\mathbf{F} signatures the signature signatu

SIEYE RY[U](https://orcid.org/0000-0001-6337-8148)**D**

Independent scholar, South Korea (e-mail: [sieyeryu@gmail.com\)](mailto:sieyeryu@gmail.com)

(*Received* 30 *May* 2021 *and accepted in revised form* 18 *July* 2022)

Abstract. A D_{∞} -topological Markov chain is a topological Markov chain provided with an action of the infinite dihedral group D_{∞} . It is defined by two zero-one square matrices *A* and *J* satisfying $AJ = JA^T$ and $J^2 = I$. A flip signature is obtained from symmetric bilinear forms with respect to *J* on the eventual kernel of *A*. We modify Williams' decomposition theorem to prove the flip signature is a D_{∞} -conjugacy invariant. We introduce natural *D*∞-actions on Ashley's eight-by-eight and the full two-shift. The flip signatures show that Ashley's eight-by-eight and the full two-shift equipped with the natural *D*_∞-actions are not *D*_∞-conjugate. We also discuss the notion of *D*_∞-shift equivalence and the Lind zeta function.

Key words: flip signatures, D_{∞} -topological Markov chains, D_{∞} -conjugacy invariants, eventual kernels, Ashley's eight-by-eight and the full two-shift 2020 Mathematics Subject Classification: 37B10, 37B05 (Primary); 15A18 (Secondary)

1. *Introduction*

A *topological flip system* (X, T, F) is a topological dynamical system (X, T) consisting of a topological space *X*, a homeomorphism $T : X \to X$ and a topological conjugacy $F :$ $(X, T^{-1}) \rightarrow (X, T)$ with $F^2 = \text{Id}_X$. (See the survey paper [\[](#page-34-0)6] for the further study of flip systems.) We call the map F a *flip* for (X, T) . If F is a flip for a discrete-time topological dynamical system *(X, T)*, then the triple *(X, T, F)* is called a D_{∞} -system because the infinite dihedral group

$$
D_{\infty} = \langle a, b : ab = ba^{-1} \text{ and } b^2 = 1 \rangle
$$

acts on *X* as follows:

$$
(a, x) \mapsto T(x)
$$
 and $(b, x) \mapsto F(x)$ $(x \in X)$.

Two D_{∞} -systems (X, T, F) and (X', T', F') are said to be D_{∞} -*conjugate* if there is a D_{∞} -equivariant homeomorphism $\theta : X \to X'$. In this case, we write

3414 *S. Ryu*

$$
(X, T, F) \cong (X', T', F')
$$

and call the map θ a D_{∞} -*conjugacy* from (X, T, F) to (X', T', F') .

Suppose that *A* is a finite set. A *topological Markov chain*, or TMC for short, (X_A, σ_A) over *A* is a shift space which has a zero-one $A \times A$ matrix *A* as a transition matrix:

$$
\mathsf{X}_A = \{ x \in \mathcal{A}^{\mathbb{Z}} : A(x_i, x_{i+1}) = 1 \text{ for all } i \in \mathbb{Z} \}.
$$

A *D*_∞-system (*X*, *T*, *F*) is said to be a *D*_∞-topological Markov chain, or *D*_∞-TMC for short, if (X, T) is a topological Markov chain.

Suppose that (X, T) is a shift space. A flip *F* for (X, T) is called a *one-block flip* if $x_0 = x'_0$ implies $F(x)_0 = F(x')_0$ for all *x* and x' in *X*. If *F* is a one-block flip for (X, T) , then there is a unique map $\tau : A \rightarrow A$ such that

$$
F(x)_i = \tau(x_{-i})
$$
 and $\tau^2 = \text{Id}_{\mathcal{A}}$ $(x \in X; i \in \mathbb{Z}).$

The representation theorem in [4[\]](#page-34-1) says that if (X, T, F) is a D_{∞} -TMC, then there is a TMC (X', T') and a one-block flip F' for (X', T') such that (X, T, F) and (X', T', F') are *D*∞-conjugate.

Suppose that *A* is a finite set and that *A* and *J* are zero-one $A \times A$ matrices satisfying

$$
AJ = JAT \text{ and } J2 = I.
$$
 (1.1)

Since *J* is zero-one and $J^2 = I$, it follows that *J* is symmetric and that for any $a \in A$, there is a unique $b \in A$ such that $J(a, b) = 1$. Thus, there is a unique permutation $\tau_J : A \to A$ of order two satisfying

$$
J(a, b) = 1 \Leftrightarrow \tau_J(a) = b \quad (a, b \in \mathcal{A}).
$$

It is obvious that the map $\varphi_J : A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ defined by

$$
\varphi_J(x)_i = \tau_J(x_{-i}) \quad (x \in X)
$$

is a one-block flip for the full *A*-shift $(A^{\mathbb{Z}}, \sigma)$. Since $AJ = JA^{\mathsf{T}}$ implies

$$
A(a, b) = A(\tau_J(b), \tau_J(a)) \quad (a, b \in \mathcal{A}),
$$

it follows that $\varphi_J(X_A) = X_A$. Thus, the restriction $\varphi_{A,J}$ of φ_J to X_A becomes a one-block flip for (X_A, σ_A) . A pair (A, J) of zero-one $A \times A$ matrices satisfying equation [\(1.1\)](#page-1-0) will be called a *flip pair*.

The classification of shifts of finite type up to conjugacy is one of the central problems in symbolic dynamics. There is an algorithm determining whether or not two one-sided shifts of finite type (N-SFTs) are ^N-conjugate. (See §2.1 in [\[](#page-34-2)5].) In the case of two-sided shifts of finite type $(Z-\text{SFTs})$, however, one cannot determine whether or not two systems are Z-conjugate, even though many Z-conjugacy invariants have been discovered. For instance, it is well known (Proposition 7.3.7 in [\[](#page-34-3)8]) that if two \mathbb{Z} -SFTs are \mathbb{Z} -conjugate, then their transition matrices have the same set of non-zero eigenvalues. In 1990, Ashley introduced an eight-by-eight zero-one matrix, which is called Ashley's eight-by-eight and asked whether or not it is \mathbb{Z} -conjugate to the full two-shift. (See Example 2.2.7 in [5[\]](#page-34-2) or §3 in [\[](#page-34-4)2].) Since the characteristic polynomial of Ashley's eight-by-eight is $t^7(t-2)$, we could say Ashley's eight-by-eight is very simple in terms of spectrum and it is easy to prove that Ashley's eight-by-eight is not N-conjugate to the full two-shift. Nevertheless, this problem has not been solved yet. Meanwhile, both Ashley's eight-by-eight and the full-two shift have one-block flips. More precisely, if we set

$$
A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},
$$

$$
B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad (1.2)
$$

then *A* is Ashley's eight-by-eight, $\varphi_{A,J}$ is a unique one-block flip for (X_A, σ_A) , *B* is the minimal zero-one matrix defining the full two-shift and (X_B, σ_B) has exactly two one-block flips $\varphi_{B,I}$ and $\varphi_{B,K}$. It is natural to ask whether or not $(X_A, \sigma_A, \varphi_{A,I})$ is D_{∞} -conjugate to $(X_B, \sigma_B, \varphi_{B,I})$ or $(X_B, \sigma_B, \varphi_{B,K})$. In this paper, we introduce the notion

of *flip signatures* and prove

$$
(\mathsf{X}_A, \sigma_A, \varphi_{A,J}) \ncong (\mathsf{X}_B, \sigma_B, \varphi_{B,I}), \tag{1.3}
$$

$$
(\mathsf{X}_A, \sigma_A, \varphi_{A,J}) \ncong (\mathsf{X}_B, \sigma_B, \varphi_{B,K})
$$
\n(1.4)

and

$$
(\mathsf{X}_B, \sigma_B, \varphi_{B,I}) \ncong (\mathsf{X}_B, \sigma_B, \varphi_{B,K}). \tag{1.5}
$$

When (A, J) and (B, K) are flip pairs, it is clear that if θ is a D_{∞} -conjugacy from $(X_A, \sigma_A, \varphi_{A,J})$ to $(X_B, \sigma_B, \varphi_{B,K})$, then θ is also a Z-conjugacy from (X_A, σ_A) to (X_B, σ_B) . However, equation [\(1.5\)](#page-2-0) says that the converse is not true.

We first introduce analogues of elementary equivalence (EE), strong shift equivalence (SSE) and Williams' decomposition theorem for D_{∞} -TMCs. Let us recall the notions of EE and SSE. (See [\[](#page-34-3)8, 9[\]](#page-34-5) for the details.) Suppose that *^A* and *^B* are zero-one square matrices. A pair *(D*, *E)* of zero-one matrices satisfying

$$
A = DE \quad \text{and} \quad B = ED
$$

is said to be an EE *from A to B* and we write (D, E) : $A \gtrapprox B$. If (D, E) : $A \gtrapprox B$, then there is a Z-conjugacy $\gamma_{D,E}$ from (X_A, σ_A) to (X_B, σ_B) satisfying

$$
\gamma_{D,E}(x) = y \Leftrightarrow \text{for all } i \in \mathbb{Z}, \quad D(x_i, y_i) = E(y_i, x_{i+1}) = 1.
$$
 (1.6)

The map *γD*,*^E* is called an *elementary conjugacy*.

An SSE *of lag l from A to B* is a sequence of *l* elementary equivalences

$$
(D_1, E_1): A \approx A_1, \quad (D_2, E_2): A_1 \approx A_2, \ldots, \quad (D_l, E_l): A_l \approx B.
$$

It is evident that if *A* and *B* are strong shift equivalent, then (X_A, σ_A) and (X_B, σ_B) are ^Z-conjugate. Williams' decomposition theorem, found in [\[](#page-34-5)9], says that every ^Z-conjugacy between two Z-TMCs can be decomposed into the composition of a finite number of elementary conjugacies.

To establish analogues of EE, SSE and Williams' decomposition theorem for D_{∞} -TMCs, we first observe some properties of a D_{∞} -system. If *(X, T, F)* is a D_{∞} -system, then $(X, T, T^n \circ F)$ are also D_{∞} -systems for all integers *n*. It is obvious that *T*^{*n*} are *D*_∞-conjugacies from (X, T, F) to $(X, T, T^{2n} \circ F)$ and from $(X, T, T \circ F)$ to $(X, T, T^{2n+1} \circ F)$ for all integers *n*. For one's information, we will see that (X, T, F) is not D_{∞} -conjugate to $(X, T, T \circ F)$ in Proposition [6.1.](#page-28-0)

Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

$$
A = DE, \quad B = ED \quad \text{and} \quad E = KD^{\mathsf{T}}J
$$

is said to be a D_{∞} -half elementary equivalence $(D_{\infty}$ -HEE) from (A, J) to (B, K) and write (D, E) : $(A, J) \approx (B, K)$. In Proposition [2.1,](#page-7-0) we will see that if (D, E) : $(A, J) \approx$ (B, K) , then the elementary conjugacy $\gamma_{D,E}$ from equation [\(1.6\)](#page-2-1) becomes a D_{∞} -conjugacy from $(X_A, \sigma_A, \varphi_A, \jmath)$ to $(X_B, \sigma_B, \sigma_B \circ \varphi_{B,K})$. We call the map $\gamma_{D,E}$ a D_{∞} -half elementary *conjugacy from* $(X_A, \sigma_A, \varphi_{A,J})$ *to* $(X_B, \sigma_B, \sigma_B \circ \varphi_{B,K})$.

A sequence of lD_{∞} -half elementary equivalences

$$
(D_1, E_1) : (A, J) \approx (A_2, J_2), \ldots, (A_l, D_l) : (A_l, D_l) \approx (B, K)
$$

is said to be a D_{∞} -strong shift equivalence (D_{∞} -SSE) of lag *l* from (A, J) to (B, K) . If there is a D_{∞} -SSE of lag *l* from (A, J) to (B, K) , then $(X_A, \sigma_A, \varphi_{A,J})$ is D_{∞} -conjugate to $(X_B, \sigma_B, \sigma_B^l \circ \varphi_{B,K})$. If *l* is an even number, then $(X_A, \sigma_A, \varphi_{A,J})$ is D_∞ -conjugate to $(X_B, \sigma_B, \varphi_{B,K})$, while if *l* is an odd number, then $(X_A, \sigma_A, \varphi_{A,J})$ is D_∞ -conjugate to $(X_B, \sigma_B, \sigma_B \circ \varphi_{B,K})$. In [§4,](#page-19-0) we will see that Williams' decomposition theorem can be modified as follows.

PROPOSITION A. *Suppose that (A*, *J) and (B*, *K) are flip pairs.*

- (1) *Two* D_{∞} -TMCs (X_A , σ_A , $\varphi_{A,J}$) and (X_B , σ_B , $\varphi_{B,K}$) are D_{∞} -conjugate if and only if *there is a* D_{∞} -SSE of lag 2*l between* (A, J) *and* (B, K) *for some positive integer l.*
- (2) Two D_{∞} -TMCs $(X_A, \sigma_A, \varphi_{A,J})$ and $(X_B, \sigma_B, \sigma_B \circ \varphi_{B,K})$ are D_{∞} -conjugate if and *only if there is a* D_{∞} -SSE of lag 2*l* − 1 *between* (A, J) *and* (B, K) *for some positive integer l.*

To introduce the notion of flip signatures, we discuss some properties of D_{∞} -TMCs. We first indicate notation. If A_1 and A_2 are finite sets and *M* is an $A_1 \times A_2$ zero-one matrix, then for each $a \in \mathcal{A}_1$, we set

$$
\mathcal{F}_M(a) = \{b \in \mathcal{A}_2 : M(a, b) = 1\}
$$

and for each $b \in A_2$, we set

$$
\mathcal{P}_M(b) = \{a \in \mathcal{A}_1 : M(a, b) = 1\}.
$$

When (X, T) is a TMC, we denote the set of all *n*-blocks occurring in points in *X* by $\mathcal{B}_n(X)$ for all non-negative integers *n*.

Suppose that (A, J) and (B, K) are flip pairs and that (D, E) is a D_{∞} -HEE from (A, J) to (B, K) . Since *B* is zero-one and $B = ED$, it follows that

$$
\mathcal{F}_D(a_1) \cap \mathcal{F}_D(a_2) \neq \emptyset \Rightarrow \mathcal{P}_E(a_1) \cap \mathcal{P}_E(a_2) = \emptyset,
$$

$$
\mathcal{P}_E(a_1) \cap \mathcal{P}_E(a_2) \neq \emptyset \Rightarrow \mathcal{F}_D(a_1) \cap \mathcal{F}_D(a_2) = \emptyset,
$$
 (1.7)

for all $a_1, a_2 \in B_1(X_A)$. Suppose that *u* and *v* are real-valued functions defined on $B_1(X_A)$ and $B_1(X_B)$, respectively. If $|B_1(X_A)| = m$ and $|B_1(X_B)| = n$, then *u* and *v* can be regarded as vectors in \mathbb{R}^m and \mathbb{R}^n , respectively. If *u* and *v* satisfy

for all
$$
a \in \mathcal{B}_1(\mathsf{X}_A)
$$
 $u(a) = \sum_{b \in \mathcal{F}_D(a)} v(b),$ (1.8)

then for each $a \in B_1(X_A)$, we have

$$
u(\tau_J(a))u(a) = \sum_{b \in \mathcal{P}_E(a)} v(\tau_K(b)) \sum_{b \in \mathcal{F}_D(a)} v(b)
$$

by $E = K D^T J$ and equation [\(1.7\)](#page-4-0) leads to

$$
\sum_{a \in \mathcal{B}_1(\mathsf{X}_A)} u(\tau_J(a))u(a) = \sum_{b \in \mathcal{B}_1(\mathsf{X}_B)} \sum_{d \in \mathcal{P}_B(b)} v(\tau_K(d))v(b).
$$

Since *J* and *K* are symmetric, this formula can be expressed in terms of symmetric bilinear forms with respect to *J* and *K*. If we write $\langle u, u \rangle_I = u^T J u$ and $\langle Bv, v \rangle_K = (Bv)^T K v$, then we have

$$
\langle u, u \rangle_J = \langle Bv, v \rangle_K.
$$

We note that if both *A* and *B* have λ as their real eigenvalues and *v* is an eigenvector of *B* corresponding to λ , then *u* satisfying equation [\(1.8\)](#page-4-1) is an eigenvector of *A* corresponding to λ . We consider the case where *A* and *B* have 0 as their eigenvalues and find out some relationships between the symmetric bilinear forms \langle , \rangle and \langle , \rangle _K on the generalized eigenvectors of *A* and *B* corresponding to 0 when (A, J) and (B, K) are *D*_∞-half elementary equivalent.

