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1. Introduction

Shimura varieties have been at the heart of arithmetic since their introduction by Goro

Shimura and later generalization by Pierre Deligne [5]. Nowadays they are a powerful

geometric tool for the Langlands program. As they are algebraic varieties over a number
field E, their étale cohomology is endowed with an action both of GE = Gal

(
E/E

)
and

of the adelic points of the underlying reductive group G : understanding the relations

between the two actions is the way to realize geometrically (cases of) the association of

Galois representations to automorphic representations. This strategy was first realized by
Eichler and Shimura and by Deligne for the modular curves, and was later generalized in

broader directions, for higher-dimensional Shimura varieties [4, 8, 12, 1, 23], where the

previous arithmetic and analytic relations have revealed very complex issues.
One of the ideas to realize this correspondence is the Langlands–Kottwitz method,

for which we need to relate the number of points (modulo p) of our Shimura variety

(itself related to the étale cohomology of the variety) to some orbital integrals of G, itself
related in a somewhat indirect way, but now classical, to automorphic representations.

Thus, to make sense of the number of points, we need to find a way to reduce the given
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Shimura variety modulo p – that is, we need to find a good integral model of it. When
the Shimura variety is of PEL type, meaning more or less that it is a moduli space of

abelian varieties with some extra structure, the simplest idea is to extend this modular

description from E to OE , or at least to OEp
, a p-adic completion of OE . In the first case

of the modular curve, this has been extensively studied – for example in [6] or [11], in

which very satisfying integral models are introduced – for all the interesting levels at p, for

example Γ0(p
n),Γ1(p

n),Γ(pn)-levels. A remark regarding the definition of integral models

is that the level away from p is easy to deal with. Also, by satisfying integral models
here we mean with as few singularities as possible. For example, when the level at p is

maximal, the integral model of the modular curves is smooth, and in general level they

are regular. Kottwitz then deeply generalized this in the case of PEL Shimura varieties,
provided that the Shimura datum was unramified at p, meaning that both the group is

unramified at p (and has a suitable integral model) and the level is hyperspecial at p.

The problem of defining good integral models both with deeper level at p, or for ramified
Shimura datum, has since been extensively studied. For a selection we mention the work

of Harris and Taylor [8], who study specific Shimura varieties for which the method of

Katz and Mazur still applies for deeper level; work of Pappas and Rapoport [19] for

cases where the Shimura datum is ramified; and almost any paper of Lan (for example
[14, 15, 16]) for generalization in both directions. In this article we study a specific class

of PEL integral models with ‘maximal’ level at p (in a specific sense) and for which the

group is ramified at p. We take the definition given in [19], also referred to as splitting
models in the literature, and study the local and global geometry of these models. Our

results depend on the ramification of p on the Shimura datum. Precisely, as explained

in §2.5, there is a finite set P of ‘primes’ π above p. These primes fall into one of the
following categories: (C), (AL), (AU), (AR), where the first is the category of primes of

symplectic type and the last three are of unitary type, the last one ramified; we exclude

all type D factors in our PEL Shimura varieties (see Hypothesis 2.2). The last category,

(AR), roughly corresponds to a unitary group over a CM extension F/F+ and a prime π
above p in F+ such that π ramifies in F. Denote by X the Pappas–Rapoport model at p

of a Shimura variety, as in §2. It lives over the ring of integers of K, a finite, well-chosen

extension of Qp. Our first result is the following (see Theorem 2.30):

Theorem 1.1. If no prime in P falls in case (AR), then X is smooth over Spec(OK).

Such a result was clearly expected in [19], and was already proved in the case of the

Hilbert modular varieties in [21, 22]. Our proof is very similar, using the definitions of
[19] and the local study we make in §2. Also, it is clear that the assumption that no prime

falls into case (AR) is necessary, as explained in Appendix A.

The main result of this article is a study of the special fiber Xκ of X. Recalling that
for a (PEL) Shimura variety S associated with data unramified at p, we can look at the

Newton stratification of the special fiber of S, which we now know has all the expected

properties – in particular, the μ-ordinary locus is open and dense [7, 26]. In this article we
study a similar question in our situation, and we investigate another natural stratification,

which we call the Hodge stratification on Xκ, encoding the position of the Hodge polygon

(defined in [3]). Even if we show that this stratification does not behave as well as expected
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(except in case of very small ramification e= 2 and even only away from case (AR)), we

prove that the open stratum, the generalized Rapoport locus, is dense (again except in

case (AR)). This locus coincides with the usual Rapoport locus in the Hilbert case, hence
the denomination.

Theorem 1.2. If no prime in P falls into case (AR), the generalized Rapoport locus is
open and dense.

We actually prove this result by hand by explicitly constructing a deformation of a p-
divisible group to the generalized Rapoport locus (see Theorem 3.3). Then we investigate

the similar result for the Newton stratification. Because of our earlier results on Pappas–

Rapoport data [3], we know that the μ-ordinary locus, which coincides with the (big)
open stratum of the Newton stratification, lies inside the generalized Rapoport locus.

Here we prove that it is dense, generalizing work of Wedhorn [26] in the case of a ramified

Shimura variety.

Theorem 1.3. If no prime in P falls into case (AR), the μ-ordinary locus in Xκ is open

and dense.

This result actually implies the previous one, but the proof uses the density of the

generalized Rapoport locus, together with the methods of deformation of p-divisible

groups introduced in [26], and relies on calculations on displays. Here we slightly simplify
some arguments of [26], constructing ‘by hand’ deformations when we can. This density

result extends the work of [26] (which deals with the unramified case). Note also the work

of Wortmann [27] for Hodge-type Shimura varieties with good reduction at p and the

work of He and Rapoport [10] and He and Nie [9] to compare the μ-ordinary locus to
EKOR strata and to reformulate this density in terms of Weyl groups.

Finally, we give an equivalent condition, similar to the unramified case, for the existence

of an ordinary locus. Namely, we prove that the ordinary locus is nonempty if and only if
the prime p is totally split in the reflex field, extending the result in [26] in the unramified

case.

2. Shimura datum, Pappas–Rapoport condition, and stratifications

2.1. Shimura datum

Let (B,�) be a finite-dimensional central semisimple Q-algebra endowed with a positive

involution, with center F, and (V ,〈.,.〉) be a nondegenerate skew Hermitian B -module,

and let G be the algebraic group over Q of (similitude) automorphisms of (V ,〈.,.〉) – that

is, representing the functor

G(R) = {(g,c) ∈GL(V ⊗QR)×Gm(R) | 〈gz,gz′〉= c〈z,z′〉,∀z ∈ V ⊗QR}

on Q-algebras R.

Let h : C −→ EndB(VR) be an R-algebra homomorphism such that h(z) = h(z)� and

the bilinear form (·,h(i)·) on VR is positive definite. This induces a Shimura datum (G,h).
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2.2. Characteristic 0 moduli space

Let us denote by E the reflex field of the (Shimura) datum (G,h); it is a number field.

Fix K ⊂G(Af ) a neat (for simplicity) compact open subgroup.

Following [14, Definition 1.4.2.1], let SK be the moduli problem over Spec(E) that

associates to S the quasi-isogeny classes of quadruples (A,λ,ι,η), where A −→ S is an
abelian scheme, λ is a Q×-polarization of A, ι : B −→ End(A)⊗ (Q)S is a morphism

compatible with � and the Rosati involution, and η is a rational level structure of type

K of A (see [14, Definition 1.4.1.2] for a precise formulation). We moreover require that
this quadruple satisfy the determinant condition (see [12, §5] or [14, Definition 1.3.4.1]).

Then SK is representable by a scheme over Spec(E). This is, for example,

[14, Corollaries 1.4.3.7 and 7.2.3.10].

Remark 2.1. If p is a good prime for G,K, we could give an analogous definition by
Z(p)-isogeny instead of quasi-isogeny (that is, Q×-isogeny), as we will do later, but we

will need to introduce integral data to give a meaning to good primes (see our definition

in §2.4, and [14, §§1.4.2 and 1.4.3].

From now on, we fix a prime p. Let us be more specific about the determinant condition
when S is overQp. First let us assume that the following hypothesis on p and B is satisfied:

Hypothesis 2.2. We assume that BQp
is isomorphic to a product of matrix algebras

over finite extensions of Qp, such that factors are either stable by � or exchanged two by

two by �. Up to isomorphism, the possibilities for each simple involutive factor Bi of BQp

are then (see, for example, [18, Proposition 8.3])

(D): Bi =Mn(L) with �(A) = J tAJ−1 and J skew-symmetric;

(C): Bi =Mn(L) with �(A) =M tAM−1 and M symmetric;

(AL): Bi =Mn(L)×Mn(L) and �(A,B) = (B,A);

(AU) or (AR): Bi = Mn(L), �(A) = M tAM−1, with � inducing an order 2

automorphism (·) of L.

