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Abstract

We will develop a theory of multi-pointed non-commutative deformations of a simple
collection in an abelian category, and construct relative exceptional objects and relative
spherical objects in some cases. This is inspired by a work by Donovan and Wemyss.

1. Introduction

We shall develop a theory of multi-pointed non-commutative deformations of a simple collection
in an abelian category. A simple collection is a finite set of objects such that each object has
no endomorphisms except dilations and there are no non-zero homomorphisms between objects.
The commutative deformations of several objects are just the direct product of deformations of
each objects, but there are interactions of objects in the case of non-commutative deformations.
We will prove that any iterated non-trivial extensions between the given objects yield a non-
commutative deformation in the case of a simple collection, and we obtain a versal deformation
in this way. As applications, we will construct relative exceptional objects and relative spherical
objects in some special cases.

The deformation theory has non-commutative versions in two directions, non-commutative
fibers and non-commutative base. We consider the latter case. The point is that there are more
non-commutative deformations of commutative objects than the commutative deformations as
proved in a paper by Donovan and Wemyss [DW13]. They discovered an interesting application
of the theory of non-commutative deformations to the theory of three-dimensional algebraic
varieties. They provided a better understanding of the mysterious analytic neighborhood of a
flopping curve on a threefold by investigating non-commutative deformations of the flopping
curve. The invariants defined by them are found to be related to Gopakumar–Vafa invariants
and Donaldson–Thomas invariants [Tod15a]. This paper is motivated by their works. Moreover
we consider systematically multi-pointed deformations, i.e., non-commutative deformations of
several objects.

The theory of deformations over a non-commutative base is developed by Laudal [Lau02]. The
definition of non-commutative deformations is very similar to the commutative deformations, but
only the parameter algebra is not necessarily commutative. A non-commutative Artin semi-local
algebra with nilpotent Jacobson radical is not necessarily a direct product of Artin local algebras.
By this reason, we need to consider several maximal ideals simultaneously.

The extensions of a deformation and the obstruction theory is similarly described
by cohomology groups as in [Sch68], and there exists a versal family of non-commutative
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deformations under some mild conditions. But there are much more non-commutative
deformations than the commutative ones. For example, unobstructed deformations in the
commutative case can be obstructed in the non-commutative sense.

Let k be a field, A a k-linear abelian category, r a positive integer, and Fi (1 6 i 6 r)
objects in A. The set {Fi} is said to be a simple collection if dim Hom(Fi, Fj) = δij . We define
non-commutative deformations of the collection {Fi} as iterated non-trivial mutual extensions
of the Fi. We will prove that the non-commutative deformations behave very nicely under the
condition of simplicity.

In § 2, we define a multi-pointed non-commutative deformation of a collection of objects.
In § 3, we treat non-commutative deformations of objects as their iterated extensions. The
first theorem states that, for any two sequences of iterated non-trivial extensions of a simple
collection, there exists a third sequence of iterated non-trivial extensions which dominates others
(Theorem 3.3). In particular, if the extensions terminate, then there exists a unique versal
deformation.

In the second theorem in § 4, we prove the converse statement that arbitrary sequence of
iterated non-trivial extensions of a simple collection can be regarded as a non-commutative
deformation. The point is that the base ring of the deformation is recovered as the ring of
endomorphisms. For this purpose, we consider a tower of universal extensions of a simple
collection, and we prove the flatness of the extension over the ring of endomorphisms. In this
way we construct a versal multi-pointed non-commutative deformation (Theorem 4.8).

As applications we construct relative multi-pointed exceptional objects and relative multi-
pointed spherical objects in some special cases in §§ 5 and 6. A relative multi-pointed exceptional
object yields a semi-orthogonal decomposition of a triangulated category, and a relative multi-
pointed spherical object yields a twist functor. In the case of a local Calabi–Yau threefold, we
will prove that a versal non-commutative deformation of a simple collection becomes a relative
spherical object if the deformations stop after a finite number of steps.

We will use the abbreviation ‘NC’ for non-commutative, or, more precisely, not necessarily
commutative in the rest of the paper.

2. Definition of r-pointed NC deformations

We give a definition of multi-pointed NC deformations. It is modified from [Lau02] in order to
adapt to our situation of deformations of sheaves. It seems that our treatment is also different
from [DW15], because our definition works well only in the case of simple collections. See also
[BB15].

We would like to consider infinitesimal deformations of r coherent sheaves on a variety at
the same time for a positive integer r. If we consider only commutative deformations of these
sheaves, then they deform independently. But NC deformations reflect interactions among the
sheaves.

First we define the category of base rings for deformations according to [Lau02].

Definition 2.1. Let k be a base field, let r be a positive integer, and let kr be the direct product
ring. An r-pointed k-algebra R is an associative ring endowed with k-algebra homomorphisms

kr → R→ kr

whose composition is the identity homomorphism.
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Let ei be the idempotents of R corresponding to the vectors (0, . . . , 0, 1, 0, . . . , 0) ∈ kr for
1 6 i 6 r, where 1 is at the ith place. We have

∑r
i=1 ei = 1, eiei = ei and eiej = 0 for i 6= j. Let

Rij = eiRej ⊂ R. Then R =
⊕r

i,j=1Rij , and R can be considered as a matrix algebra (Rij) such
that the Rij are k-vector spaces and the multiplication in R is given by k-linear homomorphisms
Rij ⊗kRjk → Rik.

Let Mi be the kernels of the surjective algebra homomorphisms R→ kr → k for 1 6 i 6 r,
where the second homomorphisms are ith projections. These are maximal ideals and the R/Mi

are simple two-sided R-modules. Let M = ∩Mi. We have M = Ker(R→ kr) and R/M = ⊕R/Mi

as R-modules.

Definition 2.2. We define (Artr) to be the category of r-pointed k-algebras R such that
dimkR <∞ and M is nilpotent.

The second condition is independent. For example, let R = k⊕k be a commutative k-algebra
with r = 1 and M = 0⊕ k. Then M is not nilpotent.

If R ∈ (Artr), then any simple right R-module is isomorphic to some R/Mi. Indeed, let
N = R/I be a simple module for a right ideal I. Since M is nilpotent, there is an integer i such
that M i 6⊂ I but M i+1 ⊂ I. Then there is an element n ∈ N such that nM = 0 in N . Then
Ann(n)/M is a right ideal of R/M ∼= kr, that is one of the Mi/M .

Definition 2.3. Let A be a k-linear abelian category. An object F of A has a left R-module
structure if there is a k-linear map R → End(F ). For a right R-module N with presentation
R(I)
→ R(J)

→ N → 0, we define a tensor product N ⊗R F as the cokernel of F (I)
→ F (J).

F is said to be flat if the exactness of a sequence 0→ N1→ N2→ N3→ 0 of right R-modules
implies the exactness of a sequence 0→ N1⊗R F → N2⊗R F → N3⊗R F → 0.

A set of objects {Fi}ri=1 in A is said to be a collection in this paper. Let F = ⊕Fi. An
r-pointed NC deformation of the collection {Fi} over R ∈ (Artr) is a pair (FR, φ) consisting of an
object FR of A which has a flat left R-module structure and an isomorphism φ : R/M ⊗R FR ∼=
F inducing isomorphisms R/Mi⊗R FR ∼= Fi for all i. The r-pointed NC deformation functor
Def{Fi} : (Artr) → (Set) of {Fi} is defined to be a covariant functor which sends R to the set
of isomorphism classes of r-pointed NC deformations of {Fi} over R. If R→ R′ is a k-algebra
homomorphism, then r-pointed deformations FR over R are mapped to r-pointed deformations
R′⊗R FR over R′.

For example, we can take A = (coh(X)), the category of coherent sheaves on an algebraic
variety X defined over k.

We give a definition of a versal deformation.

Definition 2.4. A sequence of r-pointed NC deformations {(F (n), φ(n))} of {Fi} over rings
(R(n),M (n)) ∈ (Artr) with surjective homomorphisms of r-pointed algebras fn,n+1 : R(n+1)

→

R(n) such that (F (n), φ(n)) ∼= R(n)⊗R(n+1)(F (n+1), φ(n+1)) is called a versal deformation if the
following conditions are satisfied.

(i) For any r-pointed deformation (FR′ , φ
′) of {Fi} over a ring R′ ∈ (Artr), there exist a

positive integer n and a ring homomorphism of r-pointed algebras g : R(n)
→ R′ such that

(FR′ , φ
′) ∼= R′⊗R(n)(F (n), φ(n)).

(ii) There exists a positive integer n such that the natural homomorphisms M (n′)/(M (n′))2

→ M (n)/(M (n))2 are bijective for all n′ > n, and the induced homomorphism
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dg : M (n)/(M (n))2
→ MR′/M

2
R′ is uniquely determined, i.e., dg = dg′ for any other choice

g′ satisfying (i).

It follows from the condition (ii) that, for each m, there exists n(m) such that the
natural homomorphisms (M (n′))m/(M (n′))m+1

→ (M (n(m)))m/(M (n(m)))m+1 are bijective
for all n′ > n(m). Indeed, there are surjective homomorphisms (M (n)/(M (n))2)⊗m →
(M (n′))m/(M (n′))m+1

→ (M (n))m/(M (n))m+1 for any n′ > n, so that dim(M (n′))m/(M (n′))m+1

stabilize for large n′.
We have uniqueness of a versal deformation.

Proposition 2.5. Let {(F (n)
j , φ

(n)
j )} (j = 1, 2) be versal r-pointed NC deformations of F over

rings (R
(n)
j ,M

(n)
j ) ∈ (Artr), and let R̂j = lim

←−R
(n)
j be the inverse limits. Then there is an

isomorphism f : R̂1→ R̂2 which induces an isomorphism lim
←−F

(n)
1
∼= R̂1⊗̂R̂2

lim
←−F

(n)
2 .

Proof. By the versality, we have ring homomorphisms f : R̂1 → R̂2 and g : R̂2 → R̂1 which

induces isomorphisms lim
←−F

(n)
1
∼= R̂1⊗̂R̂2

lim
←−F

(n)
2 and lim

←−F
(n)
2
∼= R̂2⊗̂R̂1

lim
←−F

(n)
1 . It is enough to

prove that g ◦ f and f ◦ g are bijective. We know that g ◦ f induces the identity on MR̂1
/M2

R̂1
.

