states, is a subset of Q.

A finite automaton is said to run from q0 to qn on a string w = w1 ... wn ∈ Σn,
for q0, qn ∈ Q, if there exist states q1, ... , qn–1 such that for i = 1, ... , n we have
qi ∈ �(qi–1, wi). If q0 ∈ S, such a sequence of states may be called a run of w in A,
which is accepting if qn ∈ F . The automaton accepts w if there is an accepting run
of w. The language recognized (or accepted) by A is the set of all strings in Σ∗ it
accepts. Two finite automata are equivalent if they recognize the same language.

Definition 2.2. A Büchi automaton is a 5-tuple A = (Q,Σ, �, S, F ) where:

• Q, the set of states, is a finite set;
• Σ, the alphabet, is a finite set;
• �, the transition function, is a function Q × Σ → P(Q);
• S, the set of start states or initial states, is a nonempty subset of Q;
• F, the set of accept states or final states, is a subset of Q.

For an infinite string w = w1w2 ··· ∈ Σ� , a run of w in A is a sequence of states
q0, q1, ··· ∈ Q� such that q0 ∈ S and for i ∈ Z+ we have qi ∈ �(qi–1, wi). A run is
accepting if qi ∈ F for infinitely many i. The automaton accepts w if there is an
accepting run of w. The �-language recognized (or accepted) by A is the set of all
strings in Σ� it accepts. Two Büchi automata are equivalent if they recognize the
same language.

Note that the only difference between these definitions is in the accept condition;
thus, the same tuple (Q,Σ, �, S, F ) may be alternately treated as either a finite or
Büchi automaton, which will be useful several times in this paper. A finite or Büchi
automaton also has a canonical digraph structure whose vertex set is Q and whose
edge set contains precisely those (q, q′) ∈ Q2 for which there exists � ∈ Σ such that
q′ ∈ �(q, �). We will often implicitly refer to this digraph structure, speaking of such
concepts as paths between states and strongly connected components containing
states. If we refer to the graphical structure on an automaton as simply a graph, we
implicitly mean the structure of the automaton as a directed graph.

We will also use several properties that such an automaton may have:

Definition 2.3. Let A = (Q,Σ, �, S, F ) be a finite or Büchi automaton.

(i) We say A is deterministic if |S| = 1 and |�(q, c)| ≤ 1 for all q ∈ Q, c ∈ Σ. (Note
that this definition guarantees that there is at most one run of a given w in A.)
Every finite automaton has an equivalent deterministic automaton; this is not
true in general for Büchi automata.

(ii) We say A is finite-trim if for every q ∈ Q, there is a path from a start state to
q (possibly of zero length) and a path from q to an accept state (also possibly
of zero length). On the additional condition that the path from q to an accept
state must be of nonzero length, we say that A is trim. Every Büchi automaton
has an equivalent trim automaton; every finite automaton has an equivalent
finite-trim automaton. In fact, given an automaton A, we may always produce
a finite-trim automaton that is equivalent to A as both a finite and Büchi
automaton.

(iii) We say A is closed if it is trim and every state is an accept state (i.e., Q = F ).
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(iv) Given a trim automaton A = (Q,Σ, �, S, F ), call A = (Q,Σ, �, S,Q) (this is the
resulting automaton when all the states of A are added to the set of accept
states) the closure of A. Note that if an automaton B = (Q′,Σ, �′, S ′, F ′) is
equivalent to A but not trim, then (Q′,Σ, �′, S ′, Q′) need not recognize the
same language as A.

(v) We say an automatonA = (Q,Σ, �, S, F ) is weak if for every q, q′ ∈ Q such that
q and q′ are in the same strongly connected component of A (as a digraph),
either q and q′ are both accept states, or both are not accept states.

2.2. Regularity and k-representations. Let k ∈ N>1, and set [k] = {0, 1, ... , k – 1}
for the remainder of this paper. We will use the terms “base-k representation” and
“k-representation” interchangeably to mean the expression of an element x ∈ R

as a countable sum of integer powers of k, each multiplied by a coefficient in [k].
Note that we will sometimes conflate elements of [0, 1] and their k-representations,
and we may occasionally say that an automaton A accepts the k-representation
of x ∈ [0, 1]. For the countable subset of [0, 1]d whose elements have multiple
(in particular, at most 2d ) k-representations, we mean that A accepts at least one of
the k-representations of x. For ease of switching between x and its k-representation,
we will define a valuation for elements of [k]� .

Definition 2.4. Define �k : [k]� → [0, 1] by

�k(w) =
∞∑
i=0

wi
ki+1 ,

where w = w0w1w2 ... with wi ∈ [k] for each i ∈ N.

Note that the equivalence relation v ≡ w ⇐⇒ �k(v) = �k(w) is not only a finite
equivalence relation, but moreover each equivalence class has size at most two. As
noted above, only countably many elements in [k]� are not the unique element of
their �k-equivalence class. For L ⊆ ([k]d )� , set

�k(L) = {(�k(w1), ... �k(wd )) : w1, ... , wd ∈ [k]�, ((w1,i , ... , wd,i))i<� ∈ L}.

We can now formally define what it means for a subset of [0, 1] ⊆ R to be
k-automatic. Let k ∈ N be greater than one, and let d ∈ N be greater than zero.

Definition 2.5. Say that L ⊆ ([k]d )� is k-regular if there is some Büchi
automaton A with alphabet [k]d that recognizes L. Say that A ⊆ [0, 1]d is
k-automatic if there is a Büchi automaton A with alphabet [k]d that recognizes
the maximal language L ⊆ ([k]d )� such that A = �k(L). Moreover, if this holds,
say that A recognizes A.

We also use the notation that for a Büchi automaton A with alphabet [k], Vk(A)
will denote the set of elements x ∈ [0, 1] for which some k-representation of x is
accepted by A.

The fact below follows immediately from the existence of a Büchi automaton
with alphabet Σ2 that accepts a pair of elements x, y ∈ Σ� precisely if both are
k-representations of the same element of [0, 1].
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6 ALEXI BLOCK GORMAN AND CHRIS SCHULZ

Fact 2.6. For A ⊆ [0, 1]d , if there is some k-regular language L ⊆ ([k]d )� such
that A = �k(L), then the set of all k-representations of elements of A is k-regular as
well.

Call an element x ∈ [0, 1]d a k-rational if there exists w ∈ ([k]d )∗ such that
x = �k(w�0�), where �0 is the d-tuple (0, ... , 0). Clearly, these are the elements of
[0, 1]d whose coordinates can all be written as fractions with powers of k in the
denominators.

Throughout this paper d denotes the (finite, but arbitrary) arity of the Euclidean
space we are working in. We use A to denote both finite automata and Büchi
automata, and we use L to denote the subset of ([k]d )∗ that A recognizes if it is a
finite automaton, or to denote the subset of ([k]d )� that A recognizes if it is a Büchi
automaton. If A is a Büchi automaton, we will often use A to denote �k(L), unless
specified otherwise. We will say that a Büchi automaton A accepts x ∈ [0, 1]d if A
accepts some w ∈ ([k]d )� such that �k(w) = x.

Given A a trim Büchi automaton we let A denote the image under �k of the
language that A, the closure of A, recognizes. In [6], the authors show that every
closed trim Büchi automaton recognizes a (topologically) closed set, hence the
conflation of the set recognized by A withA. This conflation will be further justified
in Section 4. In addition, we define closed k-automatic �-languages and the closure
of a k-automatic �-language analogously. If L is a language (either a subset of Σ∗

or a subset of Σ�) let Lpre ⊆ Σ∗ denote the set of all finite prefixes of elements of L.
Similarly, let Lpren denote the set of all length-n prefixes of elements of L, and let
Lpre<n denote the set of all prefixes of L with length at most n.

2.3. Definition of entropy. A key concept that turns out to be very helpful in the
study of dimension of k-automatic sets is the notion of entropy. The entropy of a
formal language was perhaps first used for regular languages by Chomsky and Miller
in [7] and was called entropy as an analogue for topological entropy by Hansen,
Perrin, and Simon in [11]. In [1], the authors note a seeming correspondence between
the Hausdorff dimension of a k-automatic fractal and the entropy of the language
of substrings of the base-k expansions of its points. Proving this conjecture is one
of the main results of this paper. In order to do so, we find it most convenient to
extend the definition of entropy to sequences of real numbers as follows:

Definition 2.7. Let (an)n∈N be a sequence of nonnegative real numbers such that
infinitely many terms are nonzero and such that an ∈ O(kn) for some k. The entropy
of an is defined as the limit superior:

h((an)n) = lim sup
n→∞

log an
n
.

The entropy h(L) of an infinite language L is the entropy of (|L|n)n.
We choose to leave the entropy undefined for an eventually zero and an growing

faster than exponentially, as this way the entropy is always a real number (and is
nonnegative if an is an integer sequence), which simplifies some results regarding
entropy.

2.4. Definition of box-counting dimension. There are two different notions of
dimension that will play large roles in this paper. The first is the concept of
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box-counting dimension, also known as Minkowski dimension. Intuitively, this is
defined by quantifying how the number of boxes required to cover a given set
increases as the size of the boxes decreases. This matches our intuition regarding
“nice” sets that have a well-defined length, area, etc. For instance, it is natural that
to cover a polygonal area of R2 with boxes, when the boxes are half the size, this will
require four times as many boxes. The box-counting dimension of such a polygon is
log 4
log 2 = 2.

