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IMAGING WITH NON-COPLANAR DATA 
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ABSTRACT The general relation between interferometric data and 
sky brightness requires the use of three-dimensional Fourier transforms. 
Only in special cases does the standard two-dimensional Fourier relations 
result in images free of distortions. For the VLA, use of two-dimensional 
transforms introduces errors which are important at low frequencies 
and high resolutions. We review options and progress in solving the 
computational problems associated with the full solution. 

The measurement equation relating observed visibility, V(u, v, w), to the 
astronomical sky brightness, B(l,m), is: 

V(u,v,w)= j f I(t,m)e-2"[«<+<""+«'(Vi-/'-m'-i)) didm 
y/l-P-l 

This equation is correct for a phase tracking interferometer whose fractional 
bandwidth Ai//i/ << 1. The general inversion problem is to recover an 
estimate of the sky brightness from measurements of the visibility. Note that 
the visibility is a function of three baseline variables, while the sky brightness 
is a function of two angles. There is thus no simple two-dimensional transform 
relation possible between the measured and desired quantities. 

An important simplification, valid for all E-W interferometers and 
instantaneously coplanar arrays, and usable for all arrays with a sufficiently 
small field of view, allows the measurement equation to be written in a simpler 
form: 

V(u,v)= j f J(^,m)e-2"("'+™'(fWm 

which is the well-known two-dimensional Fourier transform relation used in all 
interferometer imaging software. The problem in using this relation is that for 
a two-dimensional array such as the VLA, the relation is only approximate. 
For any finite field size, imaging errors will occur for sources not located on the 
phase tracking center. It is important to understand that the origin of the error 
lies in the fact that the phase of a source located away from the phase-tracking 
center depends on the w-coordinate. The error incurred by ignoring the third 
(w) term in the phase factor of the correct expression is: 

A^ ~ irwO2 ~ w62B/\ 
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where B is the maximum baseline, and 6 is the angular offset in radians. Note 
that the error depends on radial distance squared, so that for sufficiently 
small fields, no appreciable errors will result from use of the approximate two-
dimension relations which results from dropping the w-dependence. 

For illustration, consider the VLA in its 'A'-configuration, and take a 
phase error of 1 radian. The following table gives the radius at which this error 
occurs on the longest baseline: 

A 

6 cm 
20 cm 
90 cm 

9 

A'A arcmin 
8.0 arcmin 

17.0 arcmin 

High-fidelity imaging requires MUCH small error tolerance, and the undistored 
field of view decreases as the square root of the tolerable error. A more typical 
maximum tolerable error of one degree results in an undistorted field radius 
approximately one-seventh the values listed above. 

These imaging errors affect virtually all VLA imaging at low frequencies, 
since the noise in the image is dominated by sidelobes of background sources. 
This 'confusion' noise cannot be removed unless the background sources are 
properly imaged and deconvolved. 

So how can we do this? We have already noted that the general 
measurement equation does not admit a simple three-dimensional transform 
solution between the visibility data and the two-dimensional sky. However, 
many years ago, Barry Clark showed that an exact 3-D transform does exist 
between the visibility data and an 'image cube', F(£, m, n). The relation 
between the real sky, I(t, m), and the image cube is: 

F(£, m,n) = 1(1, m)6(n + 1 - x/l - P - m2). 

In words, the results of a straightforward three-dimensional Fourier transform 
of the visibility data is to produce a three-dimensional volume, whose axes are 
the direction cosines (£,m,n), and in which the sky brightness is found upon a 
hemisphere of unit radius, centered at (0,0,-1). All other regions are empty. 

The above statement holds exactly for an analytic visibility function. 
But real data are found only at isolated points within the («, v, w) volume. 
Fortunately, this practical complication can be handled in exactly the same 
way it is for two-dimensional imaging. Thus, the image resulting from 
the three-dimensional transformation of sparsely sampled data is the true 
brightness (lying upon the hemisphere described above) convolved (in three 
dimensions), with a dirty beam , which is itself the transform of the function 
describing the samples in the visibility volume. Furthermore, the methods used 
in two-dimensional imaging to remove the effects of sidelobes of the dirty image 
all transfer unchanged to three-dimensional imaging, except that all operations 
must now operate within three dimensions. Thus, the most straightforward 
way of properly handling the non-coplanar data problem is: 

1. Grid the data in three spatial dimensions and Fourier transform. 
2. Deconvolve with a 3-D algorithm, . e.g. Clean. An important extra 

constraint, not present in 2-D deconvolution, is that no physically 
meaningful brightness can lie off the unit sphere. 
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3. Project the resulting image upon a flat plane. This final step is essentially 
a problem in cartography, similar to the problem geographers have in 
displaying the Earth's surface on a piece of paper. 
This method has the great advantage of simplicity, which translates 

directly into coding simplicity. There are simple answers to most of the obvious 
questions: The spacing of the n planes will be similar to the spacing between 
'£' and 'm' planes, i.e. Sn < X/1Bmax. But the total depth of the image volume 
will be limited by the primary beam, so that the number of n planes is N„ ~ 
62/2 x 2Bmax/\ ~ XB/D2, where D is the antenna diameter. For the VLA, the 
required number of n planes is shown in the following table: 

A 

4 m 
1 m 

20cm 
6cm 

A 

225 
56 
11 
4 

B 

68 
17 
4 
2 

C 

23 
6 
2 
1 

D 

7 
2 
1 
1 

We have coded this method into the 'SDE' package, available on the NRAO 
Convexes. In practice, we make Nn 2-D FFTs, rather than a single 3-D FFT, 
since the number of n planes is generally small. In this multiple 2-D approach, 
the data are gridded simultaneously onto the N„ u, v planes, and phase shifted 
by 1vnw6n radians for the nth plane. 