Therefore it follows that it induces surjections on Mm
R̂1
/Mm+1

R̂1
for all m. Since MR̂1

/M2
R̂1

is finite

dimensional as a k-module, so are the Mm
R̂1
/Mm+1

R̂1
. Therefore they are also injective. Hence g ◦f

is bijective. f ◦ g is bijective similarly. 2

Remark 2.6. (i) There is a hull R̂ for the functor Def{Fi} under suitable conditions [Lau02].

If r = 1, then the maximal commutative quotient (R̂)ab coincides with the hull of the usual
commutative deformation functor. R̂ is determined by Ext1(F, F ) and the Massey products
(Ext1(F, F ))⊗m→ Ext2(F, F ) for m > 2 [Lau86]. We will not use these facts.

(ii) NC deformations exist only over local base by definition. But Kapranov and Toda
constructed globalization of NC deformations in the commutative direction [Tod15b].

3. Iterated non-trivial r-pointed extensions

We shall define the notion of a simple collection and consider its iterated non-trivial multi-pointed
extensions. A simple collection behaves well under iterated multi-pointed extensions.

Definition 3.1. Let A be a k-linear abelian category, and let r be a positive integer. A collection
{Fi}ri=1 in A is said to be a simple collection if dim Hom(Fi, Fj) = δij .

If A is a category of coherent sheaves on a variety, then a member of a simple collection is
usually called a simple sheaf. This is the origin of the term ‘simple’. But we note that a simple
sheaf is not necessary a simple object in the abelian category of sheaves.

We consider iterated non-trivial r-pointed extensions of a simple collection {Fi}ri=1.

Definition 3.2. A sequence of iterated non-trivial r-pointed extensions of the simple collection
{Fi}ri=1 is a sequence of objects {Gn}06n6N for a positive integer N with decompositions Gn =⊕r

i=1G
n
i such that G0

i = Fi, and for each 0 6 n < N , there are i = i(n) and j = j(n) such that

0→ Fj → Gn+1
i → Gni → 0

is an extension corresponding to a non-zero element of Ext1(Gni , Fj), and Gn+1
i′ = Gni′ for i′ 6= i.
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We prove that any two iterated non-trivial r-pointed extensions are dominated by a third.

Theorem 3.3. Let {Fi} be a simple collection, and let G be an object. Let 0→ Fij → Gj →
G→ 0 for j = 0, 1 be two non-trivial extensions which are not isomorphic. Then there exists a
common object H with non-trivial extensions 0→ Fi1−j → H → Gj → 0.

Proof. Let ξj ∈ Ext1(G,Fij ) be non-zero elements corresponding to the given extensions. We
consider exact sequences

Hom(Fi1−j , Fij )→ Ext1(G,Fij )→ Ext1(G1−j , Fij )

derived from ξ1−j . Let ξ′j ∈ Ext1(G1−j , Fij ) be the images of ξj by the second homomorphism.
We claim that ξ′j 6= 0. Indeed if i0 6= i1, then the first term vanishes, hence ξ′j 6= 0. If i0 = i1, then
the image of the first homomorphism is generated by ξ1−j , hence the image of ξj by the second
homomorphism is non-zero because the two extensions are not isomorphic.

We have a commutative diagram

0 0y y
Fi1

=−−−→ Fi1y y
0 −−−→ Fi0 −−−→ H −−−→ G1 −−−→ 0

=

y y y
0 −−−→ Fi0 −−−→ G0 −−−→ G −−−→ 0y y

0 0

where the two horizontal short exact sequences correspond to ξ′0 and ξ0. They are commutative
by the construction of ξ′0. By the 9-lemma, we obtain the two vertical short exact sequences,
which correspond to ξ′1 and ξ1. Therefore we have constructed a common non-trivial extension H.

H can be directly constructed as the kernel of the morphism p0 − p1 : G0 ⊕G1 → G where
the pi : G0 ⊕G1→ Gi→ G are the given morphisms. 2

The maximal iterated non-trivial r-pointed extension is unique if it exists.

Corollary 3.4. Let {Gm}06m6M and {Hn}06n6N be two sequences of iterated non-trivial
r-pointed extensions of a simple collection {Fi}. Assume that Ext1(GM , Fi) = 0 for all i. Then
M > N , and there exists a sequence of iterated non-trivial r-pointed extensions {Hn}06n6M
extending the given sequence such thatGM ∼=HM . In particular, the maximal iterated non-trivial
r-pointed extension is unique if it exists.

Proof. Let N ′ 6min{M,N} be the maximum number such that the sequences {Gm}06m6N ′ and
{Hn}06n6N ′ are isomorphic as iterated non-trivial r-pointed extensions. We will prove that there
exists another sequence {(G′)m}06m6M such that (G′)M ∼= GM and N ′′ > N ′ for the maximum
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number N ′′ where the sequences {(G′)m}06m6N ′′ and {Hn}06n6N ′′ are isomorphic. Then we
obtain our assertion by the induction.

We will obtain the new sequence {(G′)m}06m6M by replacing the extensions inductively.
Namely, let L1 be a common extension of GN

′+1 and HN ′+1 of GN
′ ∼= HN ′ given by the theorem.

If L1 ∼= GN
′+2, then we replace GN

′+1 by HN ′+1 and leave other extensions Gm unchanged.
Otherwise we take a common extension L2 of GN

′+2 and L1 over GN
′+1. If L2 ∼= GN

′+3, then
we replace GN

′+1 and GN
′+2 by HN ′+1 and L1, respectively, and leave other extensions Gm

unchanged. Otherwise we take a common extension L3 of GN
′+3 and L2 over GN

′+2. Since
Ext1(GM , Fi) = 0 for all i, this process stops after finitely many repetition, hence our result. 2

Remark 3.5. (i) The above theorem is the reason why our theory works well only for simple
collections.

(ii) The sheaf GM in the above corollary will be proved to be a versal r-pointed NC
deformation of the simple collection {Fi} in the case where the base ring is finite dimensional
in Theorem 4.8. The base ring of the deformation will be constructed in the next section. The
general case where the sequence of iterated non-trivial r-pointed extensions may not terminate
will also be treated there.

We will need the following in the next section.

Lemma 3.6. Let {Gn} with Gn =
⊕

iG
n
i be a sequence of iterated non-trivial r-pointed

extensions of a simple collection {Fi}. Then dim Hom(Gni , Fj) = δij for all i, j, n.

Proof. We proceed by induction on n. If n = 0, then the assertion is true by the assumption of
the simplicity. Suppose that we have an exact sequence

0→ Fj → Gn+1
i → Gni → 0.

Then we have a long exact sequence

0→ Hom(Gni , Fk)→ Hom(Gn+1
i , Fk)→ Hom(Fj , Fk)→ Ext1(Gni , Fk)

for any k. If k 6= j, then the third term vanishes, hence the first arrow is bijective. If k = j,
then the last arrow is injective because the extension is non-trivial. Therefore the first arrow is
bijective again. Hence we complete the proof. 2

4. Iterated universal r-pointed extensions

We will construct a sequence of universal r-pointed extensions of a simple collection {Fi} under
the assumption that dim Ext1(F, F ) < ∞, and prove the existence of a versal r-pointed NC
deformation.

Proposition 4.1. Let {Fi}rr=1 be a simple collection, let F =
⊕r

i=1 Fi be the sum of the

collection, and set F = F (0) and Fi = F
(0)
i . Assume that dim Ext1(F, F ) < ∞. Then there

exists a sequence of universal extensions F (n) =
⊕r

i=1 F
(n)
i given by

0→
⊕
j

Ext1(F
(n)
i , Fj)

∗ ⊗ Fj → F
(n+1)
i → F

(n)
i → 0

for each i, which is also obtained by a sequence of iterated non-trivial r-pointed extensions of
the collection {Fi}.
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Proof. A natural morphism F
(n)
i →

⊕
j Ext1(F

(n)
i , Fj)

∗ ⊗ Fj [1] in the derived category D(A)

of the abelian category A yields the extension as stated in the proposition. We will prove that

this extension is obtained as an output of a sequence of iterated non-trivial r-pointed extensions

of the collection {Fi}. We note that we have dim Ext1(F
(n)
i , Fj) < ∞ for all i, j, n under the

assumption.

We write G = F
(n)
i . We take a basis {vj,1, . . . , vj,Mj} of Ext1(G,Fj) for each j, and let

Vj,m ⊂ Ext1(G,Fj) be the subspaces generated by vj,1, . . . , vj,m for 1 6m 6Mj . We set Vj,0 = 0.

The natural morphisms

G→

j−1⊕
k=1

Ext1(G,Fk)
∗ ⊗ Fk[1]⊕ V ∗m ⊗ Fj [1]→

j−1⊕
k=1

Ext1(G,Fk)
∗ ⊗ Fk[1]⊕ V ∗m−1 ⊗ Fj [1]

yield a commutative diagram of extensions

0 −−−→
⊕j−1

k=1 Ext1(G,Fk)
∗ ⊗ Fk ⊕ V ∗m ⊗ Fj −−−→ GM+m −−−→ G −−−→ 0y y =

y
0 −−−→

⊕j−1
k=1 Ext1(G,Fk)

∗ ⊗ Fk ⊕ V ∗m−1 ⊗ Fj −−−→ GM+m−1 −−−→ G −−−→ 0

where M =
∑j−1

k=1Mk. Thus we obtain extensions

0→ Fj → GM+m
→ GM+m−1

→ 0.

We will prove that these extensions are non-trivial. Since Hom(Fj′ , Fj) ∼= kδj′j , we have a

commutative diagram of exact sequences

Vm−1 −−−→ Ext1(G,Fj) −−−→ Ext1(Gm−1, Fj)y =

y y
Vm −−−→ Ext1(G,Fj) −−−→ Ext1(Gm, Fj)

where the last vertical arrow has a non-trivial kernel generated by the image of vj,m. Therefore

the extensions above are non-trivial.

A referee pointed out that the above universal extension can be expressed as

0→ Ext1(F (n), F )∗ ⊗R0 F → F (n+1)
→ F (n)

→ 0

for R0 = End(F ) = kr. 2

Definition 4.2. We define a filtration of F (n) by Gp(F (n)) = Ker(F (n)
→ F (p−1)) for 0 6 p 6

n+ 1. We have G0(F (n)) = F (n) and Gn+1(F (n)) = 0.

Let EndG(F (n)) be the ring of endomorphisms of the object F (n) which preserve the filtration

{Gp}.

Lemma 4.3. The natural ring homomorphism EndG(F (n+1))→ EndG(F (n)) is surjective.
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Proof. Since we only consider endomorphisms preserving the filtration, there is certainly a
natural ring homomorphism. For any element f ∈ EndG(F (n)), we have a commutative diagram
in the derived category D(A).