We call the subspace $K(A)$ of $u \in \mathbb{R}^m$ such that $A^p u = 0$ for some $p \in \mathbb{N}$ the *eventual kernel* of *A*:

$$
\mathcal{K}(A) = \{ u \in \mathbb{R}^m : A^p u = 0 \text{ for some } p \in \mathbb{N} \}.
$$

If $u \in \mathcal{K}(A) \setminus \{0\}$ and p is the smallest positive integer for which $A^p u = 0$, then the ordered set

$$
\alpha = \{A^{p-1}u, \ldots, Au, u\}
$$

is called a *cycle of generalized eigenvectors of A corresponding to* 0. In this paper, we sometimes call α a *cycle in* $K(A)$ for simplicity. The vectors $A^{p-1}u$ and u are called the *initial vector* and the *terminal vector* of *α*, respectively, and we write

$$
Ini(\alpha) = A^{p-1}u \text{ and } Ter(\alpha) = u.
$$

We say that the length of α is p and write $|\alpha| = p$. It is well known [3[\]](#page-34-6) that there is a basis for $K(A)$ consisting of a union of disjoint cycles of generalized eigenvectors of A corresponding to 0. The set of bases for $K(A)$ consisting of a union of disjoint cycles of generalized eigenvectors of *A* corresponding to 0 is denoted by $\mathcal{B}as(\mathcal{K}(A))$. We will prove the following proposition in [§3.](#page-9-0)

PROPOSITION B. *Suppose that* (D, E) : $(A, J) \approx (B, K)$ *. Then there exist bases* $\mathcal{E}(A) \in$ $Bas(K(A))$ *and* $\mathcal{E}(B) \in Bas(K(B))$ *such that if* $p > 1$ *and* $\alpha = \{u_1, u_2, \ldots, u_p\}$ *is a cycle in* $E(A)$ *, then one of the following holds.*

(1) *There is a cycle* $\beta = \{v_1, v_2, \ldots, v_{n+1}\}$ *in* $\mathcal{E}(B)$ *such that*

 $Dv_{k+1} = u_k$ and $Eu_k = v_k$ $(k = 1, ..., p)$.

(2) *There is a cycle* $\beta = \{v_1, v_2, \ldots, v_{n-1}\}$ *in* $\mathcal{E}(B)$ *such that*

$$
Dv_k = u_k
$$
 and $Eu_{k+1} = v_k$ $(k = 1, ..., p - 1)$.

In either case, we have

$$
\langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J = \langle \text{Ini}(\beta), \text{Ter}(\beta) \rangle_K. \tag{1.9}
$$

In Lemma [3.3,](#page-12-0) we will show that there is a basis $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ such that for every cycle α in $\mathcal{E}(A)$, the restriction of symmetric bilinear form \langle , \rangle_J to span (α) is non-degenerate and in Lemma [3.2,](#page-10-0) we will see that the restriction of symmetric bilinear form \langle , \rangle_J to span (α) is non-degenerate if and only if the left-hand side of equation [\(1.9\)](#page-5-0) is not 0 for a cycle α in $\mathcal{E}(A)$. In this case, we define the sign of a cycle $\alpha = \{u_1, u_2, \ldots, u_p\}$ in $\mathcal{E}(A)$ by

$$
sgn(\alpha) = \begin{cases} +1 & \text{if } \langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J > 0, \\ -1 & \text{if } \langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J < 0. \end{cases}
$$

We denote the set of $|\alpha|$ such that α is a cycle in $\mathcal{E}(A)$ by $\mathcal{I}nd(\mathcal{K}(A))$. It is clear that $\mathcal{I}nd(\mathcal{K}(A))$ is independent of the choice of basis for $\mathcal{K}(A)$. We denote the union of the cycles α of length p in $\mathcal{E}(A)$ by $\mathcal{E}_p(A)$ for each $p \in \mathcal{I}nd(\mathcal{K}(A))$ and define the sign of $\mathcal{E}_p(A)$ by

$$
sgn(\mathcal{E}_p(A)) = \prod_{\{\alpha:\alpha \text{ is a cycle in } \mathcal{E}_p(A)\}} sgn(\alpha).
$$

In [§3,](#page-9-0) we will prove the sign of $\mathcal{E}_p(A)$ is also independent of the choice of basis for $\mathcal{K}(A)$ if the restriction of \langle , \rangle_J to span (α) is non-degenerate for every cycle α in $\mathcal{E}_p(A)$.

PROPOSITION C. Suppose that $\mathcal{E}(A)$ *and* $\mathcal{E}'(A)$ *are two distinct bases in Bas*($\mathcal{K}(A)$) *such that for every cycle* α *in* $\mathcal{E}(A)$ *or* $\mathcal{E}'(A)$ *, the restriction of* \langle , \rangle *j to span* (α) *is non-degenerate. Then for each* $p \in Ind(K(A))$ *, we have*

$$
sgn(\mathcal{E}_p(A)) = sgn(\mathcal{E}'_p(A)).
$$

Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and that the restriction of \langle , \rangle_J to span (α) is non-degenerate for every cycle in $\mathcal{E}(A)$. We arrange the elements of $\mathcal{I}nd(\mathcal{K}(A))$ = $\{p_1, p_2, \ldots, p_A\}$ to satisfy

$$
p_1 < p_2 < \ldots p_A
$$

and write

$$
\varepsilon_p = \text{sgn}(\mathcal{E}_p(A)).
$$

If $|Ind(K(A))| = k$, then the *k*-tuple $(\varepsilon_{p_1}, \varepsilon_{p_2}, \ldots, \varepsilon_{p_A})$ is called the *flip signature of* (A, J) and ε_{pA} is called the *leading signature of* (A, J) . The flip signature of (A, J) is denoted by

$$
\text{F.Sig}(A, J) = (\varepsilon_{p_1}, \varepsilon_{p_2}, \ldots, \varepsilon_{p_A}).
$$

The following is the main result of this paper.

THEOREM D. *Suppose that* (A, J) *and* (B, K) *are flip pairs and that* $(X_A, \sigma_A, \varphi_{A,J})$ *and* $(X_B, \sigma_B, \varphi_{B,K})$ *are* D_∞ -conjugate. If

$$
F\mathit{Sig}(A, J) = (\varepsilon_{p_1}, \varepsilon_{p_2}, \ldots, \varepsilon_{p_A})
$$

and

$$
F\mathit{Sig}(B, K) = (\varepsilon_{q_1}, \varepsilon_{q_2}, \ldots, \varepsilon_{q_B}),
$$

then F.Sig(A, *J) and F.Sig(B*, *K) have the same number of* −1*s and the leading signatures* ε_{p_A} *and* ε_{q_B} *coincide:*

$$
\varepsilon_{p_A} = \varepsilon_{q_B}.
$$

In [§7,](#page-29-0) we will compute the flip signatures of (A, J) , (B, I) and (B, K) , where A, J, *B*, *I* and *K* are as in equation [\(1.2\)](#page-2-2) and prove equations [\(1.3\)](#page-2-3), [\(1.4\)](#page-2-4) and [\(1.5\)](#page-2-0). Actually, we can obtain equations (1.3) , (1.4) and (1.5) from the Lind zeta functions. In [4[\]](#page-34-1), an explicit formula for the Lind zeta function for a D_{∞} -TMC was established, which can be expressed in terms of matrices from flip pairs. From its formula (see also [§6\)](#page-26-0), it is obvious that the Lind zeta function is a D_{∞} -conjugacy invariant. In Example [7.1,](#page-30-0) we will see that the Lind zeta functions of $(X_A, \sigma_A, \varphi_{A,J})$, $(X_B, \sigma_B, \varphi_{B,I})$ and $(X_B, \sigma_B, \varphi_{B,K})$ are all different. In [§6,](#page-26-0) we introduce the notion of D_{∞} -shift equivalence (D_{∞} -SE) which is an analogue of shift equivalence and prove that D_{∞} -SE is a D_{∞} -conjugacy invariant. In Example [7.2,](#page-31-0) we will see that there are D_{∞} -SEs between (A, J) , (B, I) and (B, K) pairwise. So the existence of D_{∞} -shift equivalence between two flip pairs does not imply that the corresponding Z-TMCs share the same Lind zeta functions. This is a contrast to the fact that the existence of shift equivalence between two defining matrices *A* and *B* implies the coincidence of the Artin–Mazur zeta functions [1[\]](#page-34-7) of the Z-TMCs (X_A, σ_A) and (X_B, σ_B) . Meanwhile, Example [7.5](#page-33-0) says that the coincidence of the Lind zeta functions of two D_{∞} -TMCs does not guarantee the existence of D_{∞} -shift equivalence between their flip pairs. This is analogous to the case of \mathbb{Z} -TMCs because the coincidence of the Artin–Mazur zeta functions of two Z-TMCs does not guarantee the existence of SE between their defining matrices. (See §7.4 in [\[](#page-34-3)8].)

When (A, J) is a flip pair with $|\mathcal{B}_1(X)| = m$, the matrix *A* defines a linear transformation $A: \mathbb{R}^m \to \mathbb{R}^m$. The largest subspace $\mathcal{R}(A)$ of \mathbb{R}^m on which A is invertible is the called the *eventual range* of *A*:

$$
\mathcal{R}(A) = \bigcap_{k=1}^{\infty} A^k \mathbb{R}^m.
$$

Similarly, the eventual kernel $K(A)$ of *A* is the largest subspace of \mathbb{R}^m on which *A* is nilpotent:

$$
\mathcal{K}(A) = \bigcup_{k=1}^{\infty} \ker(A^k).
$$

With this notation, we can write $\mathbb{R}^m = \mathcal{R}(A) \oplus \mathcal{K}(A)$. (See §7.4 in [8[\]](#page-34-3).) The flip signature of (A, J) is completely determined by $K(A)$, while the Lind zeta functions and the existence of D_{∞} -shift equivalence between two flip pairs depend on the eventual ranges of transition matrices. In other words, two flip signatures which have the same number of −1s and share the same leading signature have nothing to do with the coincidence of the Lind zeta functions or the existence of D_{∞} -shift equivalence. As a result, flip signatures cannot be a complete D_{∞} -conjugacy invariant. This will be clear in Example [7.4.](#page-32-0)

This paper is organized as follows. In [§2,](#page-7-1) we introduce the notions of D_{∞} -half elementary equivalence and D_{∞} -strong shift equivalence. In [§3,](#page-9-0) we investigate symmetric bilinear forms with respect to J and K on the eventual kernels of A and B when two flip pairs (A, J) and (B, K) are D_{∞} -half elementary equivalent. In the same section, we prove Propositions [B](#page-5-1) and [C.](#page-5-2) Proposition [A](#page-3-0) and Theorem [D](#page-6-0) will be proved in §[§4](#page-19-0) and [5,](#page-23-0) respectively. In [§6,](#page-26-0) we discuss the notion of D_{∞} -shift equivalence and the Lind zeta function. Section [7](#page-29-0) consists of examples.

2. *D*∞*-strong shift equivalence*

Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

$$
A = DE
$$
, $B = ED$ and $E = KDTJ$

is said to be a D_{∞} -half elementary equivalence from (A, J) to (B, K) . If there is a D_{∞} -half elementary equivalence from (A, J) to (B, K) , then we write (D, E) : (A, J) ≈ (B, K) . We note that symmetricities of *J* and *K* imply

$$
E = K D^{\mathsf{T}} J \Leftrightarrow D = J E^{\mathsf{T}} K.
$$

PROPOSITION 2.1. *If* (D, E) : $(A, J) \approx (B, K)$, then $(X_A, \sigma_A, \varphi_{J,A})$ is D_∞ -conjugate to *(X_B*, *σ_B*, *σ_B* \circ *φ_K*,*B*)*.*

Proof. Since *D* and *E* are zero-one and $A = DE$, it follows that for all $a_1a_2 \in B_2(\mathsf{X}_A)$, there is a unique $b \in B_1(X_B)$ such that

$$
D(a_1, b) = E(b, a_2) = 1.
$$

We denote the block map which sends $a_1a_2 \in B_2(\mathsf{X}_A)$ to $b \in B_1(\mathsf{X}_B)$ by $\Gamma_{D,E}$. If we define the map $\gamma_{D,E} : (X_A, \sigma_A) \rightarrow (X_B, \sigma_B)$ by

$$
\gamma_{D,E}(x)_i = \Gamma_{D,E}(x_i x_{i+1}) \quad (x \in \mathsf{X}_A; i \in \mathbb{Z}),
$$

then we have γ_D $_F \circ \sigma_A = \sigma_B \circ \gamma_D$ $_F$.

Since (E, D) : $(B, K) \approx (A, J)$, we can define the block map $\Gamma_{E,D}$: $\mathcal{B}_2(X_B) \to \mathcal{B}_1(X_A)$ and the map $\gamma_{E,D}: (\mathsf{X}_B, \sigma_B) \to (\mathsf{X}_A, \sigma_A)$ in the same way. Since $\gamma_{E,D} \circ \gamma_{D,E} = \mathrm{Id}_{\mathsf{X}_A}$ and $\gamma_{D,E} \circ \gamma_{E,D} = \text{Id}_{\mathsf{X}_B}$, it follows that $\gamma_{D,E}$ is one-to-one and onto.

It remains to show that

$$
\gamma_{D,E} \circ \varphi_{A,J} = (\sigma_B \circ \varphi_{B,K}) \circ \gamma_{D,E}.\tag{2.1}
$$

Since $E = K D^T J$, it follows that

$$
E(b, a) = 1 \Leftrightarrow D(\tau_J(a), \tau_K(b)) = 1 \quad (a \in \mathcal{B}_1(\mathsf{X}_A), b \in \mathcal{B}_1(\mathsf{X}_B)).
$$

This is equivalent to

$$
D(a, b) = 1 \Leftrightarrow E(\tau_K(b), \tau_J(a)) = 1 \quad (a \in \mathcal{B}_1(\mathsf{X}_A), b \in \mathcal{B}_1(\mathsf{X}_B)).
$$

Thus, we obtain

$$
\Gamma_{D,E}(a_1a_2) = b \Leftrightarrow \Gamma_{D,E}(\tau_J(a_2)\tau_J(a_1)) = \tau_K(b) \quad (a_1a_2 \in \mathcal{B}_2(\mathsf{X}_A)).\tag{2.2}
$$

By equation (2.2) , we have

$$
\gamma_{D,E} \circ \varphi_{J,A}(x)_i = \Gamma_{D,E}(\tau_J(x_{-i})\tau_J(x_{-i-1})) = \tau_K(\Gamma_{D,E}(x_{-i-1}x_{-i}))
$$

= $\varphi_{B,K} \circ \gamma_{D,E}(x)_{i+1} = (\sigma_B \circ \varphi_{B,K}) \circ \gamma_{D,E}(x)_i$

for all $x \in X_A$ and $i \in \mathbb{Z}$ and this proves equation [\(2.1\)](#page-8-1).

