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Abstract. A D∞-topological Markov chain is a topological Markov chain provided with
an action of the infinite dihedral group D∞. It is defined by two zero-one square
matrices A and J satisfying AJ = JAT and J 2 = I . A flip signature is obtained from
symmetric bilinear forms with respect to J on the eventual kernel of A. We modify
Williams’ decomposition theorem to prove the flip signature is aD∞-conjugacy invariant.
We introduce natural D∞-actions on Ashley’s eight-by-eight and the full two-shift. The
flip signatures show that Ashley’s eight-by-eight and the full two-shift equipped with
the natural D∞-actions are not D∞-conjugate. We also discuss the notion of D∞-shift
equivalence and the Lind zeta function.

Key words: flip signatures, D∞-topological Markov chains, D∞-conjugacy invariants,
eventual kernels, Ashley’s eight-by-eight and the full two-shift
2020 Mathematics Subject Classification: 37B10, 37B05 (Primary); 15A18 (Secondary)

1. Introduction
A topological flip system (X, T , F) is a topological dynamical system (X, T ) consisting
of a topological space X, a homeomorphism T : X → X and a topological conjugacy F :
(X, T −1) → (X, T ) with F 2 = IdX. (See the survey paper [6] for the further study of flip
systems.) We call the map F a flip for (X, T ). If F is a flip for a discrete-time topological
dynamical system (X, T ), then the triple (X, T , F) is called a D∞-system because the
infinite dihedral group

D∞ = 〈a, b : ab = ba−1 and b2 = 1〉
acts on X as follows:

(a, x) �→ T (x) and (b, x) �→ F(x) (x ∈ X).
Two D∞-systems (X, T , F) and (X′, T ′, F ′) are said to be D∞-conjugate if there is a

D∞-equivariant homeomorphism θ : X → X′. In this case, we write
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(X, T , F) ∼= (X′, T ′, F ′)

and call the map θ a D∞-conjugacy from (X, T , F) to (X′, T ′, F ′).
Suppose that A is a finite set. A topological Markov chain, or TMC for short, (XA, σA)

over A is a shift space which has a zero-one A × A matrix A as a transition matrix:

XA = {x ∈ AZ : A(xi , xi+1) = 1 for all i ∈ Z}.
A D∞-system (X, T , F) is said to be a D∞-topological Markov chain, or D∞-TMC for
short, if (X, T ) is a topological Markov chain.

Suppose that (X, T ) is a shift space. A flip F for (X, T ) is called a one-block flip if
x0 = x′

0 implies F(x)0 = F(x′)0 for all x and x′ in X. If F is a one-block flip for (X, T ),
then there is a unique map τ : A → A such that

F(x)i = τ(x−i ) and τ 2 = IdA (x ∈ X; i ∈ Z).

The representation theorem in [4] says that if (X, T , F) is a D∞-TMC, then there is a
TMC (X′, T ′) and a one-block flip F ′ for (X′, T ′) such that (X, T , F) and (X′, T ′, F ′)
are D∞-conjugate.

Suppose that A is a finite set and that A and J are zero-one A × A matrices satisfying

AJ = JAT and J 2 = I . (1.1)

Since J is zero-one and J 2 = I , it follows that J is symmetric and that for any a ∈ A, there
is a unique b ∈ A such that J (a, b) = 1. Thus, there is a unique permutation τJ : A → A
of order two satisfying

J (a, b) = 1 ⇔ τJ (a) = b (a, b ∈ A).
It is obvious that the map ϕJ : AZ → AZ defined by

ϕJ (x)i = τJ (x−i ) (x ∈ X)
is a one-block flip for the full A-shift (AZ, σ). Since AJ = JAT implies

A(a, b) = A(τJ (b), τJ (a)) (a, b ∈ A),
it follows that ϕJ (XA) = XA. Thus, the restriction ϕA,J of ϕJ to XA becomes a one-block
flip for (XA, σA). A pair (A, J ) of zero-one A × A matrices satisfying equation (1.1) will
be called a flip pair.

The classification of shifts of finite type up to conjugacy is one of the central problems
in symbolic dynamics. There is an algorithm determining whether or not two one-sided
shifts of finite type (N-SFTs) are N-conjugate. (See §2.1 in [5].) In the case of two-sided
shifts of finite type (Z-SFTs), however, one cannot determine whether or not two systems
are Z-conjugate, even though many Z-conjugacy invariants have been discovered. For
instance, it is well known (Proposition 7.3.7 in [8]) that if two Z-SFTs are Z-conjugate,
then their transition matrices have the same set of non-zero eigenvalues. In 1990, Ashley
introduced an eight-by-eight zero-one matrix, which is called Ashley’s eight-by-eight and
asked whether or not it is Z-conjugate to the full two-shift. (See Example 2.2.7 in [5] or
§3 in [2].) Since the characteristic polynomial of Ashley’s eight-by-eight is t7(t − 2), we
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could say Ashley’s eight-by-eight is very simple in terms of spectrum and it is easy to
prove that Ashley’s eight-by-eight is not N-conjugate to the full two-shift. Nevertheless,
this problem has not been solved yet. Meanwhile, both Ashley’s eight-by-eight and the
full-two shift have one-block flips. More precisely, if we set

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =
[

1 1
1 1

]
, I =

[
1 0
0 1

]
and K =

[
0 1
1 0

]
, (1.2)

then A is Ashley’s eight-by-eight, ϕA,J is a unique one-block flip for (XA, σA), B is
the minimal zero-one matrix defining the full two-shift and (XB , σB) has exactly two
one-block flips ϕB,I and ϕB,K . It is natural to ask whether or not (XA, σA, ϕA,J ) is
D∞-conjugate to (XB , σB , ϕB,I ) or (XB , σB , ϕB,K). In this paper, we introduce the notion
of flip signatures and prove

(XA, σA, ϕA,J ) � (XB , σB , ϕB,I ), (1.3)

(XA, σA, ϕA,J ) � (XB , σB , ϕB,K) (1.4)

and

(XB , σB , ϕB,I ) � (XB , σB , ϕB,K). (1.5)

When (A, J ) and (B, K) are flip pairs, it is clear that if θ is a D∞-conjugacy
from (XA, σA, ϕA,J ) to (XB , σB , ϕB,K), then θ is also a Z-conjugacy from (XA, σA) to
(XB , σB). However, equation (1.5) says that the converse is not true.

We first introduce analogues of elementary equivalence (EE), strong shift equivalence
(SSE) and Williams’ decomposition theorem for D∞-TMCs. Let us recall the notions of
EE and SSE. (See [8, 9] for the details.) Suppose that A and B are zero-one square matrices.
A pair (D, E) of zero-one matrices satisfying

A = DE and B = ED

is said to be an EE from A to B and we write (D, E) : A ∼∼∼ B. If (D, E) : A ∼∼∼ B, then
there is a Z-conjugacy γD,E from (XA, σA) to (XB , σB) satisfying

γD,E(x) = y ⇔ for all i ∈ Z, D(xi , yi) = E(yi , xi+1) = 1. (1.6)

The map γD,E is called an elementary conjugacy.
An SSE of lag l from A to B is a sequence of l elementary equivalences

(D1, E1) : A ∼∼∼ A1, (D2, E2) : A1
∼∼∼ A2, . . . , (Dl , El) : Al ∼∼∼ B.

https://doi.org/10.1017/etds.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.59


3416 S. Ryu

It is evident that if A and B are strong shift equivalent, then (XA, σA) and (XB , σB) are
Z-conjugate. Williams’ decomposition theorem, found in [9], says that every Z-conjugacy
between two Z-TMCs can be decomposed into the composition of a finite number of
elementary conjugacies.

To establish analogues of EE, SSE and Williams’ decomposition theorem for
D∞-TMCs, we first observe some properties of a D∞-system. If (X, T , F) is a
D∞-system, then (X, T , T n ◦ F) are also D∞-systems for all integers n. It is obvious
that T n are D∞-conjugacies from (X, T , F) to (X, T , T 2n ◦ F) and from (X, T , T ◦ F)
to (X, T , T 2n+1 ◦ F) for all integers n. For one’s information, we will see that (X, T , F)
is not D∞-conjugate to (X, T , T ◦ F) in Proposition 6.1.

Let (A, J ) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

A = DE, B = ED and E = KDTJ

is said to be a D∞-half elementary equivalence (D∞-HEE) from (A, J ) to (B, K) and
write (D, E) : (A, J ) ∼∼∼ (B, K). In Proposition 2.1, we will see that if (D, E) : (A, J ) ∼∼∼
(B, K), then the elementary conjugacy γD,E from equation (1.6) becomes aD∞-conjugacy
from (XA, σA, ϕA,J ) to (XB , σB , σB ◦ ϕB,K). We call the map γD,E aD∞-half elementary
conjugacy from (XA, σA, ϕA,J ) to (XB , σB , σB ◦ ϕB,K).

A sequence of lD∞-half elementary equivalences

(D1, E1) : (A, J ) ∼∼∼ (A2, J2), . . . , (Al , Dl) : (Al , Dl) ∼∼∼ (B, K)

is said to be a D∞-strong shift equivalence (D∞-SSE) of lag l from (A, J ) to (B, K). If
there is a D∞-SSE of lag l from (A, J ) to (B, K), then (XA, σA, ϕA,J ) is D∞-conjugate
to (XB , σB , σ lB ◦ ϕB,K). If l is an even number, then (XA, σA, ϕA,J ) is D∞-conjugate to
(XB , σB , ϕB,K), while if l is an odd number, then (XA, σA, ϕA,J ) is D∞-conjugate to
(XB , σB , σB ◦ ϕB,K). In §4, we will see that Williams’ decomposition theorem can be
modified as follows.

PROPOSITION A. Suppose that (A, J ) and (B, K) are flip pairs.
(1) TwoD∞-TMCs (XA, σA, ϕA,J ) and (XB , σB , ϕB,K) areD∞-conjugate if and only if

there is a D∞-SSE of lag 2l between (A, J ) and (B, K) for some positive integer l.
(2) Two D∞-TMCs (XA, σA, ϕA,J ) and (XB , σB , σB ◦ ϕB,K) are D∞-conjugate if and

only if there is aD∞-SSE of lag 2l − 1 between (A, J ) and (B, K) for some positive
integer l.