F (n+1) −−−→ F (n) −−−→
⊕

j Ext1(F (n), Fj)
∗ ⊗ Fj [1]

f

y f∗∗
y

F (n+1) −−−→ F (n) −−−→
⊕

j Ext1(F (n), Fj)
∗ ⊗ Fj [1]

We obtain a lifting of f to EndG(Fn+1) by the axiom of a triangulated category. 2

By Lemma 3.6, we have the following

Lemma 4.4. Let r0 = r and rm+1 =
∑

j dim Ext1(F (m), Fj) for m > 0. Then dim EndG(F (n)) =∑n
m=0 rm.

Proof. We have dim EndG(F (0)) = r. We have the following exact sequence

0→ Hom

(
F (m+1),

⊕
j

Ext1(F (m), Fj)
∗ ⊗ Fj

)
→ EndG(F (m+1))→ EndG(F (m)). (4.1)

The dimension of the first term is equal to
∑

j dim Ext1(F (m), Fj) = rm+1. Therefore we complete
the proof. 2

Lemma 4.5. dim End(F (n)) 6
∑n

m=0 rm.

Proof. By Lemma 3.6, we have dim Hom(F (n), Fi) = 1 for all i. Since the total number of the Fi
in the extension process yielding F (n) is equal to

∑n
m=0 rm, we deduce our inequality by exact

sequences. 2

Corollary 4.6. The natural inclusion EndG(F (n)) ⊆ End(F (n)) is bijective.

Let R(n) = End(F (n)) and R
(n)
ij = Hom(F

(n)
j , F

(n)
i ). Then we can write in a matrix form as

R(n) = (R
(n)
ij ). Let M (n) = Ker(R(n)

→ R(0)) and M
(n)
i = Ker(R(n)

→ R(0)
→ k), where the last

arrow is the projection to the ith factor.

Proposition 4.7. R(n) ∈ (Artr).

Proof. There is a ring homomorphism R(n)
→ R(0) ∼= kr. The idempotent ei of R(n) coincides

with the projection F (n)
→ F

(n)
i ⊂ F (n) to the ith factor. This gives the kr-algebra structure of

R(n). We know already that dimR(n) <∞.
We will prove that M (n) is nilpotent by induction on n. M (0) = 0. We assume that (M (n))m =

0 for some m> 0, and consider M (n+1). By the assumption, (M (n+1))m(F (n+1)) ⊂ Gn+1(F (n+1)),
where Gn+1(F (n+1)) =

⊕
j Ext1(F (n), Fj)

∗ ⊗ Fj . There is an exact sequence

0→ Hom(F (0), Gn+1(F (n+1)))→ Hom(F (n+1), Gn+1(F (n+1)))

→ Hom(G1(F (n+1)), Gn+1(F (n+1))).

The first homomorphism is bijective by Lemma 3.6, hence the second homomorphism is zero. It
follows that (M (n+1))m(G1(F (n+1))) = 0. Therefore (M (n+1))2m = 0. 2
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Theorem 4.8.

(i) The above-constructed F (n) with a natural isomorphism φ(n) : R(n)/M (n)⊗R(n) F (n) ∼= F is
an r-pointed NC deformation of the simple collection {Fi} over the ring R(n).

(ii) The sequence {(F (n), φ(n))} of r-pointed NC deformations over {(R(n),M (n))} is a versal
deformation of the simple collection {Fi}.

Proof. (i) Since dim Hom(F (n), Fj) = 1, we have Hom(F (n), Fj) ∼= R(n)/M
(n)
j as right R(n)-

modules for all i. Indeed if Hom(F (n), Fj) is generated by the natural projection fj , then M
(n)
j =

{s ∈ R(n) | fjs = 0}. Thus we have exact sequences of right R(n)-modules

0→
⊕
j

Ext1(F (k), Fj)
∗ ⊗R(n)/M

(n)
j → R(k+1)

→ R(k)
→ 0

for 0 6 k < n by (4.1), where the last arrow is surjective by Lemma 4.3 and Corollary 4.6.
We prove that R(k)⊗R(n) F (n) ∼= F (k) and Tor1

R(n)(R
(k), F (n)) = 0 by the descending induction

on k. If k = n, then this is obvious. By taking the tensor product ⊗R(n)F (n) with the above exact
sequence, we obtain the universal extension exact sequence

0→
⊕
j

Ext1(F (k), Fj)
∗ ⊗ Fj → F (k+1)

→ F (k)
→ 0.

Therefore, if our assertion is true for k + 1 for some 0 6 k < n, then it is also true for k. If we
set k = 0, then we obtain

R(n)/M
(n)
i ⊗R(n) F (n) ∼= Fi

and

Tor1
R(n)(R

(n)/M
(n)
i , F (n)) = 0

for all i. There are no simple R(n)-modules other than the R(n)/M
(n)
i , and any right R(n)-module

of finite type is an iterated extension of simple modules. Therefore F (n) is flat over R(n).
(ii) Let FR be an arbitrary r-pointed NC deformation of F over (R,M). Since M/M2, and

hence Mk/Mk+1 for all k, are direct sums of simple modules R/Mi
∼= k, there exists a decreasing

sequence of two-sided ideals {Im} of R such that I0 = M , In = 0 and Im/Im+1
∼= k for all m. We

will inductively construct k-algebra homomorphisms fm : R(am)
→ R/Im for some non-decreasing

sequence of integers am such that we have isomorphisms R/Im⊗R FR ∼= R/Im⊗R(am) F (am) over
R/Im for all m.

Assume that fm is already constructed, and let us extend it to fm+1. We consider an extension
of algebras

0→ Im/Im+1→ R/Im+1→ R/Im→ 0

and the corresponding extension of objects

0→ Fi→ R/Im+1 ⊗R FR→ R/Im ⊗R FR→ 0

for some i. Since there is an isomorphism R/Im⊗R FR ∼= R/Im⊗R(am) F (am), the homomorphism
fm induces a natural homomorphism f∗m : Ext1(R/Im⊗R FR, Fi)→ Ext1(F (am), Fi). Let

0→ Fi→ G→ F (am)
→ 0
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be the induced extension given by G = Ker((R/Im+1⊗R FR)⊕ F (am)
→ R/Im⊗R FR). It is an

NC deformation over R′ = Ker(R/Im+1⊕R(am)
→ R/Im) (see Lemma 4.9 below). Let p : R′→

R/Im+1 and q : R′ → R(am) be projections. Then we have R/Im+1⊗R′ G ∼= R/Im+1⊗R FR by
p, and R(am)⊗R′ G ∼= F (am) by q.

There are two cases. If the extension is trivial as G ∼= F (am) ⊕ Fi, then we have R′ ∼=
R(am)⊕R/Mi. There is a homomorphism g : R(am)

→ R′ given by the identity and the projection
such that we have R′⊗R(am) F (am) ∼= G by g. We set am+1 = am.

If the extension is non-trivial, then there is a non-zero element ξ ∈ Ext1(F (am), Fi)
corresponding to G. There is a homomorphism g : R(am+1)

→ R′ given by ξ∗ : Ext1(F (am), Fi)
∗

→ k such that we have R′⊗R(am+1) F (am+1) ∼= G by g. We set am+1 = am + 1.
In either case, if we set fm+1 = p ◦ g, then we have

R/Im+1 ⊗R(am+1) F
(am+1) ∼= R/Im+1 ⊗R′ G ∼= R/Im+1 ⊗R FR.

This is what needs to be proved.
For all i, we have induced extensions

0→M/MMi ⊗R FR→ R/MMi ⊗R FR→ F → 0,

where we have M/MMi⊗R FR ∼= F bii for some bi > 0. Since the extension

0→ ⊕Ext1(F, Fi)
∗ ⊗ Fi→ F (1)

→ F → 0

is universal, there are uniquely determined homomorphisms Ext1(F, Fi)
∗
→M/MMi over k such

that their sum induces the first extensions from the second. Since R(1)/M (1) ∼= R/M ∼= kr are
generated by dilations, the sum of the homomorphisms are uniquely extended to a k-algebra
homomorphism R(1)

→ R/M2 as required. 2

Lemma 4.9. Let FRt be r-pointed NC deformations of a collection {Fi} over Rt ∈ (Artr) for
t = 0, 1, 2. Assume that there are ring homomorphisms ft : Rt→ R0 such that R0⊗Rt FRt

∼= FR0

for t = 1, 2. Then FR3 = Ker(FR1 ⊕ FR2 → FR0) is an r-pointed NC deformation of {Fi} over
R3 = Ker(R1 ⊕R2→ R0).

Proof. We prove that FR3 is flat as a left R3-module. Let Mt,i be the ith maximal two-sided
ideals of Rt, i.e., Rt/Mt,i ⊗ FRt

∼= Fi for t = 0, 1, 2, 3. We have M3,i = Ker(M1,i ⊕M2,i→M0,i).

We will prove that TorR3
1 (R3/M3,i, FR3) = 0 for all i.

By using the induction on the length of Ker(f1), it is sufficient to treat the case where there
is an exact sequence

0→ R1/M1,j → R1→ R0→ 0

for some j. Then we have

0→ R3/M3,j → R3→ R2→ 0,

0→ R3/M3,j →M3,i→M2,i→ 0,

0→ Fj → FR3 → FR2 → 0.

By the flatness of the FRt over Rt for t = 0, 1, 2, we have exact sequences

0→Mt,i ⊗Rt FRt → FRt → Fi→ 0.
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We consider the commutative diagram

0y
Fj

α−−−→ Fj

β

y y
M3,i ⊗R3 FR3

γ−−−→ FR3 −−−→ Fi −−−→ 0y y y=

0 −−−→ M2,i ⊗R2 FR2 −−−→ FR2 −−−→ Fi −−−→ 0y y
0 0

where the first and second columns and the second and third rows are exact. Then the arrow α
is surjective. Since Fj is simple, it is also injective. Then β is injective. It follows that γ is also
injective. Therefore FR3 is flat. 2

Remark 4.10. (i) The above argument gives an explicit construction of the pro-representable
hull, i.e., the versal r-pointed NC deformations, for a simple collection in a k-linear abelian
category A as the inverse limit of the F (n).