Let (A, J) and (B, K) be flip pairs. A sequence of *l* half elementary equivalences

$$
(D_1, E_1) : (A, J) \approx (A_2, J_2),
$$

$$
(D_2, E_2) : (A_2, J_2) \approx (A_3, J_3),
$$

:

$$
(D_l, E_l): (A_l, J_l) \gtrapprox (B, K)
$$

is said to be a D_{∞} -*SSE of lag l from* (A, J) *to* (B, K) . If there is a D_{∞} -SSE of lag *l* from *(A, J)* to *(B, K)*, then we say that (A, J) is D_{∞} -strong shift equivalent to (B, K) and write $(A, J) \approx (B, K)$ (lag *l*).

By Proposition [2.1,](#page-7-0) we have

$$
(A, J) \approx (B, K) \text{ (lag } l) \Rightarrow (\mathsf{X}_A, \sigma_A, \varphi_{J, A}) \cong (\mathsf{X}_B, \sigma_B, \sigma_B^l \circ \varphi_{K, B}). \tag{2.3}
$$

Because σ_B^l is a conjugacy from $(X_B, \sigma_B, \varphi_{K,B})$ to $(X_B, \sigma_B, \sigma_B^{2l} \circ \varphi_{K,B})$, the implication in equation [\(2.3\)](#page-8-2) can be rewritten as follows:

$$
(A, J) \approx (B, K) \text{ (lag 2l)} \Rightarrow (\mathsf{X}_A, \sigma_A, \varphi_{J,A}) \cong (\mathsf{X}_B, \sigma_B, \varphi_{K,B})
$$
 (2.4)

 \Box

3422 *S. Ryu*

and

$$
(A, J) \approx (B, K) \text{ (lag 2l - 1)} \Rightarrow (\mathsf{X}_A, \sigma_A, \varphi_{J,A}) \cong (\mathsf{X}_B, \sigma_B, \sigma_B \circ \varphi_{K,B}). \tag{2.5}
$$

In [§4,](#page-19-0) we will prove Proposition [A](#page-3-0) which says that the converses of equations [\(2.4\)](#page-8-3) and [\(2.5\)](#page-9-1) are also true.

3. *Symmetric bilinear forms*

Suppose that (A, J) is a flip pair and that $|\mathcal{B}_1(X_A)| = m$. Let *V* be an *m*-dimensional vector space over the field $\mathbb C$ of complex numbers. Let $\langle u, v \rangle$ denote the bilinear form $V \times V \rightarrow \mathbb{C}$ defined by

$$
(u, v) \mapsto u^{\mathsf{T}} J\bar{v} \quad (u, v \in V).
$$

Since *J* is a non-singular symmetric matrix, it follows that the bilinear form \langle , \rangle *j* is symmetric and non-degenerate. If $u, v \in V$ and $\langle u, v \rangle_I = 0$, then *u* and *v* are said to be *orthogonal with respect to J* and we write $u \perp_J v$. From $AJ = JA^T$, we see that *A* itself is the adjoint of *A* in the following sense:

$$
\langle Au, v \rangle_J = \langle u, Av \rangle_J. \tag{3.1}
$$

If λ is an eigenvalue of *A* and *u* is an eigenvector of *A* corresponding to λ , then for any $v \in V$, we have

$$
\lambda \langle u, v \rangle_J = \langle \lambda u, v \rangle_J = \langle Au, v \rangle_J = \langle u, Av \rangle_J. \tag{3.2}
$$

Let sp(A) denote the set of eigenvalues of *A*. For each $\lambda \in sp(A)$, let $\mathcal{K}_{\lambda}(A)$ denote the set of $u \in V$ such that $(A - \lambda I)^p u = 0$ for some $p \in \mathbb{N}$:

$$
\mathcal{K}_{\lambda}(A) = \{ u \in V : \text{there exists } p \in \mathbb{N} \text{ such that } (A - \lambda I)^p u = 0 \}.
$$

If $u \in \mathcal{K}_{\lambda}(A) \setminus \{0\}$ and *p* is the smallest positive integer for which $(A - \lambda I)^p u = 0$, then the ordered set

$$
\alpha = \{(A - \lambda I)^{p-1}u, \ldots, (A - \lambda I)u, u\}
$$

is called a *cycle of generalized eigenvectors of A corresponding to* λ . The vectors $(A \lambda I$ ^{*p*−1}*u* and *u* are called the *initial vector* and the *terminal vector* of α , respectively, and we write

$$
Ini(\alpha) = (A - \lambda I)^{p-1}u \text{ and } Ter(\alpha) = u.
$$

We say that the length of α is p and write $|\alpha| = p$. It is well known [3[\]](#page-34-6) that there is a basis for $K_{\lambda}(A)$ consisting of a union of disjoint cycles of generalized eigenvectors of *A* corresponding to λ. From here on, when we say $\alpha = \{u_1, \ldots, u_p\}$ is a cycle in $\mathcal{K}_\lambda(A)$, it means α is a cycle of generalized eigenvectors of *A* corresponding to λ , Ini $(\alpha) = u_1$, $\text{Ter}(\alpha) = u_p$ and $|\alpha| = p$.

Suppose that $U(A)$ is a basis for *V* consisting of generalized eigenvectors of *A*, *A* has 0 as its eigenvalue and that $\mathcal{E}(A)$ is the subset of $\mathcal{U}(A)$ consisting of the generalized eigenvectors of *A* corresponding to 0. Non-degeneracy of \langle , \rangle *J* says that for each *u* ∈ $E(A)$, there is a *v* ∈ $U(A)$ such that $\langle u, v \rangle$ ≠ 0. The following lemma says that the vector *v* must be in $\mathcal{E}(A)$.

LEMMA 3.1. *Suppose that* λ , $\mu \in sp(A)$ *. If* λ *is distinct from the complex conjugate* $\bar{\mu}$ *of* μ *, then* $\mathcal{K}_{\lambda}(A) \perp_{J} \mathcal{K}_{\mu}(A)$ *.*

Proof. Suppose that

 $\alpha = \{u_1, \ldots, u_p\}$ and $\beta = \{v_1, \ldots, v_q\}$

are cycles in $K_{\lambda}(A)$ and $K_{\mu}(A)$, respectively. Since equation [\(3.2\)](#page-9-2) implies

$$
\lambda \langle u_1, v_1 \rangle_J = \langle u_1, Av_1 \rangle_J = \bar{\mu} \langle u_1, v_1 \rangle_J,
$$

it follows that

$$
\langle u_1, v_1 \rangle_J = 0.
$$

Using equation (3.2) again, we have

$$
\lambda \langle u_1, v_{j+1} \rangle_J = \langle u_1, \mu v_{j+1} + v_j \rangle_J = \overline{\mu} \langle u_1, v_{j+1} \rangle_J + \langle u_1, v_j \rangle_J
$$

for each $j = 1, \ldots, q - 1$. By mathematical induction on *j*, we see that

$$
\langle u_1, v_j \rangle_J = 0 \quad (j = 1, \dots, q).
$$

Applying the same process to each u_2, \ldots, u_p , we obtain

for all
$$
i = 1, ..., p
$$
, for all $j = 1, ..., q$, $\langle u_i, v_j \rangle_j = 0$.

Remark. Non-degeneracy of \langle , \rangle_J and Lemma [3.1](#page-10-1) imply that the restriction of \langle , \rangle_J to $K_0(A)$ is non-degenerate.

From here on, we restrict our attention to the zero eigenvalue and the generalized eigenvectors corresponding to 0. For notational simplicity, the smallest subspace of *V* containing all generalized eigenvectors of A corresponding to 0 is denoted by $K(A)$ and we call the subspace $K(A)$ of *V* the *eventual kernel* of *A*. We may assume that the eventual kernel of *A* is a real vector space. The set of bases for $K(A)$ consisting of a union of disjoint cycles of generalized eigenvectors of *A* corresponding to 0 is denoted by $\mathcal{B}as(\mathcal{K}(A))$. If $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$, the set of $|\alpha|$ such that α is a cycle in $\mathcal{E}(A)$ is denoted by $\mathcal{I}nd(\mathcal{K}(A))$ and we call $\mathcal{I}nd(\mathcal{K}(A))$ the *index set for the eventual kernel of A*. It is clear that $\mathcal{I}nd(\mathcal{K}(A))$ is independent of the choice of $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$. When $p \in \mathcal{I}nd(\mathcal{K}(A))$, we denote the union of the cycles of length *p* in $\mathcal{E}(A)$ by $\mathcal{E}_p(A)$.

LEMMA 3.2. *Suppose that* $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ *and that* $p \in \mathcal{I}nd(\mathcal{K}(A))$ *.*

(1) *Suppose that* α *is a cycle in* $\mathcal{E}_p(A)$ *. The restriction of* \langle , \rangle *I to* span (α) *is non-degenerate if and only if*

$$
\langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J \neq 0.
$$

(2) *The restriction of* \langle , \rangle *j to* $\mathcal{E}_p(A)$ *is non-degenerate.*

Proof. Suppose that $\alpha = \{u_1, \ldots, u_p\}$ is a cycle in $\mathcal{E}_p(A)$. By equation [\(3.1\)](#page-9-3), we have

$$
\langle u_1, u_i \rangle_J = \langle u_1, Au_{i+1} \rangle_J = \langle Au_1, u_{i+1} \rangle_J = 0
$$

and

$$
\langle u_{i+1}, u_j \rangle_J - \langle u_i, u_{j+1} \rangle_J = \langle u_{i+1}, Au_{j+1} \rangle_J - \langle u_i, u_{j+1} \rangle_J = 0 \tag{3.3}
$$

for each *i*, $j = 1, \ldots, p - 1$. Suppose that T_p is the $m \times p$ matrix whose *i*th column is *u_i* for each $i = 1, \ldots, p$. If we set $\langle u_i, u_p \rangle_j = b_i$ for each $i = 1, 2, \ldots, p$, then $T_p^{\mathsf{T}} J T_p$ is of the form

$$
T_p^{\mathsf{T}} J T_p = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & b_1 \\ 0 & 0 & 0 & \cdots & 0 & b_1 & b_2 \\ 0 & 0 & 0 & \cdots & b_1 & b_2 & b_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{p-2} & b_{p-1} & b_p \end{bmatrix}.
$$

This proves item (1).

To prove item (2), we only consider the case where $\mathcal{I}nd(\mathcal{K}(A)) = \{p, q\}(p < q)$ and both $\mathcal{E}_p(A)$ and $\mathcal{E}_q(A)$ have one cycles. Suppose that $\alpha = \{u_1, \ldots, u_p\}$ and $\beta =$ $\{v_1, \ldots, v_q\}$ are cycles in $\mathcal{E}_p(A)$ and $\mathcal{E}_q(A)$, respectively. When T_p is as above, we will prove $T_p^{\mathsf{T}} J T_p$ is non-singular. We let T_q be the $m \times q$ matrix whose *i*th column is v_i for each $i = 1, \ldots, q$. If *T* is the $m \times (p + q)$ matrix defined by

$$
T = \begin{bmatrix} T_p & T_q \end{bmatrix},
$$

then

$$
T^{\mathsf{T}} J T = \begin{bmatrix} T_p^{\mathsf{T}} J T_p & T_p^{\mathsf{T}} J T_q \\ T_q^{\mathsf{T}} J T_p & T_q^{\mathsf{T}} J T_q \end{bmatrix}
$$

is non-singular by remark of Lemma [3.1.](#page-10-1) By arguments in the proof of item (1), we can put

$$
T_p^{\mathsf{T}} J T_p = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & b_1 \\ 0 & 0 & 0 & \cdots & 0 & b_1 & b_2 \\ 0 & 0 & 0 & \cdots & b_1 & b_2 & b_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{p-2} & b_{p-1} & b_p \end{bmatrix}
$$

and

$$
T_q^{\mathsf{T}} J T_q = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & d_1 \\ 0 & 0 & 0 & \cdots & 0 & d_1 & d_2 \\ 0 & 0 & 0 & \cdots & d_1 & d_2 & d_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ d_1 & d_2 & d_3 & \cdots & d_{q-2} & d_{q-1} & d_q \end{bmatrix}.
$$

Now we consider $T_p^{\mathsf{T}} J T_q$. By equation [\(3.1\)](#page-9-3), we have

$$
\langle u_1, v_k \rangle_J = 0 \quad (k = 1, \dots, q - 1),
$$

$$
\langle u_2, v_k \rangle_J = 0 \quad (k = 1, \dots, q - 2),
$$

$$
\vdots
$$

$$
\langle u_p, v_k \rangle_J = 0 \quad (k = 1, \dots, q - p).
$$

If we set $\langle u_i, v_q \rangle_j = c_i$ for each $i = 1, 2, \ldots, p$, then the argument in equation [\(3.3\)](#page-11-0) shows that $T_p^{\mathsf{T}} J T_q$ is of the form

$$
T_p^{\mathsf{T}} J T_q = \begin{bmatrix} 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 & c_1 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & c_1 & c_2 \\ 0 & \cdots & 0 & 0 & 0 & \cdots & c_1 & c_2 & c_3 \\ \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & \cdots & c_1 & c_2 & c_3 & \cdots & c_{p-2} & c_{p-1} & c_p \end{bmatrix}
$$

Finally, $T_q^{\mathsf{T}} J T_p$ is the transpose of $T_p^{\mathsf{T}} J T_q$. Hence, b_1 and d_1 must be non-zero and we have $\text{Rank}(T_p^{\mathsf{T}} J T_p) = p$ and $\text{Rank}(T_q^{\mathsf{T}} J T_q) = q$. \Box

The aim of this section is to find out a relationship between \langle , \rangle_J and \langle , \rangle_K on bases $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and $\mathcal{E}(B) \in \mathcal{B}as(\mathcal{K}(B))$ when $(D, E) : (A, J) \approx (B, K)$. The following lemma will provide us good bases to handle.