In the first two cases (resp., the last two cases) the involution is said to be of the first kind
(resp., the second kind) – that is, � induces the identity (resp., an order 2 automorphism)

of L. In the last two cases, if we denote by L+ the subfield fixed by �, then we are in

case (AL) when L= L+×L+, case (AU) when L/L+ is unramified, and case (AR) when

L/L+ is ramified. We assume moreover in this article that each simple involutive factor
is of type (C), (AL), (AU), or (AR) – that is, we exclude factors of type (D). In particular

we exclude all factors in our Shimura datum of type (D) in the usual sense ([12, §5], [14,
Definition 1.2.1.15]).

Example 2.3. If B = F , with F/F+ a CM field with totally real field F+ and � the
complex conjugation, Hypothesis 2.2 is satisfied, as BQp

=
∏

π|pF⊗F+ F+
π , where π ranges

over places over p in OF+ and F+
π is the π-adic completion of F+.

By hypothesis, we can decompose BQp
=
⊕r

i=1Mni
(Fi), where Fi/Qp is a finite, possibly

ramified extension. We remark that the involution � on B acts on the set {1, . . . ,r}; we
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denote s(i) the image of i by this involution. Denote by Eν a p-adic completion of E ;

thus Eν is a finite extension of Qp. If (A,λ,ι,η) is an object over S in SK ⊗E Eν , then

ωA = Lie(A)∨ is an OS ⊗QB-module, but as S is over Qp, it is an OS ⊗Qp
BQp

-module,
and we can thus decompose it as

ωA =

r⊕
i=1

ωA,i,

where ωA,i is an OS⊗Qp
Mni

(Fi)-module. Using Morita equivalence, we decompose ωA,i =
Oni

S ⊗OS
ωi, where ωi = eiωA,i is endowed with an action of OFi

and ei is the Morita

projector associated to the matrix E1,1 seen as an element of Mni
(Fi). Up to an extension

of scalars for S, we can further decompose ωi =
⊕

τ∈T ′
i
ωi,τ , as locally free OS-modules,

where T ′
i = Hom(Fi,Cp). Then the determinant condition is equivalent to asking the

locally free (ωi,τ ′) to have fixed dimension (di,τ ′)i,τ ′ , where the integers (di,τ ′)i,τ ′ are fixed

by h as follows. Denote VC = V1⊕V2 the decomposition where h(z) acts as z (resp., z)
on V1 (resp., V2). Then the reflex field E ⊂ C is the number field where the isomorphism

class of the complex B -representation V1 is defined. It thus makes sense to consider

VQp
= V1,Qp

⊕V2,Qp
as a BQp

-representation. Using the hypothesis on B, decompose

V1,Qp
=

r∏
i=1

V i
1 ⊗Fi⊗QpQp

(
Fi⊗Qp

Qp

)ni

by Morita, where V i
1 is an Fi⊗Qp

Qp-module that we can further decompose as

V i
1 =

∏
τ ′∈Hom(Fi,Qp)

(
V i
1

)
τ ′ .

Then di,τ ′ is the dimension of
(
V i
1

)
τ ′ .

Remark 2.4. As our Shimura datum comes from an object over Q, we can check that

for all i and for all τ ′,τ ′′,

di,τ ′′ +ds(i,τ ′′) = di,τ ′ +ds(i,τ ′) = hi

is independent of τ ′, where s is the action induced by � (in the case where two factors i,j
are exchanged by �, recall that we set j = s(i)). This is, for example, [14, p. 59].

2.3. Pappas–Rapoport data

The goal of this section is to define a Pappas–Rapoport datum in order to define an
integral model for the variety SK which is analogous to the Kottwitz determinantial

condition but better behaved in ramified characteristics. Such a datum, introduced in

[19], is referred to there as a splitting datum. We define such a datum in this section, and
explain its behavior with duality.

2.3.1. Definition. Let L/Qp be a finite extension, K be an extension of Qp containing

the Galois closure of L, and S be an OK-scheme. Denote Lur the maximal unramified

subfield of L and T = Hom(Lur,Cp) the set of unramified embeddings, and fix π a
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uniformizer of L, with Eisenstein polynomial Q. In particular, sending T to π, we can
identify

OLur [T ]/(Q(T ))
OF .

Let us fix an embedding τ of Lur into K, and define Σ as the set of embeddings of L into

K extending τ . It is a set of cardiality e, and we choose an ordering Σ = {σ1, . . . ,σe} for

this set.
Let N → S be a locally free sheaf with an action OL, such that OLur acts on N by τ .

We will denote by [π] the action of π on N . Let (d1, . . . ,de) be a collection of integers. We

recall the definition of a Pappas–Rapoport datum:

Definition 2.5. A Pappas–Rapoport datum for N with respect to the collection

(σi,di)i=1,...,e consists of a filtration

0 =N [0] ⊂N [1] ⊂ ·· · ⊂ N [e] =N

such that:

1. The N [j] are OS-locally direct factors stable by OL.

2. ([π]−σj(π)) ·N [j] ⊂N [j−1], for all 1≤ j ≤ e.

3. N [j]/N [j−1] is locally free of rank dj for all 1≤ j ≤ e.

2.3.2. Duality. Next we want to explain the compatibility with duality for this datum.

Assume that there exists a sheaf E , locally free of rank h as an OS ⊗OFur ,τ OF -module,
such that N is locally a direct factor of E . Define M := (E/N )∨; it is a locally free sheaf

over S, and has an action of OL (with OLur acting by τ). One thus has an exact sequence

0→N →E →M∨ → 0.
Let us introduce some more notation. Define πi := σi(π) for 1 ≤ i ≤ e, and let us

introduce for 1≤ 
≤ e the polynomials

Q� :=
�∏

i=1

(T −πi) and Q� :=
e∏

i=�+1

(T −πi).

Note that the hypothesis made on E means that it is locally free as anOS [T ]/Q(T )-module
(with T acting by π).

Definition 2.6. Let us define a complete filtration on E

0 =N [0] ⊂N [1] ⊂ ·· · ⊂ N [e] =N ⊂N [e+1] ⊂ ·· · ⊂ N [2e] = E

by the formulas

N [2e−�] =
(
Q�(π)

)−1
(
N [�]

)
for every 1≤ 
≤ e−1.

A full Pappas–Rapoport datum for (E,N ) with respect to (σi,di)i=1,...,e is a complete

filtration of the previous form, where
(
N [i]

)
i=1,...,e

is a Pappas–Rapoport datum for N
with respect to the same data.
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The conditions imposed by the Pappas–Rapoport datum imply that the inclusions
N [e+j] ⊂N [e+j+1] are satisfied for every 0≤ j ≤ e−1.

Lemma 2.7. Let 1≤ j ≤ e−1 be an integer. The sheaf N [e+j] is locally free of rank

jh+d1+ · · ·+de−j = dimOS
N +h−de+ · · ·+h−de−j+1.

Moreover, one has

([π]−σe−j+1(π))N [e+j] ⊂N [e+j−1].

Proof. This is an easy computation.

One deduces from this lemma that one has a Pappas–Rapoport datum for M.

Proposition 2.8. The complete filtration on E induces a Pappas–Rapoport datum for

M with respect to the collection ((σ1, . . . ,σe),(h−d1, . . . ,h−de)).

Remark 2.9. In special fiber, the situation is much simpler. Indeed, one simply has

Q�(π) = π�, Q�(π) = πe−�, and

N [2e−�] =
(
πe−�

)−1
(
N [�]

)
for every 1≤ 
≤ e−1.

2.3.3. Pairing. Assume in this section that the sheaf E has a perfect alternating pairing

〈,〉 : E ×E →OS . Assume also that this pairing is compatible with the action of OL – that

is, that 〈a ·x,y〉 = 〈x,a · y〉 for a ∈ OF and x,y ∈ E . This forces the integer h to be even;
let g be such that h = 2g. Assume moreover that N is maximally isotropic – that is,

N =N⊥, the latter notation referring to the orthogonal of N for the pairing considered.

This implies that N is locally free of rank eg.

Proposition 2.10. Fix a Pappas–Rapoport datum for N with respect to the collection

(σi,di)i=1,...,e. There exists a complete filtration of E given by

0 =N [0] ⊂N [1] ⊂ ·· · ⊂ N [e] =N ⊂N [e−1]⊥ ⊂ ·· · ⊂ N [1]⊥ ⊂ E .

This filtration induces a Pappas–Rapoport datum for M with respect to the collection
((σ1, . . . ,σe),(d1, . . . ,de)).