(ii) The presentation of the pro-representable hull by Massey products [Lau86] corresponds
to the following exact sequences

0→ Ext1(F (n+1), Fk)→
⊕
j

Ext1(F (n), Fj)⊗ Ext1(Fj , Fk)→ Ext2(F (n), Fk),

where we obtain inductively injective homomorphisms Ext1(F (n), F )→ (Ext1(F, F ))⊗(n+1).
(iii) The above defined versal family is not universal due to the non-commutativity of

the deformation rings. The deformation functor is pro-representable if the following condition
is satisfied: for any surjective ring homomorphism R → R′, the natural homomorphism
AutR(FR)→ AutR′(FR′) for FR′ = R′⊗R FR is surjective. Since Endk(FR) ∼= R, it follows that
AutR(FR) coincides with the group of units of the center Z(R) of R. Since Z(R)→ Z(R′) is not
necessarily surjective, there is no universal NC deformation of a simple collection in general.

Indeed, two different homomorphisms to the versal algebra may give rise to isomorphic
deformations. Let FR be an r-pointed NC deformation of F over (R,M). Assume that there is a
socle I of R; I is a two-sided ideal such that I ∼= R/Mi for some i. Let R̄ = R/I. Let f : R(n)

→ R
be the homomorphism obtained in the above theorem, and let f̄ : R(n)

→ R̄ be its restriction.
Assume that there is an invertible element α ∈ R which is not in the center of R such that its
image ᾱ ∈ R̄ is in the center. Then f ′ = αfα−1 : R(n)

→ R is different from f , induces f̄ , and
induces FR as shown in the commutative diagram

0 −−−→ Fi −−−→ FR −−−→ FR̄ −−−→ 0y=

yα yᾱ
0 −−−→ Fi −−−→ FR −−−→ FR̄ −−−→ 0

where α induces a k-isomorphism of FR which does not commute with the action of R.
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We give some criteria for the versality.

Corollary 4.11. Let F = ⊕Fi be a simple collection.

(i) Let G be a final object in a sequence of iterated non-trivial r-pointed extensions of F ,
i.e., the object obtained as the final output of the sequence of extensions. Assume that
Ext1(G,F ) = 0. Then G is a versal r-pointed NC deformation of F .

(ii) Let G be a final object in a sequence of iterated r-pointed extensions of F which are not
necessarily non-trivial. Assume that Hom(G,Fi) ∼= k and Ext1(G,Fi) = 0 for all i. Then G
is a versal r-pointed NC deformation of F .

Proof. (i) The assertion follows from the existence and uniqueness of a versal r-pointed NC
deformation proved in Theorem 4.8.

(ii) The condition Hom(G,Fi) ∼= k for all i implies that the extensions are non-trivial. 2

5. r-pointed relative exceptional objects

Exceptional collections yield important examples of semi-orthogonal decompositions. We extend
the definition of an exceptional object to a relative version, and prove that it also yields a
semi-orthogonal decomposition.

We note that, if FR is an r-pointed NC deformation of some collection over R, then
Hom(FR, a) has a right R-module structure for any a ∈ A.

We consider its derived version. Let X be an algebraic variety. For a ∈ Db(coh(X)), we take
a quasi-isomorphism a→ I to an injective complex, and we define RHom(FR, a) = Hom(FR, I).
Then RHom(FR, a) has a natural right R-complex structure. This complex is well defined in
Db(Ro), where Ro is the opposite ring of R, because, if a → I ′ is another quasi-isomorphism
to an injective complex, then there is a quasi-isomorphism Hom(FR, I)→ Hom(FR, I

′) which is
uniquely determined up to homotopy.

Definition 5.1. Let {Fi}ri=1 be a simple collection in the category of coherent sheaves (coh(X))
on an algebraic variety X, and let FR =

⊕
i FR,i be an r-pointed NC deformation over R ∈ (Artr).

Assume that X is quasi-projective and FR is a perfect complex whose support is projective.
The pair (FR, F ) for F =

⊕
i Fi is said to be an r-pointed relative exceptional object if

RHom(FR, F ) ∼= R/M as right R-modules, i.e., dim Hom(FR, Fi) = 1 for all i and Extp(FR, F )
= 0 for all p > 0.

We note that Hom(FR,i, FR,j) may not vanish even though Hom(Fi, Fj) = 0 for i 6= j.
We consider only those relative exceptional objects which are versal NC deformations in this

paper, but we may consider such objects in other situations.

Theorem 5.2. Let X be a quasi-projective variety, and let (FR, F ) with F =
⊕r

i=1 Fi be
an r-pointed relative exceptional object in (coh(X)) over R. Assume that FR is a perfect
complex whose support is projective. Let 〈Fi〉ri=1 denote the smallest triangulated subcategory
of Db(coh(X)) which contains all Fi. Then there is a semi-orthogonal decomposition

Db(coh(X)) = 〈(〈Fi〉ri=1)⊥, 〈Fi〉ri=1〉

with an equivalence
〈Fi〉ri=1

∼= Db(mod-R).
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Proof. We prove the theorem using a down-to-earth method of diagram chasing. A more modern
proof is presented in the following remark.

First we define the derived dual F ∗R of FR in the following. By this step, we will be able to
define a functor for the semi-orthogonal decomposition by the cone construction. F ∗R will be the
derived dual in Db(coh(X)) equipped with a uniquely determined right R-module structure.

Since FR is an R⊗kOX -module which is a perfect complex as an OX -module, there is an
exact sequence of left R⊗kOX -modules

0→ Pm→ · · ·→ P0→ FR→ 0

such that Pi for 0 6 i < m are locally free as R⊗kOX -modules and Pm is locally free as an
OX -module. Then we define F ∗R = Hom(P•,OX). It is a complex of right R⊗kOX -modules.

We prove that F ∗R is well defined as an object in Db(OX) with a right R-module structure.
Let P ′• be another resolution of FR of length m′ as above. Then by using the lemma below, we
construct a third resolution P ′′• of FR of length m′′ > m,m′ which makes the following diagram
commutative:

0 −−−→ Pm′′ −−−→ · · · −−−→ P0 −−−→ FR −−−→ 0x x x =

x
0 −−−→ P ′′m′′ −−−→ · · · −−−→ P ′′0 −−−→ FR −−−→ 0y y y =

y
0 −−−→ P ′m′′ −−−→ · · · −−−→ P ′0 −−−→ FR −−−→ 0

where we set Pi = 0 for i > m and P ′i = 0 for i > m′.
Indeed we construct the P ′′i by induction on i as follows. Assume that the P ′′i are already

constructed for i 6 i0. We take a locally free R⊗kOX -module P which surjects to Ker(P ′′i0 →
P ′′i0−1). Using the lemma, we take a very ample invertible sheaf L and a subspace V ⊂ H0(X,L)
which generates L, and let P ′′i0+1 = V ⊗k L

−1 ⊗ P with a homomorphism P ′′i0+1 → P ′′i0 induced
by the natural surjective homomorphism V ⊗k L

−1
→ OX . Then the composite homomorphisms

P ′′i0+1→ P ′′i0 → Pi0 and P ′′i0+1→ P ′′i0 → P ′i0 factor through Pi0+1 and P ′i0+1, respectively.
Moreover if there are two vertical morphisms between the same complexes which make the

diagram commutative, then there exists a chain homotopy between these morphisms due to
the same lemma.

Indeed we construct a chain homotopy {hi : P ′′i → Pi+1} between two morphisms {gi : P ′′i →
Pi} and {g′i : P ′′i → Pi} by induction on i as follows. Assume that the hi are already constructed
for i 6 i0. Using the lemma, the difference of gi0+1 − g′i0+1 and the composite homomorphism
P ′′i0+1→ P ′′i0 → Pi0+1 defined from hi0 factors through Pi0+1.

Thus there are uniquely determined morphisms Hom(P•,OX) → Hom(P ′′• ,OX) and
Hom(P ′•,OX) → Hom(P ′′• ,OX) in Db(OX) which are compatible with their right R-module
structures. These morphisms are in fact isomorphisms in Db(OX) as is well known.

We define F ∗R �
L
R FR = Hom(P•,OX) �R FR as an object in Db(coh(X ×X)). The derived

tensor product is taken in Db(coh(X × X)) and not as R-modules. Here we note that FR is
R-flat. Let G : Db(coh(X)) → Db(coh(X)) be an integral functor defined by a Fourier–Mukai
kernel Cone(F ∗R �

L
R FR→ ∆X) on X ×X.

Since the Pi are locally free, we have RHom(P•, a) ∼= Hom(P•, a), hence

p2∗(p
∗
1a⊗ F ∗R �L

R FR) = RΓ(X,Hom(P•, a))⊗R FR = RHom(FR, a)⊗R FR.
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Thus we have distinguished triangles

RHom(FR, a)⊗R FR→ a→ G(a)

for all a ∈ Db(coh(X)). We note that the derived tensor product is taken over the structure
sheaves but we take usual tensor product over R. This is justified because FR is flat over R.

Since Hom(FR, FR[p]) = 0 for all p 6= 0, we have RHom(FR, FR) ∼= Hom(FR, FR) ∼= R. Hence
we obtain RHom(FR, G(a)) = 0 by taking RHom(FR, •) of the above triangle. Thus we obtain
a semi-orthogonal decomposition

Db(coh(X)) = 〈〈FR〉⊥, 〈FR〉〉

with an equivalence
〈FR〉 ∼= Db(mod-R)

by the tilting theory (cf. [TU10, Lemma 3.3]), where an equivalence Φ : Db(mod-R)→ 〈FR〉 is
given by Φ(b) = b⊗R FR, and its quasi-inverse Ψ : 〈FR〉→ Db(mod-R) by Ψ(a) = RHom(FR, a).

Finally, since RHom(FR, Fi) ∼= R/Mi, we have G(Fi) = 0. Therefore 〈FR〉 = 〈Fi〉ri=1. 2

Lemma 5.3. Let X be a quasi-projective variety, let

Q0
f1−−−→ Q1

f2−−−→ · · · fn−−−→ Qn

be an exact sequence of R⊗kOX -modules, and let P be a locally free R⊗kOX -module. Then
there exists a very ample invertible sheaf L on X, without R-action, which satisfies the following
condition: for any given R⊗kOX -homomorphism gi : L−1 ⊗ P → Qi such that fi+1 ◦ gi = 0
for some 1 6 i < n, there exists a R⊗kOX -homomorphism hi−1 : L−1 ⊗ P → Qi−1 such that
gi = fi ◦ hi−1.

Proof. It is sufficient to take L such that H1(X,HomR⊗kOX
(P,Ker(fi))⊗ L) = 0. 2

Remark 5.4. A referee suggested the following algebraic proof of Theorem 5.2 using the Brown
representability theorem [Nee96, Theorem 4.1]: a triangulated functor between triangulated
categories has a right adjoint functor if the source category is compactly generated and has
all small coproducts (arbitrary direct sums), and if the functor respects coproducts. This proof
shows the power of modern technology compared to the down-to-earth old argument above in
the same way as in [Nee96].