In order to fully formalize this notion, many decisions must be made about the
details. Is the “size” of a box its diameter or its side length? Must we use boxes,
or could we use another shape, like a closed ball, instead? What if we allow the
covering sets to be any set of a given diameter? Should we place restrictions on the
positioning of each box, such as requiring them to come from a grid? It turns out
that most of these decisions have no effect on the resulting notion of dimension, i.e.,
they are equivalent. Therefore, we use one of the several versions of the definition
given in [10]:

Definition 2.8 [10, Section 3.1]. Let X ⊆ Rd be nonempty and bounded.

(i) We defineN (X, �, �r) to be the number of sets of the form I�z = [z1� + r1, (z1 +
1)� + r1] × ··· × [zd � + rd , (zd + 1)� + rd ], where �z = (z1, ... , zd ) are inte-
gers, required to cover X.

(ii) The upper box-counting dimension of X is

dB(X ) = lim sup
�→0

sup
�r

logN (X, �, �r)
log 1

�

.

(iii) The lower box-counting dimension of X is

dB(X ) = lim inf
�→0

inf
�r

logN (X, �, �r)
log 1

�

.

(iv) If the upper and lower box-counting dimensions of X are equal, we refer to
their value as simply the box-counting dimension dB(X ).

There are several properties of the box-counting dimension that justify the use of
the word “dimension” in the above definition. These include the following:

Fact 2.9 [10, Section 3.2]. Let X ⊆ Rd be nonempty and bounded.

(i) If X is a smooth n-manifold (embedded in Rd ), then dB(X ) = n.
(ii) If X ⊆ Y , then dB(X ) ≤ dB(Y ) and dB(X ) ≤ dB(Y ).
(iii) If X = Y1 ∪ Y2, then dB(X ) = max(dB(Y1), dB(Y2)).
(iv) Invertible affine transformations of Rd preserve dB and dB .

In addition to these, box-counting dimension has one more property that turns
out to be quite useful (and that other notions of dimension do not possess):

Fact 2.10 [10, Proposition 3.4]. Let X ⊆ Rd be nonempty and bounded. Then
dB(X ) = dB(X ), and dB(X ) = dB(X ).

2.5. Definition of Hausdorff dimension. Hausdorff dimension is the other notion
of dimension that we will use in this paper. It is considerably more popular within
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fractal geometry, probably due to its compatibility with measure-theoretic notions.
To define Hausdorff dimension, we must first define the notion of Hausdorff measure,
a family of outer measures on subsets of Rd :

Definition 2.11 [10, Section 2.1]. Let X be a nonempty Borel subset of Rd . For
s ≥ 0, � > 0, we define

�sH (X, �) = inf

{ ∞∑
i=1

(DiamUi )
s : {Ui}i is a collection sets of diameter at most � covering X

}
.

The s-dimensional Hausdorff measure of X, �sH (X ), is the limit of �sH (X, �) as
� → 0.

One precaution: recall that when we defined box-counting dimension above, we
mentioned that it does not matter if the covering sets are boxes, balls, or any set
with a given diameter. This is not the case with Hausdorff measure. Although the
Hausdorff dimension of X would ultimately be the same if we changed these details
in the above definition, the measure itself could be different.

Note that for subsets of R with Hausdorff measure one, the Hausdorff measure
agrees with the Lebesgue measure. A given set X will only have a “meaningful” (i.e.,
nonzero and finite) Hausdorff measure for at most one value of s. Consider once
more the example of a polygon in R2. The two-dimensional Hausdorff measure of
a polygon is, up to a constant factor of 	4 , its area. But the s-dimensional Hausdorff
measure will be infinite for any s < 2 and zero for any s > 2. This suggests the
following definition of Hausdorff dimension:

Definition 2.12 [10, Section 2.2]. For X ⊆ Rd nonempty, the Hausdorff
dimension dH (X ) is the unique real number s such that �s

′
H (X ) = ∞ for s ′ < s

and �s
′
H (X ) = 0 for s ′ > s .

Note that when s ′ = s , the Hausdorff measure may or may not be finite and may
or may not be zero. What matters for determining dimension is the limiting behavior
on either side of the critical value.

Hausdorff dimension has the properties that we expect any notion of dimension
to have. These include the following:

Fact 2.13 [10, Section 2.2]. (i) If X is a smooth n-manifold (embedded inRd ),
then dH (X ) = n.

(ii) If X ⊆ Y , then dH (X ) ≤ dH (Y ).
(iii) If X = Y1 ∪ Y2, then dH (X ) = max(dH (Y1), dH (Y2)).
(iv) Invertible affine transformations of Rd preserve dH .

In fact, Hausdorff dimension satisfies a stronger version of (iii) above:

Fact 2.14 [10, Section 2.2]. If X =
⋃
i∈N
Yi , then dH (X ) = maxi∈N dH (Yi).

As a corollary, the Hausdorff dimension of any countable set is zero (as that of a
point is zero), so Hausdorff dimension is invariant under the addition or removal of
a countable set of points. This is very unlike box-counting dimension: note that box-
counting dimension is preserved under closures. SinceRd is separable, stability under
closures and stability under the addition of countably many points are properties
directly at odds with each other.
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In particular, consider the setX = Q ∩ [0, 1]. The closure of X is the interval [0, 1],
which has box-counting dimension 1; hence, X has box-counting dimension 1. Yet
X is countable and thus has Hausdorff dimension 0. This gives an explicit example
of when Hausdorff and box-counting dimension may differ. Note, however, that
when they do differ, it is always the box-counting dimension that is higher:

Fact 2.15 [10, Equation 3.17]. Let X be a nonempty and bounded subset of Rd .
Then dH (X ) ≤ dB(X ) ≤ dB(X ).

§3. Entropy and its relationship to dimension.

3.1. Properties of entropy. It will be helpful to establish several properties of
entropy before connecting it to fractal dimension. First, we need the following
results from [20] concerning the monotonicity of entropy under the subset relation
and union operation, and �-language prefixes.

Fact 3.1 [20, Proposition 1]. Let L1 and L2 be infinite languages.

(i) If L1 ⊆ L2, then h(L1) ≤ h(L2).
(ii) h(L1 ∪ L2) = max(h(L1), h(L2)).

Fact 3.2 [20]. Let L be an infinite language. Then

h(Lpre) = lim sup
n→∞

log |L|≤n
n

= h(L).

In the case where L is closed under prefixes, we can define its entropy to be a limit,
rather than a limit superior. This fact is used in Corollary 9 of [20], but not proven
explicitly. Hence, we include the following result for completeness.

Lemma 3.3. Let L be a regular language closed under prefixes. Then limn→∞
log |L|n
n

exists.

Proof. Let Σ be the alphabet of L.
By Theorem 13 of [17], there exists a constant c and an increasing sequence (ni)i∈N

such that 0 < ni+1 – ni ≤ c and such that
(

log |L|ni
ni

)
i

converges.

For any n ∈ Nwith n ≥ n1, let i(n) be the index such that ni(n) ≤ n < ni(n)+1. Note
that n – ni(n) ≤ c, and ni(n)+1 – n ≤ c. Set dn+ := ni(n)+1 – n and dn– := n – ni(n).

Let k1 < k2 ∈ N. Since L is prefix-closed, any string of length k2 in L is a string
of length k1 in L, prepended to one of the |Σ|k2–k1 strings of length k2 – k1 over the
alphabet Σ. Thus |L|k2 ≤ |Σ|k2–k1 |L|k1 .

Therefore, given any n ≥ n1,
1

|Σ|dn+
|L|ni(n)+1

≤ |L|n ≤ |Σ|dn– |L|ni(n)

=⇒ 1
|Σ|c |L|ni(n)+1

≤ |L|n ≤ |Σ|c |L|ni(n)

=⇒ log |L|ni(n)+1
– c log |Σ| ≤ log |L|n ≤ log |L|ni(n)

+ c log |Σ|

=⇒
log |L|ni(n)+1

–c log |Σ|
n ≤ log |L|n

n ≤
log |L|ni(n)

+c log |Σ|
n

=⇒
log |L|ni(n)+1

n – c log |Σ|
n ≤ log |L|n

n ≤
log |L|ni(n)

n + c log |Σ|
n

=⇒
log |L|ni(n)+1
ni(n)+1

– c log |Σ|
n ≤ log |L|n

n ≤
log |L|ni(n)
ni(n)

+ c log |Σ|
n .
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Note that
(
c log |Σ|
n

)
n
→ 0. Therefore,

(
log |L|n
n

)
n

is bounded between two sequences

with the same limit; hence, it converges.
As an additional consequence, note that if L is a regular language closed under

prefixes, then limn→∞
log |L|≤n
n exists as well. �

3.2. Entropy and box-counting dimension. Note that box-counting dimension
appears to be quite hard to compute by the definition we have given, because there
are fairly general quantifications over multiple variables. But with a bit of work,
the process of proving the box-counting dimension of a set can be simplified. In
particular, we have the following result showing that we do not need to check many
values of � and h:

Lemma 3.4. Let X ⊆ [0, 1]d . Let r > 1, and assume that the limit

L = lim
n→∞

logN (X, r–n, �0)
log rn

exists. Then dB(X ) = L.

Proof. Let (�i)i be any sequence of positive values converging to zero, and let
(�hi)i be any sequence of values in [0, 1)d . We will show that

lim
i→∞

logN (X, �i , �hi)
log 1

�i

= L.

Choose some arbitrary i, and find ni such that r–ni > �i > r–ni –1. Because �i → 0,
we have ni → ∞.