To introduce the notion of flip signatures, we discuss some properties ofD∞-TMCs. We
first indicate notation. If A1 and A2 are finite sets and M is an A1 × A2 zero-one matrix,
then for each a ∈ A1, we set

FM(a) = {b ∈ A2 : M(a, b) = 1}
and for each b ∈ A2, we set

PM(b) = {a ∈ A1 : M(a, b) = 1}.
When (X, T ) is a TMC, we denote the set of all n-blocks occurring in points in X by Bn(X)
for all non-negative integers n.
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Suppose that (A, J ) and (B, K) are flip pairs and that (D, E) is aD∞-HEE from (A, J )
to (B, K). Since B is zero-one and B = ED, it follows that

FD(a1) ∩ FD(a2) = ∅ ⇒ PE(a1) ∩ PE(a2) = ∅,

PE(a1) ∩ PE(a2) = ∅ ⇒ FD(a1) ∩ FD(a2) = ∅, (1.7)

for all a1, a2 ∈ B1(XA). Suppose that u and v are real-valued functions defined on B1(XA)
and B1(XB), respectively. If |B1(XA)| = m and |B1(XB)| = n, then u and v can be regarded
as vectors in Rm and Rn, respectively. If u and v satisfy

for all a ∈ B1(XA) u(a) =
∑

b∈FD(a)
v(b), (1.8)

then for each a ∈ B1(XA), we have

u(τJ (a))u(a) =
∑

b∈PE(a)
v(τK(b))

∑
b∈FD(a)

v(b)

by E = KDTJ and equation (1.7) leads to∑
a∈B1(XA)

u(τJ (a))u(a) =
∑

b∈B1(XB)

∑
d∈PB(b)

v(τK(d))v(b).

Since J and K are symmetric, this formula can be expressed in terms of symmetric bilinear
forms with respect to J and K. If we write 〈u, u〉J = uTJu and 〈Bv, v〉K = (Bv)TKv,
then we have

〈u, u〉J = 〈Bv, v〉K.

We note that if both A and B have λ as their real eigenvalues and v is an eigenvector of B
corresponding to λ, then u satisfying equation (1.8) is an eigenvector of A corresponding
to λ. We consider the case where A and B have 0 as their eigenvalues and find out
some relationships between the symmetric bilinear forms 〈 , 〉J and 〈 , 〉K on the
generalized eigenvectors of A and B corresponding to 0 when (A, J ) and (B, K) are
D∞-half elementary equivalent.

We call the subspace K(A) of u ∈ Rm such that Apu = 0 for some p ∈ N the eventual
kernel of A:

K(A) = {u ∈ Rm : Apu = 0 for some p ∈ N}.
If u ∈ K(A) \ {0} and p is the smallest positive integer for which Apu = 0, then the
ordered set

α = {Ap−1u, . . . , Au, u}
is called a cycle of generalized eigenvectors of A corresponding to 0. In this paper, we
sometimes call α a cycle in K(A) for simplicity. The vectors Ap−1u and u are called the
initial vector and the terminal vector of α, respectively, and we write

Ini(α) = Ap−1u and Ter(α) = u.
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We say that the length of α is p and write |α| = p. It is well known [3] that there is a
basis for K(A) consisting of a union of disjoint cycles of generalized eigenvectors of A
corresponding to 0. The set of bases for K(A) consisting of a union of disjoint cycles of
generalized eigenvectors of A corresponding to 0 is denoted by Bas(K(A)). We will prove
the following proposition in §3.

PROPOSITION B. Suppose that (D, E) : (A, J ) ∼∼∼ (B, K). Then there exist bases E(A) ∈
Bas(K(A)) and E(B) ∈ Bas(K(B)) such that if p > 1 and α = {u1, u2, . . . , up} is a
cycle in E(A), then one of the following holds.
(1) There is a cycle β = {v1, v2, . . . , vp+1} in E(B) such that

Dvk+1 = uk and Euk = vk (k = 1, . . . , p).

(2) There is a cycle β = {v1, v2, . . . , vp−1} in E(B) such that

Dvk = uk and Euk+1 = vk (k = 1, . . . , p − 1).

In either case, we have

〈Ini(α), Ter(α)〉J = 〈Ini(β), Ter(β)〉K . (1.9)

In Lemma 3.3, we will show that there is a basis E(A) ∈ Bas(K(A)) such that for
every cycle α in E(A), the restriction of symmetric bilinear form 〈 , 〉J to span(α)
is non-degenerate and in Lemma 3.2, we will see that the restriction of symmetric
bilinear form 〈 , 〉J to span(α) is non-degenerate if and only if the left-hand side of
equation (1.9) is not 0 for a cycle α in E(A). In this case, we define the sign of a cycle
α = {u1, u2, . . . , up} in E(A) by

sgn(α) =
{

+1 if 〈Ini(α), Ter(α)〉J > 0,

−1 if 〈Ini(α), Ter(α)〉J < 0.

We denote the set of |α| such that α is a cycle in E(A) by Ind(K(A)). It is clear that
Ind(K(A)) is independent of the choice of basis for K(A). We denote the union of the
cycles α of length p in E(A) by Ep(A) for each p ∈ Ind(K(A)) and define the sign of
Ep(A) by

sgn(Ep(A)) =
∏

{α:α is a cycle in Ep(A)}
sgn(α).

In §3, we will prove the sign of Ep(A) is also independent of the choice of basis for K(A)
if the restriction of 〈 , 〉J to span(α) is non-degenerate for every cycle α in Ep(A).

PROPOSITION C. Suppose that E(A) and E ′(A) are two distinct bases in Bas(K(A))
such that for every cycle α in E(A) or E ′(A), the restriction of 〈 , 〉J to span(α) is
non-degenerate. Then for each p ∈ Ind(K(A)), we have

sgn(Ep(A)) = sgn(E ′
p(A)).
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Suppose that E(A) ∈ Bas(K(A)) and that the restriction of 〈 , 〉J to span(α) is
non-degenerate for every cycle in E(A). We arrange the elements of Ind(K(A)) =
{p1, p2, . . . , pA} to satisfy

p1 < p2 < . . . pA

and write

εp = sgn(Ep(A)).
If |Ind(K(A))| = k, then the k-tuple (εp1 , εp2 , . . . , εpA) is called the flip signature of
(A, J ) and εpA is called the leading signature of (A, J ). The flip signature of (A, J ) is
denoted by

F.Sig(A, J ) = (εp1 , εp2 , . . . , εpA).

The following is the main result of this paper.

THEOREM D. Suppose that (A, J ) and (B, K) are flip pairs and that (XA, σA, ϕA,J ) and
(XB , σB , ϕB,K) are D∞-conjugate. If

F.Sig(A, J ) = (εp1 , εp2 , . . . , εpA)

and

F.Sig(B, K) = (εq1 , εq2 , . . . , εqB ),

then F.Sig(A, J ) and F.Sig(B, K) have the same number of −1s and the leading signatures
εpA and εqB coincide:

εpA = εqB .

In §7, we will compute the flip signatures of (A, J ), (B, I ) and (B, K), where A, J,
B, I and K are as in equation (1.2) and prove equations (1.3), (1.4) and (1.5). Actually,
we can obtain equations (1.3), (1.4) and (1.5) from the Lind zeta functions. In [4], an
explicit formula for the Lind zeta function for a D∞-TMC was established, which can
be expressed in terms of matrices from flip pairs. From its formula (see also §6), it is
obvious that the Lind zeta function is a D∞-conjugacy invariant. In Example 7.1, we will
see that the Lind zeta functions of (XA, σA, ϕA,J ), (XB , σB , ϕB,I ) and (XB , σB , ϕB,K)

are all different. In §6, we introduce the notion of D∞-shift equivalence (D∞-SE) which
is an analogue of shift equivalence and prove that D∞-SE is a D∞-conjugacy invariant.
In Example 7.2, we will see that there are D∞-SEs between (A, J ), (B, I ) and (B, K)
pairwise. So the existence of D∞-shift equivalence between two flip pairs does not imply
that the corresponding Z-TMCs share the same Lind zeta functions. This is a contrast
to the fact that the existence of shift equivalence between two defining matrices A and
B implies the coincidence of the Artin–Mazur zeta functions [1] of the Z-TMCs (XA, σA)
and (XB , σB). Meanwhile, Example 7.5 says that the coincidence of the Lind zeta functions
of two D∞-TMCs does not guarantee the existence of D∞-shift equivalence between
their flip pairs. This is analogous to the case of Z-TMCs because the coincidence of
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the Artin–Mazur zeta functions of two Z-TMCs does not guarantee the existence of SE
between their defining matrices. (See §7.4 in [8].)

When (A, J ) is a flip pair with |B1(X)| = m, the matrix A defines a linear transfor-
mation A : Rm → Rm. The largest subspace R(A) of Rm on which A is invertible is the
called the eventual range of A:

R(A) =
∞⋂
k=1

AkRm.

Similarly, the eventual kernel K(A) of A is the largest subspace of Rm on which A is
nilpotent:

K(A) =
∞⋃
k=1

ker(Ak).

With this notation, we can write Rm = R(A)⊕ K(A). (See §7.4 in [8].) The flip signature
of (A, J ) is completely determined by K(A), while the Lind zeta functions and the
existence of D∞-shift equivalence between two flip pairs depend on the eventual ranges
of transition matrices. In other words, two flip signatures which have the same number of
−1s and share the same leading signature have nothing to do with the coincidence of the
Lind zeta functions or the existence of D∞-shift equivalence. As a result, flip signatures
cannot be a complete D∞-conjugacy invariant. This will be clear in Example 7.4.

This paper is organized as follows. In §2, we introduce the notions of D∞-half
elementary equivalence andD∞-strong shift equivalence. In §3, we investigate symmetric
bilinear forms with respect to J and K on the eventual kernels of A and B when two
flip pairs (A, J ) and (B, K) are D∞-half elementary equivalent. In the same section,
we prove Propositions B and C. Proposition A and Theorem D will be proved in §§4
and 5, respectively. In §6, we discuss the notion ofD∞-shift equivalence and the Lind zeta
function. Section 7 consists of examples.

2. D∞-strong shift equivalence
Let (A, J ) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

A = DE, B = ED and E = KDTJ

is said to be a D∞-half elementary equivalence from (A, J ) to (B, K). If there is
a D∞-half elementary equivalence from (A, J ) to (B, K), then we write (D, E) :
(A, J ) ∼∼∼ (B, K). We note that symmetricities of J and K imply

E = KDTJ ⇔ D = JETK .

PROPOSITION 2.1. If (D, E) : (A, J ) ∼∼∼ (B, K), then (XA, σA, ϕJ ,A) is D∞-conjugate to
(XB , σB , σB ◦ ϕK ,B).