We consider unbounded derived categories of quasi-coherent sheaves D(Qcoh(X)) and (not
necessarily finitely generated) modules D(Mod-R). We define a functor Φ̃ : D(Mod-R) →
D(Qcoh(X)) by Φ̃(•) = •⊗R FR. Since D(Mod-R) is generated by Db(mod-R), it is compactly
generated. Since Φ̃ commutes with (not necessarily finite) direct sums, it has a right adjoint
functor Ψ̃ : D(Qcoh(X))→ D(Mod-R). By adjunction, we have

Hp(Ψ̃(a)) ∼= Hom(R, Ψ̃(a)[p]) ∼= Hom(Φ̃(R), a[p]) ∼= Hom(FR, a[p])

for all p. We note that we do not have to define RHom(FR, a) in this proof. Since FR is a perfect
complex with proper support, it follows that Ψ̃ induces a functor Ψ : Db(coh(X))→Db(mod-R).
Let Φ : Db(mod-R)→ Db(coh(X)) be the restriction of Φ̃.

Since Hom(FR, Fi[p]) = 0 for p 6= 0 and all i, we have Hom(FR, FR[p]) ∼= 0 for p 6= 0. Since
Hom(FR, FR) ∼= R, we have

Hp(Ψ(Φ(b))) ∼= Hom(R,Ψ(Φ(b))[p]) ∼= Hom(FR, b[p]⊗R FR) ∼= Hp(b).
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Thus the adjunction morphism b → Ψ(Φ(b)) is a quasi-isomorphism. Therefore Φ is fully
faithful, and Φ(Db(mod-R)) is a right admissible subcategory [BK89] with a semi-orthogonal
decomposition as stated in the theorem, where Φ(Db(mod-R)) is generated by the Fi = Φ(R/Mi),
since Db(mod-R) is generated by the R/Mi.

We consider some examples which yield relative exceptional objects.

Example 5.5. Let X be a singular quadric surface in P3 defined by an equation x1x2 + x2
3 = 0.

Let P = [1 : 0 : 0 : 0] ∈ X be the vertex. Then we have a projection p : X\{P}→ P1. We
denote by OX(a) the reflexive hull of the invertible sheaf p∗OP1(a) for any integer a. OX(2) is an
invertible sheaf coming from a hyperplane section in P3, and we have OX(KX) ∼= OX(−4). By
the vanishing theorem [KMM85, Theorem 1.2.5], we have Hp(X,OX(a)) = 0 for p > 0 if a > −3.

Let F = OX(−1). We define an extension 0 → F → G → F → 0 by the commutative
diagram

0 −−−→ OX(−1) −−−→ G −−−→ OX(−1) −−−→ 0

=

y y y
0 −−−→ OX(−1) −−−→ O2

X −−−→ OX(1) −−−→ 0

where the right vertical arrow is obtained from an inclusion OX(−2)→ OX whose cokernel is
supported in the smooth locus, and the sequence in the second row is exact since OX(D)∼=OX(1)
for D = {x1 = x3 = 0} is generated by global sections {1, x3/x1}. It is induced from the following
exact sequence on P1

0→ OP1(−1)→ O2
P1 → OP1(1)→ 0.

We note that G is a locally free sheaf, hence the extension is non-trivial. Moreover there is no
more local extension of G by F . Thus the dimension of the local extension at P is dimH0(X,
Ext1(F, F )) = 1.

We will prove that there is no more non-trivial extension, G is a versal one-pointed NC
deformation of F , and that G is a relative exceptional object. Since G is locally free, it is
sufficient to prove that Hp(X,Hom(G,F )) = 0 for p > 0. We have an exact sequence

0→ OX → Hom(G,F )→ OX → Ext1(F, F )→ 0,

where we have Hom(F, F ) ∼= OX because F is a reflexive sheaf of rank 1. Let H = Ker(OX →
Ext1(F, F )). Then we have Hp(X,OX) = Hp(X,H) = 0, hence Hp(X,Hom(G,F )) = 0 for p > 0.

The base ring of the deformation G is R = k[t]/(t2), and G is a relative exceptional object over
R. Db(coh(X)) is generated by OX(a) for −36 a6 0 [Kaw04, § 5]. But we have an exact sequence
0 → OX(−3) → OX(−2)2

→ OX(−1) → 0. Hence it is generated by OX(a) for −2 6 a 6 0.
Therefore we have a full collection of relative exceptional objects (OX(−2), G,OX), and an
equivalence

Db(coh(X)) ∼= 〈Db(k), Db(k[t]/(t2)), Db(k)〉.

This is a special case of results given in [Kuz08]. But the expressions of the rings seem different,
because such expressions are not unique. The algebra given in [Kuz08] seems to be Morita
equivalent to k[t]/(t2).

Example 5.6. Let X be a singular quadric hypersurface in P4 defined by an equation x1x2 +
x3x4 = 0. It is a cone over P1 ×P1.
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Let P = [1 : 0 : 0 : 0 : 0] ∈ X be a vertex, and p : X\{P}→ P1×P1 a projection. We denote
by OX(a, b) the reflexive hull of an invertible sheaf p∗OP1×P1(a, b) for any a, b. OX(1, 1) is an
invertible sheaf coming from a hyperplane section in P4, and we have OX(KX) ∼= OX(−3,−3).
By the vanishing theorem, we have Hp(X,OX(a, b)) = 0 for p > 0 if a, b > −2.

Indeed there is a small resolution f : Y → X, a special case of a crepant Q-factorialization,
and an invertible sheaf OY (a, b) such that OY (a, b) ⊗ OY (−KY ) is nef and big and that
Rf∗OY (a, b) ∼= OX(a, b). Therefore the vanishing follows from [KMM85, Theorem 1.2.3].

Let F1 = OX(0,−1) and F2 = OX(−1, 0). We define an extension 0→ F2→ G1→ F1→ 0
by the commutative diagram

0 −−−→ OX(−1, 0) −−−→ G1 −−−→ OX(0,−1) −−−→ 0

=

y y y
0 −−−→ OX(−1, 0) −−−→ O2

X −−−→ OX(1, 0) −−−→ 0

where the right vertical arrow is obtained from an inclusion OX(−1,−1)→OX , and the sequence
in the second row is exact since OX(D) ∼= OX(1, 0) for D = {x1 = x3 = 0} is generated by global
sections {1, x4/x1}, where we note that x4/x1 = −x2/x3. It is induced from the following exact
sequence on P1 ×P1

0→ OP1×P1(−1, 0)→ O2
P1×P1 → OP1×P1(1, 0)→ 0.

We note that G1 is a locally free sheaf, hence the extension is non-trivial. In a similar way, we
construct an extension 0→ F1→ G2→ F2→ 0 with G2 locally free.

We will prove that Hp(X,Hom(Gi, Fj)) = 0 for p > 0 and for all i, j. We may assume that
i = 1. We have an exact sequence

0→ Hom(F1, F2)→ Hom(G1, F2)→ Hom(F2, F2)→ Ext1(F1, F2)→ 0.

Let H1 = Ker(Hom(F2, F2) → Ext1(F1, F2)). Since dimH0(X, Ext1(F1, F2)) = 1, we have
Hp(X,H1) = 0 for p > 0, hence Hp(X,Hom(G1, F2)) = 0 for p > 0.

On the other hand, the natural homomorphism OX(1, 0) ⊗ OX(0,−1) → OX(1,−1) is
surjective, because so is OX(1, 0)⊗OX(1, 0)→ OX(2, 0). Since there is an exact sequence

0→ OX(0, 1)→ G∗1→ OX(1, 0)→ 0,

Hom(G1, F1)→ OX(1,−1) is also surjective, and we have an exact sequence

0→ Hom(F1, F1)→ Hom(G1, F1)→ Hom(F2, F1)→ 0.

Hence Hp(X,Hom(G1, F1)) = 0 for p > 0.
G1 ⊕G2 is a versal two-pointed NC deformation of F1 ⊕ F2 over

R =

(
k kt
kt k

)
mod t2.

G1 ⊕ G2 is a two-pointed relative exceptional object over R. We note that G1 and G2 are
exceptional objects, but they do not form an exceptional collection, though there is a semi-
orthogonal decomposition with their right orthogonal complement.

Let f ′ : Y ′→ X be the blowing up at the vertex, and E the exceptional divisor. Then there
is a P1-bundle structure p′ : Y ′ → P1 ×P1. Let OY ′(a, b) = (p′)∗OP1×P1(a, b). Since a relative
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hyperplane class of the bundle p′ is given by OY ′(E) ∼= OY ′(−1,−1), we deduce that Db(coh(Y ′))
is generated by the OY ′(a, b) for

(a, b) = (−2,−2), (−2,−1), (−1,−2), (−1,−1), (−1, 0), (0,−1), (0, 0)

by [Orl93]. Therefore Db(coh(Y )) and Db(coh(X)) are also generated by the OY (a, b) and the
OX(a, b) for such (a, b), respectively.

We have exact sequences

0→ OX(−1,−2)→ OX(−1,−1)2
→ OX(−1, 0)→ 0,

0→ OX(−2,−1)→ OX(−1,−1)2
→ OX(0,−1)→ 0.

Thus Db(coh(X)) is generated by the OX(a, b) for

(a, b) = (−2,−2), (−1,−1), (−1, 0), (0,−1), (0, 0).

Therefore we have a full collection of relative exceptional objects

(OX(−2,−2),OX(−1,−1), G,OX)

for G = G1 ⊕G2, and an equivalence

Db(coh(X)) ∼= 〈Db(k), Db(k), Db(R), Db(k)〉.
This is a special case of results given in [Kuz08]. But the expressions of the rings seem different,
because such expressions are not unique. The algebra given in [Kuz08] seems to be Morita
equivalent to R.

Example 5.7. Let X = P(1, 1, d) be the cone over a rational normal curve of degree d. We have
reflexive sheaves of rank one OX(a) for integers a, and OX(KX) ∼= OX(−d−2). We consider NC
deformations of a sheaf F = OX(−1).

Since dimH0(X,OX(d− 1)) = d, we have an exact sequence

0→ OX(−1)d−1
→ OdX → OX(d− 1)→ 0.

This is induced from the following exact sequence on P1

0→ OP1(−1)d−1
→ OdP1 → OP1(d− 1)→ 0.

Let Z ∈ |OX(d)| be the smooth curve at infinity. Then we have an exact sequence

0→ OX(−1)→ OX(d− 1)→ OZ(d− 1)→ 0.