Consider the boxes of the form I�z = [z1r–ni , (z1 + 1)r–ni ] × ··· × [zd r–ni ,
(zd + 1)r–ni ] where �z = (z1, ... , zd ) are integers. Similarly, choose an arbitrary
vector of integers �z ′ = (z ′1, ... , z

′
d ) and let I ′ = [(z ′1 – hi,1)�i , (z ′1 – hi,1 + 1)�i ] × ··· ×

[(z ′d – hi,d )�i , (z ′d – hi,d + 1)�i ]. Note that because the I�z are adjacent (i.e., they
partition Rd ) and longer than I ′, then there exist at most 2d such I�z that cover I ′.
We chose I ′ arbitrarily, so N (S, r–ni , 0) ≤ 2dN (S, �i , �hi).

Similarly, choose an arbitrary �z and let I = [z1r–ni –1, (z1 + 1)r–ni –1] × ··· ×
[zd r–ni –1, (zd + 1)r–ni –1], and consider the intervals of the form I�z′ = [(z ′1 – hi,1)�i ,
(z ′1 – hi,1 + 1)�i ] × ··· × [(z ′d – hi,d )�i , (z ′d – hi,d + 1)�i ] for integer vectors �z ′. Note
that because the I�z′ are adjacent (i.e., they partition R) and longer than I,
then there exist at most 2d such I�z′ that cover I. We chose I arbitrarily, so
N (X, �i , �hi) ≤ 2dN (X, r–ni –1, 0).

These inequalities give us

log 1
2d
N (X, r–ni , 0)

log rni+1 ≤ logN (X, �i , �hi)
log 1

�i

≤ log 2dN (X, r–ni –1, 0)
log rni

.

Apply laws of logarithms:

– log 2d + logN (X, r–ni , 0)
log r + log rni

≤ logN (X, �i , �hi)
log 1

�i

≤ log 2d + logN (X, r–ni –1, 0)
– log r + log rni+1 .
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Now note that as long as ai , bi → ∞ with C1, C2 constant, we have limi→∞
C1+ai
C2+bi

=
limi→∞

ai
bi

. So,

lim
i→∞

– log 2d + logN (X, r–ni , 0)
log r + log rni

= lim
i→∞

logN (X, r–ni , 0)
log rni

= L.

Similarly,

lim
i→∞

log 2d + logN (X, r–ni –1, 0)
– log r + log rni+1 = lim

i→∞

logN (X, r–ni –1, 0)
log rni+1 = L.

Since logN (X,�i ,�hi )
log 1
�i

is bounded between two sequences converging to L, we conclude

that its limit is L as well. �

Lemma 3.5. Let L be an �-language of base-k representations of points in [0, 1]d .
Let X = �k(L). Then dB(X ) = 1

log k h(Lpre).

Proof. Lemma 3.3 tells us that the entropy of Lpre is defined as a limit and not
just as a limit superior. By Lemma 3.4, it then suffices to show

lim
n→∞

logN (X, k–n, �0)
log kn

=
1

log k
lim
n→∞

log |Lpre |n
n

.

Now consider each string w in Lpre of length n. The infinite strings with this
prefix represent precisely the numbers in I�z = [z1k–n, (z1 + 1)k–n] × ··· × [zdk–n,
(zd + 1)k–n] where �z = (z1, ... , zd ) is the integer vector with base-k representation
given by w. So all of these boxes for all such strings w will cover X ; thus,
N (X, k–n, �0) ≤ |Lpre |n.

This covering may not be optimal, because the boxes I�z are not disjoint; they
overlap at points with at least one coordinate that is k-rational. So a single I�z may
contain points that the above covering method would place in any adjacent box.
However, this is the only overlap, so a box in the optimal covering corresponds to
at most 3d boxes in the above covering. Hence N (X, k–n, �0) ≥ 1

3d
|Lpre |n. Therefore,

1
log k

lim
n→∞

log |Lpre |n
n

=
1

logk
lim
n→∞

log 1
3d

+ log |Lpre |n
n

=
1

logk
lim
n→∞

log
(

1
3d
|Lpre |n

)
n

≤ 1
log k

lim
n→∞

logN (X, k–n, �0)
n

≤ 1
log k

lim
n→∞

log |Lpre |n
n

.

It follows that the two limits are equal, as required. �

We conclude this section by noting that the choice of regular language to associate
with a k-automatic set is not always obvious. In particular, in their conjecture
regarding the connection between entropy and dimension, Adamczewski and Bell [1]
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12 ALEXI BLOCK GORMAN AND CHRIS SCHULZ

use the regular language of substrings of the base-k expansions, not the language of
prefixes as we are using here. We will show that this does not make a difference.

This result follows from [20], in which the author shows that the entropy of
a k-regular �-language L is equal to that of the (normal) regular language Lpre.
Theorem 14 of [20] further shows that if L is an �-language, then there is a strongly
connected �-language L′ and a word w ∈ Σ such that {v : v = w
, 
 ∈ L′} ⊆ L,
and h(L) = h(L′). It follows that the entropy of L is equal to the maximum over
the entropies of the subsets corresponding to the strongly connected components of
any Büchi automaton A recognizing L, which together implies the entropy of L is
the same as that of the set of substrings of L.

Fact 3.6 [20]. Let L be a regular language closed under prefixes, and let Lsub be
the regular language of substrings of strings in L. Then h(L) = h(Lsub).

§4. The closed case.

4.1. Spectral radius and box-counting dimension. We know a lot about the
dimension of Vk(A) when it is a closed set, and we know that if A is deterministic
(and trim), then we can take the closure of Vk(A) by making all states accepting.
It is not immediately obvious that this will hold when A is nondeterministic, but
in the following lemma we show this is case. The following result is essentially a
corollary of Lemma 58 in [6]:

Lemma 4.1. Let A be a trim Büchi automaton. Then Vk(A) = Vk(A).

Proof. First, we prove that Vk(A) is closed. Let x ∈ Vk(A). Then there exist
(xm)m∈N ∈ Vk(A) with xm → x. Without loss of generality assume that either
xm < x for all m, or else xm > x for all m. We will assume the latter; the proof
in the former case is analogous.

Let w be the infinite base-k representation of x such that if x is k-rational, then
w ends in 0� ; this uniquely identifies w. (We choose this representation because we
assumed xm > x.) Then for all n there exists mn such that the first n characters of
some base-k representation of xmn are the first n characters of w. Let wn be this
base-k representation for a given n.

Now, we will define a graph G inductively. The vertex set will be a subset of
Σ∗ ×Q∗. Our initial condition is that G contains the vertices (�, q), where q ranges
over S (the set of start states of A). Then for every vertex (u, v), we require that
G contain the vertex (uc, vq) where uc is a prefix of w and A transitions from the
last state in v to state q on c; and we require that G contain the edge from (u, v) to
(uc, vq).

Observe that:

• G has finitely many connected components: as we have defined G, every vertex
is connected to a vertex whose string is shorter. So if the length of the string
for a vertex is n, that vertex has a path of length n to an initial vertex.

• G is locally finite: every vertex has at most k|Q| incident edges.
• G is infinite: if wn is accepted, there must be an accepting path for the first n

characters of wn, which are also the first n characters of w. This gives a vertex
for every natural number n.
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Therefore, we can apply Kőnig’s lemma to one of the connected components of G
and conclude that G has an infinite path. Moreover, note that because strings have
finite length, infinitely many of the edges in the path must lead to a longer string;
and because there is only one edge from any vertex to a shorter string, it in fact must
be the case that eventually the path only contains edges to longer strings. Choose a
vertex sufficiently far into the path that this is the case; there is a path from an initial
vertex to this vertex and then infinitely farther through longer and longer strings;
and this path must correspond to an accepting path for w. So A accepts w, and thus,
Vk(A) is closed.

Now it remains to show that Vk(A) is the closure of Vk(A). Note that any
accepting run in A is also accepting in A, so Vk(A) ⊆ Vk(A). Moreover, let w be
accepted by A. Then for any n, the first n characters of w have a run to some state
in A. As the only difference between A and A is the set of accept states, there is
also a run for these characters in A, and because A is trim, this run can be extended
to an accepting run. So every infinite string accepted by A has, for all n, its first
n characters in common with some infinite string accepted by A. It follows that
Vk(A) ⊆ Vk(A). But the only closed subset of Vk(A) that is a superset of Vk(A) is
Vk(A) itself. �

4.2. Spectral radius and Hausdorff dimension. In [14] Mauldin and Williams work
with what they call a “geometric graph directed construction” (or GGDC) on Rm,
and in [9] Evans works with the same notion. These constructions would be described
in the current terminology of metric geometry as GDIFSs that satisfy the open set
condition and have compact attractors. The objects of interest in [9] are also called
“k-self-similar” sets, and these include the closed k-automatic subsets of [0, 1]d , as
we will verify shortly. When a k-automatic set is not closed, it is not k-self-similar
in the sense of [9] by definition, and it should be noted that in general k-self-similar
sets need not be k-automatic.

Recall the open set condition for GDIFSs as defined in [8].

Definition 4.2. If G = (V,E, s, t, X, S) is a GDIFS, then it satisfies the open set
condition precisely if for all v ∈ V there are nonempty open sets Uv ⊆ Rd such that

Uu ⊇ fe[Uv]

for all u, v ∈ V such that e ∈ Eu,v , and additionally,

fe[Uv] ∩ fe′ [Uv′ ] = ∅

for all u, v, v′ ∈ V such that e ∈ Eu,v and e′ ∈ Eu,v′ .