Proof. Since D and E are zero-one and A = DE, it follows that for all a1a2 ∈ B2(XA),
there is a unique b ∈ B1(XB) such that

D(a1, b) = E(b, a2) = 1.
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We denote the block map which sends a1a2 ∈ B2(XA) to b ∈ B1(XB) by 
D,E . If we define
the map γD,E : (XA, σA) → (XB , σB) by

γD,E(x)i = 
D,E(xixi+1) (x ∈ XA; i ∈ Z),

then we have γD,E ◦ σA = σB ◦ γD,E .
Since (E, D) : (B, K) ∼∼∼ (A, J ), we can define the block map
E,D : B2(XB)→B1(XA)

and the map γE,D : (XB , σB) → (XA, σA) in the same way. Since γE,D ◦ γD,E = IdXA and
γD,E ◦ γE,D = IdXB , it follows that γD,E is one-to-one and onto.

It remains to show that

γD,E ◦ ϕA,J = (σB ◦ ϕB,K) ◦ γD,E . (2.1)

Since E = KDTJ , it follows that

E(b, a) = 1 ⇔ D(τJ (a), τK(b)) = 1 (a ∈ B1(XA), b ∈ B1(XB)).

This is equivalent to

D(a, b) = 1 ⇔ E(τK(b), τJ (a)) = 1 (a ∈ B1(XA), b ∈ B1(XB)).

Thus, we obtain


D,E(a1a2) = b ⇔ 
D,E(τJ (a2)τJ (a1)) = τK(b) (a1a2 ∈ B2(XA)). (2.2)

By equation (2.2), we have

γD,E ◦ ϕJ ,A(x)i = 
D,E(τJ (x−i )τJ (x−i−1)) = τK(
D,E(x−i−1x−i ))
= ϕB,K ◦ γD,E(x)i+1 = (σB ◦ ϕB,K) ◦ γD,E(x)i

for all x ∈ XA and i ∈ Z and this proves equation (2.1).

Let (A, J ) and (B, K) be flip pairs. A sequence of l half elementary equivalences

(D1, E1) : (A, J ) ∼∼∼ (A2, J2),

(D2, E2) : (A2, J2)
∼∼∼ (A3, J3),

...

(Dl , El) : (Al , Jl) ∼∼∼ (B, K)

is said to be a D∞-SSE of lag l from (A, J ) to (B, K). If there is a D∞-SSE of lag l from
(A, J ) to (B, K), then we say that (A, J ) is D∞-strong shift equivalent to (B, K) and
write (A, J ) ≈ (B, K) (lag l).

By Proposition 2.1, we have

(A, J ) ≈ (B, K) (lag l) ⇒ (XA, σA, ϕJ ,A) ∼= (XB , σB , σBl ◦ ϕK ,B). (2.3)

Because σBl is a conjugacy from (XB , σB , ϕK ,B) to (XB , σB , σB2l ◦ ϕK ,B), the implication
in equation (2.3) can be rewritten as follows:

(A, J ) ≈ (B, K) (lag 2l) ⇒ (XA, σA, ϕJ ,A) ∼= (XB , σB , ϕK ,B) (2.4)

https://doi.org/10.1017/etds.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.59


3422 S. Ryu

and

(A, J ) ≈ (B, K) (lag 2l − 1) ⇒ (XA, σA, ϕJ ,A) ∼= (XB , σB , σB ◦ ϕK ,B). (2.5)

In §4, we will prove Proposition A which says that the converses of equations (2.4) and
(2.5) are also true.

3. Symmetric bilinear forms
Suppose that (A, J ) is a flip pair and that |B1(XA)| = m. Let V be an m-dimensional
vector space over the field C of complex numbers. Let 〈u, v〉J denote the bilinear form
V × V → C defined by

(u, v) �→ uTJ v̄ (u, v ∈ V ).
Since J is a non-singular symmetric matrix, it follows that the bilinear form 〈 , 〉J is
symmetric and non-degenerate. If u, v ∈ V and 〈u, v〉J = 0, then u and v are said to be
orthogonal with respect to J and we write u ⊥J v. From AJ = JAT, we see that A itself
is the adjoint of A in the following sense:

〈Au, v〉J = 〈u, Av〉J . (3.1)

If λ is an eigenvalue of A and u is an eigenvector of A corresponding to λ, then for any
v ∈ V , we have

λ〈u, v〉J = 〈λu, v〉J = 〈Au, v〉J = 〈u, Av〉J . (3.2)

Let sp(A) denote the set of eigenvalues of A. For each λ ∈ sp(A), let Kλ(A) denote the
set of u ∈ V such that (A− λI )pu = 0 for some p ∈ N:

Kλ(A) = {u ∈ V : there exists p ∈ N such that (A− λI )pu = 0}.
If u ∈ Kλ(A) \ {0} and p is the smallest positive integer for which (A− λI )pu = 0, then
the ordered set

α = {(A− λI )p−1u, . . . , (A− λI )u, u}
is called a cycle of generalized eigenvectors of A corresponding to λ. The vectors (A−
λI )p−1u and u are called the initial vector and the terminal vector of α, respectively, and
we write

Ini(α) = (A− λI )p−1u and Ter(α) = u.

We say that the length of α is p and write |α| = p. It is well known [3] that there is a
basis for Kλ(A) consisting of a union of disjoint cycles of generalized eigenvectors of A
corresponding to λ. From here on, when we say α = {u1, . . . , up} is a cycle in Kλ(A),
it means α is a cycle of generalized eigenvectors of A corresponding to λ, Ini(α) = u1,
Ter(α) = up and |α| = p.

Suppose that U(A) is a basis for V consisting of generalized eigenvectors of A, A
has 0 as its eigenvalue and that E(A) is the subset of U(A) consisting of the generalized
eigenvectors of A corresponding to 0. Non-degeneracy of 〈 , 〉J says that for each
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u ∈ E(A), there is a v ∈ U(A) such that 〈u, v〉J = 0. The following lemma says that the
vector v must be in E(A).

LEMMA 3.1. Suppose that λ, μ ∈ sp(A). If λ is distinct from the complex conjugate μ̄ of
μ, then Kλ(A) ⊥J Kμ(A).

Proof. Suppose that

α = {u1, . . . , up} and β = {v1, . . . , vq}
are cycles in Kλ(A) and Kμ(A), respectively. Since equation (3.2) implies

λ〈u1, v1〉J = 〈u1, Av1〉J = μ̄〈u1, v1〉J ,

it follows that

〈u1, v1〉J = 0.

Using equation (3.2) again, we have

λ〈u1, vj+1〉J = 〈u1, μvj+1 + vj 〉J = μ̄〈u1, vj+1〉J + 〈u1, vj 〉J
for each j = 1, . . . , q − 1. By mathematical induction on j, we see that

〈u1, vj 〉J = 0 (j = 1, . . . , q).

Applying the same process to each u2, . . . up, we obtain

for all i = 1, . . . , p, for all j = 1, . . . , q, 〈ui , vj 〉J = 0.

Remark. Non-degeneracy of 〈 , 〉J and Lemma 3.1 imply that the restriction of 〈 , 〉J
to K0(A) is non-degenerate.

From here on, we restrict our attention to the zero eigenvalue and the generalized
eigenvectors corresponding to 0. For notational simplicity, the smallest subspace of V
containing all generalized eigenvectors of A corresponding to 0 is denoted by K(A) and
we call the subspace K(A) of V the eventual kernel of A. We may assume that the eventual
kernel of A is a real vector space. The set of bases for K(A) consisting of a union of disjoint
cycles of generalized eigenvectors of A corresponding to 0 is denoted by Bas(K(A)). If
E(A) ∈ Bas(K(A)), the set of |α| such that α is a cycle in E(A) is denoted by Ind(K(A))
and we call Ind(K(A)) the index set for the eventual kernel of A. It is clear that Ind(K(A))
is independent of the choice of E(A) ∈ Bas(K(A)). When p ∈ Ind(K(A)), we denote the
union of the cycles of length p in E(A) by Ep(A).

LEMMA 3.2. Suppose that E(A) ∈ Bas(K(A)) and that p ∈ Ind(K(A)).
(1) Suppose that α is a cycle in Ep(A). The restriction of 〈 , 〉J to span(α) is

non-degenerate if and only if

〈Ini(α), Ter(α)〉J = 0.

(2) The restriction of 〈 , 〉J to Ep(A) is non-degenerate.
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Proof. Suppose that α = {u1, . . . , up} is a cycle in Ep(A). By equation (3.1), we have

〈u1, ui〉J = 〈u1, Aui+1〉J = 〈Au1, ui+1〉J = 0

and

〈ui+1, uj 〉J − 〈ui , uj+1〉J = 〈ui+1, Auj+1〉J − 〈ui , uj+1〉J = 0 (3.3)

for each i, j = 1, . . . , p − 1. Suppose that Tp is the m× p matrix whose ith column is
ui for each i = 1, . . . , p. If we set 〈ui , up〉J = bi for each i = 1, 2, . . . , p, then T T

p JTp

is of the form

T T
p JTp =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 b1

0 0 0 · · · 0 b1 b2

0 0 0 · · · b1 b2 b3
...

...
...

...
...

...
b1 b2 b3 · · · bp−2 bp−1 bp

⎤
⎥⎥⎥⎥⎥⎦ .

This proves item (1).
To prove item (2), we only consider the case where Ind(K(A)) = {p, q}(p < q)

and both Ep(A) and Eq(A) have one cycles. Suppose that α = {u1, . . . , up} and β =
{v1, . . . , vq} are cycles in Ep(A) and Eq(A), respectively. When Tp is as above, we will
prove T T

p JTp is non-singular. We let Tq be the m× q matrix whose ith column is vi for
each i = 1, . . . , q. If T is the m× (p + q) matrix defined by

T = [Tp Tq
]
,

then

T TJT =
[
T T
p JTp T T

p JTq

T T
q JTp T T

q JTq

]

is non-singular by remark of Lemma 3.1. By arguments in the proof of item (1), we can
put

T T
p JTp =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 b1

0 0 0 · · · 0 b1 b2

0 0 0 · · · b1 b2 b3
...

...
...

...
...

...
b1 b2 b3 · · · bp−2 bp−1 bp

⎤
⎥⎥⎥⎥⎥⎦

and

T T
q JTq =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 d1

0 0 0 · · · 0 d1 d2

0 0 0 · · · d1 d2 d3
...

...
...

...
...

...
d1 d2 d3 · · · dq−2 dq−1 dq

⎤
⎥⎥⎥⎥⎥⎦.
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Now we consider T T
p JTq . By equation (3.1), we have

〈u1, vk〉J = 0 (k = 1, . . . , q − 1),

〈u2, vk〉J = 0 (k = 1, . . . , q − 2),
...

〈up, vk〉J = 0 (k = 1, . . . , q − p).