Proof. Let us consider the sheaf N [e−1]⊥. It is locally a direct factor of rank 2eg−
(d1 + · · ·+ de−1) = eg+ de, since d1 + · · ·+ de = eg. Set x ∈ N [e−1]⊥ and y ∈ N . Then

[π]y−σe(π)y ∈N [e−1], and thus

0 = 〈x,[π]y−σe(π)y〉= 〈[π]x−σe(π)x,y〉.

One then gets [π]x−σe(π)x ∈N⊥ =N . The results for the other sheaves are similar.

One would of course want this filtration to coincide with the previous one. This is

possible only if di = g for all 1≤ i≤ e, which we will assume in the rest of the section.
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Definition 2.11. One says that the filtration N [•] is compatible with the pairing if

N [2e−�] =N [�]⊥

for all 1≤ 
≤ e−1.

Let us be a little more explicit about this condition. If R is a polynomial, we denote by

E [R] the kernel of R(π) acting on E . One sees in particular that N [�] ⊂E [Q�] for 1≤ 
≤ e.

Proposition 2.12. One has, for 1≤ 
≤ e,

E [Q�]
⊥ = E

[
Q�

]
.

Proof. Note that one has E [Q�] = Q�(π)E . The fact that x belongs to E [Q�]
⊥ is thus

equivalent to the fact that 〈x,Q�(π)y〉= 0 for all y ∈ E . This is equivalent to the relation

Q�(π)x= 0.

Since multiplication by Q�(π) induces an isomorphism E/E
[
Q�

]

 E [Q�], one has an

induced perfect pairing

h� : E [Q�]×E [Q�]→OS .

Explicitly, since E [Q�] =Q�(π)E , one has

h�(Q�(π)x,Q�(π)y) = 〈x,Q�(π)y〉= 〈Q�(π)x,y〉.

Corollary 2.13. The filtration N [•] is compatible with the pairing if and only if N [�] is
totally isotropic in E [Q�] for the pairing h�, for every 1≤ 
≤ e.

Proof. To say that the filtration is compatible with the pairing amounts to saying that

for every 1 ≤ 
 ≤ e, one has N [�]⊥ =
(
Q�(π)

)−1N [�]. Since the orthogonal of N [�] for h�

is Q�(π)N [�]⊥, the result follows.

Remark 2.14. In special fiber, the situation is again much simpler. In this case, one has

simply E [Q�] = E
[
π�
]
= πe−�E . The pairing h� on this sheaf is given by

h�

(
πe−�x,πe−�y

)
=
〈
πe−�x,y

〉
=
〈
x,πe−�y

〉
.

If F ⊂ E
[
π�
]
is totally maximally isotropic for h�, then its orthogonal in E is equal to

F⊥ =
(
πe−�

)−1F .

2.3.4. Application to p-divisible groups. Let G −→ S be a p-divisible group of

height h [L :Qp], endowed with an OL-action. Thus, we can decompose ωG, a locally free

OS-module, into

ωG =
⊕
τ∈T

ωG,τ .

Assume that ωG,τ is locally free of rank pτ , and suppose, for all τ , integers

d1τ , . . . ,d
e
τ
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such that diτ ≤ h for all τ,i, and d1τ + · · ·+deτ = pτ for all τ . Denote f = [Lur :Qp], so that

ht(G) = efh. Define H :=H(G) :=H1
dR(G/S) :=D(G)S−→S the evaluation of the crystal

of G [2] on S. This is a locally free OS⊗Zp
OL-module of rank h, which moreover splits as

H=
⊕
τ∈T

Hτ ,

and for each piece, there is an exact sequence given by the Hodge filtration:

0−→ ωG,τ −→Hτ −→ ω∨
GD,τ −→ 0.

Definition 2.15. A Pappas–Rapoport datum for G, with respect to L, (στ,j),
(
djτ

)
τ∈T ,j

,

is the datum, for all τ , of a full Pappas–Rapoport datum for (Hτ ,ωG,τ ) – that is, a

filtration by locally direct OS-factors

0 = ω
[0]
G,τ ⊂ ω

[1]
G,τ ⊂ ·· · ⊂ ω

[e−1]
G,τ ⊂ ω

[e]
G,τ = ωG,τ ⊂ ω

[e+1]
G,τ ⊂ ·· · ⊂ ω

[2e−1]
G,τ ⊂ ω

[2e]
G,τ =Hτ

satisfying the following properties:

1. For j = 1, . . . ,e, dimOS

(
ω
[j]
G,τ/ω

[j−1]
G,τ

)
= djτ .

2. For j = 1, . . . , edimOS
ω
[e+j]
G,τ /ω

[e+j−1]
G,τ = h−de−j+1

τ .

3. For j = 1, . . . ,e, ([π]−στ,j(π)
(
ω
[j]
G,τ

)
⊂ ω

[j−1]
G,τ .

4. For j = 1, . . . ,e, ([π]−στ,e(π)) · · ·([π]−στ,e+j−1(π))ω
[e+j]
G,τ ⊂ ω

[e−j]
G,τ .

5. For j = 1, . . . ,e, ω
[e+j]
G,τ =

(
Qe−j(π)

)−1
ω
[e−j]
G,τ .

Definition 2.16. Let H be a locally free R-module (of finite rank) and R a ring, and

denote

H⊗H∨ −→R,

the perfect pairing between H and H∨ = HomR(H,R). Let W ⊂ H be a locally direct
factor. The association

W �−→W⊥ := Ker(H∨ �W∨)

is an inclusion reversing involution between locally direct factors of H and H∨.

Thus by Proposition 2.8 we have the following:

Proposition 2.17. Let
(
ω
[i]
G,τ

)
i=0,...,2e

be a full Pappas–Rapoport datum for G with

respect to L, (στ,j)(τ,j) ,
(
djτ

)
(τ,j)

. Then

((
ω
[2e−i]
G,τ

)⊥)
i=0,...,2e

induces a full Pappas–

Rapoport datum for GD with respect to L, (στ,j)τ,j ,
(
h−djτ

)
(τ,j)

. Here (.)⊥ denotes the

previous involution under the identification H
(
GD

)
=H(G)∨ (which satisfies ω⊥

G =ωGD).

Definition 2.18. Suppose we are given a ring extension L/L+ of degree ≤ 2, such that

L is a field or isomorphic to L+×L+, and set s ∈ Gal(L/L+). Suppose we are given a
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polarization λ :G
∼−→

(
GD

)(s)
. Then we say that a Pappas–Rapoport datum R for G is

compatible with λ if under the isomorphism λ :H(G)
∼−→H

(
GD

)(s)
, the datum R and(

R⊥)(s) (given by Proposition 2.17 and twisted by s) coincide. In particular, this implies

that

dτ,i(R) = h−ds(τ),i(R).

Remark 2.19. In the situation when primes ramify further in L/L+, the previous

compatibility is unfortunately impossible to achieve (except possibly in reduced special

fiber). For example, let L+ = Qp and L = Qp[T ]/(E(T )) a quadratic extension in which
(p) = (π)2 ramifies. Denote by c(π) = π the conjugate uniformizer. Thus a Pappas–

Rapoport datum for G/S, L, (π,π), and d≤ h is the datum of

0⊂ ω[1] ⊂ ωG ⊂F [1] ⊂H,

such that F [1] = (T −π)−1ω[1]. The associated datum of
(
GD

)(s)
is

0⊂
(
F [1]

)⊥,s

⊂ ω
(s)

GD ⊂
(
ω[1]

)⊥,(s)

⊂H∨,(s).

But T acts on H/F [1] as π, and thus on
(
F [1]

)⊥,s
as π. Moreover,

(
F [1]

)⊥,c
is of rank

h−d1 when ω[1] is of rank d1. There is thus no chance that given an isomorphism

λ :G
∼−→GD,(s),

our Pappas–Rapoport datum is λ-compatible (except if π= π on S, for example in special

fiber, and 2d1 = h). We will refer to this as case (AR) in the rest of the text.

2.4. Pappas–Rapoport models

Let OB be a Z(p)-order in B, preserved by �, such that its completion is a maximal Zp-
order in B⊗QQp, and let (Λ,〈.,.〉) be a PEL OB-lattice [14, Definition 1.2.1.3] such that

(Λ,〈.,.〉)⊗ZQ= (V ,〈.,.〉). Moreover, assume Hypothesis 2.2 – that is, say BQp
is isomorphic

to a product of matrix algebras over (necessarily finite) extensions of Qp. Note that we

do not assume that the extensions are unramified. Now assume that p is a good prime,
in the sense that p �

[
Λ� : Λ

]
, where Λ� = {x ∈ V |〈x,y〉 ∈ Z,∀y ∈Λ}.1 This assumption will

remain in force during all this article.

Let K be an extension of Eν (with E the reflex field) which contains F gal
i for all i.

We will want to consider a moduli problem X over OK of associating to S quintuples(
A,λ,ι,η,ω[·]) up to Z×

(p)-isogenies, where ω[·] will be a Pappas–Rapoport datum with

respect to a combinatorial datum C which we now explain.