In [9], Evans shows that Theorem 1.1 holds for the sets he calls k-self-similar by
first showing that all k-self-similar sets are GGDCs. He then proves the conclusion
of Theorem 1.1 for GGDCs. Since it is already demonstrated in [6] that we can
associate with any compact k-automatic set a GDIFS, and because knowing that
every compact k-automatic is a GGDC will give us additional tools and information,
we will show that any closed k-automatic set X ⊆ [0, 1]d is a GGDC, and the
consequence of Theorem 1.1 of [9] will follow.
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Theorem 4.3. Suppose that X ⊆ [0, 1]d is a k-automatic set recognized by a
deterministic Büchi automaton A with corresponding GDIFS GA = (V,E, s, t, X, S).
Then GA satisfies the open set condition as defined in [8].

Proof. Let X, A, and GA be as in the hypotheses. To see that the open set
condition holds, for each v ∈ V let Uv = (0, 1)d . Observe that for any e ∈ E, it is
the case that fe[Uv] = {x+�e

r : x ∈ Uv}, where �e ∈ Σ is the label of the transition
arrow in A that corresponds to the edge e. Hence it is clear that Uu ⊇ fe(Uv) for
any vertices u, v ∈ V such that e is an edge from u to v, since

(0, 1)d ⊇
d∏
i=1

(
�e,i
r
,
�e,i + 1
r

)
.

Suppose now that u, v, v′ ∈ V and that e ∈ Eu,v and e′ ∈ Eu,v′ . Due to A being
deterministic, it cannot be the case that the transition arrows corresponding to e
and e′ respectively in A have the same label. Thus we know �e �= �e′ , and as a
consequence if an element �a is in {x+�e

r : x ∈ (0, 1)d}, then it cannot be the case
that �a ∈ {x+�e′

r : x ∈ Uv}, since such sets carve out the interior of disjoint subcubes

of (0, 1)d of size
(

1
r

)d
. Hence the open set condition is satisfied. �

The following corollary is immediate from the fact that a closed Büchi automaton
is weak, by applying the above theorem. Recall that weak automata (which include
all closed automata) have an equivalent deterministic Büchi automaton [18].

Corollary 4.4. All closed Büchi automata satisfy the open set condition.

The following lemma concerns strongly connected automata, rather than closed
ones, and will be broadly useful in our methods.

Lemma 4.5. Let A and A′ be two strongly connected Büchi automata with the
same set of states, set of accept states, and transition relation. Then dH (Vk(A)) =
dH (Vk(A′)).

Proof. Note that Vk(A) =
⋃
qi∈S Vk(Ai), where S is the set of start states

of A and Ai is a modification of A where qi is the only start state. Therefore
dH (Vk(A)) = maxqi∈S dH (Vk(Ai)). Let r be the value of i giving maximal
dimension, i.e., dH (Vk(A)) = dH (Vk(Ar)). Define A′

s and choose s analogously,
such that dH (Vk(A′)) = dH (Vk(A′

s)) and such that qs is the only start state in A′
s .

Because Ar is strongly connected, it must contain a path P from qs to qr ; let
v ∈ ([k]d )∗ be a string witnessing path P. Let w ∈ ([k]d )� be accepted by Ar . Then
P concatenated with an accepting run of w in Ar forms an accepting run of vw
in A′

s . Moreover, note that

�k(vw) =
∞∑
i=0

(vw)i
ki+1

=
|v|–1∑
i=0

(vw)i
ki+1 +

∞∑
i=|v|

(vw)i
ki+1
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=
|v|–1∑
i=0

vi
ki+1 +

∞∑
i=0

wi

k|v|+i+1

= �k(v�0�) + k–|v|�k(w).

Let f : [0, 1]d → [0, 1]d map x to �k(v�0�) + k–|v|x; then the above chain
of equalities gives us that f(Vk(Ar)) ⊆ Vk(A′

s). Because f is an invertible
affine transformation, it follows that dH (Vk(Ar)) ≤ dH (Vk(A′

s)). The analogous
argument in the opposite direction gives us dH (Vk(A′

s)) ≤ dH (Vk(Ar)). Thus,

dH (Vk(A)) = dH (Vk(Ar)) = dH (Vk(A′
s)) = dH (Vk(A′)). �

In order to establish the final results of this section, we will need to talk about the
adjacency matrix of a Büchi automaton.

Definition 4.6. Let A be a Büchi automaton. Suppose that Q, the set of states
of A, is size n and let � : {1, ... , n} → Q be a fixed bijection. Then we associate with
A a weighted adjacency matrix M(A, s) = (mi,j) given by

mi,j =
( |{� ∈ Σ : (�(i), �(j), �) ∈ Δ}|

k

)s
.

Recall that Σ is the alphabet and Δ is the transition function of A.

We will need the following fact regarding sequences defined by repeated matrix
multiplication. The following result appears in [20]:

Fact 4.7. Let L be a regular language closed under prefixes. Let A be a finite
automaton recognizing L, and assume that A is deterministic, trim, and has every state
accepting. Label the states of A by numbers 1 through m. Then the entropy of L is
equal to the spectral radius sprad kM(A, 1) of weighted adjacency matrix M(A, 1)
scaled by the constant k.

We observe that the GDIFS associated with a closed Büchi automaton is nearly
of the form that gives rise to a GGDC in the sense of [9, 14]. However in [14], the
authors consider only iterated function systems directed by a graph, whereas the
GDIFSs associated with closed automata are in general multigraphs. To account for
this, though, we observe that we can “translate” between multigraph representations
of Büchi automata and automaton diagrams which are true digraphs.

Definition 4.8. For a deterministic Büchi automaton A = (Q,Σ, �, S, F ), con-
sider the automaton (Q × Σ,Σ, �′, S ′, F × Σ), with �′ and S ′ defined as follows:

• For all �, � ∈ Σ and q, s ∈ Q, if �(q, �) = ∅, then �′((q, �), �) = ∅. If �(q, �) =
{s}, then �′((q, �), �) = {(s, �)}. (These are the only possibilities, because A is
deterministic.)

• Fix some �0 ∈ Σ arbitrarily; then with S = {q}, we have S ′ = {(q, �0)}.
Since this automaton is not necessarily trim, let Adg denote the automaton that
results from removing any states that are not accessible from the start state or not
co-accessible from some accept state.

Lemma 4.9. If the automaton A is a closed Büchi automaton, then Adg is an
equivalent Büchi automaton that is also closed.
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Proof. To see that A and Adg are equivalent as automata, observe that if (qi)i∈N

is an accepting run of (�i)i∈N in A, then set �–1 = �0 and observe that the run
(qi , �i–1)i∈N of (�i)i∈N in Adg is an acceptance run for Adg . Similarly if (qi , �i)i∈N is
an acceptance run of (�i)i∈N in Adg , then (qi)i∈N is an acceptance run in A for the
same string.

Since we define Adg to be trim and sinceQ = F for A, we observeQ × Σ = F × Σ
makes Adg closed precisely if A is closed. �

Now that we have established that closed k-automatic subsets of [0, 1]d are
GGDCs in the sense of [14], the following is immediate from Theorem 1.1 in [9]:

Corollary 4.10. If X is a closed k-automatic set in R recognized by closed
automaton A, then dH (X ) = dB(X ) = 1

log(k)h(L(A)), whereL(A) is the set of strings
A recognizes.

The next corollary follows from the remarks made in the proof of Lemma 4.9
and essentially says that connected components are preserved by the construction
in Definition 4.8.

Corollary 4.11. If C is a strongly connected component of A, then there is a
corresponding strongly connected component of Adg , call it Cdg , such that the induced
sub-automata generated by C and Cdg (respectively) recognize the same strings up to
prefixes. In other words, let L be recognized by the induced sub-automaton generated
by C, and likewise for Ldg and Cdg ; then there exist words u, v such that L = uLdg
and Ldg = vL.

Proof. First, we note that the choice of start state in each induced sub-automaton
does not matter. In a strongly connected automaton, if the start state is moved, the
resulting language and original language are equal up to prefixes (as defined in the
statement of the corollary). So we will allow the start states to be chosen freely.

Let AC denote the sub-automaton of A consisting of the states and transitions
contained within C, with arbitrarily chosen q ∈ C as its only start state. Then by
strong connectedness, there exists a word w and a corresponding run (qi)0≤i≤|w|
where q0 = qn = q and where, for each transition within C, there exists an i
witnessing the transition, i.e., if there is an arrow from state r to state s on the
character �, then there exists i such that qi–1 = r, qi = s, wi = �.

LetCdg be the strongly connected component of (q,wn) in Adg , and let ACdg be its
induced sub-automaton with (q,wn) as the start state. Then there is a corresponding
path ((qi , wi))0≤i≤|w| (letting w0 = wn) in ACdg ; this path is a cycle, so each state
(qi , wi) is in Cdg .

Let u be any infinite word accepted by AC . Following the proof of the previous
lemma, note that because each transition in the acceptance run for u is also
somewhere in the run for w, and therefore it has a corresponding transition in
ACdg . So u is accepted by ACdg . The reverse inclusion follows immediately from the
same argument as in Lemma 4.9. �

The following is implied by the results in [21] in which the author shows that for
closed languages the Hausdorff dimension and entropy agree, in conjunction with
the countable additivity of entropy, as shown in [20].
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Lemma 4.12. Let A be a closed Büchi automaton. Let SC (A) denote the set of
strongly connected components of A. For each strongly connected component C of A,
letAC denote the sub-automaton ofA consisting of the states and transitions contained
within C, with arbitrarily chosen q ∈ C as its only start state.

Then

dH (Vk(A)) = max
C∈SC (A)

(
dH (Vk(AC ))) .