Since dimH0(Z,OZ(d − 1)) = d, there is a surjective homomorphism OdX → OZ(d − 1). Let G
be the kernel. Then G is a locally free sheaf of rank d on X. Thus we have the commutative
diagram

0 0y y
0 −−−→ OX(−1)d−1 −−−→ G −−−→ OX(−1) −−−→ 0

=

y y y
0 −−−→ OX(−1)d−1 −−−→ OdX −−−→ OX(d− 1) −−−→ 0y y

OZ(d− 1)
=−−−→ OZ(d− 1)y y

0 0
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where the first horizontal sequence is exact because all other sequences are exact. ThusG is an NC
deformation of F = OX(−1) over R = k[t1, . . . , td−1]/(t1, . . . , td−1)2, and dimH0(X, Ext1(F, F ))
= d− 1. We have an exact sequence

0→ OX → Hom(G,F )→ Od−1
X → Ext1(F, F )→ 0.

Hence Hp(X,Hom(G,F )) = 0 for p > 0 as in the above example. Therefore G is a versal NC
deformation of F = OX(−1), and G is a relative exceptional object over R.

By the vanishing theorem, we have Hp(X,OX(a)) = 0 for p > 0 and a > −d−1. By [Kaw04],
Db(coh(X)) is generated by the OX(a) for −d − 1 6 a 6 0. But there are exact sequences
0→ OX(−d−1)d−i→ OX(−d)d−i+1

→ OX(−i)→ 0 for 1 6 i 6 d−1, hence it is generated only
by OX(a) for a = −d,−1, 0. We have a full collection of relative exceptional objects (OX(−d),
G,OX), and an equivalence

Db(coh(X)) ∼= 〈Db(k), Db(R), Db(k)〉.

Example 5.8. Let X = P(1, 2, 3) be a weighted projective surface. X has two singular points P
and Q which are Du Val singularities of types A1 and A2, respectively. We have OX(KX) ∼=
OX(−6), hence H0(X,OX(−i)) = 0 for 0 < i, and Hp(X,OX(−i)) = 0 for p > 0 and i < 6. We
write Fi = OX(−i).

First we consider NC deformations of a reflexive sheaf of rank one F1 = OX(−1). In this
example, the non-commutative deformations of F1 do not terminate after finite steps, though
commutative deformations do.

Let us calculate local extensions of F1 at the singular points. The singular point P is a
quotient singularity of type 1

2(1, 1). Then it is already known by the previous example that
Ext1(F1, F1)P ∼= k, and the versal NC local deformation has the base ring k[s]/(s2).

The singular point Q is a quotient singularity of type 1
3(1, 2). Let a cyclic group Z/(3) act on

k[x, y] with weights (1, 2), and let A ⊂ k[x, y] be the invariant subring. We may assume that the
sheaf F1 at Q is represented by the ideal (x)∩A = (x3, xy) in A, and F2 at Q by (y)∩A = (xy, y3)
or (x2) ∩A = (x3, x2y2). There are exact sequences

0→ (x) ∩A→ A⊕ ((x2) ∩A)→ (x) ∩A→ 0,

0→ (x) ∩A→ A2
→ (y) ∩A→ 0,

where in the first sequence, the map A → (x) ∩ A is given by 1 7→ xy, the map (x2) ∩ A =
(x3, x2y2)→ (x) ∩ A = (x3, xy) and the map (x) ∩ A→ A are natural injections, and the map
(x) ∩ A→ (x2) ∩ A is induced from 1 7→ −xy. In the second sequence, the map A2

→ (y) ∩ A
is given by the generators (xy, y3), and the map (x) ∩ A → A2 is given in the following way:
the map to the first entry of A is the composition of the isomorphism given by x 7→ −y2 and the
natural injection (x)∩A ∼= (y2)∩A→ A, while the second is the natural injection (x)∩A→ A.

We claim that the versal NC deformation of the ideal (x)∩A at Q has the base ring k[t]/(t3).
For this purpose, it is sufficient to prove that Ext1(F1, F1)Q ∼= k. From an exact sequence

0→ (y) ∩A→ A2
→ (x) ∩A→ 0

we obtain an exact sequence

0→ A→ ((x) ∩A)⊕ ((y2) ∩A)→ (y) ∩A→ Ext1(F1, F1)Q→ 0,

where the first arrow is given by 1 7→ (xy, x2y2) and the second induced by 1 7→ −xy and a
natural inclusion. Then the cockerel of the second arrow is generated by the image of xy, hence
one dimensional.
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We prove that a sequence of iterated non-trivial extensions Gn1 of F1 never become locally
free for any n by induction on n. If Gn1 is not locally free at P , then we take an extension

0→ F1→ Gn+1
1 → Gn1 → 0

which induces a non-trivial extension at P and a trivial extension at Q. Then Gn+1
1 is not locally

free at Q. The same argument works if we interchange P and Q. Therefore we have proved our
assertion.

Indeed we could prove that the versal NC deformation has a base ring k〈s, t〉/(s2, t3), which
is infinite dimensional, while its maximal abelian quotient k[s, t]/(s2, t3) is finite dimensional.

Next we consider one-pointed NC deformations of reflexive sheaves F2 = OX(−2) and
F3 = OX(−3). Then the results are better, because F2 (respectively F3) is locally free at P
(respectively Q). We claim the following: F2 (respectively F3) has a versal NC deformation G2

(respectively G3) over k[t]/(t3) (respectively k[s]/(s2)) which is a locally free sheaf of rank 3
(respectively 2), and they are relative exceptional objects.

As for F3, we can prove that Extp(G3, F3) = 0 for p > 0 in the same way as in Example 5.5.
We consider F2. Since Hp(X,Hom(F2, F2)) = 0 for p > 0, we have Ext1(F2, F2)∼= H0(X, Ext1(F2,
F2)) ∼= k, since we already proved Ext1(F1, F1)Q ∼= k. Therefore we have a non-trivial extension
0→ F2→ G′2→ F2→ 0. We consider an exact sequence

0→ Hom(F2, F2)→ Hom(G′2, F2)→ Hom(F2, F2)→ Ext1(F2, F2).

Since G′2 is a non-trivial extension also locally at Q, the last arrow is non-zero. Let H be the
kernel of the last arrow. Then we have Hp(X,H) = 0 for p > 0, hence Hp(X,Hom(G′2, F2)) = 0
for p > 0. Therefore Ext1(G′2, F2)∼=H0(X, Ext1(G′2, F2))∼= k, and we have a non-trivial extension
0→ F2→ G2→ G′2→ 0. In the same way, we obtain Hp(X,Hom(G2, F2)) = 0 for p > 0. Since
G2 is locally free, this is the desired result.

We claim that the category Db(coh(X)) is generated by the reflexive sheaves OX(−m) for
m = 0, 2, 3. It is already known that it is generated by the OX(−m) for 0 6 m 6 5 [Kaw04, § 5].
We check that OX(−m) for m = 1, 4, 5 are generated by others.

Let D1 be the coordinate divisor such that OX(D1) ∼= OX(1). We consider exact sequences

0→ OX(−m)→ OX → OmD1 → 0

for 1 6 m 6 5, where the third terms are defined as cokernels. Since H0(X,OX) ∼= k and
Hp(X,OX) ∼= 0 for p > 0, and Hp(X,OX(−m)) ∼= 0 for all p and 1 6 m 6 5, we deduce that
H0(X,OmD1) ∼= k and H1(X,OmD1) ∼= 0. Therefore we have an exact sequence

0→ OD1(−1)→ OmD1 → O(m−1)D1
→ 0

for 0 < m 6 5. Indeed the first term is isomorphic to Coker(i) in the following commutative
diagram of exact sequences:

0 −−−→ OX(−m) −−−→ OX −−−→ OmD1 −−−→ 0

i

y =

y y
0 −−−→ OX(−m+ 1) −−−→ OX −−−→ O(m−1)D1

−−−→ 0

where Coker(i) is an invertible sheaf on D1, because X has only quotient singularities and
Coker(i) is locally the sheaf of invariants of the corresponding sheaf on the covering. Therefore
OD1(−1) is expressed by the OX(−m) for m = 0, 2, 3, and so are the OX(−m) for m = 1, 4, 5.
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In conclusion, we have a full collection of relative exceptional objects (G3, G2,OX), and an
equivalence

Db(coh(X)) ∼= 〈Db(k[s]/(s2)), Db(k[t]/(t3)), Db(k)〉.

By a similar method, the author expects that the following can be proved. Let X = P(1,
a, b) be a weighted projective plane for coprime positive integers a, b with a < b. We consider
one-pointed NC deformations of Fa = OX(−a) and Fb = OX(−b). We could prove that there
exist versal deformations Ga and Gb of Fa and Fb, respectively, which are locally free and
relative exceptional objects. Moreover there is a semi-orthogonal decomposition Db(coh(X)) =
〈Gb, Ga,OX〉.

6. r-pointed relative spherical objects on Calabi–Yau threefolds

We define relative spherical objects after [Tod07] and [AL13], and prove that a versal multi-
pointed NC deformation of a simple collection on a Calabi–Yau 3-fold yields a relative spherical
object if the deformations stops after finitely many non-trivial extensions and if one more
condition holds.

Definition 6.1. Let X be a smooth projective variety of dimension n > 2, let {Fi}ri=1 be a
simple collection in (coh(X)), and let FR =

⊕
i FR,i be an r-pointed NC deformation of {Fi}

over R ∈ (Artr). The pair (FR, F ) for F =
⊕r

i=1 Fi is said to be an r-pointed relative n-spherical
object over R if the following conditions are satisfied.

(i) There exists a permutation σ of r elements such that

Hom(FR, Fi[p]) ∼=


R/Mi p = 0,

R/Mσ(i) p = n,

0 p 6= 0, n

as right R-modules for all i.

(ii) F ⊗ ωX ∼= F .

More generally, for a triangulated category with a Serre functor S, the second condition can
be replaced by S(F ) ∼= F [n].

The following lemma shows that the base ring R of an r-pointed relative n-spherical object
is an NC Gorenstein artin algebra [AR91].

Lemma 6.2. Let (FR, F ) be an r-pointed relative spherical object over R. Then R∗ = Homk(R,k)
is a free right R-module of rank 1.

Proof. Since dim Hom(FR, Fi) = dim Hom(Fi, FR) = 1 by the Serre duality, we can define si ∈
R= Hom(FR, FR) as a composition of non-zero homomorphisms FR→ Fi→ FR up to a constant.
Let φ ∈ R∗ be a homomorphism R→ k such that φ(si) = 1 for all i.