If we set 〈ui , vq〉J = ci for each i = 1, 2, . . . , p, then the argument in equation (3.3)
shows that T T

p JTq is of the form

T T
p JTq =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 · · · 0 0 c1

0 · · · 0 0 0 · · · 0 c1 c2

0 · · · 0 0 0 · · · c1 c2 c3
...

...
...

...
...

...
...

0 · · · c1 c2 c3 · · · cp−2 cp−1 cp

⎤
⎥⎥⎥⎥⎥⎦ .

Finally, T T
q JTp is the transpose of T T

p JTq . Hence, b1 and d1 must be non-zero and we
have Rank(T T

p JTp) = p and Rank(T T
q JTq) = q.

The aim of this section is to find out a relationship between 〈 , 〉J and 〈 , 〉K on
bases E(A) ∈ Bas(K(A)) and E(B) ∈ Bas(K(B)) when (D, E) : (A, J ) ∼∼∼ (B, K). The
following lemma will provide us good bases to handle.

LEMMA 3.3. Suppose that A has the zero eigenvalue. There is a basis E(A) ∈ Bas(K(A))
having the following properties.
(1) If α is a cycle in E(A), then the restriction of 〈 , 〉J to span(α) is non-degenerate,

that is,

〈Ini(α), Ter(α)〉J = 0.

(2) Suppose that α is a cycle in E(A) with Ter(α) = u and |α| = p. For each k =
0, 1, . . . p − 1, v = Ap−1−ku is the unique vector in α such that 〈Aku, v〉J = 0.

(3) If α and β are distinct cycles in E(A), then

span(α) ⊥J span(β).

Proof. (1) Lemma 3.2 proves the case where E(A) has only one cycle. Suppose that E(A)
is the union of disjoint cycles α1, . . . , αr of generalized eigenvectors of A corresponding
to 0 for some r > 1 and that |α1| ≤ |α2| ≤ · · · ≤ |αr |. Assuming

〈Ini(αj ), Ter(αj )〉J = 0 (j = 1, . . . , r − 1),

we will construct a cycle β of generalized eigenvectors of A corresponding to 0
such that the union of the cycles α1, . . . , αr−1, β forms a basis for K(A) and that
〈Ini(β), Ter(β)〉J = 0.

By Lemma 3.2, we have

|α1| ≤ |α2| ≤ · · · ≤ |αr−1| < |αr | ⇒ 〈Ini(αr), Ter(αr)〉J = 0.
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Thus, we only consider the case where there are other cycles in E(A) whose length is the
same as |αr |. If αr = {w1, . . . , wq} and 〈w1, wq〉J = 0, there is nothing to do. So we
assume 〈w1, wq〉J = 0. By non-degeneracy of 〈 , 〉J and Lemma 3.1, there is a vector
v ∈ E(A) such that 〈w1, v〉J = 0. Since 〈w1, v〉J = 〈wq , Aq−1v〉J , it follows that v must
be the terminal vector of a cycle in E(A) of length q by the maximality of q. We put v1 =
Aq−1v and vq = v and find a number k ∈ R \ {0} such that 〈w1 − kv1, wq − kvq〉J = 0.
We denote the cycle whose terminal vector is wq − kvq by β. It is obvious that the length
of β is q and that the union of the cycles α1, . . . , αr−1, β forms a basis of K(A).

(2) We assume that E(A) has property (1) and that α = {u1, . . . , up} is a cycle in E(A).
The proof of Lemma 3.2(1) says that if Tα is the m× p matrix whose ith column is ui ,
then T T

α JTα is of the form

T T
α JTα =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 b1

0 0 0 · · · 0 b1 b2

0 0 0 · · · b1 b2 b3
...

...
...

...
...

...
b1 b2 b3 · · · bp−2 bp−1 bp

⎤
⎥⎥⎥⎥⎥⎦ .

We note that b1 must be non-zero. Now, there are unique real numbers k1, . . . , kp such
that if we set

K =

⎡
⎢⎢⎢⎣
kp kp−1 · · · k1

0 kp · · · k2
...

...
...

0 0 · · · kp

⎤
⎥⎥⎥⎦ ,

then KTT T
α JTαK becomes

KTT T
α JTαK =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 b1

0 0 · · · b1 0
...

...
...

...
0 b1 · · · 0 0
b1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

If α′ is a cycle in K(A) whose terminal vector is w =∑p

i=1 kiui , then we have |α′| = p

and

〈Aiw, Ajw〉J =
{
b1 if j = p − 1 − i,

0 otherwise,

for each 0 ≤ i, j ≤ p − 1. If we replace α with α′ for each α in E(A), then the result
follows.

(3) Suppose that E(A) has properties (1) and (2) and that E(A) is the union of disjoint
cycles α1, . . . , αr of generalized eigenvectors of A corresponding to 0 for some r > 1 with
|α1| ≤ |α2| ≤ · · · ≤ |αr |. Assuming that

span(αi) ⊥J span(αj ) (i, j = 1, . . . , r − 1; i = j),
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we will construct a cycle β such that the union of the cycles α1, . . . , αr−1, β forms a basis
for K(A) and that αi is orthogonal to β with respect to J for each i = 1, . . . , r − 1.

Suppose that α = {u1, . . . , up} is a cycle in E(A) which is distinct from αr =
{w1, . . . , wq}. We set

〈u1, up〉J = a (= 0), 〈ui , wq〉J = bi (i = 1, . . . , p)

and

z = wq − b1

a
up − b2

a
up−1 − · · · − bp

a
u1.

Let β denote the cycle whose terminal vector is z.
We first show that u1 ⊥J span(β). Direct computation yields

〈u1, z〉J = 0. (3.4)

Since Au1 = 0, it follows that

〈u1, Ajz〉J = 0 (j = 1, . . . , q − 1)

by equation (3.1). Thus, 〈u1, Ajz〉J = 0 for all j = 0, . . . , q − 1.
Now, we show that u2 ⊥J span(β). Direct computation yields

〈u2, z〉J = 0.

From A2u2 = 0, it follows that

〈u2, Ajz〉J = 0 (j = 2, . . . , q − 1).

It remains to show that 〈u2, Az〉J = 0, but this is an immediate consequence of equations
(3.1) and (3.4).

Applying this process to each ui inductively, the result follows.

COROLLARY 3.4. There is a basis E(A) ∈ Bas(K(A)) such that if u is the terminal
vector of a cycle α in E(A) with |α| = p, then v = Ap−1−ku is the unique vector in E(A)
satisfying

〈Aku, v〉J = 0

for each k = 0, 1, . . . p − 1.

In the rest of the section, we investigate a relationship between 〈 , 〉J and 〈 , 〉K on
bases E(A) ∈ Bas(K(A)) and E(B) ∈ Bas(K(B)) when there is aD∞-HEE between two
flip pairs (A, J ) and (B, K). Throughout the section, we assume (A, J ) and (B, K) are
flip pairs with |B1(XA)| = m and |B1(XB)| = n and (D, E) is a D∞-HEE from (A, J ) to
(B, K).

We note that E = KDTJ implies

〈u, Dv〉J = 〈Eu, v〉K (u ∈ Rm, v ∈ Rn).
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From this, we see that Ker(E) and Ran(D) are mutually orthogonal with respect to J and
that Ker(D) and Ran(E) are mutually orthogonal with respect to K, that is,

Ker(E) ⊥J Ran(D) and Ker(D) ⊥K Ran(E). (3.5)

LEMMA 3.5. There exist bases E(A) ∈ Bas(K(A)) and E(B) ∈ Bas(K(B)) having the
following properties.
(1) Suppose that α is a cycle in E(A) with |α| = p and u = Ter(α). Then we have

u ∈ Ran(D) ⇔ Ap−1u /∈ Ker(E). (3.6)

(2) Suppose that β is a cycle in E(B) with |β| = p and v = Ter(β). Then we have

v ∈ Ran(E) ⇔ Bp−1v /∈ Ker(D).

Proof. We only prove equation (3.6). Suppose that E(A) ∈ Bas(K(A)) has properties (1),
(2) and (3) from Lemma 3.3. Since 〈Ap−1u, u〉J = 0, it follows that

u ∈ Ran(D) ⇒ Ap−1u /∈ Ker(E)

from equation (3.5).
Suppose that u /∈ Ran(D). To draw a contradiction, we assume that Ap−1u /∈ Ker(E).

By non-degeneracy of 〈 , 〉K , there is a v ∈ K(B) such that 〈EAp−1u, v〉K = 0, or
equivalently, 〈Ap−1u, Dv〉J = 0. This is a contradiction because 〈Ap−1u, u〉J = 0 and
〈Ap−1u, w〉J = 0 for all w ∈ E(A) \ {u}.

Now we are ready to prove Proposition B. We first indicate some notation. When p ∈
Ind(K(A)), let Ep(A; ∂−

D,E) denote the union of cycles α in Ep(A) such that Ter(α) /∈
Ran(D) and let Ep(A; ∂+

D,E) denote the union of cycles α in Ep(A) such that Ter(α) ∈
Ran(D). With this notation, Proposition B can be rewritten as follows.

PROPOSITION B. If (D, E) : (A, J ) ∼∼∼ (B, K), then there exist bases E(A) ∈ Bas(K(A))
and E(B) ∈ Bas(K(B)) having the following properties.
(1) Suppose that p ∈ Ind(K(A)) and α is a cycle in Ep(A; ∂+

D,E) with Ter(α) = u.
There is a cycle β in Ep+1(B; ∂−

E,D) such that if Ter(β) = v, then Dv = u. In this
case, we have

〈Ap−1u, u〉J = 〈Bpv, v〉K . (3.7)

(2) Suppose that p ∈ Ind(K(A)), p > 1 and α is a cycle in Ep(A; ∂−
D,E) with

Ter(α) = u. There is a cycle β in Ep−1(B; ∂+
E,D) such that if Ter(β) = v, then

v = Eu. In this case, we have

〈Ap−1u, u〉J = 〈Bp−2v, v〉K . (3.8)

Proof. If we define zero-one matrices M and F by

M =
[

0 D

E 0

]
and F =

[
J 0
0 K

]
,
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then (M , F) is a flip pair. Suppose that E(A) ∈ Bas(K(A)) and E(B) ∈ Bas(K(B)) have
properties (1), (2) and (3) from Lemma 3.3. If we set

E(A)⊕ 0n =
{[

u

0

]
: u ∈ E(A) and 0 ∈ Rn

}

and

0m ⊕ E(B) =
{[

0
v

]
: v ∈ E(B) and 0 ∈ Rm

}
,

then the elements in E(A)⊕ 0n or 0m ⊕ E(B) belong to K(M). Conversely, every vector
in K(M) can be expressed as a linear combination of vectors in E(A)⊕ 0n and 0m ⊕ E(B).
Thus, the set E(M) = {E(A)⊕ 0n} ∪ {0m ⊕ E(B)} becomes a basis for K(M).