LEMMA 3.3. Suppose that A has the zero eigenvalue. There is a basis $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ *having the following properties.*

(1) *If* α *is a cycle in* $\mathcal{E}(A)$ *, then the restriction of* \langle , \rangle *to* span (α) *is non-degenerate, that is,*

$$
\langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_j \neq 0.
$$

- (2) *Suppose that* α *is a cycle in* $\mathcal{E}(A)$ *with* $Ter(\alpha) = u$ *and* $|\alpha| = p$ *. For each* $k =$ $0, 1, \ldots, p-1, v = A^{p-1-k}u$ is the unique vector in α such that $\langle A^k u, v \rangle_t \neq 0$.
- (3) *If ^α and ^β are distinct cycles in ^E(A), then*

$$
\operatorname{span}(\alpha) \perp_J \operatorname{span}(\beta).
$$

Proof. (1) Lemma [3.2](#page-10-0) proves the case where $\mathcal{E}(A)$ has only one cycle. Suppose that $\mathcal{E}(A)$ is the union of disjoint cycles $\alpha_1, \ldots, \alpha_r$ of generalized eigenvectors of *A* corresponding to 0 for some $r > 1$ and that $|\alpha_1| \leq |\alpha_2| \leq \cdots \leq |\alpha_r|$. Assuming

$$
\langle \text{Ini}(\alpha_j), \text{Ter}(\alpha_j) \rangle_j \neq 0 \quad (j = 1, \ldots, r - 1),
$$

we will construct a cycle β of generalized eigenvectors of A corresponding to 0 such that the union of the cycles $\alpha_1, \ldots, \alpha_{r-1}, \beta$ forms a basis for $\mathcal{K}(A)$ and that $\langle \text{Ini}(\beta), \text{Ter}(\beta) \rangle_J \neq 0.$

By Lemma [3.2,](#page-10-0) we have

$$
|\alpha_1| \leq |\alpha_2| \leq \cdots \leq |\alpha_{r-1}| < |\alpha_r| \Rightarrow \langle \mathrm{Ini}(\alpha_r), \mathrm{Ter}(\alpha_r) \rangle_J \neq 0.
$$

.

Thus, we only consider the case where there are other cycles in $\mathcal{E}(A)$ whose length is the same as $|\alpha_r|$. If $\alpha_r = \{w_1, \ldots, w_q\}$ and $\langle w_1, w_q \rangle_j \neq 0$, there is nothing to do. So we assume $\langle w_1, w_q \rangle_J = 0$. By non-degeneracy of \langle , \rangle_J and Lemma [3.1,](#page-10-1) there is a vector *v* ∈ $\mathcal{E}(A)$ such that $\langle w_1, v \rangle$ ≠ 0. Since $\langle w_1, v \rangle$ = $\langle w_q, A^{q-1}v \rangle$ *j*, it follows that *v* must be the terminal vector of a cycle in $\mathcal{E}(A)$ of length *q* by the maximality of *q*. We put $v_1 =$ *A*^{q-1}*v* and *v_q* = *v* and find a number $k \in \mathbb{R} \setminus \{0\}$ such that $\langle w_1 - kv_1, w_q - kv_q \rangle_J \neq 0$. We denote the cycle whose terminal vector is $w_q - kv_q$ by β . It is obvious that the length of β is q and that the union of the cycles $\alpha_1, \ldots, \alpha_{r-1}, \beta$ forms a basis of $\mathcal{K}(A)$.

(2) We assume that $\mathcal{E}(A)$ has property (1) and that $\alpha = \{u_1, \ldots, u_p\}$ is a cycle in $\mathcal{E}(A)$. The proof of Lemma [3.2\(](#page-10-0)1) says that if T_α is the $m \times p$ matrix whose *i*th column is u_i , then $T_{\alpha}^{\mathsf{T}} J T_{\alpha}$ is of the form

$$
T_{\alpha}^{\mathsf{T}} J T_{\alpha} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & b_1 \\ 0 & 0 & 0 & \cdots & 0 & b_1 & b_2 \\ 0 & 0 & 0 & \cdots & b_1 & b_2 & b_3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{p-2} & b_{p-1} & b_p \end{bmatrix}.
$$

We note that b_1 must be non-zero. Now, there are unique real numbers k_1, \ldots, k_p such that if we set

$$
K = \left[\begin{array}{cccc} k_p & k_{p-1} & \cdots & k_1 \\ 0 & k_p & \cdots & k_2 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & k_p \end{array} \right],
$$

then $K^{\mathsf{T}} T_{\alpha}^{\mathsf{T}} J T_{\alpha} K$ becomes

$$
K^{\mathsf{T}}T_{\alpha}^{\mathsf{T}}JT_{\alpha}K = \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 & b_1 \\ 0 & 0 & \cdots & b_1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & b_1 & \cdots & 0 & 0 \\ b_1 & 0 & \cdots & 0 & 0 \end{array}\right].
$$

If *α'* is a cycle in $K(A)$ whose terminal vector is $w = \sum_{i=1}^{p} k_i u_i$, then we have $|\alpha'| = p$ and

$$
\langle A^i w, A^j w \rangle_J = \begin{cases} b_1 & \text{if } j = p - 1 - i, \\ 0 & \text{otherwise,} \end{cases}
$$

for each $0 \le i, j \le p - 1$. If we replace α with α' for each α in $\mathcal{E}(A)$, then the result follows.

(3) Suppose that $\mathcal{E}(A)$ has properties (1) and (2) and that $\mathcal{E}(A)$ is the union of disjoint cycles $\alpha_1, \ldots, \alpha_r$ of generalized eigenvectors of *A* corresponding to 0 for some $r > 1$ with $|\alpha_1| \leq |\alpha_2| \leq \cdots \leq |\alpha_r|$. Assuming that

$$
\mathrm{span}(\alpha_i) \perp_J \mathrm{span}(\alpha_j) \quad (i, j = 1, \ldots, r-1; i \neq j),
$$

we will construct a cycle *β* such that the union of the cycles $\alpha_1, \ldots, \alpha_{r-1}, \beta$ forms a basis for $K(A)$ and that α_i is orthogonal to β with respect to *J* for each $i = 1, \ldots, r - 1$.

Suppose that $\alpha = \{u_1, \ldots, u_n\}$ is a cycle in $\mathcal{E}(A)$ which is distinct from $\alpha_r =$ $\{w_1, \ldots, w_q\}$. We set

$$
\langle u_1, u_p \rangle_J = a \ (\neq 0), \quad \langle u_i, w_q \rangle_J = b_i \quad (i = 1, \dots, p)
$$

and

$$
z = w_q - \frac{b_1}{a}u_p - \frac{b_2}{a}u_{p-1} - \dots - \frac{b_p}{a}u_1.
$$

Let *β* denote the cycle whose terminal vector is *z*.

We first show that $u_1 \perp_J$ span (β) . Direct computation yields

$$
\langle u_1, z \rangle_J = 0. \tag{3.4}
$$

Since $Au_1 = 0$, it follows that

$$
\langle u_1, A^j z \rangle_J = 0 \quad (j = 1, \dots, q - 1)
$$

by equation [\(3.1\)](#page-9-3). Thus, $\langle u_1, A^j z \rangle_j = 0$ for all $j = 0, \ldots, q - 1$.

Now, we show that $u_2 \perp_J \text{span}(\beta)$. Direct computation yields

$$
\langle u_2, z \rangle_J = 0.
$$

From $A^2u_2 = 0$, it follows that

$$
\langle u_2, A^j z \rangle_J = 0 \quad (j = 2, \dots, q-1).
$$

It remains to show that $\langle u_2, A_z \rangle_I = 0$, but this is an immediate consequence of equations [\(3.1\)](#page-9-3) and [\(3.4\)](#page-14-0).

Applying this process to each *ui* inductively, the result follows.

COROLLARY 3.4. *There is a basis* $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ *such that if u is the terminal vector of a cycle* α *in* $\mathcal{E}(A)$ *with* $|\alpha| = p$ *, then* $v = A^{p-1-k}u$ *is the unique vector in* $\mathcal{E}(A)$ *satisfying*

$$
\langle A^k u, v \rangle_J \neq 0
$$

for each $k = 0, 1, \ldots, p - 1$.

In the rest of the section, we investigate a relationship between \langle , \rangle_J and \langle , \rangle_K on bases $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and $\mathcal{E}(B) \in \mathcal{B}as(\mathcal{K}(B))$ when there is a D_{∞} -HEE between two flip pairs (A, J) and (B, K) . Throughout the section, we assume (A, J) and (B, K) are flip pairs with $|B_1(X_A)| = m$ and $|B_1(X_B)| = n$ and (D, E) is a D_{∞} -HEE from (A, J) to *(B*, *K)*.

We note that $E = K D^T J$ implies

$$
\langle u, Dv \rangle_J = \langle Eu, v \rangle_K \quad (u \in \mathbb{R}^m, v \in \mathbb{R}^n).
$$

 \Box

From this, we see that $\text{Ker}(E)$ and $\text{Ran}(D)$ are mutually orthogonal with respect to *J* and that $Ker(D)$ and $Ran(E)$ are mutually orthogonal with respect to K, that is,

 $Ker(E) \perp_J \text{Ran}(D)$ and $Ker(D) \perp_K \text{Ran}(E)$. (3.5)

LEMMA 3.5. *There exist bases ^E(A)* [∈] *^Bas(K(A)) and ^E(B)* [∈] *^Bas(K(B)) having the following properties.*

(1) *Suppose that* α *is a cycle in* $\mathcal{E}(A)$ *with* $|\alpha| = p$ *and* $u = \text{Ter}(\alpha)$ *. Then we have*

$$
u \in \text{Ran}(D) \Leftrightarrow A^{p-1}u \notin \text{Ker}(E). \tag{3.6}
$$

(2) *Suppose that ^β is a cycle in ^E(B) with* [|]*β*| = *^p and ^v* ⁼ Ter*(β). Then we have*

$$
v \in \text{Ran}(E) \Leftrightarrow B^{p-1}v \notin \text{Ker}(D).
$$

Proof. We only prove equation [\(3.6\)](#page-15-0). Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ has properties (1), (2) and (3) from Lemma [3.3.](#page-12-0) Since $\langle A^{p-1}u, u \rangle_J \neq 0$, it follows that

$$
u \in \text{Ran}(D) \Rightarrow A^{p-1}u \notin \text{Ker}(E)
$$

from equation (3.5) .

Suppose that *u* \notin Ran(*D*). To draw a contradiction, we assume that $A^{p-1}u \notin$ Ker(*E*). By non-degeneracy of \langle , \rangle_K , there is a $v \in \mathcal{K}(B)$ such that $\langle E A^{p-1}u, v \rangle_K \neq 0$, or equivalently, $\langle A^{p-1}u, Dv \rangle_j \neq 0$. This is a contradiction because $\langle A^{p-1}u, u \rangle_j \neq 0$ and $\langle A^{p-1}u, w \rangle_I = 0$ for all $w \in \mathcal{E}(A) \setminus \{u\}.$ \Box

Now we are ready to prove Proposition [B.](#page-5-1) We first indicate some notation. When $p \in$ *Ind*(*K*(*A*)), let $\mathcal{E}_p(A; \partial_{D,E}^-)$ denote the union of cycles α in $\mathcal{E}_p(A)$ such that Ter $(\alpha) \notin$ Ran(D) and let $\mathcal{E}_p(A; \partial_{D,E}^+)$ denote the union of cycles α in $\mathcal{E}_p(A)$ such that Ter(α) \in Ran*(D)*. With this notation, Proposition [B](#page-5-1) can be rewritten as follows.

PROPOSITION B. *If* (D, E) : $(A, J) \approx (B, K)$, then there exist bases $\mathcal{E}(A) \in \mathcal{B}$ as($\mathcal{K}(A)$) *and* $\mathcal{E}(B) \in \mathcal{B}as(\mathcal{K}(B))$ *having the following properties.*

(1) *Suppose that* $p \in \text{Ind}(\mathcal{K}(A))$ *and* α *is a cycle in* $\mathcal{E}_p(A; \partial_{D,E}^+)$ *with* $\text{Ter}(\alpha) = u$ *. There is a cycle* β *in* $\mathcal{E}_{p+1}(B; \partial_{E,D}^{-})$ *such that if Ter* $(\beta) = v$ *, then* $Dv = u$ *. In this case, we have*

$$
\langle A^{p-1}u, u \rangle_J = \langle B^p v, v \rangle_K. \tag{3.7}
$$

(2) *Suppose that* $p \in \text{Ind}(\mathcal{K}(A))$ *,* $p > 1$ *and* α *is a cycle in* $\mathcal{E}_p(A; \partial_{D,E}^-)$ *with* $Ter(\alpha) = u$ *. There is a cycle* β *in* $\mathcal{E}_{p-1}(B; \partial_{E,D}^+)$ *such that if Ter* $(\beta) = v$ *, then* $v = Eu$ *. In this case, we have*

$$
\langle A^{p-1}u, u \rangle_J = \langle B^{p-2}v, v \rangle_K. \tag{3.8}
$$

Proof. If we define zero-one matrices *M* and *F* by

$$
M = \left[\begin{array}{cc} 0 & D \\ E & 0 \end{array} \right] \quad \text{and} \quad F = \left[\begin{array}{cc} J & 0 \\ 0 & K \end{array} \right],
$$

then (M, F) is a flip pair. Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and $\mathcal{E}(B) \in \mathcal{B}as(\mathcal{K}(B))$ have properties (1) , (2) and (3) from Lemma [3.3.](#page-12-0) If we set

$$
\mathcal{E}(A) \oplus 0^n = \left\{ \left[\begin{array}{c} u \\ 0 \end{array} \right] : u \in \mathcal{E}(A) \text{ and } 0 \in \mathbb{R}^n \right\}
$$

and

$$
0^m \oplus \mathcal{E}(B) = \left\{ \begin{bmatrix} 0 \\ v \end{bmatrix} : v \in \mathcal{E}(B) \text{ and } 0 \in \mathbb{R}^m \right\},\
$$

then the elements in $\mathcal{E}(A) \oplus 0^n$ or $0^m \oplus \mathcal{E}(B)$ belong to $\mathcal{K}(M)$. Conversely, every vector in $K(M)$ can be expressed as a linear combination of vectors in $\mathcal{E}(A) \oplus 0^n$ and $0^m \oplus \mathcal{E}(B)$. Thus, the set $\mathcal{E}(M) = {\mathcal{E}(A) \oplus 0^n} \cup {0^m \oplus \mathcal{E}(B)}$ becomes a basis for $\mathcal{K}(M)$.

If *α* is a cycle in *E*(*M*), then |*α*| is an odd number by Lemma [3.5.](#page-15-2) If $|α| = 2p - 1$ for some positive integer *p*, then α is one of the following forms:

$$
\left\{\left[\begin{array}{c} A^{p-1}u \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ B^{p-2}Eu \end{array}\right], \left[\begin{array}{c} A^{p-2}u \\ 0 \end{array}\right], \ldots, \left[\begin{array}{c} Au \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ Eu \end{array}\right], \left[\begin{array}{c} u \\ 0 \end{array}\right]\right\}
$$

or

$$
\left\{\left[\begin{array}{c}0\\B^{p-1}v\end{array}\right],\left[\begin{array}{c}A^{p-2}Dv\\0\end{array}\right],\left[\begin{array}{c}0\\B^{p-2}v\end{array}\right],\ldots,\left[\begin{array}{c}0\\Bv\end{array}\right],\left[\begin{array}{c}Dv\\0\end{array}\right],\left[\begin{array}{c}0\\v\end{array}\right]\right\}.
$$

The formulae (3.7) and (3.8) follow from equation (3.3) .

Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ has property (1) from Lemma [3.3.](#page-12-0) If α is a cycle in $E(A)$, we define the sign of α by

$$
sgn(\alpha) = \begin{cases} +1 & \text{if } \langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J > 0, \\ -1 & \text{if } \langle \text{Ini}(\alpha), \text{Ter}(\alpha) \rangle_J < 0. \end{cases}
$$

We define the sign of $\mathcal{E}_p(A)$ for each $p \in \mathcal{I}nd(\mathcal{K}(A))$ by

$$
sgn(\mathcal{E}_p(A)) = \prod_{\{\alpha:\alpha \text{ is a cycle in } \mathcal{E}_p(A)\}} sgn(\alpha).
$$

When (D, E) : $(A, J) \approx (B, K)$, we define the signs of $\mathcal{E}_p(A; \partial_{D,E}^+)$ and $\mathcal{E}_p(A; \partial_{D,E}^-)$ for each $p \in \mathcal{I}nd(\mathcal{K}(A))$ in similar ways.