Proof. By Lemma 4.5, the Hausdorff dimension of the automaton AC does not
depend on the choice of q, its start state. Let K be the attractor of GA, i.e., the
set that A recognizes. We recall the statement of Theorem 5 of [14]. It states that
if K =

⋃
v∈V Kv is the attractor of GDIFS G, then dH (Kv) = αv = max{αH |H ∈

SCv(G)}. Here, SCv(G) denotes the set of strongly connected components of G
that are accessible from v.

By Corollary 4.4 we know that Adg satisfies the definition in [14] of a geometric
graph directed construction. By Lemma 4.9 we know that the automaton Adg
recognizes the same set as A; hence, dH (Vk(A)) = dH (Adg). For each strongly
connected component C of A, let AC be the automaton whose automaton diagram
is given by taking C and assigning an arbitrary start state from those in the vertex
set of C. By Corollary 4.11, for each C a strongly connected component of G
there is a corresponding strongly connected component Cdg of Adg such that
dH (Vk(AC )) = dH (Vk(AC,dg)), where AC,dg is an automaton whose automaton
diagram is given by taking Cdg and assigning an arbitrary start state from those in
the vertex set of Cdg .

Since Adg has a true digraph structure (rather than that of a multigraph),
we can apply Theorem 3 of [14] to obtain that the Hausdorff dimension of
Vk(AC,dg) is the unique α such that spradM(AC , α) = 1. Note that the value of
maxC∈SC (A) dH (Vk(AC )) is well-defined by Lemma 4.5. By Theorem 4 of [14],
we conclude that the dimension of Vk(Adg) is the maximum over all such α for
AC,dg ∈ SC (Adg). �

§5. Cycle languages and when dimensions disagree. We would like to know in
the general case when the Hausdorff dimension of a k-automatic set is not equal
to its box-counting dimension. A fundamental example of this is the set of dyadic
rationals in [0, 1]: { a2n : a, n ∈ N} ∩ [0, 1]. This set is 2-automatic because it can be
equivalently phrased as the set of numbers in [0, 1] whose binary expansions only
have a finite number of one of the two bits (0 or 1). It has Hausdorff dimension
0, as it is countable, and box-counting dimension 1, as it is dense in the interval.
Examining a Büchi automaton for this set, we note that it seems the reason for this
disparity in dimension is that there are many ways to get from the start state to
an accept state but few ways (one way, in fact) to loop from an accept state back
to itself. We can in fact formalize this notion and obtain a sufficient and necessary
condition for the equivalence of the two notions of dimension by defining the notion
of a cycle language.

Definition 5.1. In a finite or Büchi automaton A with q as one of its states, the
cycle language Cq(A) ⊆ Σ∗ contains all strings w for which there is a run of A from
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state q to itself on the string w. Let Cq(A) denote the automaton constructed by
taking A, making state q the only start and accept state, and trimming the resulting
automaton. Call this the cycle automaton.

Note that cycle languages are regular, and this is witnessed by the cycle automaton.
Note also that because looping to an accept state multiple times (or zero times) is
still a loop, Cq(A)∗ = Cq(A).

Lemma 5.2. Let A = (Q,Σ, �, S, F ) be a trim Büchi automaton, and let X =
Vk(A). Let Xq = Vk(Cq(A)) for each q ∈ Q. Then:

(i) dH (X ) = maxq∈F dH (Xq).
(ii) dB(X ) = maxq∈Q dH (Xq).

Proof. (i) LetLq be the language of words that have a path from a start state
of A to state q. An infinite string is accepted by A precisely when it has a path
that runs from a start state to an accept state and then cycles back to that
accept state infinitely often. Thus,

L(A) =
⋃
q∈F

⋃
w∈Lq

wCi(A)�.

Let Tw be the (linear) transformation on a set corresponding to prefixing
the string w. Applying dH ◦ Vk to both sides, we get

dH (X ) = dH

⎛
⎝⋃
q∈F

⋃
w∈Lq

Tw(Xq)

⎞
⎠ .

Applying the formula for Hausdorff dimension of a countable union,

dH (X ) = sup
q∈F

sup
w∈Lq

dH (Tw(Xq)).

Because (invertible) linear transformations do not affect dimension,

dH (X ) = sup
q∈F

sup
w∈Lq

dH (Xq).

Eliminating the now-useless quantification over w,

dH (X ) = sup
q∈F
dH (Xq).

Because A is finite,

dH (X ) = max
q∈F
dH (Xq).

(ii) Because A is trim, we haveX = Vk(A) according to Lemma 4.1. So applying
(i), we get that dH (X ) = maxq∈Q dH (Xq) (note that the cycle languageCq(A)
does not depend on which states are accepting). Yet we know from Theorem
4.10 that dH (X ) = dB(X ) = dB(X ). �
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We do immediately get as a corollary that dH (X ) < dB(X ) when dH (Xq) is larger
for some q /∈ F than for all q ∈ F . However, this is not a very useful version of
the characterization as it stands, because the Hausdorff dimension of �k(Cq(A)�)
is not an easy value to compute a priori. The rest of this section will be focused on
reducing the above to an easier problem.

The main step in the process of simplifying the result of Lemma 5.2 is the following
result:

Lemma 5.3. LetA be a finite automaton, not necessarily deterministic. LetL′ be the
�-language recognized byA as a Büchi automaton, and let L be the language recognized
by A as a finite automaton. LetX = �k(L′) andY = �k(L�). Then dH (X ) ≤ dH (Y ).

Proof. Without loss of generality, assume A is finite-trim. Let B be the induced
sub-automaton containing states in A from which there are arbitrarily long paths to
accept states. We note that B is trim and is equivalent as a Büchi automaton to A.
Assume that the desired lemma holds for B; let LB be the language recognized by B
as a finite automaton, and let Z = �k(L�B). Then LB ⊆ L; hence, dH (Z) ≤ dH (Y ).
So dH (X ) ≤ dH (Y ) as well; because A and B are equivalent as Büchi automata,
the lemma then holds for A. Thus we have reduced the lemma to the case where the
automaton in question is trim.

Starting over, assume A is trim. Then A, as a finite automaton, recognizes the
language M of prefixes of L. Let M ′ be the language A recognizes as a Büchi
automaton.

By the proof of Lemma 4.1, the language M ′ is closed, in the sense that if
infinitely many of an infinite string w’s prefixes are prefixes of strings in M ′, then
w ∈M ′. ThereforeM ′ = �M , as M is the language of prefixes of strings inM ′. Note
furthermore that L′ ⊆M ′. Moreover, any prefix of a string inM ′ is a string in M
and thus a prefix of a string in L, and thus, from trimness, a prefix of a string in L′;
so �k( �M ) = X .

Let Q be the state set of A (and A). Choose for each q ∈ Q a string uq on which
A runs from a start state to state q, and choose a string vq on which A runs from
state q to an accept state. Note that uqvq ∈ L. Let 
 be the maximum length of vquq
for q ∈ Q.

Observe that because X = �k( �M ) is closed, and M is closed under prefixes, we
have that dH (X ) = 1

log k h(M ) by Theorem 4.10. Define the language Mn for each
positive integer n as follows: for each string in M, and for every accepting run of
this string in A, after every n characters, we find the index q of the state A is in
and insert vquq ; the resulting strings are the elements ofMn. We note thatMn and
Xn = �k( �Mn) have the following properties:

• �Mn is a subset ofL� . A string in �Mnmust have the formw1vq1uq1w2vq2uq2w3 ...
with each wj a string of length n. Note that w1vq1 ∈ L, and uqjwj+1vqj+1 is in
L as well. So this string is in L� , and hence Xn ⊆ Y .

• The set Xn is still closed; observe that by considering every possible path
through L of length n and connecting them with strings of states recognizing
vquq , it is possible to create a closed Büchi automaton for �Mn and apply Lemma
4.1 again. Therefore, dH (Xn) = 1

log k h(Mpren ) by Theorem 4.10.
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• Let r be a positive integer; every string of length at most rn in M has a
corresponding string of length at most r(n + 
) inMpren . Thus |Mpren |≤r(n+
) ≥
|M |≤rn, and so

h(Mpren ) = lim sup
r→∞

log |Mpren |≤r(n+
)

r(n + 
)

≥ lim sup
r→∞

log |M |≤rn
r(n + 
)

=
n

n + 

lim sup
r→∞

log |M |≤rn
rn

.

Now, without loss of generality, assume our alphabet does not contain the
character $, and let N =M$∗. Observe that N is still prefix-closed and that
|M |≤n = |N |n for all n. Then the above expression is equal to n

n+
 h(N ), because
from Lemma 3.3, we know that the limit superior defining h(N ) is a limit (thus
it does not matter if we take a subsequence of the indices).

We would then like to replace N with M in this equation; hence, we show
h(N ) = h(M ). Note that because A is trim, every string in M can be extended
to a longer string in M; and because M is prefix-closed, said longer string
can have any length. Therefore |M |n is monotone in n, and so |N |n = |M |≤n ≤
(n + 1)|M |n. Conversely we trivially have |M |n ≤ |N |n. Since multiplication by
a linear factor does not change the entropy, we have h(N ) = h(M ) as required.

• Let r be a positive integer. Each string in M corresponds to at most |Q|(
 + 1)
strings inMpren because, at worst, the length of the original string is a multiple
of n, and thusMpren has |Q|(
 + 1) corresponding strings depending on which
state the string ends in (which could, due to nondeterminism, be any of them)
and how much of the last vquq is added. These corresponding strings are never
shorter than the original string; therefore, |Mpren |≤r ≤ |Q|(
 + 1)|M |≤r . Thus,

h(Mpren ) = lim sup
r→∞

log |Mpren |≤r
r

≤ lim sup
r→∞

log(|Q|(
 + 1)|M |≤r)
r

= lim sup
r→∞

log |Q|(
 + 1) + log |M |≤r
r

= lim sup
r→∞

log |Q|(
 + 1)
r

+ lim sup
r→∞

log |M |≤r
r

= lim sup
r→∞

log |M |≤r
r

= h(M ).