If α is a cycle in E(M), then |α| is an odd number by Lemma 3.5. If |α| = 2p − 1 for
some positive integer p, then α is one of the following forms:{[

Ap−1u

0

]
,
[

0
Bp−2Eu

]
,
[
Ap−2u

0

]
, . . . ,

[
Au

0

]
,
[

0
Eu

]
,
[
u

0

]}

or {[
0

Bp−1v

]
,
[
Ap−2Dv

0

]
,
[

0
Bp−2v

]
, . . . ,

[
0
Bv

]
,
[
Dv

0

]
,
[

0
v

]}
.

The formulae (3.7) and (3.8) follow from equation (3.3).

Suppose that E(A) ∈ Bas(K(A)) has property (1) from Lemma 3.3. If α is a cycle in
E(A), we define the sign of α by

sgn(α) =
{

+1 if 〈Ini(α), Ter(α)〉J > 0,

−1 if 〈Ini(α), Ter(α)〉J < 0.

We define the sign of Ep(A) for each p ∈ Ind(K(A)) by

sgn(Ep(A)) =
∏

{α:α is a cycle in Ep(A)}
sgn(α).

When (D, E) : (A, J ) ∼∼∼ (B, K), we define the signs of Ep(A; ∂+
D,E) and Ep(A; ∂−

D,E) for
each p ∈ Ind(K(A)) in similar ways.

Proposition B says that if (D, E) : (A, J )∼∼∼ (B, K), there exist basesE(A) ∈ Bas(K(A))
and E(B) ∈ Bas(K(B)) such that

sgn(Ep(A; ∂+
D,E)) = sgn(Ep+1(B; ∂−

E,D))) (p ∈ Ind(K(A))),
and

sgn(Ep(A; ∂−
D,E)) = sgn(Ep−1(B; ∂+

E,D)) (p ∈ Ind(K(A)); p > 1).

In Proposition 3.6 below, we will see that the sign of E1(A; ∂−
D,E) is always +1 if

E1(A; ∂−
D,E) is non-empty. We first prove Proposition C.

https://doi.org/10.1017/etds.2022.59 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.59


3430 S. Ryu

Proof of Proposition C. Suppose that E(A) ∈ Bas(K(A)) has properties (1), (2) and (3)
from Lemma 3.3 and that p ∈ Ind(K(A)). We denote the terminal vectors of the cycles
in Ep(A) by u(1), . . . , u(q). Suppose that P is the m× q matrix whose ith column is u(i)
for each i = 1, . . . , q. If we set M = (Ap−1P)TJP , then the entry of M is given by

M(i, j) =
{

〈Ap−1u(i), u(i)〉J if i = j ,

0 otherwise,

and the sign of Ep(A) is determined by the product of the diagonal entries of M, that is,

sgn(Ep(A)) =
{

+1 if
∏q

i=1 M(i, i) > 0,

−1 if
∏q

i=1 M(i, i) < 0.

Suppose that E ′(A) ∈ Bas(K(A)) is another basis having property (1) from Lemma 3.3.
Then obviously E ′

p(A) is the union of q disjoint cycles. If w is the terminal vector of a cycle
in E ′

p(A), then w can be expressed as a linear combination of vectors in E(A) ∩ Ker(Ap),
that is,

w =
∑
cu∈R

u∈E(A)∩Ker(Ap)

cuu.

If u ∈ Ek(A) for k < p, then Ap−1u = 0. If u ∈ Ek(A) for k > p or u ∈ Ep(A) and u is
not a terminal vector, then 〈Ap−1u, u〉J = 0 by property (2) from Lemma 3.3. This means
that the sign of E ′

p(A) is not affected by vectors u ∈ Ek(A) for k = p or u ∈ Ep(A) \
Ter(Ep(A)). In other words, if we write

w =
q∑
i=1

ciu(i) +
∑

u∈E(A)∩Ker(Ap)\Ter(Ep(A))
cuu (ci , cu ∈ R),

then we have

〈Ap−1w, w〉J = 〈Ap−1
q∑
i=1

ciu(i),
q∑
i=1

ciu(i)〉J .

To compute the sign of E ′
p(A), we may assume that

w =
q∑
i=1

ciu(i) (c1, . . . , cq ∈ R).

We denote the terminal vectors of the cycles in E ′(A) by w(1), . . . , w(q) and let Q
be the m× q matrix whose ith column is w(i) for each i = 1, . . . , q. If we set N =
(Ap−1Q)TJQ, then

∏q

i=1 N(i, i) = 0 since E ′(A) has property (1) from Lemma 3.3.
So we have

sgn(E ′
p(A)) =

{
+1 if

∏q

i=1 N(i, i) > 0,

−1 if
∏q

i=1 N(i, i) < 0.
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It is obvious that there is a non-singular matrix R such that PR = Q. Since N = RTMR

and M is a diagonal matrix, it follows that
q∏
i=1

M(i, i) > 0 ⇔
q∏
i=1

N(i, i) > 0

and
q∏
i=1

M(i, i) < 0 ⇔
q∏
i=1

N(i, i) < 0.

PROPOSITION 3.6. Suppose that (D, E) : (A, J ) ∼∼∼ (B, K) and that Ind(K(A)) contains
1. There is a basis E(A) ∈ Bas(K(A)) such that if α is a cycle in E1(A; ∂−

D,E), then
sgn(α) = +1. Hence, we have

sgn(E1(A; ∂−
D,E)) = +1

if E1(A; ∂−
D,E) is non-empty.

Proof. Suppose that U is a basis for the subspace Ker(A) of K(A). We may assume that
for each u ∈ U ,

a1, a2 ∈ B1(XA), u(a1) = 0 and PE(a1) ∩ PE(a2) = ∅ ⇒ u(a2) = 0 (3.9)

for the following reason. If u(a2) = 0, then we define u1 and u2 by

u1(a) =
{
u(a) if PE(a1) ∩ PE(a) = ∅,

0 otherwise,

and

u2(a) =
{
u(a) if PE(a2) ∩ PE(a) = ∅,

0 otherwise.

It is obvious that {u1, u2} is linearly independent. We set u3 = u− u1 − u2. If u3 = 0,
then obviously {u1, u2, u3} is also linearly independent. We set

U ′ = U ∪ {u1, u2, u3} \ {u}.
If necessary, we apply the same process to u3 and to each u ∈ U so that every element in
U ′ satisfies equation (3.9) and then we remove some elements in U ′ so that it becomes a
basis for Ker(A).

We first show the following:

u ∈ U ⇒ u(τJ (a))u(a) ≥ 0 for all a ∈ B1(XA).

Suppose that u ∈ U , a0 ∈ B1(XA) and that u(a0) = 0. If a0 = τJ (a0), then u(τJ (a0))

u(a0) > 0 and we are done. When a0 = τJ (a0) and u(τJ (a0)) = 0, there is nothing to do.
So we assume a0 = τJ (a0) and u(τJ (a0)) = 0. If there were b ∈ PE(a0) ∩ PE(τJ (a0)),
then we would have

1 ≥ B(b, τK(b)) ≥ E(b, a0)D(a0, τK(b))+ E(b, τJ (a0))D(τJ (a0), τK(b)) = 2
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from E = KDTJ . Thus, we have PE(a0) ∩ PE(τJ (a0)) = ∅ and this implies
u(τJ (a0)) = 0 by assumption (3.9).

Now, we denote the intersection of U and E1(A; ∂−
D,E) by V and assume that the

elements of V are u1, . . ., uk , that is,

V = U ∩ E1(A; ∂−
D,E) = {u1, . . . , uk}.

By Lemma 3.2 and equation (3.5), for each u ∈ V , there is a v ∈ V such that 〈u, v〉J = 0.
If 〈u1, u1〉J = 0, we choose ui ∈ V such that 〈u1, ui〉J = 0. There are real numbers k1, k2

such that {u1 + k1ui , u1 + k2ui} is linearly independent and that both 〈u1 + k1ui , u1 +
k1ui〉J and 〈u1 + k2ui , u1 + k2ui〉J are positive. We replace u1 and ui with u1 + k1ui and
u1 + k2ui . Continuing this process, we can construct a new basis for E1(A; ∂−

D,E) such that
if α is a cycle in E1(A; ∂−

D,E), then sgn(α) = +1.

Suppose that E(A) ∈ Bas(K(A)) has property (1) from Lemma 3.3. We arrange the
elements of Ind(K(A)) = {p1, p2, . . . , pA} to satisfy

p1 < p2 < · · · < pA

and write

εp = sgn(Ep(A)).
If |Ind(K(A))|=k, then the k-tuple (εp1 , εp2 , . . . , εpA) is called the flip signature of
(A, J ) and εpA is called the leading signature of (A, J ). The flip signature of (A, J )
is denoted by

F.Sig(A, J ) = (εp1 , εp2 , . . . , εpA).

When the eventual kernel K(A) of A is trivial, we write

Ind(K(A)) = {0}
and define the flip signature of (A, J ) by

F.Sig(A, J ) = (+1).

We have seen that both the flip signature and the leading signature are independent of the
choice of basis EA ∈ Bas(K(A)) as long as EA has property (1) from Lemma 3.3.

In the next section, we prove Proposition A and in §5, we prove Theorem D.

4. Proof of Proposition A
We start with the notion of D∞-higher block codes. (See [5, 8] for more details about
higher block codes.) We need some notation. Suppose that (X, σX) is a shift space over a
finite set A and that ϕτ is a one-block flip for (X, σX) defined by

ϕτ (x)i = τ(x−i ) (x ∈ X; i ∈ Z).

For each positive integer n, we define the n-initial map in :
⋃∞
k=n Bk(X) → Bn(X), the

n-terminal map tn :
⋃∞
k=n Bk(X) → Bn(X) and the mirror map Mn : An → An by
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in(a1a2 . . . am) = a1a2 . . . an (a1 . . . am ∈ Bm(X); m ≥ n),

tn(a1a2 . . . am) = am−n+1am−n+2 . . . am (a1 . . . am ∈ Bm(X); m ≥ n)

and

Mn(a1a2 . . . an) = an . . . a1 (a1 . . . an ∈ An).

For each positive integer n, we denote the map

a1a2 . . . an �→ τ(a1)τ (a2) . . . τ (an) (a1 . . . an ∈ An)

by τn : An → An. It is obvious that the restriction of the map Mn ◦ τn to Bn(X) is a
permutation of order 2.

For each positive integer n, we define the nth higher block code hn : X → Bn(X)Z by

hn(x)i = x[i,i+n−1] (x ∈ X; i ∈ Z).