We will prove that φ generates R∗ as a right R-module. Let I = {s ∈ R | φs = 0} be the
annihilator ideal of φ. If I 6= 0, then there is a socle; there exist i and 0 6= s ∈ I such that Mis = 0
for the ith maximal ideal Mi of R. We know that non-zero s ∈ R satisfying Mis = 0 is unique
up to a constant for a fixed i, because dim Hom(Fi, FR) = 1. It follows that s = csi for 0 6= c ∈ k.
Then 0 = φs(1) = φ(csi) = c, a contradiction. Hence I = 0. Since dimkR <∞, we complete the
proof. 2

1834

https://doi.org/10.1112/S0010437X18007248 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007248


On multi-pointed non-commutative deformations and Calabi–Yau threefolds

The conclusion of the lemma is equivalent to saying that the socle of R is isomorphic to
⊕R/Mi.

We have the duality theorem.

Corollary 6.3. Let M be a finitely generated right R-module. Then there is a natural
isomorphism

Homk(M,k) ∼= HomR(M,R∗)

with R∗ ∼= R.

Proof. We define a natural isomorphism

Homk(M,k) ∼= HomR(M,Homk(R,k))

as follows. For a k-homomorphism f : M → k, we define a right R-homomorphism g : M →
Homk(R,k) by g(m, r) = f(mr). g is compatible with the right R-action: g(ms, r) = g(m, sr).
For g : M → Homk(R,k), we define f(m) = g(m, 1). They are inverses each other. 2

We simply write D(R) = Db(mod-R), D(X) = Db(coh(X)), etc. in the following. We consider
the diagram of ‘spaces’

[R]
p1
←−−− [R]×X p2−−−→ X,

where [R] is the imaginary ‘space’ corresponding to the ring R and [R] = Spec(R) if R is
commutative.

We define

p∗1(•) = • ⊗k OX , p!
1(•) = • ⊗k ωX [n], p1∗(•) = RΓ(X, •),

p∗2(•) = R⊗k •, p!
2(•) = Homk(R, •), p2∗(•) = •.

We define an exact functor Φ : D(R)→ D(X) by

Φ(a) = a⊗R FR = p2∗(p
∗
1a⊗R⊗OX

FR).

We recall that the derived dual F ∗R is defined in the proof of Theorem 5.2.

Lemma 6.4. The functor Φ has right and left adjoint functors ΨR : D(X) → D(R) and ΨL :
D(X)→ D(R) defined as follows:

ΨR(b) = RHomOX
(FR, b) = p1∗(F

∗
R ⊗R⊗OX

p!
2b),

ΨL(b) = p1∗(F
∗
R ⊗ p∗2ωX [n]⊗ p∗2b) ∼= ΨR(b)[n].

Proof. On the imaginary spaces, we have

HomD(X)(Φ(a), b) ∼= HomD([R]×X)(p
∗
1a⊗R⊗OX

FR, p
!
2b)

∼= HomD([R]×X)(p
∗
1a, F

∗
R ⊗R⊗OX

p!
2b)
∼= HomD(R)(a,ΨR(b)).

Or we have

HomOX
(Φ(a), b) ∼= HomR⊗OX

((a⊗k OX)⊗R⊗OX
FR,Homk(R, b))

∼= HomR⊗OX
(a⊗k OX , F ∗R ⊗R⊗OX

Homk(R, b)) ∼= HomR(a,ΨR(b)).
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Since p!
1(a) = p∗1(a)⊗ p∗2ωX [n], we have

HomD(X)(b,Φ(a)) ∼= HomD([R]×X)(p
∗
2b, p

∗
1a⊗R⊗OX

FR)

∼= HomD([R]×X)(F
∗
R ⊗ p∗2ωX [n]⊗ p∗2b, p!

1a) ∼= HomD(R)(ΨL(b), a).

Or we have

HomOX
(b,Φ(a)) ∼= HomR⊗OX

(R⊗k b, (a⊗k OX)⊗R⊗OX
FR)

∼= HomR⊗OX
(F ∗R ⊗ ωX [n]⊗ b, a⊗k ωX [n])

∼= HomR(RΓ(X,F ∗R ⊗ ωX [n]⊗ b), a) ∼= HomR(ΨL(b), a),

where we have used the Serre duality

HomOX
(c, ωX [n]) ∼= Homk(RΓ(X, c),k).

Since p∗2
∼= p!

2 by Corollary 6.3 and since ωX ⊗FR ∼= FR, we obtain the last isomorphism. 2

We note that the right adjoint functor ΨR is already constructed in § 5. It can be obtained
without using the derived dual F ∗R by Remark 5.4, but we need for the following Theorem 6.5
the additional property that these functors are of Fourier–Mukai type, because these functors
should be lifted to the enhancement of the triangulated categories [AL13].

We define the twist functor T : D(X) → D(X) associated to Φ to be the functor
corresponding to the Fourier–Mukai kernel cone(F ∗R�FR→O∆X

) ∈D(X×X), where ∆⊂X×X
is the diagonal. Then we have a distinguished triangle of functors

T [−1]→ Φ ◦ΨR→ IdD(X)→ T.

Theorem 6.5. The functor Φ : Db(mod-R) → Db(coh(X)) given by Φ(a) = a⊗R FR is a
spherical functor. In particular, the twist functor T which induces the following distinguished
triangles,

T (a)[−1]→ RHom(FR, a)⊗R FR→ a→ T (a)

for a ∈ Db(coh(X)), is an auto-equivalence of Db(coh(X)).

We note that, because FR is flat over R, the tensor product RHom(FR, a)⊗R FR is the same
as the derived tensor product, and is bounded.

Proof. We have to check the following conditions [AL13, Mea16].
• The cotwist functor C defined by a distinguished triangle

C → IdD(R)→ ΨR ◦ Φ→ C[1]

is an auto-equivalence of Db(mod-R).
• ΨR

∼= C ◦ΨL[1].
Db(mod-R) is spanned by R. We have

ΨR(Φ(R)) ∼= ΨR(FR) ∼= RHom(FR, FR).

Therefore we have a distinguished triangle

C(R)→ R→ RHom(FR, FR)→ C(R)[1],

hence C(R) ∼= R[−1− n], and C is an auto-equivalence.
We have C(ΨL(FR)) ∼= C(RHom(FR, FR))[n] ∼= RHom(FR, FR)[−1] ∼= ΨR(FR)[−1]. Thus

we have confirmed the conditions. 2
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Theorem 6.6. Let {Fi}ri=1 be a simple collection of coherent sheaves on a smooth projective
variety X of dimension 3 such that F ⊗ ωX ∼= F for F = ⊕Fi. Assume that the versal r-pointed
NC deformation FR is obtained by a finite sequence of iterated non-trivial r-pointed extensions.
Assume moreover that Hom(Fi, FR) 6= 0 for all i. Then (FR, F ) is relatively 3-spherical over R.

We note that the last condition holds trivially if r = 1.

Proof. We have already Ext1(FR, Fi) = 0 for all i, because FR is versal. Then we have Ext1(FR, G)
= 0 for any extension G of the Fi. We have an exact sequence

0→ Fi→ FR→ Gi→ 0

for some Gi for each i. Thus

Ext1(FR, Gi)→ Ext2(FR, Fi)→ Ext2(FR, FR).

Since the last term is dual to Ext1(FR, FR) = 0, we conclude that Ext2(FR, Fi) = 0.
Let mi be the number of appearances of Fi in the iterated extension FR. Then∑

i

mi = dim Hom(FR, FR) = dim Ext3(FR, FR)

=
∑
i

mi dim Ext3(FR, Fi) =
∑
i

mi dim Hom(Fi, FR).

Since Hom(Fi, FR) 6= 0 for all i, it follows that dim Hom(Fi, FR) = 1 for all i. Therefore we have
dim Ext3(FR, Fi) = 1 for all i, and we complete the proof by the following lemma. 2

Lemma 6.7. Let FR be an r-pointed NC deformation of a simple collection {Fi} over R ∈ (Artr).
Assume that dim Hom(Fi, FR) = 1 for all i. Then there exists a permutation σ of r elements
such that Hom(Fi, FR) ∼= R/Mσ(i) as left R-modules for all i.

Proof. As left R-modules, we have Hom(Fi, FR) = R/Mj for some j = j(i). Then we have
dim Hom(Fi, FR,k) = δjk. On the other hand, for each k, there is at least one i such that Hom(Fi,
FR,k) 6= 0. Therefore we have a one-to-one correspondence. 2

We consider some examples.

Example 6.8. Let f : X → Y be a projective birational morphism from a smooth variety of
dimension 3 to a normal variety over k = C. We assume that KX is relatively trivial and
the exceptional locus of f is one dimensional. In this case, Y has only terminal Gorenstein
singularities, and the irreducible components Ci (i = 1, . . . , r) of the exceptional locus are smooth
rational curves intersecting each other transversally, because R1f∗OX = 0 by the vanishing
theorem [KMM85] applied to an invertible sheaf OX ∼= OX(KX).

Let Fi = OCi(−1). Then {Fi}rr=1 is a simple collection. But there are many other simple
collections on X. For example, for any disjoint subsets Ij of the set of indexes {1, . . . , r}, if
the Dj =

⋃
i∈Ij Ci are connected, then {ODj} is a simple collection. Let li be the length of Ci,

i.e., the length of the scheme theoretic fiber over a singular point of Y at the generic point of
Ci, and take an integer ki for each i such that 0 < ki 6 li. Then a collection consisting of fat
curves {OkiCi

} is simple if End(OkiCi
) = k for all i. It is interesting to know whether these

collections satisfy conditions of the above theorem yielding spherical objects, and what are their
relationships.
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Example 6.9. Let Y be a hypersurface in k4 defined by an equation xy − zw(z + w) = 0. It has
an isolated singularity at the origin.

We define a resolution of singularities f : X → Y in the following way. X is constructed by
gluing three affine spaces X =

⋃3
i=1 Ui. U1, U2 and U3 are isomorphic to A3 with coordinates

(x, z′, w), (x′, z, w′) and (x′′, y, z), respectively, and f is given by

U1 : (x, y, z, w) 7→ (x, z′w(xz′ + w), xz′, w),

U2 : (x, y, z, w) 7→ (x′z, w′(z + x′w′), z, x′w′),

U3 : (x, y, z, w) 7→ (x′′z(x′′y − z), y, z, x′′y − z),

where we considered z′ = z/x, x′ = x/z, w′ = w/x′ = zw/x and x′′ = x′/w = x/zw. f is the
composition of a blowing up along the ideal (x, z) of a prime Weil divisor followed by another
along (x′, w), the ideal corresponding to the strict transform of a prime divisor defined by (x,w).