We thus have a collection of subsets Xn of Y such that

n

n + 

dH (X ) =

1
log k

n

n + 

h(M ) ≤ 1

log k
h(Mpren ) = dH (Xn) ≤

1
log k

h(M ) = dH (X ).

Because n
n+
 → 1 as n → ∞, we conclude that dH (Xn) → dH (X ). Therefore,

dH (Y ) ≥ sup dH (Xn) ≥ dH (X ), as required. �
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Corollary 5.4. Let A be a Büchi automaton recognizing an �-language L′.
Assume that A is trim and has one accept state and one start state, which are the same
state. Let L be the language recognized by A as a finite automaton. Then L′ = L� ,
and dH (�k(L′)) = dB(�k(L′)).

Proof. Let X = �k(L′). From Theorem 4.10, we know dH (X ) = dB(X ) =
dB(X ), so it suffices to show dH (X ) = dH (X ); in fact, we need only show
dH (X ) ≤ dH (X ).

Note that if an infinite string w belongs to L′, it must have a run that starts at
the single start/accept state and revisit it infinitely many times; hence, w can be
broken into infinitely many substrings, each of which starts and ends at this state.
So L′ = L� . The second result then follows from Lemma 5.3. �

Lemma 5.5. Let L = Cq(A) be a cycle language for a Büchi automaton. Then
dH (�k(L�)) = 1

log k h(L).

Proof. Let L′ be the language Cq(A) accepts as a Büchi automaton. Then by
Corollary 5.4, it suffices to show dB(�k(L′)) = 1

log k h(L). Moreover, by Lemma 3.5,
it suffices to show h((L′)pre) = h(L), where (L′)pre is the language of prefixes of
strings in L′.

We claim that (L′)pre = Lpre . We have Lpre ⊆ (L′)pre because Cq(A) is trim, so
any string that can be extended to a string in Lpre can be further extended to an
infinite string in (L′)pre . We have (L′)pre ⊆ Lpre because any string in L′ must have
infinitely many prefixes in L, so we may extend a string in (L′)pre to an infinite string
and then cut it off at a sufficiently late occurrence of an accept state.

So we have reduced the lemma to demonstrating that h(L) = h(Lpre), which is
Fact 3.2. �

Combining the above with Lemma 5.2 gives us the theorem:

Theorem 5.6. Let A = (Q,Σ, �, S, F ) be a trim Büchi automaton, and let X =
Vk(A). Let F be the set of indices of accept states in A. Then:

(i) dH (X ) = 1
log k maxq∈F h(Cq(A)).

(ii) dB(X ) = 1
log k maxq∈Q h(Cq(A)).

Corollary 5.7. Let A be a trim Büchi automaton such that Vk(A) = X . Then
dH (X ) < dB(X ) = h(X ) if and only if there exists a non-final state q ∈ Q \ F such
that for cofinitely manym ∈ N there exists nm ∈ N such that for eachf ∈ F , the ratio
of |Cf(A)|m, which denotes the number of paths from f to itself of length m, to km is
strictly less than the ratio of |Cq(A)|nm to knm .

Proof. For the forward implication, we will illustrate the contrapositive;
suppose that for every non-final state q ∈ Q \ F there is a final state f ∈
F such that lim supn→∞ |{� : q → q | � is a path of length n}| ≤ lim supn→∞ |{� :
f → f | � is a path of length n}|. If this is the case, we conclude that for all q ∈ Q
we have h(Cq(A)) ≤ h(Cf(A)) for some f ∈ F , where Cq(A) is the cycle language
of q as defined in Definition 5.1. This follows because taking logarithms commutes
with lim sup. By Theorem 5.6, we conclude that dB(X ) = dH (X ), proving the
contrapositive.
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For the backwards implication, we suppose that there does exist some q ∈ Q \ F
such that for cofinitely manym ∈ N there exists nm ∈ N such that

|Cf (A)|m
km (the ratio

of paths from f to itself of length m to km) is strictly less than |Cq (A)|nm
knm (the ratio

of paths from q to itself of length nm to knm ) for each f ∈ F . Then it is evident

that the sequence (nm)m∈N witnesses that for all f ∈ F we have lim supn→∞
|Cf |n
kn <

lim supn→∞
|Cq (A)|n
kn . Taking the logarithm of each side, we conclude h(Cf(A)) <

h(Cq(A)) for all f ∈ F . Hence by Theorem 5.6, we get that dH (X ) < dB(X ). �

§6. Hausdorff measure. As mentioned in Section 2.5, the Hausdorff dimension of
a fractal X is defined by considering the s-dimensional Hausdorff measure �sH (X )
for different values of s, and in particular, �sH (X ) is ∞ for s < dH (X ) and 0
for s > dH (X ). In this section, we will give methods for determining the dH (X )-
dimensional Hausdorff measure of various types of k-automatic fractal X and make
some observations that result from these methods. Note that this measure may be
zero, a positive real number, or infinite.

We begin by leveraging former work of Merzenich and Staiger. The following
comprises Lemma 15 and Procedure 1 of [16]:

Fact 6.1. Let A be a strongly connected deterministic Büchi automaton such that
X = Vk(A) is closed. Then there is exactly one vector �u such that �u is an eigenvector
corresponding to an eigenvalue of maximum magnitude of M(A, 0) and such that �u
contains nonnegative entries, the maximum of which is 1. The Hausdorff measure
�
dH (X )
H (X ) is the entry in �u corresponding to the start state of A.

Note that in particular, this implies 0 ≤ �dH (X )
H (X ) ≤ 1 in this case.

The next step in this analysis is to extend this work to the case of a general
strongly connected automaton. In particular, we might rightfully suspect that the
Hausdorff dimension and measure of a set recognized by a strongly connected Büchi
automaton are the same as those of the set’s closure. It is most convenient to show
this first for the dimensions and then for the measures.

Lemma 6.2. If A is a strongly connected Büchi automaton, then dH (Vk(A)) =
dH (Vk(A)).

Proof. Note that removing accept states from A can only make the resulting
Hausdorff dimension lower, so it suffices to consider the case where A has only one
accept state. Similarly, by Lemma 4.5, it suffices to assume A has only one start
state, which is also its accept state.

In this case, A satisfies the conditions of Corollary 5.4; so dH (Vk(A)) =
dB(Vk(A)). This is then equal to dB(Vk(A)), which is in turn equal to dH (Vk(A))
by Theorem 4.10, because Vk(A) is a closed k-automatic set. �

We show the analogous result for Hausdorff measures by first noting that when
such an X is embedded in its closure, the set-difference has lower dimension and
hence is null in the higher-dimensional measure.

Lemma 6.3. Let A be a strongly connected Büchi automaton, and let X = Vk(A).
If dH (X ) is positive, then dH (X \ X ) < dH (X ).
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Proof. First, we let L be the �-language accepted by A. Note that �k(L) = X ,
so an element of X \ X must correspond to an infinite string on which A passes
through finitely many accept states before infinitely passing through exclusively
non-accepting states. Let L′ be the language of strings for which every infinite
run is of this form (and for which there is at least one such infinite run). This
correspondence is not exact; it is possible that if an element of X \ X is k-rational,
one of its representations is in L′, while the other is not. This will not affect an
analysis of Hausdorff dimension, because (nonzero) Hausdorff dimension does not
change based on the membership of a countable set. Our goal is then to show that
dH (�k(L′)) < dH (X ).

Let F c = Q \ F be the set of non-accepting states of A, and let Lq for q ∈ F c
be the set of infinite strings for which every infinite run starting at state q only
passes through non-accepting states in A (and for which there is at least one such
infinite run). Since every string in L′ has a tail in Lq for some q, we know �k(L′) is a
countable union of scaled copies of �k(Lq). So it suffices to show that dH (�k(Lq)) <
dH (X ) for all q ∈ F c . We will show a stronger statement, that dH (�k(Lq)) < dH (X ).
By Theorem 4.10, it suffices to show the corresponding entropy statement, that
h(Lpreq ) < h(L

pre
).

Let logα = h(Lpreq ). By Lemma 3.3, logα = limn→∞
log |Lpreq |n

n . For every non-
accepting state q′ of A, there exists a string on which A cycles from state q′ to itself
while passing through an accept state. Choose such a cycle for each q′ ∈ F c , and let
m be the least common multiple of their lengths; by repeating the cycles if necessary,
we may assume they all have the same length m.

Let M be the �-language defined as follows: every string in M is made up of
blocks m characters long, with each block a “normal block” or a “cycle block.” The
normal blocks, when taken together with the cycle blocks removed, must form a
string inLq . Each cycle block corresponds to one of the cycles of length m mentioned
above, in particular the cycle corresponding to a state in which a run on the prefix
terminates. Note that when every string in M is prefixed by a constant string that
corresponds to a path from the start state of A to state q (which does not affect
entropy), the result is a subset of L. So h(Mpre) ≤ h(L

pre
), and it suffices to show

h(Lpreq ) < h(Mpre).
Now for every string in Lpreq , choose a run that witnesses this. Let k be a positive

integer, and let 0 ≤ r ≤ k. For any string in Lpreq of length rm, we may apply the
chosen run and insert (k – r) cycle blocks at any choice of block boundaries in order
to produce a string inMpre of length km. Therefore,

|Mpre |km ≥
k∑
r=0

(
k

r

)
|Lpreq |rm.