1This is weaker than Lan’s definition of a good prime [14, Definition 1.4.1.1], as we actually
want to define a moduli problem for primes ramified in O, but like Lan, we assume that p does
not contribute to the level (implicitly, as our level will be maximal at p) and exclude factors
of type D.
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First, suppose we are given an abelian scheme A over S (itself over OK) endowed with

an action ι :OB −→ End(A)⊗Z

(
Z(p)

)
S
. Decompose ωA as before so we get a collection

(ωi)i=1,...,r, and now the action of OFur
i

on ωi can be split (as S is over OK) as

ωi =
⊕
τ∈Ti

ωi,τ ,

where Ti =Hom(Fur
i ,Cp). Unfortunately, if Fi is ramified, we cannot further decompose

the ωi,τ as we did over Qp.

Denote by Σi,τ the subset of T ′
i := Hom(Fi,Cp) of embedding τ ′ that induces τ when

restricted to Fur
i . Let us denote, for all i ∈ {1, . . . ,r}, πi a chosen uniformizer of Fi/F

ur
i

and Qi a corresponding Eisenstein polynomial, and let us choose an ordering Σi,τ =

{σi,τ,1, . . . ,σi,τ,ei} for the elements of Σi,τ , for all i,τ , where ei = [Fi : F
ur
i ] (it corresponds

to an ordering of the conjugate roots of τ(Qi)). This induces a bijection

{1, . . . ,ei} σ•−→ Σi,τ ,
j �−→ σi,τ,j

and a numbering (di,τ,j)j=1,...,ei
such that {di,τ,j : j = 1, . . . ,ei} = {di,τ ′ : τ ′ ∈ Σi,τ}, by

setting

di,τ,j = di,σi,τ,j
,

where di,σi,τ,j
is defined in §2.2. We assume, moreover, to reflect Remark 2.4, that the

choice of these bijections implies that, for all i,τ,j,

di,τ,j = hi−ds(i,τ),j,

where, as before, s is the action induced by �, the involution on B, on
∏

iHom(Fi,Cp).

To ease the notation, we will write

C =
(
(σi,τ,j)i,τ,j , (di,τ,j)i,τ,j

)
and Ci =

(
(σi,τ,j)τ,j , (di,τ,j)τ,j

)
for every i. We will also write CD =(

(σi,τ,j ◦s)i,τ,j , (hi−di,τ,j)i,τ,j

)
and CD

i =
(
(σi,τ,j ◦s)τ,j ,hi− (di,τ,j)τ,j

)
. Moreover, if

we denote H=H1
dR(A/S), we can decompose

H=
⊕
i

Hi,

with Hi a Mni
(OFi

)-module, corresponding by Morita equivalence to eiHi, which we can
further decompose as

eiHi =
⊕

τ :Fur
i −→Qp

Hi,τ .

Note that if S is actually over Qp, then

ωi,τ =
⊕

τ ′∈Σi,τ

ωi,τ ′,

https://doi.org/10.1017/S1474748022000019 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000019


2414 S. Bijakowski and V. Hernandez

and using the previous decomposition for ω, we get ω
[·]
i,τ a filtration of ωi:

ω
[j]
i,τ =

j⊕
r=1

ωi,σi,τ,r
.

Example 2.20. As explained in [12], when C is a semisimple algebra over a field (say of

characteristic p), then a C -module V is determined by its determinant detV associated

by Kottwitz. Unfortunately, in the ramified case OB⊗Fp is no longer semisimple, and the

determinant fails to determine V. For example, say BQp
=L a totally ramified extension of

Qp of degree e, and thus OB⊗Fp = Fp[X]/(Xe). Let V = Fp[X]/(Xe) and W = Fe
p. Then

detV (T1, . . . ,Te) = detW (T1, . . . ,Te) = T e
1 , but obviously V and W are not isomorphic as

Fp[X]/(Xe)-modules.

Now assume that λ is a Z×
p -polarization on A and ι is an OB structure for (A,λ) (that

is, it satisfies the Rosati condition; compare [14, Definition 1.3.3.1]). Using this λ, we
deduce an isomorphism for all indices i,

eiHi 
 es(i)H∨
s(i),

coming from an isomorphism of the associated p-divisible group when decomposing

A[p∞], and we can thus apply Definition 2.18 for Fi/F
+
i = F �=1

i (when s(i) = i) or
Fi×Fs(i) (when i �= s(i)). As suggested in Remark 2.19, we say that an index i falls into

case (AR) if Fi is stable by � and the extension Fi/F
�=1
i is ramified. This notation will

be explained in more detail in §2.5.

Definition 2.21 ([19, §§9 and 14]). Let S be an OK -scheme. Consider a Pappas–

Rapoport datum for (A,λ,ι)/S with respect to C, for every (i,τ).

– If i does not fall into case AR, it is the datum for a full Pappas–Rapoport datum for
(Hi,τ ,ωi,τ ) associated to Ci, as in Definition 2.15, that is moreover λ-compatible with

CD
s(i) (see Definition 2.18).

– If i falls into case AR, we ask for a full Pappas–Rapoport datum R for (Hi,τ ,ωi,τ )
with respect to Ci. This automatically induces a full Pappas–Rapoport datum R⊥,(s)

for
(
HD,s

i,τ ,ω
(s)

AD,i,τ)

)
=
(
Hi,τ ,ωA,i,τ)

)
with respect to CD

i .

As explained in Remark 2.19, we cannot ask for λ-compatibility in case (AR).

Unfortunately, in this situation the moduli space will not be studied in much detail

in this article, but we will show that our two main theorems fail in this case.
Consider the moduli problem X over OK , associating to S quintuples

(
A,λ,ι,η,ω[·]) up

to Z×
(p)-isogenies, where

– A−→ S is an abelian scheme,

– λ :A−→ tA is a Z×
(p)-polarization,

– ι : OB −→ End(A)⊗Z

(
Z(p)

)
S
is an OB-structure of (A,λ) (in particular, � induces

the Rosati involution),
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– η is a rational level structure outside p (see [14, §1.4.1]),
– ω[·] is a Pappas–Rapoport datum for C, which is defined in Definition 2.21.

Proposition 2.22. The moduli space X associating to each S over Spec(OK) the set

of isomorphism classes of quintuples
(
A,λ,i,η,ω[·]) is representable by a quasiprojective

scheme.

Proof. This is shown in a local context in [19]: the morphism that forgets the

Pappas–Rapoport datum is relatively representable over the (PEL) moduli space

(Kottwitz’s model). Thus X is representable, locally fibered over Kottwitz’s model as
a closed subset of a product of Grassmannians (equivalently, it is a closed subset of some

partial flag variety for ωAuniv over Kottwitz’s model).

Proposition 2.23. Let Kp ⊂G
(
Ap

f

)
be a compact open subgroup as before (neat). Let

C ⊂ G(Qp) be the stabilizer of Λ, and consider the compact open CKp. Let us choose K

a p-adic completion of the Galois closure of the Fi, as before. Then the Pappas–Rapoport
model X/Spec(OK) coincides with SCKp over K – that is, X is an integral model of SCKp

over OK .

Proof. Obviously if (A,i,λ,η) is a quadruple in SCKp(S), where S is over K, there is

a canonical filtration of ωA, as explained before, as we have fixed the bijections σ•.
Moreover, each quintuple

(
A,i,λ,η,ω[·]) satisfies Kottwitz’s determinant condition, as the

filtration given by ω[·] on ωi,τ is split, and the dimensions are fixed by the Pappas–

Rapoport condition. The equivalence between definition by Z×
(p)-isogeny classes and quasi-

isogeny classes (in characteristic 0) is then [14, Proposition 1.4.3.4].

From now on, fix a level Kp ⊂ G
(
Ap

f

)
outside p and C as before at p (‘without level

at p, or rather maximal level at p), and call X the Pappas–Rapoport model over OK of

the Shimura variety SCKp . It thus make sense to reduce X over κ, the residue field of K.

The goal of this article is to study the geometry of Xκ :=X×Spec(κ).

2.5. Polygons

As explained in the previous section, we can decompose the Lie algebra ωA of the universal

abelian scheme A over X through the action of OB⊗Zp. Actually, we can also decompose

the p-divisible group A[p∞]. According to Hypothesis 2.2, we write

OB ⊗Zp =
∏
π∈P

Mnπ
(Rπ),

where π ∈P is a new indexation for i∈ {1, . . . ,r} – where the two factors i,s(i), exchanged

by �, share the same index π – and Rπ =OFπ
if i= s(i) or Rπ =OFπ

×OFπ
if there are

two factors (that is, Rπ = OFi
×OFs(i)

if π = [i] when i �= s(i)). Thus P = {1, . . . ,r}/∼s
.