Proposition [B](#page-15-5) says that if (D, E) : $(A, J) \approx (B, K)$, there exist bases $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and $\mathcal{E}(B) \in \mathcal{B}as(\mathcal{K}(B))$ such that

$$
sgn(\mathcal{E}_p(A; \partial^+_{D,E})) = sgn(\mathcal{E}_{p+1}(B; \partial^-_{E,D}))) \quad (p \in \mathcal{I}nd(\mathcal{K}(A))),
$$

and

$$
sgn(\mathcal{E}_p(A; \partial_{D,E}^-)) = sgn(\mathcal{E}_{p-1}(B; \partial_{E,D}^+)) \quad (p \in \mathcal{I}nd(\mathcal{K}(A)); \ p > 1).
$$

In Proposition [3.6](#page-18-0) below, we will see that the sign of $\mathcal{E}_1(A; \partial_{D,E}^-)$ is always +1 if $\mathcal{E}_1(A; \partial_{D,E}^-)$ is non-empty. We first prove Proposition [C.](#page-5-2)

 \Box

Proof of Proposition [C.](#page-5-2) Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ has properties (1), (2) and (3) from Lemma [3.3](#page-12-0) and that $p \in \mathcal{I}nd(\mathcal{K}(A))$. We denote the terminal vectors of the cycles in $\mathcal{E}_p(A)$ by $u_{(1)}, \ldots, u_{(q)}$. Suppose that *P* is the $m \times q$ matrix whose *i*th column is $u_{(i)}$ for each $i = 1, \ldots, q$. If we set $M = (A^{p-1}P)^TJP$, then the entry of *M* is given by

$$
M(i, j) = \begin{cases} \langle A^{p-1}u_{(i)}, u_{(i)} \rangle_j & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}
$$

and the sign of $\mathcal{E}_p(A)$ is determined by the product of the diagonal entries of *M*, that is,

$$
sgn(\mathcal{E}_p(A)) = \begin{cases} +1 & \text{if } \prod_{i=1}^q M(i, i) > 0, \\ -1 & \text{if } \prod_{i=1}^q M(i, i) < 0. \end{cases}
$$

Suppose that $\mathcal{E}'(A) \in \mathcal{B}as(\mathcal{K}(A))$ is another basis having property (1) from Lemma [3.3.](#page-12-0) Then obviously $\mathcal{E}'_p(A)$ is the union of *q* disjoint cycles. If *w* is the terminal vector of a cycle in $\mathcal{E}'_p(A)$, then *w* can be expressed as a linear combination of vectors in $\mathcal{E}(A) \cap \text{Ker}(A^p)$, that is,

$$
w = \sum_{\substack{c_u \in \mathbb{R} \\ u \in \mathcal{E}(A) \cap \text{Ker}(A^p)}} c_u u.
$$

If $u \in \mathcal{E}_k(A)$ for $k < p$, then $A^{p-1}u = 0$. If $u \in \mathcal{E}_k(A)$ for $k > p$ or $u \in \mathcal{E}_p(A)$ and *u* is not a terminal vector, then $\langle A^{p-1}u, u \rangle_j = 0$ by property (2) from Lemma [3.3.](#page-12-0) This means that the sign of $\mathcal{E}'_p(A)$ is not affected by vectors $u \in \mathcal{E}_k(A)$ for $k \neq p$ or $u \in \mathcal{E}_p(A) \setminus \mathcal{E}_p(A)$ Ter $(\mathcal{E}_p(A))$. In other words, if we write

$$
w = \sum_{i=1}^{q} c_i u_{(i)} + \sum_{u \in \mathcal{E}(A) \cap \text{Ker}(A^p) \backslash \text{Ter}(\mathcal{E}_p(A))} c_u u \quad (c_i, c_u \in \mathbb{R}),
$$

then we have

$$
\langle A^{p-1}w, w \rangle_J = \langle A^{p-1} \sum_{i=1}^q c_i u_{(i)}, \sum_{i=1}^q c_i u_{(i)} \rangle_J.
$$

To compute the sign of $\mathcal{E}'_p(A)$, we may assume that

$$
w=\sum_{i=1}^q c_iu_{(i)} \quad (c_1,\ldots,c_q\in\mathbb{R}).
$$

We denote the terminal vectors of the cycles in $\mathcal{E}'(A)$ by $w_{(1)}, \ldots, w_{(q)}$ and let *Q* be the $m \times q$ matrix whose *i*th column is $w_{(i)}$ for each $i = 1, \ldots, q$. If we set $N =$ $(A^{p-1}Q)^\mathsf{T} JQ$, then $\prod_{i=1}^q N(i, i) \neq 0$ since $\mathcal{E}'(A)$ has property (1) from Lemma [3.3.](#page-12-0) So we have

$$
sgn(\mathcal{E}'_p(A)) = \begin{cases} +1 & \text{if } \prod_{i=1}^q N(i, i) > 0, \\ -1 & \text{if } \prod_{i=1}^q N(i, i) < 0. \end{cases}
$$

It is obvious that there is a non-singular matrix *R* such that $PR = Q$. Since $N = R^{T}MR$ and *M* is a diagonal matrix, it follows that

$$
\prod_{i=1}^{q} M(i, i) > 0 \Leftrightarrow \prod_{i=1}^{q} N(i, i) > 0
$$

and

$$
\prod_{i=1}^{q} M(i, i) < 0 \Leftrightarrow \prod_{i=1}^{q} N(i, i) < 0. \Box
$$

PROPOSITION 3.6. *Suppose that* (D, E) : $(A, J) \approx (B, K)$ *and that* $Ind(K(A))$ *contains* 1*. There is a basis* $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ *such that if* α *is a cycle in* $\mathcal{E}_1(A; \partial_{D,E}^-)$ *, then* $sgn(\alpha) = +1$ *. Hence, we have*

$$
\text{sgn}(\mathcal{E}_1(A; \partial_{D,E}^-)) = +1
$$

 \int *if* $\mathcal{E}_1(A; \partial_{D,E}^-)$ *is non-empty.*

Proof. Suppose that U is a basis for the subspace Ker (A) of $K(A)$. We may assume that for each $u \in \mathcal{U}$,

$$
a_1, a_2 \in \mathcal{B}_1(\mathsf{X}_A), u(a_1) \neq 0 \text{ and } \mathcal{P}_E(a_1) \cap \mathcal{P}_E(a_2) = \emptyset \Rightarrow u(a_2) = 0 \tag{3.9}
$$

for the following reason. If $u(a_2) \neq 0$, then we define u_1 and u_2 by

$$
u_1(a) = \begin{cases} u(a) & \text{if } \mathcal{P}_E(a_1) \cap \mathcal{P}_E(a) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}
$$

and

$$
u_2(a) = \begin{cases} u(a) & \text{if } \mathcal{P}_E(a_2) \cap \mathcal{P}_E(a) \neq \varnothing, \\ 0 & \text{otherwise.} \end{cases}
$$

It is obvious that $\{u_1, u_2\}$ is linearly independent. We set $u_3 = u - u_1 - u_2$. If $u_3 \neq 0$, then obviously $\{u_1, u_2, u_3\}$ is also linearly independent. We set

$$
\mathcal{U}'=\mathcal{U}\cup \{u_1, u_2, u_3\}\setminus \{u\}.
$$

If necessary, we apply the same process to u_3 and to each $u \in \mathcal{U}$ so that every element in U' satisfies equation [\(3.9\)](#page-18-1) and then we remove some elements in U' so that it becomes a basis for Ker*(A)*.

We first show the following:

$$
u \in \mathcal{U} \Rightarrow u(\tau_J(a))u(a) \ge 0
$$
 for all $a \in \mathcal{B}_1(\mathsf{X}_A)$.

Suppose that $u \in U$, $a_0 \in B_1(X_A)$ and that $u(a_0) \neq 0$. If $a_0 = \tau_J(a_0)$, then $u(\tau_J(a_0))$ $u(a_0) > 0$ and we are done. When $a_0 \neq \tau_J(a_0)$ and $u(\tau_J(a_0)) = 0$, there is nothing to do. So we assume $a_0 \neq \tau_J(a_0)$ and $u(\tau_J(a_0)) \neq 0$. If there were $b \in \mathcal{P}_E(a_0) \cap \mathcal{P}_E(\tau_J(a_0))$, then we would have

$$
1 \geq B(b, \tau_K(b)) \geq E(b, a_0)D(a_0, \tau_K(b)) + E(b, \tau_J(a_0))D(\tau_J(a_0), \tau_K(b)) = 2
$$

from $E = KD^{\mathsf{T}}J$. Thus, we have $\mathcal{P}_E(a_0) \cap \mathcal{P}_E(\tau_J(a_0)) = \emptyset$ and this implies $u(\tau_I(a_0)) = 0$ by assumption [\(3.9\)](#page-18-1).

Now, we denote the intersection of *U* and $\mathcal{E}_1(A; \partial_{D,E}^-)$ by *V* and assume that the elements of V are u_1, \ldots, u_k , that is,

$$
\mathcal{V} = \mathcal{U} \cap \mathcal{E}_1(A; \partial_{D,E}^-) = \{u_1, \ldots, u_k\}.
$$

By Lemma [3.2](#page-10-0) and equation [\(3.5\)](#page-15-1), for each $u \in V$, there is a $v \in V$ such that $\langle u, v \rangle_I \neq 0$. If $\langle u_1, u_1 \rangle_j = 0$, we choose $u_i \in V$ such that $\langle u_1, u_i \rangle_j \neq 0$. There are real numbers k_1, k_2 such that $\{u_1 + k_1u_1, u_1 + k_2u_1\}$ is linearly independent and that both $\langle u_1 + k_1u_1, u_1 + k_2u_1u_2, u_1 + k_2u_2u_1\}$ k_1u_i and $\langle u_1 + k_2u_i, u_1 + k_2u_i \rangle$ are positive. We replace u_1 and u_i with $u_1 + k_1u_i$ and $u_1 + k_2u_i$. Continuing this process, we can construct a new basis for $\mathcal{E}_1(A; \partial_{D,E}^-)$ such that if α is a cycle in $\mathcal{E}_1(A; \partial_{D,E}^-)$, then sgn $(\alpha) = +1$. \Box

Suppose that $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ has property (1) from Lemma [3.3.](#page-12-0) We arrange the elements of $\mathcal{I}nd(\mathcal{K}(A)) = \{p_1, p_2, \ldots, p_A\}$ to satisfy

$$
p_1 < p_2 < \cdots < p_A
$$

and write

$$
\varepsilon_p = \text{sgn}(\mathcal{E}_p(A)).
$$

If $|\text{Ind}(\mathcal{K}(A))|=k$, then the *k*-tuple $(\varepsilon_{p_1}, \varepsilon_{p_2}, \ldots, \varepsilon_{p_A})$ is called the *flip signature of* (A, J) and ε_{p_A} is called the *leading signature of* (A, J) . The flip signature of (A, J) is denoted by

$$
\text{F.Sig}(A, J) = (\varepsilon_{p_1}, \varepsilon_{p_2}, \ldots, \varepsilon_{p_A}).
$$

When the eventual kernel $K(A)$ of A is trivial, we write

$$
Ind(K(A)) = \{0\}
$$

and define the flip signature of *(A*, *J)* by

$$
F.Sig(A, J) = (+1).
$$

We have seen that both the flip signature and the leading signature are independent of the choice of basis $\mathcal{E}_A \in \mathcal{B}as(\mathcal{K}(A))$ as long as \mathcal{E}_A has property (1) from Lemma [3.3.](#page-12-0)

In the next section, we prove Proposition [A](#page-3-0) and in $\S5$, we prove Theorem [D.](#page-6-0)

4. *Proof of Proposition [A](#page-3-0)*

We start with the notion of D_{∞} -higher block codes. (See [\[](#page-34-2)5, 8[\]](#page-34-3) for more details about higher block codes.) We need some notation. Suppose that (X, σ_X) is a shift space over a finite set *A* and that φ_{τ} is a one-block flip for (X, σ_X) defined by

$$
\varphi_{\tau}(x)_i = \tau(x_{-i}) \quad (x \in X; i \in \mathbb{Z}).
$$

For each positive integer *n*, we define the *n*-initial map $i_n : \bigcup_{k=n}^{\infty} \mathcal{B}_k(X) \to \mathcal{B}_n(X)$, the *n*-terminal map t_n : $\bigcup_{k=n}^{\infty} \mathcal{B}_k(X) \to \mathcal{B}_n(X)$ and the mirror map \mathcal{M}_n : $\mathcal{A}^n \to \mathcal{A}^n$ by

$$
i_n(a_1a_2\ldots a_m)=a_1a_2\ldots a_n \quad (a_1\ldots a_m\in B_m(X); \; m\geq n),
$$

$$
t_n(a_1a_2...a_m) = a_{m-n+1}a_{m-n+2}...a_m \quad (a_1...a_m \in B_m(X); \ m \ge n)
$$

and

$$
\mathcal{M}_n(a_1a_2\ldots a_n)=a_n\ldots a_1\quad (a_1\ldots a_n\in\mathcal{A}^n).
$$

For each positive integer *n*, we denote the map

$$
a_1a_2\ldots a_n\mapsto \tau(a_1)\tau(a_2)\ldots\tau(a_n) \quad (a_1\ldots a_n\in\mathcal{A}^n)
$$

by $\tau_n : \mathcal{A}^n \to \mathcal{A}^n$. It is obvious that the restriction of the map $\mathcal{M}_n \circ \tau_n$ to $\mathcal{B}_n(X)$ is a permutation of order 2.

For each positive integer *n*, we define the *n*th higher block code $h_n: X \to B_n(X)^{\mathbb{Z}}$ by

$$
h_n(x)_i = x_{[i,i+n-1]} \quad (x \in X; i \in \mathbb{Z}).
$$

We denote the image of (X, σ_X) under h_n by (X_n, σ_n) and call (X_n, σ_n) the *n*th higher block shift of (X, σ_X) . If we write $v = M_n \circ \tau_n$, then the map $\varphi_v : X_n \to X_n$ defined by

$$
\varphi_{\nu}(x)_i = \nu(x_{-i}) \quad (x \in X_n; i \in \mathbb{Z})
$$

becomes a natural one-block flip for (X_n, σ_n) . It is obvious that the *n*th higher block code *h_n* is a D_{∞} -conjugacy from $(X, \sigma_X, \varphi_{\tau})$ to $(X_n, \sigma_n, (\sigma_n)^{n-1} \circ \varphi_{\nu})$. We call the D_{∞} -system $(X_n, \sigma_n, \varphi_v)$ the *nth higher block* D_∞ -system of $(X, \sigma_X, \varphi_\tau)$.

For notational simplicity, we drop the subscript *n* and write $\tau = \tau_n$ and $\mathcal{M} = \mathcal{M}_n$ if the domains of τ_n and \mathcal{M}_n are clear in the context.