Although this method is simple, it can require huge memory allocations. 
Roughly speaking, the data volume is proportional to the cube of the 
maximum baseline length (and for the VLA, the data rate in 'A'-configuration 
can be up to 230 MB/hr), while the required memory is roughly 10"4A53/D4 

MBytes. The following table shows the required memory allocations in MBytes 
to hold the map and beam: 

A 

4 m 
l m 

20cm 
6 cm 

A 

45000 
11000 
2200 

700 

B 

1250 
310 

60 
20 

C 

36 
9 
2 
1 

D 

1 
.25 

.125 

.125 

Of course, it isn't necessary (or feasible) to obtain all this space at once - our 
point here is to note the magnitude of the imaging problem when one is faced 
with wide-field non-coplanar data. A good reason for not attempting this 
straightforward solution lies in the nature of the ionosphere. It is likely that 
the angular coherence scale of the ionosphere is of order a degree of less, so 
that any attempt to form an image on a scale larger than this is futile. This 
means that the antenna phase calibration constants are a function of angle, 
as well as of antenna location and time. So while the full 3-dimensional image 
may correct the phase errors due to the 'depth' of the array, it cannot correct 
for errors induced by the ionosphere. This fact of life encourages search for a 
solution which incorporates multiple fields. 

The polyhedron imaging method is one such approach. Recognizing that 
the full 3-D image is mostly imaging empty 'space', the polyhedron method 
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forms N subfields, each of which is two-dimensional, and which is rotated to 
be tangent to the image hemisphere. A straightforward analysis shows that 
the number of 'facets' must exceed N > 2XB/D2, or twice the number of n 
planes in the 3-D approach. However, this method makes much smaller images, 
naturally allows spatially dependent phase corrections, and requires vastly less 
memory - approximately 1000, 100, 10, and 1 MB for the VLA's A, B, C, and 
D configurations, respectively. The disadvantages are that each facet requires 
a phase-shift (to the new phase tracking center) and a recomputation of the 
baseline coordinates (to make the facet tangent to the sphere) before gridding, 
and that imaging errors will still occur near the facet interfaces. 

This last problem can be eliminated through a simple extension of the 
polyhedron approach - multi-plane polyhedrons. Here, a few (typically 3 to 5) 
n-planes are formed for each direction (facet). Now the imaging errors can be 
completely removed, although again the cost is in increased computations. 

One last approach is worthy of mention, since it brings out a point of 
great importance. Since the VLA is instantly coplanar to a high degree of 
accuracy, images made from data spanning a short time will not suffer from 
imaging errors. One can then conceive of forming a large number of snapshots, 
and deconvolving them jointly. One cannot, however, simply add them up 
prior to deconvolution, because the geometry is different in each - the apparent 
locations of sources off the phase-tracking center move as a function of time. 
Nor can one imagine 'stretching' the dirty images to a common geometry prior 
to deconvolution since this will destroy the convolution relation which holds 
for each separately. The only way is to jointly deconvolve the N input maps 
and beams. It should not surprise you to learn that the number of snapshots is 
the same as the number of n planes in the 3-D approach, so that this method 
has nothing in it to allow easy solution of the general problem - indeed, the 
process of deconvolution will dominate the cost. But, there is one significant, 
and probably important advantage of this method - variations in the primary 
beam (such as pointing errors, or illumination problems causing non-circularity 
of the primary beam) can be made part of the deconvolution process. Certainly 
these complications are important in low-frequency imaging, but whether they 
are important enough to force adoption of this difficult solution remains to be 
seen. And, it must be noted that the need to remove ionospherically-induced 
spatially variant antenna phases would rule out this method, unless we are 
ready to adopt the polyhedron approach AND snapshots jointly! 

We have been testing the thick polyhedron approach using 327 MHz data, 
using the Cray-2 at NCSA. We found that for B-configuration data, comprising 
about 1 million visibilities, with 10,000 delta-function clean components, the 
imaging and deconvolution process took approximately 15000 seconds on the 
Cray-2. Note that this is for one round of imaging/deconvolution. In general, 
three or more rounds of self-cal will be required before the best versions of 
the images will result, so that a rough estimate of computer time comes to 
approximately 20 hours - roughly twice the time to observe. Using the rough 
relation that the size of the problem scales with the cube of the maximum 
baseline, it is clear that general solution of the A-configuration problem awaits 
larger computers than now available. 
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