We refer to the π ∈ P as places over p in B. We can thus decompose

A[p∞] =
∏
π∈P

A[π∞],
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where A[π∞] is an Mnπ
(Rπ)-module that is p-divisible, and by Morita equivalence,

A[π∞] =Onπ

Rπ
⊗ORπ

Gπ.

Note that because the (universal) polarization λ of A is compatible with �, each factor

A[π∞] is still endowed with a polarization λπ and thus also Gπ. We will use this
decomposition of A[p∞] all the time, since if we know the nπ, it is equivalent to knowing

A[p∞] (and λ) or the collection (Gπ)π (and the λπ).

For all π, Gπ is a polarized p-divisible group over X, the Pappas–Rapoport model,
endowed with an action of Rπ.

Moreover, if Rπ =OFπ
×OFπ

and � exchanges the two factors, we can further decompose

Gπ = Hπ ×HD
π , and λπ exchanges the two factors. In this case, called (Split) or (AL),

the datum of (Gπ,λπ) is equivalent to Hπ.
Otherwise, Gπ is a p-divisible OFπ

-module with a polarization λπ, such that either

– � induces the identity on OFπ
, which is equivalent to λπ being compatible with the

OFπ
-action, which we refer to as case (C); or

– � is an automorphism of order 2 of OFπ
, and we denote OF+

π
the subfield fixed by �.

If OFπ
is unramified over OF+

π
, we refer to this case as (Inert) or (AU), and if the

extension is ramified, as (Ram) or (AR). In these two cases, Gπ satisfies the symmetry

GD
π

λπ
 G(c)
π ,

where c is the order 2 automorphism of Fπ induced by � and G
(c)
π is the p-

divisible OFπ
-module where the endomorphism structure is ι(c) := ι ◦ c if ι denotes

the endomorphism structure of Gπ.

Remark 2.24. The previous denomination comes from the possible decompositions of

the p-divisible group of an abelian variety endowed with an action of the ring of integers

of a totally real field (C) or a CM-field F/F+ in which a place π of F+ splits in F (AL)
where the underlying group at p is a linear group, is inert in F (AU) where the underlying

group is an unramified unitary group, or is ramified in F (AR), which itself is related to

the classification of Lie algebras as symplectic (C) or unitary (A) (as we have excluded
orthogonal factors (D)).

From now on, we will fix an element π ∈ P. For the rest of this subsection, assume our

base scheme S is a field k over κ (thus of characteristic p). Let us be more explicit about

the different cases.

2.5.1. Case (C). In case (C), we will denote the p-divisible group Gπ simply by G, and

Fπ by L. The p-divisible group G has an action of OL and a polarization. It has height
2dg and dimension dg, where d is the degree of L over Qp. The sheaf ωG decomposes as

ωG =
⊕
τ∈T

ωτ ,
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where T is the set of embeddings of Lur. Recall the Hodge filtration for G :

0→ ωG →H1
dR → ω∨

GD → 0,

where GD is the Cartier dual of G. This exact sequence splits according to the elements

of T . The Pappas–Rapoport condition for G is then as follows.
For each τ ∈ T , one has a filtration

ω[0]
τ = 0⊂ ω[1]

τ ⊂ ·· · ⊂ ω[e]
τ = ωτ ,

where ω
[i]
τ is locally a direct factor of rank gi. Moreover, one has the following

compatibility with the polarization:

ω[i]
τ

⊥
= (πe−i)−1ω[i]

τ ,

taken in H1
dR,τ for 1≤ i≤ e (recall πi = 0 in S here).

For each τ ∈ T , one can define the polygon Hdgτ (G); it is defined thanks to ωτ as in
[3, Definition 1.1.7]. It starts at (0,0) and ends at (2g,g). Since G has a polarization, this

polygon is symmetric: its slopes are λ1, . . . ,λg,1−λg, . . . ,1−λ1. We define the polygon

Hdg(G) as the mean of the polygons Hdgτ (G).
The polygons PRτ and PR are all equal: they have slope 0 and 1, each of them with

multiplicity g.

We define the Newton polygon of G as in [3, Definition 1.1.8] and denote it Newt(G);

it is also symmetric.

2.5.2. Case (AL). In this case, one has Gπ =Hπ×HD
π . We will consider the p-divisible

group G=Hπ. It is endowed with an action of OL but has no polarization. The sheaf ωG

decomposes as

ωG =
⊕
τ∈T

ωτ .

Fix (aτ,j) ∈ ZT ×{1,...,e}, where e is the ramification index of L. Denote aτ = dimωτ and

bτ = dimωGD,τ . Then h′ = aτ + bτ is independent of τ . In the global setting, (aτ,j) will
coincide with the part of the integers di,τ,j corresponding to Hπ. The Pappas–Rapoport

datum (for (aτ,j)) is then as follows. For each τ ∈ T , one has a filtration

ω[0]
τ = 0⊂ ω[1]

τ ⊂ ·· · ⊂ ω[e]
τ = ωτ ,

where ω
[i]
τ is locally a direct factor of rank aτ,1+ · · ·+aτ,i.

Note that this Pappas–Rapoport datum induces a Pappas–Rapoport datum for GD (see

Definition 2.16). For each τ ∈ T , one can define the polygon Hdgτ (G); it is defined thanks

to ωτ [3, Definition 1.1.7]. It starts at (0,0) and ends at (aτ + bτ ,aτ,1+ · · ·+aτ,e) = (h′,aτ ).
We define the polygon Hdg(G) as the mean of the polygons Hdgτ (G).

The polygons PRτ are defined in [3, §1]. The polygon PR is the mean of the polygons

PRτ .
We define the Newton polygon of G using [3, Definition 1.1.8] and denote it Newt(G).

As we have used Hπ instead of Hπ ×HD
π , these polygons do not need to be polarized

(that is, symmetric in any sense).
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2.5.3. Case (AU). In this case, we define G=Gπ and we denote Fπ by L and by L+

the subfield of elements fixed by �, which we denote by . as a conjugation. It is endowed

with an action of OL but has also a polarization. The sheaf ωG decomposes as

ωG =
⊕
τ∈T ′

ωτ ⊕ωτ ,

where T is the set of embedings of L and T ′ the embeddings of L modulo conjugation.

We define (aτ,j) ∈ ZT ×{1,...,e} as before, and aτ = dimωτ , bτ = dimωGD,τ = dimωτ = aτ ,

and h′ = aτ +bτ . The Pappas–Rapoport condition is then as follows. For each τ ∈ T , one
has a filtration

ω[0]
τ = 0⊂ ω[1]

τ ⊂ ·· · ⊂ ω[e]
τ = ωτ ,

where ω
[j]
τ is locally a direct factor of rank aτ,1+ · · ·+aτ,j .

Note that this Pappas–Rapoport condition coincides with the induced Pappas–

Rapoport condition for ωτ thanks to the compatibility with the polarization. For each

τ ∈ T , one can define the polygon Hdgτ (G); it is defined using ωτ . It starts at (0,0) and
ends at (aτ + bτ ,aτ,1+ · · ·+aτ,e) = (h′,aτ ). We define the polygon Hdg(G) as the mean

of the polygons Hdgτ (G) for all τ ∈ T .

The polygons PRτ are defined in [3]. The polygon PR is the mean of the polygons
PRτ .

We define the Newton polygon of G as Newt(G).

2.5.4. Case (AR). In this case also we still define G=Gπ, which is still polarized and
carries an action as in case (C) or (AU), but we no longer have the λ-compatibility for the

Pappas–Rapoport datum. This does not change anything regarding the polygons: we can

still define Hodge and Newton polygons using the action as in [3, §1] (this does not use the
Pappas–Rapoport datum), and the polarization implies that N ewt(G) =N ewt

(
GD

)
and

Hdg(G) = Hdg
(
GD

)
(equalities between Hdgτ (G) = Hdgτ (G

D)). Moreover, the Pappas–

Rapoport polygon depends only on the integers (dτ,j)τ,j , and these are symmetric for G

and GD (see Remark 2.4).

In all the previous cases, thanks to [3, Théorème 1.3.1], one has the following result:

Proposition 2.25 ([3, Théorème 1.3.1]). One has the inequalities

Newt(G)≥Hdg(G)≥ PR,

and these polygons are all symmetric (except in case (AL)).

2.6. Stratifications

Using the previous polygons, we can define subsets of the reduction of X modulo p, |Xκ|.
Denote by Pol the set of polygonal convex functions on [0, . . . ,h] with break points at

abscissas in 1
eZ. The previous polygons define two maps

|Xκ| Newtπ−→ Pol and |Xκ|
Hdgπ−→ Pol.
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Proposition 2.26. The maps N ewtπ and Hdgπ,τ are semicontinuous, in the sense that
polygons can only descend by generization. Moreover, they have same beginning and

ending points (which are always locally constant and constant in our global situation).