Suppose that (A, J) is a flip pair. Then the flip pair (A_n, J_n) for the *n*th higher block D_{∞} -system $(X_n, \sigma_n, \varphi_n)$ of $(X_A, \sigma_A, \varphi_{A,I})$ consists of $B_n(X_A) \times B_n(X_A)$ zero-one matrices A_n and J_n defined by

$$
A_n(u, v) = \begin{cases} 1 & \text{if } t_{n-1}(u) = i_{n-1}(v), \\ 0 & \text{otherwise,} \end{cases} (u, v \in \mathcal{B}_n(\mathsf{X}_A))
$$

and

$$
J_n(u, v) = \begin{cases} 1 & \text{if } v = (\mathcal{M} \circ \tau_J)(u), \\ 0 & \text{otherwise}, \end{cases} (u, v \in \mathcal{B}_n(\mathsf{X}_A)).
$$

In the following lemma, we prove that there is a D_{∞} -SSE from (A, J) to (A_n, J_n) .

LEMMA 4.1. *If n is a positive integer greater than* 1*, then we have*

$$
(A_1, J_1) \approx (A_n, J_n)
$$
 (lag $n - 1$).

Proof. For each $k = 1, 2, \ldots, n - 1$, we define a zero-one $\mathcal{B}_k(\mathsf{X}_A) \times \mathcal{B}_{k+1}(\mathsf{X}_A)$ matrix D_k and a zero-one $\mathcal{B}_{k+1}(\mathsf{X}_A) \times \mathcal{B}_k(\mathsf{X}_A)$ matrix E_k by

$$
D_k(u, v) = \begin{cases} 1 & \text{if } u = i_k(v), \\ 0 & \text{otherwise,} \end{cases} \quad (u \in \mathcal{B}_k(\mathsf{X}_A), v \in \mathcal{B}_{k+1}(\mathsf{X}_A))
$$

and

$$
E_k(v, u) = \begin{cases} 1 & \text{if } u = t_k(v), \\ 0 & \text{otherwise,} \end{cases} (u \in \mathcal{B}_k(\mathsf{X}_A), v \in \mathcal{B}_{k+1}(\mathsf{X}_A)).
$$

It is straightforward to see that (D_k, E_k) : $(A_k, J_k) \approx (A_{k+1}, J_{k+1})$ for each k.

In the proof of Lemma [4.1,](#page-20-0) $(X_{A_{k+1}}, \sigma_{A_{k+1}}, \varphi_{A_{k+1}}, J_{k+1})$ is equal to the second higher block D_{∞} -system of $(X_{A_k}, \sigma_{A_k}, \varphi_{A_k}, J_k)$ by recoding of symbols and the half elementary conjugacy

 \Box

$$
\gamma_{D_k, E_k}: (X_{A_k}, \sigma_{A_k}, \varphi_{A_k, J_k}) \to (X_{A_{k+1}}, \sigma_{A_{k+1}}, \sigma_{A_{k+1}} \circ \varphi_{A_{k+1}, J_{k+1}})
$$

induced by (D_k, E_k) can be regarded as the second D_{∞} -higher block code for each $k =$ 1, 2, \dots , *n* − 1. A *D*_∞-HEE *(D, E)* : *(A, J)* ≈ *(B, K)* is said to be *a complete D*_∞*-half elementary equivalence from* (A, J) *to* (B, K) if $\gamma_{D,E}$ is the second D_{∞} -higher block code.

In the rest of the section, we prove Proposition [A.](#page-3-0)

Proof of Proposition [A.](#page-3-0) We only prove part (1). One can prove part (2) in a similar way.

We denote the flip pairs for the *n*th higher block D_{∞} -system of $(X_A, \sigma_A, \varphi_{A,J})$ by (A_n, J_n) for each positive integer *n*. If ψ : $(X_A, \sigma_A, \varphi_{A,J}) \rightarrow (X_B, \sigma_B, \varphi_{B,K})$ is a D_{∞} -conjugacy, then there are non-negative integers *s* and *t* and a block map Ψ : $B_{s+t+1}(X_A) \rightarrow B_1(X_B)$ such that

$$
\psi(x)_i = \Psi(x_{[i-s,i+t]}) \quad (x \in \mathsf{X}_A; i \in \mathbb{Z}).
$$

We may assume that $s + t$ is even by extending the window size if necessary. By Lemma [4.1,](#page-20-0) there is a D_{∞} -SSE of lag $(s + t)$ from (A, J) to (A_{s+t+1}, J_{s+t+1}) . From equation [\(2.4\)](#page-8-3), it follows that the $(s + t + 1)$ th D_{∞} -higher block code h_{s+t+1} is a D_{∞} -conjugacy. It is obvious that there is a D_{∞} -conjugacy ψ' induced by ψ satisfying $\psi = \psi' \circ h_{s+t+1}$ and

$$
x, y \in h_{s+t+1}(X)
$$
 and $x_0 = y_0 \Rightarrow \psi'(x)_0 = \psi'(y)_0$.

So we may assume $s = t = 0$ and show that there is a D_{∞} -SSE of lag 2*l* from (A, J) to *(B*, *K)* for some positive integer *l*.

If ψ^{-1} is the inverse of ψ , there is a non-negative integer *m* such that

$$
y, y' \in X_B
$$
 and $y_{[-m,m]} = y'_{[-m,m]} \Rightarrow \psi^{-1}(y)_0 = \psi^{-1}(y')_0$ (4.1)

since ψ^{-1} is uniformly continuous. For each $k = 1, \ldots, 2m + 1$, we define a set \mathcal{A}_k by

$$
\mathcal{A}_k = \left\{ \begin{bmatrix} v \\ w \\ u \end{bmatrix} : u, v \in \mathcal{B}_i(\mathsf{X}_B), w \in \mathcal{B}_j(\mathsf{X}_A) \text{ and } u \Psi(w) v \in \mathcal{B}_k(\mathsf{X}_B) \right\},\
$$

where $i = \lfloor (k-1)/2 \rfloor$ and $j = k - 2\lfloor (k-1)/2 \rfloor$. We define $A_k \times A_k$ matrices M_k and F_k to be

$$
M_k \left(\begin{bmatrix} v \\ w \\ u \end{bmatrix}, \begin{bmatrix} v' \\ w' \\ u' \end{bmatrix} \right) = 1 \Leftrightarrow \begin{bmatrix} v \\ \Psi(w) \\ u \end{bmatrix} \begin{bmatrix} v' \\ \Psi(w') \\ u' \end{bmatrix} \in \mathcal{B}_2(\mathsf{X}_{\mathcal{B}_k})
$$

and
$$
ww' \in \mathcal{B}_2(\mathsf{X}_{\mathcal{A}_j})
$$

and

$$
F_k\left(\begin{bmatrix} v \\ w \\ u \end{bmatrix}, \begin{bmatrix} v' \\ w' \\ u' \end{bmatrix}\right) = 1 \Leftrightarrow u' = (\mathcal{M} \circ \tau_K)(v), \ w' = (\mathcal{M} \circ \tau_J)(w)
$$

and $v' = (\mathcal{M} \circ \tau_K)(u)$

for all

$$
\left[\begin{array}{c}v\\w\\u\end{array}\right],\left[\begin{array}{c}v'\\w'\\u'\end{array}\right]\in\mathcal{A}_k.
$$

A direct computation shows that (M_k, F_k) is a flip pair for each k. Next, we define a zero-one $A_k \times A_{k+1}$ matrix R_k and a zero-one $A_{k+1} \times A_k$ matrix S_k to be

$$
R_k\left(\begin{bmatrix} v \\ w \\ u \end{bmatrix}, \begin{bmatrix} v' \\ w' \\ u' \end{bmatrix}\right) = 1 \Leftrightarrow \begin{aligned} u\Psi(w)v &= i_k\big(u'\Psi(w')v'\big) \\ \text{and } t_1(w) &= i_1(w') \end{aligned}
$$

and

$$
S_k\left(\begin{bmatrix}v'\\w'\\u'\end{bmatrix},\begin{bmatrix}v\\w\\u\end{bmatrix}\right)=1 \Leftrightarrow \begin{cases}t_k\left(u'\Psi(w')v'\right)=u\Psi(w)v\\ \text{and }t_1(w')=i_1(w),\end{cases}
$$

for all

$$
\begin{bmatrix} v \\ w \\ u \end{bmatrix} \in \mathcal{A}_k \quad \text{and} \quad \begin{bmatrix} v' \\ w' \\ u' \end{bmatrix} \in \mathcal{A}_{k+1}.
$$

A direct computation shows that

$$
(R_k, S_k) : (M_k, F_k) \approx (M_{k+1}, F_{k+1}).
$$

Because $M_1 = A$ and $F_1 = J$, we obtain

$$
(A, J) \approx (M_{2m+1}, F_{2m+1}) \text{ (lag } 2m). \tag{4.2}
$$

Finally, equation [\(4.1\)](#page-21-0) implies that the *D*_∞-TMC determined by the flip pair $(M_{2m+1},$ *F*_{2*m*+1}*)* is equal to the $(2m + 1)$ th higher block *D*_∞-system of $(X_B, \sigma_B, \varphi_{K,B})$ by recoding of symbols. From Lemma [4.1,](#page-20-0) we have

$$
(B, K) \approx (M_{2m+1}, F_{2m+1}) \text{ (lag } 2m). \tag{4.3}
$$

From equations [\(4.2\)](#page-22-0) and [\(4.3\)](#page-23-1), it follows that

$$
(A, J) \approx (B, K) (\log 4m).
$$

5. *Proof of Theorem [D](#page-6-0)*

We start with the case where *(B*, *K)* in Theorem [D](#page-6-0) is the flip pair for the *n*th higher block D_{∞} -system of $(X_A, \sigma_A, \varphi_{A,J})$.

LEMMA 5.1. *Suppose that* (B, K) *is the flip pair for the nth higher block* D_{∞} -system of $(X_A, \sigma_A, \varphi_{A,J})$ *.*

(1) *If* $p \in \text{Ind}(\mathcal{K}(A))$, then there is $q \in \text{Ind}(\mathcal{K}((B))$ such that $q = p + n - 1$ and that

$$
sgn(\mathcal{E}_p(A)) = sgn(\mathcal{E}_q(B)).
$$

(2) *If* $q \in \text{Ind}(\mathcal{K}((B))$ and $q \ge n$, then there is $p \in \text{Ind}(\mathcal{K}(A))$ such that $q = p + n - 1$ *and that*

$$
sgn(\mathcal{E}_p(A)) = sgn(\mathcal{E}_q(B)).
$$

(3) *If* $q \in \text{Ind}(\mathcal{K}((B))$ *and* $q < n$ *, then we have*

$$
sgn(\mathcal{E}_q(B))=+1.
$$

Proof. We only prove the case $n = 2$. We assume $\mathcal{E}(A) \in \mathcal{B}as(\mathcal{K}(A))$ and $\mathcal{E}(B) \in$ $\mathcal{B}as(\mathcal{K}(B))$ are bases having properties from Proposition [B.](#page-15-5) Suppose that α is a cycle in $\mathcal{E}_p(A)$ for some $p \in \mathcal{I}nd(\mathcal{K}(A))$ and that *u* is the initial vector of α . For any $a_1a_2 \in$ $B_2(X_A)$, we have

$$
Eu\left(\left[\begin{array}{c}a_2\\a_1\end{array}\right]\right)=u(a_2)
$$

and this implies that *Eu* is not identically zero. By Lemma [3.5,](#page-15-2) α is a cycle in $\mathcal{E}_p(A; \partial_{D,E}^+)$. Under the assumption that $E(A)$ and $E(B)$ have properties from Proposition [B,](#page-15-5) we can find a cycle β in $\mathcal{E}(B)$ such that the initial vector of β is *Eu*. Thus, we obtain

$$
\mathcal{E}_p(A; \partial_{D,E}^-) = \varnothing \quad \text{and} \quad \mathcal{E}_{p+1}(B; \partial_{E,D}^+) = \varnothing,
$$
\n(5.1)

$$
p\in \mathcal{I}nd(\mathcal{K}(A))\Leftrightarrow p+1\in \mathcal{I}nd(\mathcal{K}(B))\quad (p\geq 1)
$$

and

$$
sgn(\mathcal{E}_p(A)) = sgn(\mathcal{E}_{p+1}(B)) \quad (p \in \mathcal{I}nd(\mathcal{K}(A))).
$$

If $\mathcal{E}_1(B) \neq \emptyset$, then $\mathcal{E}_1(B) = \mathcal{E}_1(B; \partial_{E,D}^-)$ by equation [\(5.1\)](#page-23-2) and we have

$$
\text{sgn}(\mathcal{E}_1(B)) = +1
$$

by Propositions [3.6](#page-18-0) and [C.](#page-5-2)

 \Box

Remark. If two D_{∞} -TMCs are finite, then we can directly determine whether or not they are *D*_∞-conjugate. In this paper, we do not consider D_{∞} -TMCs that have finite cardinalities. Hence, when (B, K) is the flip pair for the *n*th higher block D_{∞} -system of $(X_A, \sigma_A, \varphi_{A,I})$ for some positive integer $n > 1$, *B* must have zero as its eigenvalue.

Proof of Theorem [D.](#page-6-0) Suppose that (A, J) and (B, K) are flip pairs and that ψ : $(X_A, \sigma_A, \varphi_{A,J}) \rightarrow (X_B, \sigma_B, \varphi_{B,K})$ is a D_{∞} -conjugacy. As we can see in the proof of Proposition [A,](#page-3-0) there is a D_{∞} -SSE from (A, J) to (B, K) consisting of the even number of complete *D*_∞-half elementary equivalences and (R_k, S_k) : $(M_k, F_k) \approx (M_{k+1}, F_{k+1})(k=$ $1, \ldots, 2m$). In Lemma [5.1,](#page-23-3) we have already seen that Theorem D is true in the case of complete D_{∞} -half elementary equivalences. So it remains to compare the flip signatures of (M_k, F_k) and (M_{k+1}, F_{k+1}) for each $k = 1, \ldots, 2m$. Throughout the proof, we assume \mathcal{A}_k and (R_k, S_k) : $(M_k, F_k) \approx (M_{k+1}, F_{k+1})$ are as in the proof of Proposition [A.](#page-3-0)

We only discuss the following two cases:

- (1) (R_2, S_2) : (M_2, F_2) ≈ (M_3, F_3) ;
- (R_3, S_3) : (M_3, F_3) ≈ (M_4, F_4) .

When $k = 1$, (R_1, S_1) is a complete D_{∞} -half elementary conjugacy from (A, J) to (A_2, J_2) . For each $k = 4, 5, \ldots, 2m$, one can apply the arguments used in cases (1) and (2) to (R_k, S_k) : (M_k, F_k) ≈ (M_{k+1}, F_{k+1}) . More precisely, when *k* is an even number, the argument used in case (1) can be applied and when *k* is an odd number, the argument used in case (2) can be applied.