We denote the image of (X, σX) under hn by (Xn, σn) and call (Xn, σn) the nth higher
block shift of (X, σX). If we write υ = Mn ◦ τn, then the map ϕυ : Xn → Xn defined by

ϕυ(x)i = υ(x−i ) (x ∈ Xn; i ∈ Z)

becomes a natural one-block flip for (Xn, σn). It is obvious that the nth higher block code
hn is aD∞-conjugacy from (X, σX, ϕτ ) to (Xn, σn, (σn)n−1 ◦ ϕυ). We call theD∞-system
(Xn, σn, ϕυ) the nth higher block D∞-system of (X, σX, ϕτ ).

For notational simplicity, we drop the subscript n and write τ = τn and M = Mn if the
domains of τn and Mn are clear in the context.

Suppose that (A, J ) is a flip pair. Then the flip pair (An, Jn) for the nth higher
block D∞-system (Xn, σn, ϕn) of (XA, σA, ϕA,J ) consists of Bn(XA)× Bn(XA) zero-one
matrices An and Jn defined by

An(u, v) =
{

1 if tn−1(u) = in−1(v),

0 otherwise,
(u, v ∈ Bn(XA))

and

Jn(u, v) =
{

1 if v = (M ◦ τJ )(u),
0 otherwise,

(u, v ∈ Bn(XA)).

In the following lemma, we prove that there is a D∞-SSE from (A, J ) to (An, Jn).

LEMMA 4.1. If n is a positive integer greater than 1, then we have

(A1, J1) ≈ (An, Jn) (lag n− 1).

Proof. For each k = 1, 2, . . . , n− 1, we define a zero-one Bk(XA)× Bk+1(XA) matrix
Dk and a zero-one Bk+1(XA)× Bk(XA) matrix Ek by

Dk(u, v) =
{

1 if u = ik(v),

0 otherwise,
(u ∈ Bk(XA), v ∈ Bk+1(XA))
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and

Ek(v, u) =
{

1 if u = tk(v),

0 otherwise,
(u ∈ Bk(XA), v ∈ Bk+1(XA)).

It is straightforward to see that (Dk , Ek) : (Ak , Jk) ∼∼∼ (Ak+1, Jk+1) for each k.

In the proof of Lemma 4.1, (XAk+1 , σAk+1 , ϕAk+1,Jk+1) is equal to the second higher
block D∞-system of (XAk , σAk , ϕAk ,Jk ) by recoding of symbols and the half elementary
conjugacy

γDk ,Ek : (XAk , σAk , ϕAk ,Jk ) → (XAk+1 , σAk+1 , σAk+1 ◦ ϕAk+1,Jk+1)

induced by (Dk , Ek) can be regarded as the second D∞-higher block code for each k =
1, 2, . . . , n− 1. A D∞-HEE (D, E) : (A, J ) ∼∼∼ (B, K) is said to be a complete D∞-half
elementary equivalence from (A, J ) to (B, K) if γD,E is the second D∞-higher block
code.

In the rest of the section, we prove Proposition A.

Proof of Proposition A. We only prove part (1). One can prove part (2) in a similar way.
We denote the flip pairs for the nth higher block D∞-system of (XA, σA, ϕA,J )

by (An, Jn) for each positive integer n. If ψ : (XA, σA, ϕA,J ) → (XB , σB , ϕB,K) is a
D∞-conjugacy, then there are non-negative integers s and t and a block map � :
Bs+t+1(XA) → B1(XB) such that

ψ(x)i = �(x[i−s,i+t]) (x ∈ XA; i ∈ Z).

We may assume that s + t is even by extending the window size if necessary. By
Lemma 4.1, there is a D∞-SSE of lag (s + t) from (A, J ) to (As+t+1, Js+t+1). From
equation (2.4), it follows that the (s + t + 1)th D∞-higher block code hs+t+1 is a
D∞-conjugacy. It is obvious that there is a D∞-conjugacy ψ ′ induced by ψ satisfying
ψ = ψ ′ ◦ hs+t+1 and

x, y ∈ hs+t+1(X) and x0 = y0 ⇒ ψ ′(x)0 = ψ ′(y)0.

So we may assume s = t = 0 and show that there is a D∞-SSE of lag 2l from (A, J ) to
(B, K) for some positive integer l.

If ψ−1 is the inverse of ψ , there is a non-negative integer m such that

y, y′ ∈ XB and y[−m,m] = y′
[−m,m] ⇒ ψ−1(y)0 = ψ−1(y′)0 (4.1)

since ψ−1 is uniformly continuous. For each k = 1, . . ., 2m+ 1, we define a set Ak by

Ak =
⎧⎨
⎩
⎡
⎣ v

w

u

⎤
⎦ : u, v ∈ Bi (XB), w ∈ Bj (XA) and u�(w)v ∈ Bk(XB)

⎫⎬
⎭ ,
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where i = �(k − 1)/2� and j = k − 2�(k − 1)/2�. We define Ak × Ak matrices Mk and
Fk to be

Mk

⎛
⎝
⎡
⎣ v

w

u

⎤
⎦ ,

⎡
⎣ v′
w′
u′

⎤
⎦
⎞
⎠ = 1 ⇔

⎡
⎣ v

�(w)

u

⎤
⎦
⎡
⎣ v′
�(w′)
u′

⎤
⎦ ∈ B2(XBk )

and ww′ ∈ B2(XAj )

and

Fk

⎛
⎝
⎡
⎣ v

w

u

⎤
⎦ ,

⎡
⎣ v′
w′
u′

⎤
⎦
⎞
⎠ = 1 ⇔ u′ = (M ◦ τK)(v), w′ = (M ◦ τJ )(w)

and v′ = (M ◦ τK)(u)
for all ⎡

⎣ v

w

u

⎤
⎦ ,

⎡
⎣ v′
w′
u′

⎤
⎦ ∈ Ak .

A direct computation shows that (Mk , Fk) is a flip pair for each k. Next, we define a
zero-one Ak × Ak+1 matrix Rk and a zero-one Ak+1 × Ak matrix Sk to be

Rk

⎛
⎝
⎡
⎣ v

w

u

⎤
⎦ ,

⎡
⎣ v′
w′
u′

⎤
⎦
⎞
⎠ = 1 ⇔ u�(w)v = ik

(
u′�(w′)v′)

and t1(w) = i1(w
′)

and

Sk

⎛
⎝
⎡
⎣ v′
w′
u′

⎤
⎦ ,

⎡
⎣ v

w

u

⎤
⎦
⎞
⎠ = 1 ⇔ tk

(
u′�(w′)v′) = u�(w)v

and t1(w′) = i1(w),

for all ⎡
⎣ v

w

u

⎤
⎦ ∈ Ak and

⎡
⎣ v′
w′
u′

⎤
⎦ ∈ Ak+1.

A direct computation shows that

(Rk , Sk) : (Mk , Fk) ∼∼∼ (Mk+1, Fk+1).

Because M1 = A and F1 = J , we obtain

(A, J ) ≈ (M2m+1, F2m+1) (lag 2m). (4.2)

Finally, equation (4.1) implies that the D∞-TMC determined by the flip pair (M2m+1,
F2m+1) is equal to the (2m+ 1)th higher blockD∞-system of (XB , σB , ϕK ,B) by recoding
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of symbols. From Lemma 4.1, we have

(B, K) ≈ (M2m+1, F2m+1) (lag 2m). (4.3)

From equations (4.2) and (4.3), it follows that

(A, J ) ≈ (B, K) (lag 4m).

5. Proof of Theorem D
We start with the case where (B, K) in Theorem D is the flip pair for the nth higher block
D∞-system of (XA, σA, ϕA,J ).

LEMMA 5.1. Suppose that (B, K) is the flip pair for the nth higher block D∞-system of
(XA, σA, ϕA,J ).
(1) If p ∈ Ind(K(A)), then there is q ∈ Ind(K((B)) such that q = p + n− 1 and that

sgn(Ep(A)) = sgn(Eq(B)).
(2) If q ∈ Ind(K((B)) and q ≥ n, then there is p ∈ Ind(K(A)) such that q =p + n− 1

and that

sgn(Ep(A)) = sgn(Eq(B)).
(3) If q ∈ Ind(K((B)) and q < n, then we have

sgn(Eq(B)) = +1.

Proof. We only prove the case n = 2. We assume E(A) ∈ Bas(K(A)) and E(B) ∈
Bas(K(B)) are bases having properties from Proposition B. Suppose that α is a cycle
in Ep(A) for some p ∈ Ind(K(A)) and that u is the initial vector of α. For any a1a2 ∈
B2(XA), we have

Eu

([
a2

a1

])
= u(a2)

and this implies thatEu is not identically zero. By Lemma 3.5, α is a cycle in Ep(A; ∂+
D,E).

Under the assumption that E(A) and E(B) have properties from Proposition B, we can find
a cycle β in E(B) such that the initial vector of β is Eu. Thus, we obtain

Ep(A; ∂−
D,E) = ∅ and Ep+1(B; ∂+

E,D) = ∅, (5.1)

p ∈ Ind(K(A)) ⇔ p + 1 ∈ Ind(K(B)) (p ≥ 1)

and

sgn(Ep(A)) = sgn(Ep+1(B)) (p ∈ Ind(K(A))).
If E1(B) = ∅, then E1(B) = E1(B; ∂−

E,D) by equation (5.1) and we have

sgn(E1(B)) = +1

by Propositions 3.6 and C.
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Remark. If two D∞-TMCs are finite, then we can directly determine whether or not
they are D∞-conjugate. In this paper, we do not consider D∞-TMCs that have finite
cardinalities. Hence, when (B, K) is the flip pair for the nth higher block D∞-system
of (XA, σA, ϕA,J ) for some positive integer n > 1, B must have zero as its eigenvalue.

Proof of Theorem D. Suppose that (A, J ) and (B, K) are flip pairs and that ψ :
(XA, σA, ϕA,J ) → (XB , σB , ϕB,K) is a D∞-conjugacy. As we can see in the proof of
Proposition A, there is aD∞-SSE from (A, J ) to (B, K) consisting of the even number of
completeD∞-half elementary equivalences and (Rk , Sk) : (Mk , Fk) ∼∼∼ (Mk+1, Fk+1)(k =
1, . . . , 2m). In Lemma 5.1, we have already seen that Theorem D is true in the case of
complete D∞-half elementary equivalences. So it remains to compare the flip signatures
of (Mk , Fk) and (Mk+1, Fk+1) for each k = 1, . . . , 2m. Throughout the proof, we assume
Ak and (Rk , Sk) : (Mk , Fk) ∼∼∼ (Mk+1, Fk+1) are as in the proof of Proposition A.