Proof. The result on the Newton polygon is well known (see, for example, [20, Theorem

3.6]. For the Hodge polygon, note that locally on Xκ we can trivialize ωGπ,τ and the

action of π on it is nilpotent (as πe = p = 0 on OXκ
). Thus there is (Zariski locally) a

continuous map

Xκ −→Nilppτ

to the nilpotent cone of GLpτ
, sending a point to the matrix of π. We can check that the

Hodge strata are exactly the pullback of the stratification on the nilpotent cone. But now

the analogous result is known for Nilppτ
.

There is moreover a (constant) map PRπ : |Xκ| −→ Pol. If π is understood from the

context, we will drop it from the previous notations. Recall the following:

Definition 2.27. Define the Newton stratification of the reduction mod p of the Pappas–

Rapoport model X⊗OK
Fp =

∐
νX

ν by

Xν = {x ∈Xκ :N ewt(x) = ν}.

The locus Xν=PR of points x ∈ |Xκ| such that N ewt(x) = PR(x) is called the μ-ordinary
locus (for π).

In particular, the μ-ordinary locus is an open stratum, by Proposition 2.25. There is

another natural stratification with another natural open stratum:

Definition 2.28. The locus Xν=PR where Hdgπ(x) = PR(x) is called the generalized

Rapoport locus (for π). It contains the μ-ordinary locus because of the inequalities recalled
in the previous section. More generally, we can define the Hodge stratification Xκ =∐

νXν by

X(ντ ) =
{
x ∈Xκ : Hdgπ,τ (x) = ντ ,∀τ

}
.

Since for every τ we have Hdgπ,τ ≥ PRτ , we have Hdgπ = PR if and only if Hdgπ,τ =

PRτ for all τ . Note also that in cases (C), (AU), and (AR), because of the polarization

there is a symmetry between Hdgπ,τ and Hdgπ,τ . In particular, we should only consider

symmetric data (ντ ) in these cases, in order to have nonempty strata.

Example 2.29.

1. If the PEL datum is unramified (or if π is unramified), the Hodge polygon Hdgπ is

constant on Xκ, and thus the generalized Rapoport locus consists of all the varieties.

2. In the Hilbert–Siegel case, the generalized Rapoport locus is the Rapoport locus –
that is, the locus where the conormal sheaf ωGπ

is locally free as an OXκ
⊗Zp

OF -

module. It thus contains the μ-ordinary locus (which is just the ordinary locus in

this case).
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2.7. Smoothness of the integral model

In this section, we prove that the Pappas–Rapoport model X is smooth if all the primes

above p fall into types (AL), (AU), or (C) (that is, do not fall into case (AR)). We

will reduce to working locally; thus let G/S be a p-divisible group over a scheme S,

endowed with an action of OL, where L/Qp is a finite extension,2 possibly a polarization,
and a Pappas–Rapoport datum. We call such a p-divisible group with action, eventual

polarization, and Pappas–Rapoport datum a p-divisible D-module, with D referring to

the type of the extra-datum (including the Pappas–Rapoport datum). Denote by H =
H1

dR(G/S) the locally free OS-module associated to G. It is actually a locally free OS⊗Zp

OF -module of rank h. It is endowed, except in case (AL), with a polarization (that is, a

perfect pairing)

〈.,.〉 :H×Hs −→OS,

which is alternating, and such that

〈x,ay〉= 〈s(a)x,y〉, ∀x,y ∈H,∀a ∈ OF .

Theorem 2.30. Assume that for every prime π above p, π falls into cases (AL), (AU),

or (C). Then X is smooth.

Proof. As X is of finite presentation and thus Noetherian, it is enough to show that it
is formally smooth. Let S � R be a surjective morphism of Noetherian rings with ideal

I such that I2 = 0. In particular, I is endowed with nilpotent divided powers, and thus

we can use Grothendieck and Messing’s theory. Thus set x ∈X(R). If p is invertible on
R, as we know that X is smooth in generic fiber, there is y in X(S) above x and we are

done. Otherwise, by Serre and Tate, it is enough to lift the p-divisible group, and we can

divide the task between the primes above p in OB . Thus fix one such prime and G/R

the associated p-divisible group (with extra structures). By Grothendieck and Messing, it
is enough to lift ωG together with its Pappas–Rapoport datum as a locally direct factor

(stable by OF and totally isotropic) in

H⊗R S.

We will successively lift ω
[1]
G , . . . ,ω

[e]
G . Thus fix τ an embedding of Lur. We will work

separately for each τ . Recall that in cases (C) and (AU) we have a polarization

Hτ ×Hτ −→R

that lifts to S (as it is defined on the crystalline site of R). In particular, in case (AU) it

will be sufficient to choose one element in [τ ] = {τ,τ}, say τ , for each embedding τ , lift

the Pappas–Rapoport datum in Hτ , and take its orthogonal, which will be a lift of the

Pappas–Rapoport datum for τ . Thus this is similar to case (AL). In case (C), we will
moreover need the Pappas–Rapoport datum to be totally isotropic.

Recall that the sheaf Hτ is locally free as an R[T ]/Q(T )-module, where Q is the

Eisenstein polynomial of an uniformizer. We refer to §§2.3.2 and 2.5 for the notations.

2G will be Gπ or Hπ and L will be the corresponding Fπ, as in the previous section.
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For example, for all 
 ∈ {1, . . . ,e}, we write Q = Q�Q
� with Q�(T ) =

∏�
i=1(T −πi). We

have a submodule

ω[1]
τ ⊂Hτ [T −π1],

which is moreover totally isotropic for hτ,1 in case (C) by Corollary 2.13. Thus, there

exists a lift (totally isotropic in case (C)) of this module to

Hτ ⊗R S[T −π1],

which we denote by ω̃
[1]
τ . Now let us consider

E1
τ =

(
Hτ ⊗R S/ω̃[1]

τ

)[
Q1

]
.

It is a locally free S[T ]/
(
Q1(T )

)
-module. Indeed, locally one can find a basis e1, . . . ,eh of

Hτ ⊗R S over S[T ]/Q(T ) such that ω̃
[1]
τ is generated by Q1(T )e1, . . . ,Q

1(T )ed. One then

sees that E1
τ is locally free over S[T ]/

(
Q1(T )

)
, with basis e1, . . . ,ed,(T −π1)ed+1, . . . ,(T −

π1)eh. In particular, E1
τ [T −π2] is locally free over S, and contains modulo I the image

of ω2
τ as a locally direct factor. In case (C), the fact that ω̃

[1]
τ is totally isotropic for h1,τ

implies that E1
τ inherits the pairing from Hτ . Thus, it is enough to lift the image of ω2

τ

as a locally direct factor in

E1
τ [T −π2],

which is moreover in case (C) totally isotropic for hτ,2 (by Corollary 2.13). But such a
lift exists (by smoothness of the appropriate partial flag variety), and thus there exists

ω̃
[2]
τ ⊂Hτ ⊗S lifting ω

[2]
τ .

Suppose that we have constructed for 1≤ 
≤ e−1 locally direct factors

ω̃[1]
τ ⊂ ·· · ⊂ ω̃[�]

τ ⊂Hτ [Q�]⊗R S,

which are moreover isotropic for hτ,� in case (C), lifting the previous datum over R to S.
Denote

E�
τ =

(
Hτ ⊗R S/ω̃[�]

τ

)[
Q�

]
.

As before, it is a locally free S[T ]/
(
Q�(T )

)
-module, which contains modulo I the image

of ω�+1
τ as a locally direct factor. In case (C), the fact that ω̃

[�]
τ is totally isotropic for

h�,τ implies that E�
τ inherits the pairing from Hτ . With the same argument as before,

one lifts the image of ω�+1
τ as a locally direct factor in the locally free S -module

E�
τ [T −π�+1],

which is moreover in case (C) totally isotropic for hτ,�+1 (by Corollary 2.13). By induction,

we can thus find a lift of the filtration

0⊂ ω[1]
τ ⊂ ·· · ⊂ ω[e]

τ

to S satisfying all the assumptions of the Pappas–Rapoport datum. Thus by Grothendieck

and Messing (as I2 = 0) there exists a point y ∈X(S) lifting x, and X is smooth.
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Remark 2.31. As shown in the proof, we could have argued slightly differently using a
local model for X in the spirit of [19].

Remark 2.32. Unfortunately, the analogous result is not true in case (AR). In [13,
Theorem 4.5], a local splitting model for U(1,n−1) is constructed for a ramified quadratic

extension (but the global construction of [19] would lead to the same singularities) M
which is regular (thus flat) and whose special fiber is the union of two smooth irreducible
varieties of dimension n−1 crossing along a smooth irreducible variety of dimension n−2.