(1) Suppose that (B_2, K_2) is the flip pair for the second higher block D_{∞} -system of $(X_B, \sigma_B, \varphi_{B,K})$. We first compare the flip signatures of (B_2, K_2) and (M_3, F_3) . We define a zero-one $\mathcal{B}_2(\mathsf{X}_B) \times \mathcal{A}_3$ matrix U_2 and a zero-one $\mathcal{A}_3 \times \mathcal{B}_2(\mathsf{X}_B)$ matrix V_2 by

$$
U_2\left(\left[\begin{array}{c}b_2\\b_1\end{array}\right],\left[\begin{array}{c}d_3\\a_2\\d_1\end{array}\right]\right)=\left\{\begin{array}{l}1\quad\text{if }b_1=d_1\text{ and }\Psi(a_2)=b_2,\\0\quad\text{otherwise,}\end{array}\right.
$$

and

$$
V_2\left(\begin{bmatrix} d_3 \\ a_2 \\ d_1 \end{bmatrix}, \begin{bmatrix} b_2 \\ b_1 \end{bmatrix}\right) = \begin{cases} 1 & \text{if } b_2 = d_3 \text{ and } \Psi(a_2) = b_1, \\ 0 & \text{otherwise,} \end{cases}
$$

for all

$$
\left[\begin{array}{c} b_2 \\ b_1 \end{array}\right] \in \mathcal{B}_2(\mathsf{X}_B) \quad \text{and} \quad \left[\begin{array}{c} d_3 \\ a_2 \\ d_1 \end{array}\right] \in \mathcal{A}_3.
$$

A direct computation shows that

$$
(U_2, V_2): (B_2, K_2) \stackrel{\sim}{\approx} (M_3, F_3).
$$

Remark of Lemma [5.1](#page-23-3) says that $K(B_2)$ is not trivial. So there is a basis $E(B_2) \in$ $Bas(\mathcal{K}(B_2))$ for the eventual kernel of B_2 having property (1) from Lemma [3.3.](#page-12-0) Suppose that $\gamma = \{w_1, \ldots, w_p\}$ is a cycle in $\mathcal{E}(B_2)$. Since

$$
V_2w_1\left(\left[\begin{array}{c}b_3\\a_2\\b_1\end{array}\right]\right)=w_1\left(\left[\begin{array}{c}b_3\\ \Psi(a_2)\end{array}\right]\right)\quad \left(\left[\begin{array}{c}b_3\\a_2\\b_1\end{array}\right]\in\mathcal{A}_3\right),
$$

it follows that $w_1 \notin \text{Ker}(V_2)$. By Lemma [3.5,](#page-15-2) γ is a cycle in $\mathcal{E}_p(B_2; \partial_{U_2,V_2}^+)$. Suppose that $E(M_3) \in \mathcal{B}as(\mathcal{K}(M_3))$ is a basis for the eventual kernel of M_3 having property (1) from Lemma [3.3.](#page-12-0) Then it is obvious that for each $p \in \mathcal{I}nd(\mathcal{K}(B_2))$, we have

$$
\mathcal{E}_p(B_2; \partial_{U_2, V_2}^-) = \varnothing \quad \text{and} \quad \mathcal{E}_{p+1}(M_3; \partial_{V_2, U_2}^+) = \varnothing. \tag{5.2}
$$

Hence,

$$
p\in \mathcal{I}nd(\mathcal{K}(B_2))\Leftrightarrow p+1\in \mathcal{I}nd(\mathcal{K}(M_3))\quad (p\geq 1)
$$

and

$$
sgn(\mathcal{E}_p(B_2)) = sgn(\mathcal{E}_{p+1}(M_3)) \quad (p \in \mathcal{I}nd(\mathcal{K}(B_2)))
$$

by Proposition [C.](#page-5-2) If $\mathcal{E}_1(M_3) \neq \emptyset$, then $\mathcal{E}_1(M_3) = \mathcal{E}_1(M_3; \partial_{V_2, U_2}^{-1})$ by equation [\(5.2\)](#page-25-0) and we have

$$
sgn(\mathcal{E}_1(M_3)) = +1 \tag{5.3}
$$

by Propositions [3.6](#page-18-0) and [C.](#page-5-2)

Now, we compare the flip signatures of (M_2, F_2) and (M_3, F_3) . Let $\beta = \{v_1, \ldots, v_{p+1}\}\$ be a cycle in $\mathcal{E}(M_3)$ for some $p \ge 1$. If $b_1b_2b_3 \in \mathcal{B}_3(\mathsf{X}_B)$ and $a_2, a'_2 \in \Psi^{-1}(b_2)$, then from $M_3v_2 = v_1$, it follows that

$$
v_1\left(\begin{bmatrix}b_3\\a_2\\b_1\end{bmatrix}\right)=\sum_{a_3\in\Psi^{-1}(b_3)}\sum_{b_4\in\mathcal{F}_B(b_3)}v_2\left(\begin{bmatrix}b_4\\a_3\\b_2\end{bmatrix}\right)
$$

and this implies that

$$
v_1\left(\left[\begin{array}{c}b_3\\a_2\\b_1\end{array}\right]\right)=v_1\left(\left[\begin{array}{c}b_3\\a'_2\\b_1\end{array}\right]\right).
$$

Since v_1 is a non-zero vector, there is a block $b_1b_2b_3 \in B_3(\mathsf{X}_B)$ and a non-zero real number *k* such that

$$
v_1\left(\begin{bmatrix}b_3\\a_2\\b_1\end{bmatrix}\right)=k \text{ for all } a_2 \in \Psi^{-1}(b_2).
$$

Since $M_3v_1 = 0$, it follows that

$$
\sum_{a_2 \in \Psi^{-1}(b_2)} \sum_{b_3 \in \mathcal{F}_B(b_2)} v_1 \left(\begin{bmatrix} b_3 \\ a_2 \\ b_1 \end{bmatrix} \right) = k \sum_{b_3 \in \mathcal{F}_B(b_2)} v_1 \left(\begin{bmatrix} b_3 \\ a_2 \\ b_1 \end{bmatrix} \right) = 0.
$$

From this, we see that

$$
R_2v_1\left(\left[\begin{array}{c}a_2\\a_1\end{array}\right]\right)=\sum_{b_3\in\mathcal{F}_B(b_2)}v_1\left(\left[\begin{array}{c}b_3\\a_2\\b_1\end{array}\right]\right)=0
$$

for any $a_1 \in \Psi^{-1}(b_1)$ and $a_1a_2 \in \mathcal{B}_2(\mathsf{X}_\mathcal{A})$. Hence, $v_1 \in \text{Ker}(\mathcal{R}_2)$ and β is a cycle in $\mathcal{E}_{p+1}(M_3; \partial_{S_2, R_2}^-)$ by Lemma [3.5.](#page-15-2) From this, we see that

$$
p + 1 \in \mathcal{I}nd(\mathcal{K}(M_3)) \Leftrightarrow p \in \mathcal{I}nd(\mathcal{K}(M_2)) \quad (p \ge 2)
$$

and

$$
2\in \mathcal{I}nd(\mathcal{K}(M_3))\Leftrightarrow 1\in \mathcal{I}nd(\mathcal{K}(M_2;\partial^+_{R_2,S_2})).
$$

Suppose that $\mathcal{E}(M_2) \in \mathcal{B}as(\mathcal{K}(M_2))$ is a basis for the eventual kernel of M_2 having property (1) from Lemma [3.3.](#page-12-0) If $1 \in \mathcal{I}nd(\mathcal{K}(M_2))$ and $\mathcal{E}_1(M_2; \partial_{R_2,S_2}^-)$ is non-empty, then we have

$$
sgn(\mathcal{E}_1(M_2; \partial_{R_2, S_2}^-)) = +1
$$

by Propositions [3.6,](#page-18-0) [C](#page-5-2) and equation [\(3.5\)](#page-15-1). Thus, we have

$$
\text{sgn}(\mathcal{E}_{p+1}(M_3)) = \text{sgn}(\mathcal{E}_p(M_2)) \quad (p+1 \in \mathcal{I}nd(\mathcal{K}(M_3));\, p \geq 1).
$$

If $1 \in \mathcal{I}nd(\mathcal{K}(M_3))$ and $\mathcal{E}_1(M_3; \partial_{S_2,R_2}^+)$ is non-empty, then we have

$$
sgn(\mathcal{E}_1(M_3; \partial_{S_2, R_2}^+)) = +1
$$

and if $\mathcal{E}_1(M_3; \partial_{S_2, R_2}^-)$ is non-empty, then we have

$$
\operatorname{sgn}(\mathcal{E}_1(M_3; \partial_{S_2, R_2}^-)) = +1
$$

by equations [\(3.5\)](#page-15-1), [\(5.3\)](#page-25-1) and Propositions [3.6,](#page-18-0) [C.](#page-5-2) As a consequence, the flip signatures of (M_2, F_2) and (M_3, F_3) have the same number of $-1s$ and their leading signatures coincide.

(2) Suppose that *^α* is a cycle in *^K(M*3*)* and that *^u* is the initial vector of *^α*. Since

$$
S_3u\left(\left[\begin{array}{c}b_4\\a_3\\a_2\\b_1\end{array}\right]\right)=u\left[\begin{array}{c}b_4\\a_3\\ \Psi(a_2)\end{array}\right]\left[\left[\begin{array}{c}b_4\\a_3\\a_2\\b_1\end{array}\right]\in\mathcal{A}_4\right),\end{aligned}
$$

it follows that S_3u is not identically zero. The argument used in the proof of Lemma [5.1](#page-23-3) completes the proof. \Box

6. *D*∞*-shift equivalence and the Lind zeta functions*

We first introduce the notion of D_{∞} -shift equivalence which is an analogue of shift equivalence. Let (A, J) and (B, K) be flip pairs and let *l* be a positive integer. A D_{∞} -shift *equivalence* (D_{∞} -SE) *of lag l from* (A, J) *to* (B, K) is a pair (D, E) of non-negative integral matrices satisfying

$$
A^l = DE
$$
, $B^l = ED$, $AD = DB$ and $E = KD^TJ$.

3440 *S. Ryu*

We observe that $AD = DB$, $E = KD^TJ$ and the fact that (A, J) and (B, K) are flip pairs imply $EA = BE$. If there is a D_{∞} -SE of lag *l* from (A, J) to (B, K) , then we say that (A, J) is D_{∞} -shift equivalent to (B, K) and write

$$
(A, J) \sim (B, K) \, (\text{lag } l).
$$

Suppose that

$$
(D_1, E_1), (D_2, E_2), \ldots, (D_l, E_l)
$$

is a D_{∞} -SSE of lag *l* from (A, J) to (B, K) . If we set

$$
D = D_1 D_2 \ldots D_l \quad \text{and} \quad E = E_l \ldots E_2 E_1,
$$

then (D, E) is a D_{∞} -SE of lag *l* from (A, J) to (B, K) . Hence, we have

$$
(A, J) \approx (B, K)
$$
 $(\log l) \Rightarrow (A, J) \sim (B, K)$ $(\log l)$.

In the rest of the section, we review the Lind zeta function of a D_{∞} -TMC. In [4[\]](#page-34-1), an explicit formula for the Lind zeta function of a D_{∞} -system was established. In the case of a D_{∞} -TMC, the Lind zeta function can be expressed in terms of matrices from flip pairs. We briefly discuss the formula.

Suppose that *G* is a group and that α is a *G*-action on a set *X*. Let *F* denote the set of finite index subgroups of *G*. For each $H \in \mathcal{F}$, we set

$$
p_H(\alpha) = |\{x \in X : \text{for all } h \in H \ \alpha(h, x) = x\}|.
$$

The Lind zeta function ζ_α of the action α is defined by

$$
\zeta_{\alpha}(t) = \exp\left(\sum_{H \in \mathcal{F}} \frac{p_H(\alpha)}{|G/H|} t^{|G/H|}\right).
$$
\n(6.1)

It is clear that if $\alpha : \mathbb{Z} \times X \to X$ is given by $\alpha(n, x) = T^n(x)$, then the Lind zeta function ζ_{α} becomes the Artin–Mazur zeta function ζ_T of a topological dynamical system (X, T) . The formula for the Artin–Mazur zeta function can be found in [\[](#page-34-7)1]. Lind defined the function [\(6.1\)](#page-27-0) in [\[](#page-34-8)7] for the case $G = \mathbb{Z}^d$.

Every finite index subgroup of the infinite dihedral group $D_{\infty} = \langle a, b : ab \rangle$ *ba*^{−1} and *b*² = 1) can be written in one and only one of the following forms:

 $\langle a^m \rangle$ or $\langle a^m, a^k b \rangle$ $(m = 1, 2, \ldots; k = 1, \ldots, m - 1)$

and the index is given by

$$
|G_2/\langle a^m \rangle| = 2m \quad \text{or} \quad |G_2/\langle a^m, a^k b \rangle| = m.
$$

Suppose that (X, T, F) is a D_{∞} -system. If *m* is a positive integer, then the number of periodic points in *X* of period *m* will be denoted by $p_m(T)$:

$$
p_m(T) = |\{x \in X : T^m(x) = x\}|.
$$

If *m* is a positive integer and *n* is an integer, then $p_{m,n}(T, F)$ will denote the number of points in *X* fixed by T^m and $T^n \circ F$:

$$
p_{m,n}(T, F) = |\{x \in X : T^m(x) = T^n \circ F(x) = x\}|.
$$

Thus, the Lind zeta function $\zeta_{T,F}$ of a D_{∞} -system (X, T, F) is given by

$$
\zeta_{T,F}(t) = \exp\bigg(\sum_{m=1}^{\infty} \frac{p_m(T)}{2m} t^{2m} + \sum_{m=1}^{\infty} \sum_{k=0}^{m-1} \frac{p_{m,k}(T,F)}{m} t^{m}\bigg). \tag{6.2}
$$

It is evident if two D_{∞} -systems *(X, T, F)* and *(X', T', F')* are D_{∞} -conjugate, then

 $p_m(T) = p_m(T')$ and $p_{m,n}(T, F) = p_{m,n}(T', F')$

for all positive integers *m* and integers *n*. As a consequence, the Lind zeta function is a *D*_∞-conjugacy invariant.

The formula [\(6.2\)](#page-28-1) can be simplified as follows. Since $T \circ F = F \circ T^{-1}$ and $F^2 = \text{Id}_X$, it follows that

$$
p_{m,n}(T, F) = p_{m,n+m}(T, F) = p_{m,n+2}(T, F)
$$

and this implies that

$$
p_{m,n}(T, F) = p_{m,0}(T, F) \quad \text{if } m \text{ is odd},
$$

\n
$$
p_{m,n}(T, F) = p_{m,0}(T, F) \quad \text{if } m \text{ and } n \text{ are even},
$$

\n
$$
p_{m,n}(T, F) = p_{m,1}(T, F) \quad \text{if } m \text{ is even and } n \text{ is odd}.
$$
\n(6.3)

Hence, we obtain

$$
\sum_{k=0}^{m-1} \frac{p_{m,n}(T, F)}{m} = \begin{cases} p_{m,0}(T, F) & \text{if } m \text{ is odd,} \\ \frac{p_{m,0}(T, F) + p_{m,1}(T, F)}{2} & \text{if } m \text{ is even.} \end{cases}
$$

Using this, equation [\(6.2\)](#page-28-1) becomes

$$
\zeta_{\alpha}(t) = \zeta_T(t^2)^{1/2} \exp\left(G_{T,F}(t)\right),
$$

where ζ_T is the Artin–Mazur zeta function of (X, T) and $G_{T,F}$ is given by

$$
G_{T,F}(t) = \sum_{m=1}^{\infty} \left(p_{2m-1,0}(T,F) t^{2m-1} + \frac{p_{2m,0}(T,F) + p_{2m,1}(T,F)}{2} t^{2m} \right).
$$

If there is a D_{∞} -SSE of lag 2*l* between two flip pairs (A, J) and (B, K) for some positive integer *l*, then $(X_A, \sigma_A, \varphi_{A,J})$ and $(X_B, \sigma_B, \varphi_{B,K})$ have the same Lind zeta function by item (1) in Proposition [A.](#page-3-0) The following proposition says that the Lind zeta function is actually an invariant for D_{∞} -SSE.