Let 1 <  < α. One can check that eventually |Lpreq |n > n. So for sufficiently
large k,

|Mpre |km >
k∑
r=0

(
k

r

)
rm = (m + 1)k.
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So,

h(Mpre) = lim sup
n→∞

log |Mpre |n
n

≥ lim sup
k→∞

log |Mpre |km
km

≥ lim sup
k→∞

log
(
(m + 1)k

)
km

= lim sup
k→∞

k log (m + 1)
km

=
log (m + 1)

m
.

So for all 1 <  < α, we have h(Mpre) ≥ log(m+1)
m . Thus,

h(Mpre) ≥ lim
↗α

log (m + 1)
m

=
log (αm + 1)

m
>

log (αm)
m

= logα = h(Lpreq ).

This concludes the proof. �
Corollary 6.4. Let A be a strongly connected Büchi automaton, and let

X = Vk(A) have Hausdorff dimension dH (X ) = α. Then �αH (X ) = �αH (X ).

Proof. We examine two cases. If α is positive, then the previous lemma gives us
dH (X \ X ) < α; hence, �αH (X \ X ) = 0. The result then follows from additivity of
Hausdorff measure.

Assume on the other hand that α = 0; then �αH is the counting measure. If
X is infinite, then so is X ; hence, the counting measure agrees for both. If X is
finite, then X = X , as any finite set in a metric space is closed. So in either case
�0
H (X ) = �0

H (X ). �
Our goal is now to extend this result and compute the Hausdorff measure of any

k-automatic fractal. We will do this by making use of a class of Büchi automata
called unambiguous Büchi automata:

Definition 6.5. Let A be a Büchi automaton. We say that A is unambiguous if
for every infinite string w accepted by A, there is exactly one accepting run of A
on w.

Note that any deterministic Büchi automaton is unambiguous. But in the case of
Büchi automata, we know that nondeterminism is sometimes necessary in order to
achieve full computational capability. Fortunately, a result of [5] tells us that this
capability can still be fully realized in the unambiguous case:

Fact 6.6. Let L be a regular �-language. Then there is an unambiguous Büchi
automaton A with L(A) = L. Moreover, given any Büchi automaton for L, we can
effectively convert it to an unambiguous automaton.

We will now extend Corollary 6.4, giving us a method to compute the Hausdorff
measure of any k-automatic fractal. Using the previous fact, we may assume that
the Büchi automaton defining the fractal is unambiguous. Next, it is useful for us

https://doi.org/10.1017/jsl.2023.55 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.55


FRACTAL DIMENSIONS OF k-AUTOMATIC SETS 25

to define functions associating each infinite string in an �-language L with its key
state and key prefix:

Definition 6.7. Let A be an unambiguous Büchi automaton with set of states Q
and recognizing an �-language L. The function kA : L→ Q maps a string w to the
unique key state q such that when A performs an accepting run on w:

• the run passes through state q;
• after first passing through state q, the run never leaves its strongly connected

component;
• before first passing through state q, the run never enters its strongly connected

component.

The function pA : L→ Σ∗ maps w to the key prefix of w running from the start
state of A to the first occurrence of kA(w).

Note that when a run leaves a strongly connected component, it can never return
to it, or else the states in between would also be a part of the same component, a
contradiction. So kA and pA are well-defined functions.

Lemma 6.8. Let A be an unambiguous Büchi automaton with set of states Q and
recognizing an�-language L. LetQ′ ⊆ Q be the set of states whose strongly connected
component contains an accept state. For each q ∈ Q′, let Aq be the automaton
created by moving the start state of A to q and removing all transitions out of its
strongly connected component, and let Lq be the �-language it accepts. Let Mq be
the �-language containing all strings w ∈ L with kA(w) = q. Then dH (�k(Mq)) =
dH (�k(Lq)), assuming Mq �= ∅. Moreover, let Pq = {pA(w) : w ∈Mq}; then for
any α,

�αH (Mq) =
∑
u∈Pq

�αH (Lq)
kα|u|

(here |u| is the length of u).

Proof. Let Mq,u be the set of w ∈ L with kA(w) = q and pA(w) = u. Such
strings decompose as w = uv, where v is a string that, starting from state q, passes
through accept states in its strongly connected component infinitely often without
leaving the component. In other words,Mq,u = uLq . It follows that �k(Mq,u) is an
affine copy of �k(Lq), which is scaled down with a factor of f = 1

k|u|
. By properties

of Hausdorff measure, �αH (Mq,u) = �αH (Lq )

kα|u|
.

Note then that Mq =
⋃
u∈Pq Mq,u , because Mq,u is empty for u /∈ Pq . Since

Pq ⊆ Σ∗ is a countable set, we may apply countable additivity to get the desired
formula. �

This process may then be applied to every key state to produce the following
result:

Theorem 6.9. Let A, Q, Q′, L, Lq , andMq be as in the previous lemma. Then:

(i) dH (�k(L)) = maxq∈Q′ dH (�k(Lq)),
(ii) with α = dH (�k(L)), �αH (L) =

∑
q∈Q′ �αH (Mq).
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Proof. For (i), we need only note that from the previous lemma dH (�k(Lq)) =
dH (�k(Mq)) and thatL =

⋃
q∈Q′Mq . Then (ii) also follows fromL =

⋃
q∈Q Mq . �

§7. Model-theoretic consequences. For the basics of first-order logic and model
theory, see [13], from which we also take our notation and conventions. We recall the
following correspondence between subsets of R recognized by Büchi automata and
definable subsets of the first-order structure Rk = (R, <,+,Z, Xk(x, u, d )) where
the ternary predicate Xk(x, u, d ) holds precisely if u is an integer power of k, and
in the k-ary expansion of x the digit specified by u is d, i.e., d is the coefficient of u
in the expansion. In particular, note that u ∈ kZ and d ∈ {0, ... , k – 1} in any tuple
(x, u, d ) such that Xk(x, u, d ) holds.

Theorem 7.1 [3]. For each n ∈ N, any A ⊆ Rn is k-automatic if and only if A is
definable in Rk .

In conjunction with results from [2], we obtain the following consequences for
definable subsets of the structure Rk . Below, by “Cantor set” we mean a nonempty
compact subset of R that has no isolated points and has no interior.

Lemma 7.2. Suppose that A is a trim Büchi automaton with m states on alphabet
[k] that has one accept state, which is also the start state. Let L be the language it
accepts as a Büchi automaton. Suppose that w ∈ [k]n is not the prefix of any word
in the language L. Then every subset of [0, 1] of the form (�k(w0�), �k(w(k – 1)�)),
with w ∈ [k]
 , 
 ∈ N, has a subinterval of size at least k–(
+m+n) disjoint from �k(L).
Moreover, the box-counting dimension of �k(L) is at most logkm+n (kn+m – 1) < 1.

Proof. For each q ∈ Q we let sq be a minimal path from q back to the start state.
We know a minimal path visits each state at most once. For a prefix w ∈ [k]∗ such
that a run on A stops at state q, the interval Ĩ = (�k(wsqv0�), �k(wsqv(k – 1)�))
cannot be in �k(L). Observe that the length of Ĩ is at least k–(
+m+n).

For the “moreover,” observe that by Lemmas 3.5 and 4.1, we have the following:

dB (�k(L)) = dB (�k(L)) =
1

log(k)
h(Lpre) = lim

d→∞
log(|Lpre |d )
d log(k)

= lim
d→∞

log(|Lpre |d (n+m))

d (n +m) log(k)
.

We proceed by induction on d. For the base case, note |Lpre |n+m ≤ km(kn – 1) <
kn+m – 1. For d > 1, we know |Lpre |d (n+m) ≤ |Lpre |(d–1)(n+m)(kn+m – 1) because for
each w ∈ |Lpre |(d–1)(n+m) there exists q′ ∈ Q such that wsq′v is not in |Lpre |d (n+m).
By induction, we get the following:

lim
d→∞

log(|Lpre |d (n+m))

d (n +m) log(k)
≤ lim
d→∞

log((kn+m – 1)d )
d (n +m) log(k)

,

and hence dB(�k(L)) ≤ logkn+m (kn+m – 1). �
Recall that �1

H is the Hausdorff 1-measure, which equals Lebesgue measure on
subsets of R.

Lemma 7.3. Suppose that X ⊆ [0, 1] is a k-automatic set with Hausdorff
dimension 1, and X is recognized by Büchi automaton A. If �1

H (X ∩ I ) > 0 for every
interval I ⊆ [0, 1] with k-rational endpoints, then there is � > 0 such that for each such
I we have �1

H (X ∩ I ) ≥ � · diam(I ).
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Proof. Let m be the number of states in A. By hypothesis the Hausdorff
dimension of X ∩ I is 1 for every interval I ⊆ [0, 1] with k-rational endpoints,
and �1

H (X ∩ I ) is positive. This means that for each prefix w of L(A), there exists a
strongly connected component Cq(A) that contains an accept state q and for which
the image under Vk of the set of words with prefix w that are accepted via a run
contained in Cq(A) has positive Hausdorff 1-measure. In particular, there is a word v
with length at mostm + |w| such that v extends w and �1

H (�k(vCq(A)�)) > 0, where
Cq(A) is the cycle language for Cq(A), assuming without loss of generality that a
run of v terminates at state q. We set a to be the minimum of �1

H (Vk(Cq(A))) where
q ranges over all states in a strongly connected component of A that contains an
accept state and has positive Hausdorff 1-measure. We let � = a · k–m, and conclude
that for each I ⊆ [0, 1], we have �1

H (X ∩ I ) ≥ � · diam(I ), as desired. �

Theorem 7.4. Suppose X ⊆ [0, 1]n is k-automatic. There exists a set A ⊆ [0, 1]
definable in (R, <,+, X ) such that dB(A) �= dH (A) if and only if either a Cantor set
is definable in (R, <,+, X ) or a set that is both dense and codense on an interval is
definable in (R, <,+, X ).