(See the calculation in Appendix A.)

2.8. Deformations and displays

In order to construct deformations of a point x in Xκ, associated to a datum(
A,λ,i,η,

(
ω
[·]
•
))

, we will deform the p-divisible group A[p∞], the action of OB , the

polarization, and the Pappas–Rapoport condition, and use Serre–Tate theory (because η

is a level structure outside p, we can deform it trivially).
Moreover, using the previous simplification of A[p∞] using OB ⊗ Zp and Morita

equivalence, it is enough to deform the polarized p-divisible OFπ
-modules Gπ together

with their Pappas–Rapoport filtration – that is, the p-divisible Dπ-module for all π. We

thus remove π from the notation, and we have G a (possibly) polarized p-divisible O-
module. To such a p-divisible group over a perfect field k of characteristic p is associated

a Dieudonné module over W (k) (more precisely, its Dieudonné crystal), and we want

to deform it over k[[X]] such that the special fiber at X = 0 corresponds to G, and the
generic fiber satisfies better properties, like being μ-ordinary for example. In order to do

this, we will use the theory of displays (compare [28] and [17] for equivalence with the

étale part). We will be interested mainly in the tools developed in [26, §3.2] (particularly
§3.2.7 and Theorem 3.2.8). In particular, we have the following:

Proposition 2.33 (Zink–Wedhorn; [26, Theorem 3.2.8]). Let k be a perfect field of
characteristic p, G/k (with additional structures ι0,λ0), and denote by P0 the associated

display (with additional structures ι0,λ0). Let N be a W (k)-linear endomorphism of P0

satisfying the following properties:

1. N2 = 0.

2. N is skew-symmetric with respect to λ0.

3. N is O-linear.

Then there exists a deformation (P,ι,λ) of (P0,ι0,λ0) (of display with additional struc-

tures) over k[[t]] whose associated p-divisible group (with additionnal structure) (XN,ι,λ)
lifts (X,ι0,λ0) and such that if P0 is bi-infinitesimal,

(XN,ι,λ)⊗k[[t]] k((t))
perf 
 BT ′ ((P,ι,λ)⊗k[[t]] k((t))

perf
)
,

where BT ′ associates to a crystal (over a perfect field) its p-divisible group.

Remark 2.34. Conditions 1 and 2 in Proposition 2.33 are only needed to lift the

polarization. In particular, they will not be needed in case (AL). We will use this kind of

deformation only to modify the Newton polygon; in particular, we will be able to choose
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any lift of the Pappas–Rapoport datum, which is why we do not make any reference to
it in the proposition.

3. The Hodge stratification

As explained before, we have fixed π ∈ P, and we assume that π is in case (AL), (AU),

or (C). We have also defined Hodge polygons, and the generalized Rapoport locus is by

definition the locus where this polygon is minimal.
We will now prove that this locus is dense.

3.1. Lifting a module with filtration

This is an intermediary section which contains some results concerning the existence of
lifts of modules satisfying certain properties.

Lemma 3.1. Let M be a free k[[X]]-module of rank h, and N1 ⊂ ·· · ⊂Nr ⊂M be direct
factors with Ni of rank di. Let Fil be a k-vector subspace of M ⊗k[[X]] k of dimension l.

There exists a lift Fil of L such that in generic fiber, the dimension of L∩Ni is max(0,l+

di−h).

Proof. We prove this result by induction on the integer r. Let us consider the case r= 1.

Define M =M⊗k[[X]]k, and let s be the dimension of N1∩Fil. Then there exists a basis

e1, . . . ,ed1
of N1 such that the reduction of e1, . . . ,es is a basis for N1∩Fil. One can then

complete in a basis e1, . . . ,eh of M such that the reduction of e1, . . . ,es,ed1+1, . . . ,ed1+l−s

forms a basis for Fil.

If l + d1 ≤ h, one defines Fil to be generated by e1 + Xed1+l−s+1, . . . ,es +

Xed1+l,ed1+1, . . . ,ed1+l−s.
If l+d1 > h, one defines Fil to be generated by

e1+Xed1+l−s+1, . . . ,eh+s−d1−l+Xeh,eh+s−d1−l+1, . . . ,es,ed1+1, . . . ,ed1+l−s.

Now let us turn to the general case. Let L0 be a complementary subspace of Fil∩Nk

inside Fil. One will lift the direct sum L0⊕Fil∩Nk. One will take an arbitrary lift of
L0; by doing so, one reduces to the case where Fil ⊂ Nk. Let s be the dimension of

L1 := Fil∩N1. One will then distinguish two cases.

If s ≤ h− dk, one defines a lift L1 of L1 such that L1 ∩Nk = {0} in the generic

fiber. Considering a complementary subspace Fil
′
of L1 in L, one can use the induction

hypothesis by considering the modules N2 ⊂ ·· · ⊂Nk ⊂M .
If s > h−dk, let e1, . . . ,eh be a basis of M adapted to the filtration N1 ⊂ ·· · ⊂Nk ⊂M .

Assume also that the reduction of e1, . . . ,es is a basis for L1. Let L0 be the vector subspace

of L1 spanned by the reduction of e1, . . . ,eh−dk
. Let us consider the lift L0 of L0 spanned

by e1+Xedk+1, . . . ,eh−dk
+Xeh. Let Fil′ be a complementary subspace of L0 in Fil. To

lift Fil′, we are thus reduced to lifting it in M ′ = Vect(es+1, . . . ,edk
), endowed with the

filtration N1∩M ′ ⊂Nk−1∩M ′ ⊂M ′. We are thus reduced to the case of a smaller k, and

by induction we are done.

In the polarized case, one will use the following lemma:
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Lemma 3.2. Let M be a free k[[X]]-module of rank 2g with a perfect pairing, and N ⊂M

be a totally isotropic direct factor rank g. Let Fil be a totally isotropic k-vector subspace

of M ⊗k[[X]] k of dimension g. There exists a lift Fil of Fil such that in generic fiber, the
dimension of Fil∩N is 0.

Proof. Let us first consider the case where Fil =N ⊗k[[x]] k. Let e1, . . . ,eg be a basis of
N, completed in a basis e1, . . . ,e2g of M, such that the pairing 〈ei,ej〉 is 1 if j = g+ i and 0

otherwise. One will define the module Fil to be generated by the columns of the matrix(
Ig
XA

)
, where Ig is the identity matrix and A is any invertible symmetric matrix of

size g.

Let us now turn to the general case. Define M := M ⊗k[[x]] k, N := N ⊗k[[x]] k, and

L0 = Fil∩N . Let L1 be a complementary subspace of L0 in Fil. Let L1 be a totally
isotropic lifting of L1 in M. One will look for a lift Fil inside L⊥

1 and containing L1. One

is then led to consider the module M1 := L⊥
1 /L1, which is free of rank 2(g− s), where s

is the dimension of L1. The module N ∩L⊥
1 is free of rank g− s, and so is its projection

onto M1. By doing so, one reduces to the previous case.

3.2. Density of the generalized Rapoport locus

In this section, we use the previous lemmas to prove the following:

Theorem 3.3. The generalized Rapoport locus is (open and) dense.

To prove this theorem, we do it for one π at a time and find a lift ‘locally’ – that is, for

Gπ. We will thus consider the possible cases: (AL), (AU), and (C).

Remark 3.4. Again, the analogous result in case (AR) is false, as shown in the examples

in Appendix A.

3.2.1. Cases (AL) and (AU). Proof. Let x be a point of Xκ :=X⊗κ and G=Gπ

the associated p-divisible group. We want to prove that there exists a deformation of x

which lies in the generalized Rapoport locus. Thanks to Grothendieck and Messing, we
deform the Hodge filtration of G. For each τ ∈ T , one uses Lemma 3.1 to deform ωτ . By

duality in case (AU), one automatically has a deformation of ωτ , hence of the whole of

ωG.
Let us now describe the way to lift ωτ . Let D = H1

dR,τ ; it is free as a k[X]/(Xe)-

module. Let M be the (τ -part of the) evaluation of the crystal at k[[t]]; it is free as a

k[[t]][X]/(Xe), and reduces to D modulo t. To lift ωτ , one successively lifts ω
[1]
τ , . . . ,ω

[e]
τ .

First, one lifts ω
[1]
τ in M [X], the X -torsion of M. Let L1 be any such lift. Then in order to

lift ω
[2]
τ , one works in M1 :=X−1L1/L1. One has the submodule N1 =M [X]/L1. One uses

Lemma 3.1 to lift ω
[2]
τ to a module L2 in such a way that the dimension of L2∩M [X] in

generic fiber is max(d1,d2). Then one considersM2 :=X−1L2/L2. One has the submodules

N ′
1 = (M [X] +L2)/L2 and N ′

2 =
(
M

[
X2

]
∩X−1L2+L2

)
/L2. Again, one uses Lemma

3.1, and gets a lift L3 of ω
[3]
τ such that in generic fiber the dimensions of L3∩M [X] and

L3∩M
[
X2

]
are, respectively, max(d1,d2,d3) and max(d1+d2,d1+d3,d2+d3).
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First we prove two auxiliary lemmas.