The exceptional locus of f consists of two smooth rational curves C1 ∪ C2 which intersect
transversally. C1 is defined on U1 by an ideal (x,w), and on U2 by (z, w′). C2 is defined on U2

by an ideal (x′, z), and on U3 by (y, z).
Let Fi = OCi(−1) for i = 1, 2. Then {F1, F2} is a simple collection. We consider its NC

deformations.
The conormal bundlesN∗Ci/X

of the Ci for i= 1, 2 are calculated as follows. C1 has coordinates

z′ on U1 and x′ on U2, and they are related by z′ = (x′)−1. The generating sections of N∗C1/X

are transformed as x 7→ x′z and w 7→ x′w′. Therefore N∗C1/X
∼= OP1(1)2.

C2 has coordinates w′ on U2 and x′′ on U3, and they are related by w′ = (x′′)−1. The
generating sections of N∗C2/X

are transformed as x′ 7→ x′′(x′′y−z) and z+w′x′ 7→ x′′y. Therefore

N∗C2/X
∼= OP1(1)2.

The union Θ = C1 ∪ C2 is defined by ideals (x,w) on U1, (x′w′, z) on U2, and (y, z) on U3.
We denote by OΘ(a, b) an invertible sheaf on Θ whose restrictions to the Ci for i = 1, 2 have
degrees a and b. Let G1

∼= OΘ(−1, 0) and G2
∼= OΘ(0,−1). Then we have non-trivial extensions

0→ Fi′ → Gi→ Fi→ 0,

where i+ i′ = 3.
We calculate the normal bundle N∗Θ/X = IΘ/I

2
Θ of Θ. It is generated by linearly independent

sections sj , tj on Uj which are defined as follows: s1 = x and t1 = w + z′x on U1, s2 = z and
t2 = z + x′w′ on U2, and s3 = z and t3 = y on U3. We have s1 = x′s2 and t1 = t2 on U1 ∩ U2,
and s2 = s3 and t2 = x′′t3 on U2 ∩ U3. Therefore we have

N∗Θ/X
∼= OΘ(1, 0)⊕OΘ(0, 1).

Let g : Θ→ X be the embedding. Since Θ is a locally complete intersection, we obtain the
following by a Koszul resolution:

g∗g∗OΘ
∼= OΘ ⊕N∗Θ/X [1]⊕ det(N∗Θ/X)[2]
∼= OΘ ⊕ (OΘ(1, 0)⊕OΘ(0, 1))[1]⊕OΘ(1, 1)[2],

where the direct sum decomposition to cohomologies is a consequence of the fact that dim Θ = 1.
Therefore we have

Ext1
X(G1, F1) ∼= HomΘ(OΘ(0, 0)⊕OΘ(−1, 1), F1) ∼= k,

Ext1
X(G2, F2) ∼= HomΘ(OΘ(1,−1)⊕OΘ(0, 0), F2) ∼= k.
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Hence we have non-trivial extensions

0→ Fi→ FR,i→ Gi→ 0

for i = 1, 2.
The extension FR,1 is induced from the surjectionOΘ(−1, 1)→ F1. Hence FR,1 is an invertible

sheaf of degrees (−1, 0) on a subscheme Θ1 of X defined by ideals (s1, xt1, wt1) = (x,w2) on U1,
(s2, zt2, w

′t2) = (z, x′(w′)2) on U2, and (s3, t3) = (z, y) on U3. Θ1 is not reduced along C1, but is
still locally complete intersection.

The extension FR,2 is induced from the surjectionOΘ(1,−1)→ F2. Hence FR,2 is an invertible
sheaf of degrees (0,−1) on a subscheme Θ2 of X defined by ideals (s1, t1) = (x,w) on U1,
(s2x

′, s2z, t2) = (x′z, z2, z + x′w′) = (x′z, z + x′w′) = (z + x′w′, (x′)2w′) on U2, and (s3y, s3z,
t3) = (z2, y) on U3. Θ2 is not reduced along C2, but is still locally complete intersection.

We calculate the conormal bundles N∗Θi/X
= IΘi/I

2
Θi

of the fat curves Θi for i = 1, 2.

N∗Θ1/X
is generated by linearly independent sections s′j , t

′
j on the Uj which are defined as

follows: s′1 = x and t′1 = w2 + xz′w on U1, s′2 = z and t′2 = x′(w′)2 + zw′ on U2, and s′3 = z and
t′3 = y on U3. We have s′1 = x′s′2 and t′1 = x′t′2 on U1 ∩ U2, and s′2 = s′3 and t′2 = t′3 on U2 ∩ U3.
Therefore we have

N∗Θ1/X
∼= OΘ1(1, 0)⊕OΘ1(1, 0).

N∗Θ2/X
is generated by linearly independent sections s′′j , t

′′
j on the Uj which are defined as follows:

s′′1 = x and t′′1 = w+ xz′ on U1, s′′2 = x′z and t′′2 = x′w′+ z on U2, and s′′3 = x′′yz− z2 and t′′3 = y
on U3. We have s′′1 = s′′2 and t′′1 = t′′2 on U1 ∩ U2, and s′′2 = x′′s′′3 and t′′2 = x′′t′′3 on U2 ∩ U3.
Therefore we have

N∗Θ2/X
∼= OΘ2(0, 1)⊕OΘ2(0, 1).

Hence

Ext1
X(FR,i, Fj) ∼= HomΘ(OΘ(0, 0)⊕OΘ(0, 0), Fj) ∼= 0

for all i, j = 1, 2. By the duality, we conclude that FR,1 ⊕ FR,2 is a versal two-pointed NC
deformation of F1 ⊕ F2.

The deformation algebra R has the following form(
k + kt2 kt

kt k + kt2
)

mod t3.

FR is a relative 3-spherical object over R:

RHom(FR, Fi) ∼= R/Mi ⊕R/Mi[−3].

Example 6.10. Let Y ⊂ k4 be a hypersurface of dimension 3 defined by an equation x1x2 +
x2

3 + x3
4 = 0. The blowing up at the origin gives a resolution of singularities f : X → Y with

an exceptional divisor E, which is a quadric cone over P1 that was considered in Example 5.5.
We use the notation OE(a) defined there. We have KX = f∗KY + E, OE(E) = OE(−2) and
KE = OE(−4).

Let e = OE(−2). Then e is an exceptional object in Db(coh(X)). Let D be its left orthogonal
complement, and let S be the Serre functor of D. Then F = OE(−1) is an object in D. If S′ is
the Serre functor of Db(coh(X)), then we have S′(F ) ∼= OE(−3)[3]. Let j∗ : D → Db(coh(X))
be the inclusion functor, and j! : Db(coh(X)) → D its right adjoint functor. Then we have
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S ∼= j!S′j∗. Since j!e ∼= 0, we deduce that S(F ) ∼= j!OE(−3)[3] ∼= OE(−1)[2]. From an exact
sequence

0→ OE(−3)→ e⊕2
→ OE(−1)→ 0

we deduce that S(F ) ∼= F [2].
We construct a non-trivial self extension G of F as in Example 5.5. G is a versal NC

deformation of F over R = k[t]/(t2), and G is a relative 2-spherical object in D:

RHom(G,F ) ∼= R/M ⊕R/M [−2].

Indeed we will show that Ext1(G,F ) ∼= 0 in the following. Then we have Ext2(G,F ) ∼= k by
the duality. Let i : E → X be the embedding. Then we have i∗i∗G ∼= G⊕G(−E)[1], where the
direct sum decomposition to cohomologies is consequence of the fact that Ext2(G,G(−E)) ∼=
Hom(G(−E), G)∗ ∼= 0 since −E is ample. Hence

Ext1
X(i∗G, i∗F ) ∼= Ext1

E(G,F )⊕HomE(G(−E), F ) ∼= 0.

Remark 6.11. The category D in the above example was already considered in [Kaw09, 4.3]. The
sheaf G there appeared in [Tod13, 4.13]. The construction of tilting generators in [Van04] can
also be considered as a multi-pointed non-commutative deformation of a collection which is not
simple. See also [TU10].

We have a similar example in dimension 4, where we obtain again a relative 2-spherical
object. A non-trivial permutation σ of the indexes appears in this example.

Example 6.12. Let Y ⊂ k5 be a hypersurface defined by an equation x1x2 + x3x4 + x3
5 = 0. The

blowing up at the origin gives a resolution of singularities f : X → Y with an exceptional divisor
E, which is a cone over P1×P1 that was considered in Example 5.6. We use the notation OE(a, b)
defined there. We have KX = f∗KY + 2E, OE(E) = OE(−1,−1) and KE = OE(−3,−3).

Let e1 = OE(−1,−1) and e2 = OE(−2,−2). Then (e2, e1) is an exceptional collection in
Db(coh(X)). Let D be its left orthogonal complement, and let S be the Serre functor of D. Then
F1 = OE(−1, 0) and F2 = OE(0,−1) are objects in D. If S′ is the Serre functor of Db(coh(X)),
then we have S′(F1) ∼= OE(−3,−2)[4]. From exact sequences

0→ OE(−3,−2)→ e⊕2
2 → OE(−1,−2)→ 0,

0→ OE(−1,−2)→ e⊕2
1 → OE(−1, 0)→ 0

we deduce that S(F1) ∼= F1[2]. Similarly we have S(F2) ∼= F2[2].
We construct non-trivial self extensions G1 and G2 of F1 and F2 as in Example 5.6,

respectively. Then G = G1 ⊕ G2 is a versal two-pointed NC deformation of F = F1 ⊕ F2 over
R =

( k kt
kt k

)
mod t2. By the vanishing theorem, we have Hp(E,OE(a, b)) = 0 for p > 0 if a, b > −2,

and G is a relative 2-spherical object in D:

RHom(G,Fi) ∼= R/Mi ⊕R/M3−i[−2].

Indeed we will show that Ext1(Gj , Fk) ∼= 0 for j, k = 1, 2 in the following. Then we have Ext2(Gi,
F3−i) ∼= k by the duality. Let i : E → X be the embedding. Then we have i∗i∗Gj ∼= Gj ⊕
Gj(−E)[1]. Hence

Ext1
X(i∗Gj , i∗Fk) ∼= Ext1

E(Gj , Fk)⊕HomE(Gj(−E), Fk) ∼= 0.
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