Proof. ( ⇐= ) Suppose that C, a Cantor set, is definable in the structure (R, <,
+, X ). Define the set A = {x ∈ C : ∃y ∈ C : [x < y ∧ (x, y) ∩ C = ∅] ∨ [y < x ∧
(y, x) ∩ C = ∅]}; A is first-order definable in (R, <,+, X ). Then A is the set of
endpoints of the complementary intervals (e.g., the endpoints of the middle thirds
that are removed in constructing the ternary Cantor set), which form a countable set
whose closure is the entire Cantor set. This follows since each element of a Cantor
set can be approximated by endpoints of the complement within [0, 1]. We conclude
that dH (A) = 0 and dB(A) = dB(A) �= 0 by Lemma 6.7 in [2].

Now suppose that D is a set that is dense and codense in an interval J ⊆ [0, 1], and
is definable in Rk . Note that if there exists any interval I ⊆ J such that dH (D ∩ I ) <
1, then because D is dense in J and hence also in I, we conclude that dB(D ∩ I ) =
dH (D ∩ I ) = 1 > dH (D ∩ I ), and we are done. Similarly if dH (D \D ∩ I ) < 1 for
some interval I ⊆ J , since D is codense in J.

The only case remaining is the one in which for every interval I ⊆ J , we
know dH (D ∩ I ) = 1 and dH (D \D ∩ I ) = 1. If this is the case then both A,
the automaton that recognizes D, and Ac , the automaton that recognizes D \D,
each have a strongly connected component containing an accept state whose cycle
language has the same Hausdorff dimension as the whole automaton, namely
Hausdorff dimension 1. Suppose that Sq(A) is the strongly connected automaton
that recognizes the cycle language of state q in A that has the same Hausdorff
dimension as D. Similarly suppose thatSq′(Ac) is the strongly connected automaton
that recognizes the cycle language of state q′ that has the same Hausdorff dimension
as D \D.

If the image of Sq(A) under Vk is nowhere dense in [0, 1], then Sq(A) satisfies
the hypotheses of Lemma 7.2, since being nowhere dense necessitates that at least
one finite word is not a prefix of the language. Similar logic holds for Sq′(Ac).
So by Lemma 7.2, they would have box-counting dimension less than one, and
hence their closures would as well. This would contradict our assumption that they
each respectively witness the Hausdorff dimensions of A and Ac being one, since
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Hausdorff dimension is bounded above by box-counting dimension, so Sq(A) and
Sq′(Ac) cannot have box-counting dimension less than one.

Therefore Sq(A) and Sq′(Ac) both must recognize somewhere dense sets. Hence
the closure of each must contain an interval and thus has positive Lebesgue measure.
By Corollary 6.4 we know that both Sq(A) and Sq′(Ac) have the same Hausdorff
1-measure as their closures (as Büchi automata). So by Lemma 6.8, both D and
D \D have positive Lebesgue measure, which equals Hausdorff 1-measure, on every
subinterval I ⊆ J . In particular, bothD ∩ I and (D \D) ∩ I have positive Lebesgue
measure for every I ⊆ J .

Fixing one such I, we may assume without loss of generality that D is an
interval. Applying Lemma 7.3, we know that both D ∩ I and D \D ∩ I have
positive Lebesgue measure bounded uniformly below by � · diam(I ) and �′ · diam(I )
respectively, for fixed �, �′ > 0 given to us by Lemma 7.3. SinceD \D ∩ I is a subset
of the complement of D ∩ I , we conclude �′ ≤ 1 – �, and also get the following:

�′ · diam(I ) ≤ �1
H (D ∩ I ) ≤ � diam(I ).

By the Lebesgue density theorem, sinceD ∩ I is dense in I for each I with k-rational
endpoints, we know that

lim
diam(I )→0

�1
H (D ∩ I )
diam(I )

exists and equals 1. Yet we observe that �′ ≤ �1
H (D∩I )
diam(I ) ≤ �, so we must have � = 1. But

we conclude the same holds for �
1
H (D\D∩I )

diam(I ) , so we also need �′ = 1. This contradicts
the fact that �′ ≤ 1 – �, and we are done.

( =⇒ ) Suppose that there is some set A ⊆ [0, 1] definable in (R, <,+, X ) such
that dB(A) �= dH (A). Then it must be the case that A �= A. Let A be a trim Büchi
automaton recognizing A. Note that we know A has no interior. Suppose it is not
the case that A is somewhere dense, i.e., A is nowhere dense. Then, we may pass from
A to A, and since A is nowhere dense we know that A is nowhere dense as well.

We know that dB(A) = dB(A) > 0; otherwise, since dH (A) ≤ dB(A), they would
have to agree on A. If dB(A) = 1, then dH (A) = 1 by Theorem 4.10. This implies
that there is a state q in A such that dH (Vk(Sq(A))) = 1 by Lemma 6.2. In order for
A to be nowhere dense, it must be the case that each strongly connected component
of A omits at least one string of finite length as a prefix. Otherwise, every finite-
length string is the prefix of some string inCq(A). Since there exists a stringw ∈ [k]∗

such that �k(wCq(A)�) ⊆ A, this would imply that A is dense in (and in fact, since
A is closed, contains) the interval �k(w[k]∗), contradicting that A is nowhere dense.
So for each state q in A, let vq ∈ [k]∗ be a word omitted from the prefixes of Cq(A)
whose length is minimal among such finite words. By Lemma 7.2, we conclude that
Vk(Sq(A)) has Hausdorff dimension less than 1 for all states q in A. So by Lemma
4.12, we know that dH (A) is the maximum of dH (Vk(Sq(A))) for all states q in
A, and we conclude that 1 > dH (A) > 0. By [2], there is a definable Cantor set in
(R, <,+, X ).
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In the case that A is somewhere dense, say on interval I ⊆ [0, 1], suppose it is
not also codense in I. Then some subinterval of I is contained entirely in A, so
dH (A) = 1 = dB(A), a contradiction. �

Acknowledgments. Many thanks to Philipp Hieronymi for the interesting ideas,
questions, and generous guidance provided for this paper. Thanks to Elliot Kaplan,
Jason Bell, and Rahim Moosa for their helpful comments, suggestions, and
questions regarding the contents of this paper.

Funding. We gratefully acknowledge that this research was supported by the
Fields Institute for Research in Mathematical Sciences. Its contents are solely the
responsibility of the authors and do not necessarily represent the official views of
the Institute. The first author was partially supported by the National Science
Foundation Graduate Research Fellowship Program under Grant No. DGE—
1746047. The second author was partially supported by the National Science
Foundation Grant No. DMS—1654725.

REFERENCES

[1] B. Adamczewski and J. Bell, An analogue of Cobham’s theorem for fractals. Transactions of the
American Mathematical Society, vol. 363 (2011), pp. 4421–4442.

[2] A. Block Gorman, Pairs and predicates in expansions of o-minimal structures, Ph.D. thesis,
University of Illinois at Urbana–Champaign, 2021.

[3] B. Boigelot, S. Rassart, and P. Wolper, On the expressiveness of real and integer arithmetic
automata (extended abstract), Proceedings of the 25th International Colloquium on Automata, Languages
and Programming, Springer, Berlin, Heidelberg, 1998, pp. 152–163.
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[18] D. Perrin and J. É. Pin, Infinite Words: Automata, Semigroups, Logic and Games, Elsevier,
Amsterdam, 2004.

[19] C. E. Shannon, A mathematical theory of communication. The Bell System Technical Journal,
vol. 27 (1948), no. 3, pp. 379–423.

[20] L. Staiger, The entropy of finite �-languages. Problems of Control and Information Theory, vol.
14 (1985), no. 5, pp. 383–392.

[21] ———, Combinatorial properties of the Hausdorff dimension. Journal of Statistical Planning and
Inference, vol. 23 (1989), pp. 95–100.

DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY

231 W. 18TH AVE.
COLUMBUS, OH 43210, USA

E-mail: blockgorman.1@osu.edu

PURE MATHEMATICS
UNIVERSITY OF WATERLOO

200 UNIVERSITY AVENUE WEST
WATERLOO, ON N2L 3G1

CANADA
E-mail: c2schulz@uwaterloo.ca

https://doi.org/10.1017/jsl.2023.55 Published online by Cambridge University Press

mailto:blockgorman.1@osu.edu
mailto:c2schulz@uwaterloo.ca
https://doi.org/10.1017/jsl.2023.55

	1 Introduction
	1.1 Main results
	1.2 Background

	2 Preliminaries
	2.1 Definition of Büchi automata
	2.2 Regularity and k-representations
	2.3 Definition of entropy
	2.4 Definition of box-counting dimension
	2.5 Definition of Hausdorff dimension

	3 Entropy and its relationship to dimension
	3.1 Properties of entropy
	3.2 Entropy and box-counting dimension

	4 The closed case
	4.1 Spectral radius and box-counting dimension
	4.2 Spectral radius and Hausdorff dimension

	5 Cycle languages and when dimensions disagree
	6 Hausdorff measure
	7 Model-theoretic consequences