PROPOSITION 6.1. *If* (X, T, F) *is a* D_{∞} -system, then

$$
p_{2m-1,0}(T, F) = p_{2m-1,0}(T, T \circ F),
$$

\n
$$
p_{2m,0}(T, F) = p_{2m,1}(T, T \circ F),
$$

\n
$$
p_{2m,1}(T, F) = p_{2m,0}(T, T \circ F)
$$

for all positive integers m. As a consequence, the Lind zeta functions of (X, T, F) *and* $(X, T, T \circ F)$ *are the same.*

Proof. The last equality is trivially true. To prove the first two equalities, we observe that

$$
T^{m}(x) = F(x) = x \Leftrightarrow T^{m}(Tx) = T \circ (T \circ F)(Tx) = Tx
$$

for all positive integers *m*. Thus, we have

$$
p_{m,0}(T, F) = p_{m,1}(T, T \circ F) \quad (m = 1, 2, \ldots). \tag{6.4}
$$

Replacing *m* with 2*m* yields the second equality. From equations [\(6.3\)](#page-28-2) and [\(6.4\)](#page-29-1), the first \Box equality follows.

When (A, J) is a flip pair, the numbers $p_{m,\delta}(\sigma_A, \varphi_{A,J})$ of fixed points can be expressed in terms of *A* and *J* for all positive integers *m* and $\delta \in \{0, 1\}$. To present it, we indicate notation. If *M* is a square matrix, then Δ_M will denote the column vector whose *i*th coordinates are identical with *i*th diagonal entries of *M*, that is,

$$
\Delta_M(i) = M(i, i).
$$

For instance, if *I* is the 2×2 identity matrix, then

$$
\Delta_I = \left[\begin{array}{c} 1 \\ 1 \end{array} \right].
$$

The following proposition is proved in [4[\]](#page-34-1).

PROPOSITION 6.2. *If (A*, *J) is a flip pair, then*

$$
p_{2m-1,0}(\sigma_A, \varphi_{A,J}) = \Delta_J \mathcal{T}(A^{m-1}) \Delta_{AJ},
$$

$$
p_{2m,0}(\sigma_A, \varphi_{A,J}) = \Delta_J \mathcal{T}(A^m) \Delta_J,
$$

$$
p_{2m,1}(\sigma_A, \varphi_{A,J}) = \Delta_{JA} \mathcal{T}(A^{m-1}) \Delta_{AJ}
$$

for all positive integers m.

7. *Examples*

Let *A* be Ashley's eight-by-eight and let *B* be the minimal zero-one transition matrix for the full two-shift, that is,

$$
A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$

.

There is a unique one-block flip for (X_A, σ_A) and there are exactly two one-block flips for (X_B, σ_B) . Those flips are determined by the permutation matrices

$$
J = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } K = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
$$

In the following example, we calculate the Lind zeta functions of $(X_A, \sigma_A, \varphi_{A,J})$, $(X_B, \sigma_B, \varphi_{B,I})$ and $(X_B, \sigma_B, \varphi_{B,K})$.

Example 7.1. Direct computation shows that the number of fixed points of $(X_A, \sigma_A, \varphi_{A,J})$, $(X_B, \sigma_B, \varphi_{B,I})$ and $(X_B, \sigma_B, \varphi_{B,K})$ are as follows:

$$
p_m(\sigma_A) = p_m(\sigma_B) = 2^m,
$$

$$
p_{2m-1,0}(\sigma_A, \varphi_{A,J}) = p_{2m,0}(\sigma_A, \varphi_{A,J}) = 0,
$$

$$
p_{2m,1}(\sigma_A, \varphi_{A,J}) = \begin{cases} 2^m & \text{if } m \neq 6, \\ 80 & \text{if } m = 6, \end{cases}
$$

$$
p_{2m-1,0}(\sigma_B, \varphi_{B,I}) = 2^m, \quad p_{2m,0}(\sigma_B, \varphi_{B,I}) = 2^{m+1}, \quad p_{2m,1}(\sigma_B, \varphi_{B,I}) = 2^m,
$$

$$
p_{2m-1,0}(\sigma_B, \varphi_{B,K}) = p_{2m,0}(\sigma_B, \varphi_{B,K}) = 0, \quad p_{2m,1}(\sigma_B, \varphi_{B,K}) = 2^m
$$

for all positive integers *m*. Thus, the Lind zeta functions are as follows:

$$
\zeta_{A,J}(t) = \frac{1}{\sqrt{1 - 2t^2}} \exp\left(\frac{t^2}{1 - 2t^2} + 8t^{12}\right),
$$

$$
\zeta_{B,I}(t) = \frac{1}{\sqrt{1 - 2t^2}} \exp\left(\frac{2t + 3t^2}{1 - 2t^2}\right)
$$

and

$$
\zeta_{B,K}(t) = \frac{1}{\sqrt{1 - 2t^2}} \exp\left(\frac{t^2}{1 - 2t^2}\right).
$$

As a result, we see that

$$
(X_A, \sigma_A, \varphi_{A,J}) \ncong (X_B, \sigma_B, \varphi_{B,I}),
$$

\n $(X_A, \sigma_A, \varphi_{A,J}) \ncong (X_B, \sigma_B, \varphi_{B,K})$

and

$$
(X_B, \sigma_B, \varphi_{B,I}) \ncong (X_B, \sigma_B, \varphi_{B,K}).
$$

<https://doi.org/10.1017/etds.2022.59> Published online by Cambridge University Press

Example 7.2. In spite of $\zeta_{A,J} \neq \zeta_{B,I}, \zeta_{A,J} \neq \zeta_{B,K}$ and $\zeta_{B,J} \neq \zeta_{B,K}$, there are D_{∞} -SEs between (A, J) , (B, I) and (B, K) pairwise. If *D* and *E* are matrices given by

$$
D = 2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \text{ and } E = 2 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix},
$$

then (D, E) is a D_{∞} -SE of lag 6 from (A, J) to (B, K) and from (A, J) to (B, I) :

$$
(D, E): (A, J) \sim (B, I)
$$
 (lag 6) and $(D, E): (A, J) \sim (B, K)$ (lag 6).

Direct computation shows that (B^l, B^l) is a D_{∞} -SE from (B, I) to (B, K) :

 (B^l, B^l) : $(B, I) \sim (B, K)$ (lag 2*l*)

for all positive integers *l*. This contrasts with the fact that the existence of SE between two transition matrices implies that the corresponding Z-TMCs share the same Artin–Mazur zeta functions. (See [§7](#page-29-0) in [8[\]](#page-34-3).)

Example 7.3. We compare the flip signatures of (A, J) , (B, I) and (B, K) . Direct computation shows that the index sets for the eventual kernels of *A* and *B* are

$$
Ind(K(A)) = \{1, 6\} \quad \text{and} \quad Ind(K(B)) = \{1\}
$$

and the flip signatures are

$$
F.Sig(A, J) = (-1, +1),
$$

$$
F.Sig(B, I) = (+1)
$$

and

$$
F.Sig(B, K) = (-1).
$$

By Theorem [D,](#page-6-0) we see that

$$
(X_A, \sigma_A, \varphi_{A,J}) \ncong (X_B, \sigma_B, \varphi_{B,I}),
$$

$$
(X_A, \sigma_A, \varphi_{A,J}) \ncong (X_B, \sigma_B, \varphi_{B,K})
$$

and

$$
(X_B, \sigma_B, \varphi_{B,I}) \ncong (X_B, \sigma_B, \varphi_{B,K}).
$$

The flip signature is completely determined by the eventual kernel of a transition matrix, while the Lind zeta functions and the existence of D_{∞} -shift equivalence between two flip pairs rely on the eventual ranges of transition matrices. The nilpotency index of Ashley's eight-by-eight *A* on the eventual kernel $K(A)$ is 6. In the case of (A, J) in Example [7.1,](#page-30-0)

the number of periodic points $p_m(\sigma_A)$ is completely determined by the eventual range of *A*, the numbers of fixed points $p_{2m-1,0}(\sigma_A, \varphi_{A,J})$ and $p_{2m,1}(\sigma_A, \varphi_{A,J})$ are completely determined by the eventual ranges if $m \ge 7$, and $p_{2m,0}(\sigma_A, \varphi_{A,J})$ is completely determined by the eventual ranges if $m \ge 6$. In Example [7.2,](#page-31-0) (D, E) is actually the D_{∞} -SE from (A, J) to (B, I) and from (A, J) to (B, K) having the smallest lag, and this means that the existence of D_{∞} -SE from (A, J) to (B, I) and from (A, J) to (B, K) are not related to the eventual kernels of *A* and *B* at all. Similarly, the existence of D_{∞} -SE from (B, I) to *(B*, *K)* is not related to the eventual kernel of *B* at all. Therefore, the coincidence of the Lind zeta functions or the existence of D_{∞} -shift equivalence are not enough to guarantee the same number of −1s in the corresponding flip signatures or the coincidence of leading signatures. The following example shows that the flip signatures of two flip pairs can have the same number of −1s and share the same leading signatures even when their non-zero eigenvalues are totally different.

Example 7.4. Let *A* and *B* be the minimal zero-one transition matrices for the even shift and full two-shift, respectively:

$$
A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
$$

If we set

$$
J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},
$$

then (A, J) and (B, K) are flip pairs. Let sp^{\times} (A) and sp^{\times} (B) be the sets of non-zero eigenvalues of *A* and *B*, respectively:

$$
sp^{x}(A) = \left\{ \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2} \right\}
$$
 and $sp^{x}(B) = \{2\}.$

Because $sp^{\times}(A)$ and $sp^{\times}(B)$ do not coincide, (X_A, σ_A) and (X_B, σ_B) are not Z-conjugate, and hence $(X_A, \sigma_A, \varphi_{A,I})$ and $(X_B, \sigma_B, \varphi_{B,K})$ are not D_{∞} -conjugate. More precisely, $sp^{x}(A) \neq sp^{x}(B)$ implies that *A* and *B* are not shift-equivalent, and hence (A, J) and (B, K) are not D_{∞} -shift equivalent:

$$
sp^X(A) \ne sp^X(B) \Rightarrow A \sim B \Rightarrow (A, J) \sim (B, K).
$$

In addition, $sp^{\times}(A) \neq sp^{\times}(B)$ implies that the Artin–Mazur zeta functions $\zeta_A(t)$ and $\zeta_B(t)$ of (X_A, σ_A) and (X_B, σ_B) do not coincide (see Ch. 7 in [\[](#page-34-3)8]), and hence the Lind zeta functions $\zeta_{A,J}(t)$ and $\zeta_{B,K}(t)$ of (X_A, σ_A) and (X_B, σ_B) do not coincide:

$$
\mathrm{sp}^{\times}(A) \neq \mathrm{sp}^{\times}(B) \Rightarrow \zeta_A(t) \neq \zeta_B(t) \Rightarrow \zeta_{A,J}(t) \neq \zeta_{B,K}(t).
$$

However, the flip signatures of (A, J) and (B, K) are the same:

$$
F.Sig(A, J) = (+1) \text{ and } F.Sig(B, K) = (+1).
$$

3446 *S. Ryu*

In the following example, we see that the coincidence of the Lind zeta functions does not guarantee the existence of D_{∞} -SE between the corresponding flip pairs.

Example 7.5. Let

$$
A = \left[\begin{array}{cccccc}1 & 1 & 1 & 0 & 0 & 0 & 0 \\0 & 1 & 0 & 1 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 & 0 & 0 & 1 \\1 & 1 & 1 & 0 & 1 & 0 & 0 \\0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right], \quad B = \left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & 0 & 0 \\0 & 1 & 0 & 1 & 1 & 1 & 0 \\0 & 0 & 1 & 1 & 1 & 1 & 0 \\0 & 0 & 0 & 1 & 0 & 0 & 1 \\1 & 0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & 1 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]
$$

and

$$
J = \left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{array} \right]
$$

.

The characteristic functions χ_A and χ_B of *A* and *B* are the same:

$$
\chi_A(t) = \chi_B(t) = t(t-1)^4(t^2 - 3t + 1).
$$

We denote the zeros of $t^2 - 3t + 1$ by λ and μ . Direct computation shows that (A, J) and (B, J) are flip pairs and $(X_A, \sigma_A, \varphi_{A,J})$ and $(X_B, \sigma_B, \varphi_{B,J})$ share the same numbers of fixed points.

$$
p_m = 4 + \lambda^m + \mu^m,
$$

\n
$$
p_{2m-1,0} = \frac{8\lambda^m - 3\lambda^{m-1}}{11\lambda - 4} + \frac{8\mu^m - 3\mu^{m-1}}{11\mu - 4},
$$

\n
$$
p_{2m,0} = \frac{\lambda^{m+1}}{11\lambda - 4} + \frac{\mu^{m+1}}{11\mu - 4},
$$

\n
$$
p_{2m,1} = \frac{55\lambda^m - 21\lambda^{m-1}}{11\lambda - 4} + \frac{55\mu^m - 21\mu^{m-1}}{11\mu - 4} \quad (m = 1, 2, ...).
$$

As a result, they share the same Lind zeta functions:

$$
\sqrt{\frac{1}{t^2(1-t^2)^4(1-3t^2+t^4)}}\exp\bigg(\frac{t+3t^2-t^3-2t^4}{1-3t^2+t^4}\bigg).
$$

If there is a D_{∞} -SE (D, E) from (A, J) to (B, J) , then (D, E) also becomes a SE from *^A* to *^B*. It is well known [8[\]](#page-34-3) that the existence of SE from *^A* to *^B* implies that *^A* and *^B* have the same Jordan forms away from zero up to the order of Jordan blocks. The Jordan canonical forms of *A* and *B* are given by

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ *μ* 1100 0110 0011 0001 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ and ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ λ *μ* 1 1 0 1 1 1 0 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ,

respectively. From this, we see that (A, J) cannot be D_{∞} -shift equivalent to (B, J) .

Acknowledgements. The author gratefully acknowledges the support of FAPESP (Grant No. 2018/12482-3) and Institute of Mathematics and Statistics in University of Sao Paulo (IME-USP) and the referee's helpful comments.

REFERENCES

- [1] M. Artin and B. Mazur. On periodic points. *Ann. of Math. (2)* 81 (1965), 82–99.
- [2] M. Boyle. Open problems in symbolic dynamics. [http://www.math.umd.edu/~mmb/.](http://www.math.umd.edu/~mmb/)
- [3] S. H. Friedbert, A. J. Insel and L. E. Spence. *Linear Algebra*. 4th edn. Pearson Education, New Jersey, 2003.
- [4] Y.-O. Kim, J. Lee and K. K. Park. A zeta function for flip systems. *Pacific J. Math.* 209 (2003), 289–301.
- [5] B. Kitchens. *Symbolic Dynamics: One-Sided, two-Sided and Countable State Markov Shifts*. Springer, Berlin, 1998.
- [6] J. S. W. Lamb and J. A. G. Roberts. Time-reversal symmetry in dynamical systems: a survey. *Phys. ^D* 112(1–2) (1998), 1–39.
- [7] D. Lind. A zeta function for ^Z*^d* -actions. *Ergodic Theory and* ^Z*^d -Actions (London Mathematical Society Lecture Note Series, 228)*. Eds. M. Pollicott and K. Schmidt. Cambridge University Press, Cambridge, 1996, pp. 433–450.
- [8] D. Lind and B. Marcus. *Symbolic Dynamics and Coding*. Cambridge University Press, Cambridge, 1995.
- [9] R. F. Williams. Classification of subshifts of finite type. *Ann. of Math. (2)* 98 (1973), 120–153; Erratum, *Ann. of Math. (2)* 99 (1974), 380–381.