We only discuss the following two cases:
(1) (R2, S2) : (M2, F2)

∼∼∼ (M3, F3);
(2) (R3, S3) : (M3, F3)

∼∼∼ (M4, F4).
When k = 1, (R1, S1) is a complete D∞-half elementary conjugacy from (A, J ) to

(A2, J2). For each k = 4, 5 . . . , 2m, one can apply the arguments used in cases (1) and
(2) to (Rk , Sk) : (Mk , Fk) ∼∼∼ (Mk+1, Fk+1). More precisely, when k is an even number, the
argument used in case (1) can be applied and when k is an odd number, the argument used
in case (2) can be applied.

(1) Suppose that (B2, K2) is the flip pair for the second higher block D∞-system of
(XB , σB , ϕB,K). We first compare the flip signatures of (B2, K2) and (M3, F3). We define
a zero-one B2(XB)× A3 matrix U2 and a zero-one A3 × B2(XB) matrix V2 by

U2

⎛
⎝[ b2

b1

]
,

⎡
⎣ d3

a2

d1

⎤
⎦
⎞
⎠ =

{
1 if b1 = d1 and �(a2) = b2,

0 otherwise,

and

V2

⎛
⎝
⎡
⎣ d3

a2

d1

⎤
⎦ ,
[
b2

b1

]⎞⎠ =
{

1 if b2 = d3 and �(a2) = b1,

0 otherwise,

for all

[
b2

b1

]
∈ B2(XB) and

⎡
⎣ d3

a2

d1

⎤
⎦ ∈ A3.

A direct computation shows that

(U2, V2) : (B2, K2)
∼∼∼ (M3, F3).

Remark of Lemma 5.1 says that K(B2) is not trivial. So there is a basis E(B2) ∈
Bas(K(B2)) for the eventual kernel of B2 having property (1) from Lemma 3.3. Suppose
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that γ = {w1, . . . , wp} is a cycle in E(B2). Since

V2w1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = w1

([
b3

�(a2)

]) ⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦ ∈ A3

⎞
⎠ ,

it follows that w1 /∈ Ker(V2). By Lemma 3.5, γ is a cycle in Ep(B2; ∂+
U2,V2

). Suppose that
E(M3) ∈ Bas(K(M3)) is a basis for the eventual kernel of M3 having property (1) from
Lemma 3.3. Then it is obvious that for each p ∈ Ind(K(B2)), we have

Ep(B2; ∂−
U2,V2

) = ∅ and Ep+1(M3; ∂+
V2,U2

) = ∅. (5.2)

Hence,

p ∈ Ind(K(B2))⇔ p + 1 ∈ Ind(K(M3)) (p ≥ 1)

and

sgn(Ep(B2)) = sgn(Ep+1(M3)) (p ∈ Ind(K(B2)))

by Proposition C. If E1(M3) = ∅, then E1(M3) = E1(M3; ∂−
V2,U2

) by equation (5.2) and
we have

sgn(E1(M3)) = +1 (5.3)

by Propositions 3.6 and C.
Now, we compare the flip signatures of (M2, F2) and (M3, F3). Let β = {v1, . . . , vp+1}

be a cycle in E(M3) for some p ≥ 1. If b1b2b3 ∈ B3(XB) and a2, a′
2 ∈ �−1(b2), then from

M3v2 = v1, it follows that

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ =

∑
a3∈�−1(b3)

∑
b4∈FB(b3)

v2

⎛
⎝
⎡
⎣ b4

a3

b2

⎤
⎦
⎞
⎠

and this implies that

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = v1

⎛
⎝
⎡
⎣ b3

a′
2
b1

⎤
⎦
⎞
⎠ .

Since v1 is a non-zero vector, there is a block b1b2b3 ∈ B3(XB) and a non-zero real number
k such that

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = k for all a2 ∈ �−1(b2).

Since M3v1 = 0, it follows that

∑
a2∈�−1(b2)

∑
b3∈FB(b2)

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = k

∑
b3∈FB(b2)

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = 0.
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From this, we see that

R2v1

([
a2

a1

])
=

∑
b3∈FB(b2)

v1

⎛
⎝
⎡
⎣ b3

a2

b1

⎤
⎦
⎞
⎠ = 0

for any a1 ∈ �−1(b1) and a1a2 ∈ B2(XA). Hence, v1 ∈ Ker(R2) and β is a cycle in
Ep+1(M3; ∂−

S2,R2
) by Lemma 3.5. From this, we see that

p + 1 ∈ Ind(K(M3)) ⇔ p ∈ Ind(K(M2)) (p ≥ 2)

and

2 ∈ Ind(K(M3)) ⇔ 1 ∈ Ind(K(M2; ∂+
R2,S2

)).

Suppose that E(M2) ∈ Bas(K(M2)) is a basis for the eventual kernel of M2 having
property (1) from Lemma 3.3. If 1 ∈ Ind(K(M2)) and E1(M2; ∂−

R2,S2
) is non-empty, then

we have

sgn(E1(M2; ∂−
R2,S2

)) = +1

by Propositions 3.6, C and equation (3.5). Thus, we have

sgn(Ep+1(M3)) = sgn(Ep(M2)) (p + 1 ∈ Ind(K(M3)); p ≥ 1).

If 1 ∈ Ind(K(M3)) and E1(M3; ∂+
S2,R2

) is non-empty, then we have

sgn(E1(M3; ∂+
S2,R2

)) = +1

and if E1(M3; ∂−
S2,R2

) is non-empty, then we have

sgn(E1(M3; ∂−
S2,R2

)) = +1

by equations (3.5), (5.3) and Propositions 3.6, C. As a consequence, the flip signatures of
(M2, F2) and (M3, F3) have the same number of −1s and their leading signatures coincide.

(2) Suppose that α is a cycle in K(M3) and that u is the initial vector of α. Since

S3u

⎛
⎜⎜⎝
⎡
⎢⎢⎣
b4

a3

a2

b1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ = u

⎡
⎣ b4

a3

�(a2)

⎤
⎦

⎛
⎜⎜⎝
⎡
⎢⎢⎣
b4

a3

a2

b1

⎤
⎥⎥⎦ ∈ A4

⎞
⎟⎟⎠ ,

it follows that S3u is not identically zero. The argument used in the proof of Lemma 5.1
completes the proof.

6. D∞-shift equivalence and the Lind zeta functions
We first introduce the notion of D∞-shift equivalence which is an analogue of shift
equivalence. Let (A, J ) and (B, K) be flip pairs and let l be a positive integer. AD∞-shift
equivalence (D∞-SE) of lag l from (A, J ) to (B, K) is a pair (D, E) of non-negative
integral matrices satisfying

Al = DE, Bl = ED, AD = DB and E = KDTJ .
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We observe that AD = DB, E = KDTJ and the fact that (A, J ) and (B, K) are flip
pairs imply EA = BE. If there is a D∞-SE of lag l from (A, J ) to (B, K), then we say
that (A, J ) is D∞-shift equivalent to (B, K) and write

(A, J ) ∼ (B, K) (lag l).

Suppose that

(D1, E1), (D2, E2), . . . , (Dl , El)

is a D∞-SSE of lag l from (A, J ) to (B, K). If we set

D = D1D2 . . . Dl and E = El . . . E2E1,

then (D, E) is a D∞-SE of lag l from (A, J ) to (B, K). Hence, we have

(A, J ) ≈ (B, K) (lag l) ⇒ (A, J ) ∼ (B, K) (lag l).

In the rest of the section, we review the Lind zeta function of a D∞-TMC. In [4], an
explicit formula for the Lind zeta function of a D∞-system was established. In the case of
a D∞-TMC, the Lind zeta function can be expressed in terms of matrices from flip pairs.
We briefly discuss the formula.

Suppose that G is a group and that α is a G-action on a set X. Let F denote the set of
finite index subgroups of G. For each H ∈ F , we set

pH (α) = |{x ∈ X : for all h ∈ H α(h, x) = x}|.
The Lind zeta function ζα of the action α is defined by

ζα(t) = exp

(∑
H∈F

pH (α)

|G/H | t
|G/H |

)
. (6.1)

It is clear that if α : Z ×X → X is given by α(n, x) = T n(x), then the Lind zeta function
ζα becomes the Artin–Mazur zeta function ζT of a topological dynamical system (X, T ).
The formula for the Artin–Mazur zeta function can be found in [1]. Lind defined the
function (6.1) in [7] for the case G = Zd .

Every finite index subgroup of the infinite dihedral group D∞ = 〈a, b : ab =
ba−1 and b2 = 1〉 can be written in one and only one of the following forms:

〈am〉 or 〈am, akb〉 (m = 1, 2, . . . ; k = 1, . . . , m− 1)

and the index is given by

|G2/〈am〉| = 2m or |G2/〈am, akb〉| = m.

Suppose that (X, T , F) is a D∞-system. If m is a positive integer, then the number of
periodic points in X of period m will be denoted by pm(T ):

pm(T ) = |{x ∈ X : T m(x) = x}|.
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If m is a positive integer and n is an integer, then pm,n(T , F) will denote the number of
points in X fixed by T m and T n ◦ F :

pm,n(T , F) = |{x ∈ X : T m(x) = T n ◦ F(x) = x}|.
Thus, the Lind zeta function ζT ,F of a D∞-system (X, T , F) is given by

ζT ,F (t) = exp
( ∞∑
m=1

pm(T )

2m
t2m +

∞∑
m=1

m−1∑
k=0

pm,k(T , F)
m

tm
)

. (6.2)

It is evident if two D∞-systems (X, T , F) and (X′, T ′, F ′) are D∞-conjugate, then

pm(T ) = pm(T
′) and pm,n(T , F) = pm,n(T

′, F ′)

for all positive integers m and integers n. As a consequence, the Lind zeta function is a
D∞-conjugacy invariant.

The formula (6.2) can be simplified as follows. Since T ◦ F = F ◦ T −1 and F 2 = IdX,
it follows that

pm,n(T , F) = pm,n+m(T , F) = pm,n+2(T , F)

and this implies that

pm,n(T , F) = pm,0(T , F) if m is odd, (6.3)
pm,n(T , F) = pm,0(T , F) if m and n are even,
pm,n(T , F) = pm,1(T , F) if m is even and n is odd.

Hence, we obtain

m−1∑
k=0

pm,n(T , F)
m

=
⎧⎨
⎩
pm,0(T , F) if m is odd,
pm,0(T , F)+ pm,1(T , F)

2
if m is even.

