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A considerable amount is known about the latent roots of matrices of the
form

a2 b2 c2

in the case when each cross-product of non-diagonal elements, ajCj_,, is

positive. One forms the sequence of polynomials/r(A) = | Lr—kl\ for r = 1,

2, ... n, and observes that

__̂ _ \ I A, I — It?— -f. | *"~ AJ Tr\«/ ^~ T T 1 J T~ I v y '

then it is easy to deduce that (i) the zeros of/n(A) and/n_t(A) interlace—that is,
between two consecutive zeros of either polynomial lies precisely one zero of
the other (ii) at the zeros of/n(A) the values of/n_x(A) are alternately positive
and negative, (iii) all the zeros of /n(A)—i.e. all the latent roots of Ln—are real
and different.

For the corresponding matrix in which the cross-products of non-diagonal
elements are negative, nothing can be said about the real nature of the roots,
but it is possible to give some bounds for the real roots. There are also parallel
theorems to (ii) and (iii) in a particular case—namely, when the diagonal
elements are in increasing order of magnitude.

Theorem 1. Let M. denote the matrix

a2
b2 -c2

-c3

(all other elements being zero) in which all the a, b, c are real, and each product
aici_1 is positive. Then all the real latent roots of Mn lie between the least
and the greatest of the b{.

Proof. We first establish a lemma. Consider the matrix M* obtained by
replacing the diagonal elements in Mn by elements b* which are all positive;
we shall show that the real latent roots of this are all positive.

We observe that, because the bf and all the products afi-^^ are all positive,
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every second-order principal minor in M* is positive. Every first-order
principal minor is, of course, simply a b* and hence positive also. Now
consider a principal minor of order r; expanding by its first row and column
expresses it as the sum of positive multiples of two principal minors of orders
r— 1, r — 2. Hence, inductively, all the principal minors of M* are positive
(including | M* | itself).

Now consider the equation f*(X) = | M* — Xl\ = 0. Expanding the deter-
minant according to its diagonal elements, we obtain

where all the dr, being sums of principal minors of M*, are positive. It is
now obvious that no negative or zero value of X can make f*(X) vanish, and
the lemma is proved.

Now we return to the matrix Mn and let bt be the least of the diagonal
elements. The equation | Mn—XI | = 0 may be written

\Mn-blI-k'I\ = 0 , where A' = X-bh (1)

and since the matrix {Mn — btl) has the form of the matrix M* considered in
the lemma, all the real X' satisfying (1) are positive—that is, all the real X are
greater than bt.

Finally, let bg be the greatest of the diagonal elements. The equation
| Mn—XI | = 0 may be written

\bgI-Mn-X"I\ = 0, where X" = bg-X, (2)

and the matrix (bgI—Mn) has again the form of the matrix M* (the signs of
the non-diagonal elements are reversed but the relevant products are unaltered).
Thus every real X" satisfying (2) is positive—that is, all the X are less than bg.
All the X satisfying | Mn—XI \ = 0, therefore, lie between b, and bg, these values
excluded.

Theorem 2. Let Mn denote the matrix above, with the additional restriction
imposed that b1<b2-..<bn. Then the latent roots of Mn and the latent roots
of Mn-1 cannot interlace—in fact, between any two adjacent real latent roots
of Mn must lie, if any, an even number of real latent roots of Mn_x. Iffn(X)
denote \ Mn — XI |, then at the zeros offn(X), the sign o//n_i(A) is ( — ) " ~ l always.

Proof. Considering again the sequence of polynomials/r(A) s \Mr — XI\
(r = 1, 2, ... n), we have

AW = b,-X (3a)

MX) = (b1-X)(b2-X) + a2cl (3b)

fr(X) = (br-X)fr_1(X) + arcr-1fr-2(X), r = 2, 3, ... K, (3c)

the last relation being established by expanding \Mr — ?J\ according to its
last row and column.
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For large negative A, all the /r(A) are positive; for large positive A, /r(A)
has the sign (—)'; for brevity, we call this the " proper" sign of fr{X) and
( - ) r + 1 the " reversed " sign.

From Theorem 1 it follows at once that for X}zbr, /r(A) has its proper sign
(otherwise it would have a zero in (br, oo)). Let us suppose that, if possible,
there is a value Xo of X such that/n(A0) = 0 and/n_1(/l0) has its reversed sign.
Xo must he in (bt, bn), and since b1<b2---<bn, there will be some s such that
Ao lies in the interval bs-1^X0<bs. Then relation (3c) with r = n shows
that at X = Xo> /n-2(A0) also has its reversed sign; applying (3c) successively with
r — n — l,n—2, ...,s shows that all the/r(A) from r = n — 1 down to and including
r = s—2 have reversed signs at X = Xo. This, however, is impossible since
fs-i(X) and/s_2(A) certainly have their proper signs when A^6 s _ l 5 so the
supposition is false and there can be no value of X where fn(X) = 0 and/n_t(A)
has reversed sign.

It is easy to see, moreover, that if/n(A0) = 0, then fn_ ^XQ) # 0 ; for if this
were not so, then (from (3))/B_2(A0) =/B-3(A0) = ••• =/i(A0) = 0 also, hence
Ao = bu which contradicts Theorem 1. At every real zero of/n(A), therefore,
/n_j(A) must have its proper sign, namely (—)"~1.

The property of the latent roots of Mn and Mn-l follows immediately,
and the theorem is proved.

I am grateful to a referee for some comments which shortened the proof
of Theorem 1.
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