Using this, equation (6.2) becomes

ζα(t) = ζT (t
2)

1/2
exp

(
GT ,F (t)

)
,

where ζT is the Artin–Mazur zeta function of (X, T ) and GT ,F is given by

GT ,F (t) =
∞∑
m=1

(
p2m−1,0(T , F) t2m−1 + p2m,0(T , F)+ p2m,1(T , F)

2
t2m
)

.

If there is a D∞-SSE of lag 2l between two flip pairs (A, J ) and (B, K) for some
positive integer l, then (XA, σA, ϕA,J ) and (XB , σB , ϕB,K) have the same Lind zeta
function by item (1) in Proposition A. The following proposition says that the Lind zeta
function is actually an invariant for D∞-SSE.

PROPOSITION 6.1. If (X, T , F) is a D∞-system, then

p2m−1,0(T , F) = p2m−1,0(T , T ◦ F),
p2m,0(T , F) = p2m,1(T , T ◦ F),
p2m,1(T , F) = p2m,0(T , T ◦ F)
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for all positive integers m. As a consequence, the Lind zeta functions of (X, T , F) and
(X, T , T ◦ F) are the same.

Proof. The last equality is trivially true. To prove the first two equalities, we observe that

T m(x) = F(x) = x ⇔ T m(T x) = T ◦ (T ◦ F)(T x) = T x

for all positive integers m. Thus, we have

pm,0(T , F) = pm,1(T , T ◦ F) (m = 1, 2, . . .). (6.4)

Replacing m with 2m yields the second equality. From equations (6.3) and (6.4), the first
equality follows.

When (A, J ) is a flip pair, the numbers pm,δ(σA, ϕA,J ) of fixed points can be expressed
in terms of A and J for all positive integers m and δ ∈ {0, 1}. To present it, we indicate
notation. If M is a square matrix, then �M will denote the column vector whose ith
coordinates are identical with ith diagonal entries of M, that is,

�M(i) = M(i, i).

For instance, if I is the 2 × 2 identity matrix, then

�I =
[

1
1

]
.

The following proposition is proved in [4].

PROPOSITION 6.2. If (A, J ) is a flip pair, then

p2m−1,0(σA, ϕA,J ) = �J
T(Am−1)�AJ ,

p2m,0(σA, ϕA,J ) = �J
T(Am)�J ,

p2m,1(σA, ϕA,J ) = �JA
T(Am−1)�AJ

for all positive integers m.

7. Examples
Let A be Ashley’s eight-by-eight and let B be the minimal zero-one transition matrix for
the full two-shift, that is,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 1
1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B =
[

1 1
1 1

]
.
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There is a unique one-block flip for (XA, σA) and there are exactly two one-block flips for
(XB , σB). Those flips are determined by the permutation matrices

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, I =
[

1 0
0 1

]
and K =

[
0 1
1 0

]
.

In the following example, we calculate the Lind zeta functions of (XA, σA, ϕA,J ),
(XB , σB , ϕB,I ) and (XB , σB , ϕB,K).

Example 7.1. Direct computation shows that the number of fixed points of (XA, σA, ϕA,J ),
(XB , σB , ϕB,I ) and (XB , σB , ϕB,K) are as follows:

pm(σA) = pm(σB) = 2m,

p2m−1,0(σA, ϕA,J ) = p2m,0(σA, ϕA,J ) = 0,

p2m,1(σA, ϕA,J ) =
{

2m if m = 6,

80 if m = 6,

p2m−1,0(σB , ϕB,I ) = 2m, p2m,0(σB , ϕB,I ) = 2m+1, p2m,1(σB , ϕB,I ) = 2m,

p2m−1,0(σB , ϕB,K) = p2m,0(σB , ϕB,K) = 0, p2m,1(σB , ϕB,K) = 2m

for all positive integers m. Thus, the Lind zeta functions are as follows:

ζA,J (t) = 1√
1 − 2t2

exp
(

t2

1 − 2t2
+ 8t12

)
,

ζB,I (t) = 1√
1 − 2t2

exp
(

2t + 3t2

1 − 2t2

)

and

ζB,K(t) = 1√
1 − 2t2

exp
(

t2

1 − 2t2

)
.

As a result, we see that

(XA, σA, ϕA,J ) � (XB , σB , ϕB,I ),

(XA, σA, ϕA,J ) � (XB , σB , ϕB,K)

and

(XB , σB , ϕB,I ) � (XB , σB , ϕB,K).
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Example 7.2. In spite of ζA,J = ζB,I , ζA,J = ζB,K and ζB,I = ζB,K , there are D∞-SEs
between (A, J ), (B, I ) and (B, K) pairwise. If D and E are matrices given by

D = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and E = 2
[

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

]
,

then (D, E) is a D∞-SE of lag 6 from (A, J ) to (B, K) and from (A, J ) to (B, I ):

(D, E) : (A, J ) ∼ (B, I ) (lag 6) and (D, E) : (A, J ) ∼ (B, K) (lag 6).

Direct computation shows that (Bl , Bl) is a D∞-SE from (B, I ) to (B, K):

(Bl , Bl) : (B, I ) ∼ (B, K) (lag 2l)

for all positive integers l. This contrasts with the fact that the existence of SE between two
transition matrices implies that the corresponding Z-TMCs share the same Artin–Mazur
zeta functions. (See §7 in [8].)

Example 7.3. We compare the flip signatures of (A, J ), (B, I ) and (B, K). Direct
computation shows that the index sets for the eventual kernels of A and B are

Ind(K(A)) = {1, 6} and Ind(K(B)) = {1}
and the flip signatures are

F.Sig(A, J ) = (−1, +1),

F.Sig(B, I ) = (+1)

and

F.Sig(B, K) = (−1).

By Theorem D, we see that

(XA, σA, ϕA,J ) � (XB , σB , ϕB,I ),

(XA, σA, ϕA,J ) � (XB , σB , ϕB,K)

and

(XB , σB , ϕB,I ) � (XB , σB , ϕB,K).

The flip signature is completely determined by the eventual kernel of a transition matrix,
while the Lind zeta functions and the existence of D∞-shift equivalence between two flip
pairs rely on the eventual ranges of transition matrices. The nilpotency index of Ashley’s
eight-by-eight A on the eventual kernel K(A) is 6. In the case of (A, J ) in Example 7.1,
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the number of periodic points pm(σA) is completely determined by the eventual range
of A, the numbers of fixed points p2m−1,0(σA, ϕA,J ) and p2m,1(σA, ϕA,J ) are completely
determined by the eventual ranges ifm ≥ 7, and p2m,0(σA, ϕA,J ) is completely determined
by the eventual ranges if m ≥ 6. In Example 7.2, (D, E) is actually the D∞-SE from
(A, J ) to (B, I ) and from (A, J ) to (B, K) having the smallest lag, and this means that
the existence of D∞-SE from (A, J ) to (B, I ) and from (A, J ) to (B, K) are not related
to the eventual kernels of A and B at all. Similarly, the existence of D∞-SE from (B, I ) to
(B, K) is not related to the eventual kernel of B at all. Therefore, the coincidence of the
Lind zeta functions or the existence of D∞-shift equivalence are not enough to guarantee
the same number of −1s in the corresponding flip signatures or the coincidence of leading
signatures. The following example shows that the flip signatures of two flip pairs can have
the same number of −1s and share the same leading signatures even when their non-zero
eigenvalues are totally different.

Example 7.4. Let A and B be the minimal zero-one transition matrices for the even shift
and full two-shift, respectively:

A =
⎡
⎣ 1 1 0

0 0 1
1 1 0

⎤
⎦ and B =

[
1 1
1 1

]
.

If we set

J =
⎡
⎣ 1 0 0

0 0 1
0 1 0

⎤
⎦ and I =

[
1 0
0 1

]
,

then (A, J ) and (B, K) are flip pairs. Let spx(A) and spx(B) be the sets of non-zero
eigenvalues of A and B, respectively:

spx(A) =
{

1 + √
5

2
,

1 − √
5

2

}
and spx(B) = {2}.

Because spx(A) and spx(B) do not coincide, (XA, σA) and (XB , σB) are not Z-conjugate,
and hence (XA, σA, ϕA,J ) and (XB , σB , ϕB,K) are not D∞-conjugate. More precisely,
spx(A) = spx(B) implies that A and B are not shift-equivalent, and hence (A, J ) and
(B, K) are not D∞-shift equivalent:

spx(A) = spx(B) ⇒ A � B ⇒ (A, J ) � (B, K).

In addition, spx(A) = spx(B) implies that the Artin–Mazur zeta functions ζA(t) and ζB(t)
of (XA, σA) and (XB , σB) do not coincide (see Ch. 7 in [8]), and hence the Lind zeta
functions ζA,J (t) and ζB,K(t) of (XA, σA) and (XB , σB) do not coincide:

spx(A) = spx(B) ⇒ ζA(t) = ζB(t) ⇒ ζA,J (t) = ζB,K(t).

However, the flip signatures of (A, J ) and (B, K) are the same:

F.Sig(A, J ) = (+1) and F.Sig(B, K) = (+1).
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In the following example, we see that the coincidence of the Lind zeta functions does
not guarantee the existence of D∞-SE between the corresponding flip pairs.

Example 7.5. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 1 1 0 1 0 0
1 1 1 0 0 1 0
0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0
0 1 0 1 1 1 0
0 0 1 1 1 1 0
0 0 0 1 0 0 1
1 0 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic functions χA and χB of A and B are the same:

χA(t) = χB(t) = t (t − 1)4(t2 − 3t + 1).

We denote the zeros of t2 − 3t + 1 by λ and μ. Direct computation shows that (A, J ) and
(B, J ) are flip pairs and (XA, σA, ϕA,J ) and (XB , σB , ϕB,J ) share the same numbers of
fixed points.

pm = 4 + λm + μm,

p2m−1,0 = 8λm − 3λm−1

11λ − 4
+ 8μm − 3μm−1

11μ− 4
,

p2m,0 = λm+1

11λ − 4
+ μm+1

11μ− 4
,

p2m,1 = 55λm − 21λm−1

11λ − 4
+ 55μm − 21μm−1

11μ− 4
(m = 1, 2, . . .).

As a result, they share the same Lind zeta functions:√
1

t2(1 − t2)4(1 − 3t2 + t4)
exp

(
t + 3t2 − t3 − 2t4

1 − 3t2 + t4

)
.

If there is a D∞-SE (D, E) from (A, J ) to (B, J ), then (D, E) also becomes a SE
from A to B. It is well known [8] that the existence of SE from A to B implies that A and B
have the same Jordan forms away from zero up to the order of Jordan blocks. The Jordan
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canonical forms of A and B are given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

μ

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ

μ

1 1
0 1

1 1
0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

respectively. From this, we see that (A, J ) cannot be D∞-shift equivalent to (B, J ).
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