Lemma 3.5. There exists a lift

(
ω̃
[i]
τ

)
of ω

[1]
τ ⊂ ·· · ⊂ ω

[e]
τ ⊂D in D⊗k[[t]] satisfying the

Pappas–Rapoport conditions and such that

dim

(
ω̃
[i]
τ

)[
Xj

]
= max

0<k1<···<kj≤i
dk1

+ · · ·+dkj
.

Proof. Indeed, by induction we have proven the result for i = 1,2,3. Suppose it is true

for i≥ 1, and denote

Mi =X−1Li/Li, Nj =
(
M

[
Xj

]
∩X−1Li+Li

)
/Li, ∀j ≤ i, L= ω[i+1]

τ /ω[i]
τ .

A direct calculation shows that dimk[[t]]Mi = h, dimkL = di+1, and dimk[[t]]Nj = h−
dim

(
Li

[
Xj

]
\Li

[
Xj−1

])
. We use Lemma 3.1 with these data to find L such that

dimk[[t]]L∩N j =max
(
0,di+1−dim(Li

[
Xj

]
\Li

[
Xj−1

])
.

Let ω̃
[i]
τ be the preimage of L via X−1Li −→Mi; we thus have

dim ω̃
[i]
τ

[
Xj

]
= dimLi∩N j +dimLi

[
Xj

]
=max

(
Li

[
Xj

]
,di+1+dimLi

[
Xj−1

])
= max

0<k1<···<kj≤i+1
dk1

+ · · ·+dkj
.

Thus the lemma is proved.

Lemma 3.6. Let S be a κ-scheme and ω[e] ⊂ (OS ⊗OFur OF )
h
be a sub-OS⊗OF -module.

Then ω[e] is in the generalized Rapoport locus for the datum (di)1≤i≤e (that is, Hdg(ωe) =

PR(di)) if and only if for all j,

dimω[e]
[
Xj

]
= max

0<k1<···<kj≤e
dk1

+ · · ·+dkj
.

Proof. As the two properties are independent of the ordering of the values (di), simplify
d1 ≥ d2 ≥ ·· · ≥ de. Then the last proposition means dimω[e]

[
Xj

]
= d1+ · · ·+ dj , which

means exactly Hdg(i) = PR(i).

Reducing inductively the datum given in Lemma 3.5 to k[[t]]/(tn), one gets a map by

Grothendieck and Messing:

Spf(k[[t]])−→Xκ.

(Note that k[[t]]/(tn)−→ k[[t]]
(
tn−1

)
is endowed with nilpotent divided powers.) But as

Xκ is a scheme, this induces a map x̃ : Spec(k[[t]]) −→ Xκ, generizing our point x, and

such that in generic fiber the module x̃∗ωτ [1/t] is given by ω̃τ [1/t] and thus lies in the
generalized Rapoport locus, by Lemma 3.6.

3.2.2. Case (C). Proof. One keeps the same notations as in the previous section. One

lifts the module ωτ in M. But in this case, the module M has a perfect pairing, and one

needs to consider totally isotropic lifts.
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One starts by considering the module M1 :=M [X]. This module has a perfect pairing

h1 (induced by the one on M ; see §2.3.3 and Remark 2.14), and we can lift the module

ω
[1]
τ to a module L1 ⊂M1, which is still totally isotropic for h1. Then one considers the

moduleM2 :=X−1L1/L1. Since L1 is totally isotropic inM1 for h1, the pairing h2 induces

a pairing on M2. Using Lemma 3.2, one takes a lift L2 of ω
[2]
τ , such that L2/L1 is totally

isotropic in M2 for h2 and disjoint from M [X]/L1 in generic fiber.

One repeats this process and gets lifts L1 ⊂ L2 ⊂ ·· · ⊂ Le. In generic fiber, the

multiplication by X is an isomorphism between Li+1/Li and Li/Li−1 for every 1 ≤ i ≤
e− 1, and the lift Le of ωτ is thus generically free as an OF ⊗τ k[[t]] = k[[t]][X]/(Xe)-
module. As before, by Grothendieck and Messing this leads to an algebraizable map

Spf(k[[t]])−→Xκ

generizing x and whose generic fiber lies in the Rapoport locus.

3.3. Futher strata

As the Hodge stratification is constructed using the nilpotent cone of some GLn, for which

the stratification is a strong stratification, we can investigate the same question for X.
First recall the definition of a strong stratification:

Definition 3.7. Let X be a topological space. A (weak) stratification of X with respect

to a partially ordered set (I, ≤) is a decomposition

X =
∐
i∈I

Xi

such that Xi ⊂
∐

j≤iXj . A (weak) stratification is a strong stratification if, moreover,

Xi =
∐
j≤i

Xj .

Example 3.8.

1. In the case of an unramified PEL datum, the Hodge stratification of Xκ is a strong

stratification (this is trivial, as there is only one stratum).

2. Still in the case of an unramified PEL datum, the Newton stratification and the
Ekedahl–Oort stratification of Xκ are strong stratifications (see [25, Theorem 2] and

[7, Theorem 1.1]).

Proposition 3.9. In general, the Hodge stratification is not a strong stratification.

Proof. This has nothing to with do with abelian varieties but rather with the space

of partial flags on a fixed space, together with a nilpotent operator (called Spaltenstein
varieties). Let K be any field, V =K6, and suppose we are given a full flag

0⊂ V1 ⊂ V2 ⊂ V3 = V ,

with dimK Vi = 2i. Suppose moreover that there is π ∈ EndK(V ) such that π(Vi)⊂ Vi−1

for all i ≥ 1. This corresponds to (the local model of) a Pappas–Rapoport datum (AL)
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with e = 3 and d1 = d2 = d3 = 2. Fix a basis e1, . . . ,e6 of V such that e1,e2 is a basis of
V1 and e1, . . . ,e4 a basis of V2. Then set the following choices for π in this basis:

π1 =

⎛
⎝ 0 I2 0

0 0 0

0 0 0

⎞
⎠ and π2 =

⎛
⎜⎜⎝ 0

⎛
⎝ 1 0 0

0 1 0

0 0 1

⎞
⎠

0 0

⎞
⎟⎟⎠ .

In both cases, π satisfies the condition of a Pappas–Rapoport datum, with π2
j = 0. The

Hodge polygons are associated with the partitions (4,2) and (3,3) of 6, and (3,3)≤ (4,2),

but there exists no deformation from ((Vi),π1) to a space with Hodge polygons (3,3)
which satisfies the Pappas–Rapoport condition. Indeed, if it were the case, then the

Hodge polygon of (π1)|V2
would descend by generization, and thus would remain the

same, and thus the π-torsion of the deformation should intersect V2 only along V1, and
π would send V2 surjectively to V1. Now that means, as π sends V3 to V2 and π2 sends

V3 to 0 (as it is of Hodge polygon (3,3)), π sends V to V1, and thus the kernel of π is of

rank 4 – a contradiction.

Denote X the moduli space of all possible ((Vi),π) with di =2 and π(Vi)⊂ Vi−1. Denote
by X(3,3) the Hodge stratum corresponding to the Hodge polygon of partition (3,3) and

by X(4,2) the analogous one. If X(3,3) ⊃ X(4,2) � x = ((Vi),π1), take C an irreducible

component of X(3,3) passing through x and look at the local ring of C at x, OC,x. This
induces a generization of x such that the Hodge polygon is above (3,3) and under (4,2),

and by the previous calculation cannot be equal to (3,3). Thus it is generically (4,2) too.

This is true for all components C, and thus locally at x, X(4,2) is an open component of
X(3,3), and thus x �∈X(3,3).

We still hope to construct a strong stratification on Xκ, by ‘cutting’ in parts the Hodge

strata. Unfortunately, the situation gets very complicated when the ramification index e
grows. One has, however, the following result when e= 2. Recall that in polarized cases

– (C), (AU), and (AR) – we consider only symmetric data (ντ )τ for the Hodge strata.

Proposition 3.10. If e ≤ 2 and every π falls into case (AL), (AU), or (C), then the

Hodge stratification is a strong stratification.

Proof. If e= 1, there is only one Hodge stratum and everything is trivial. If e= 2, we can

assume dτ,1 ≥ dτ,2. Indeed, in case (C) there is an equality, and in cases (AL) or (AU)

considering the dual group (which coincides with G(s) in case (AU), and thus we can
in case (AU) consider only half of the embeddings τ , as we did in the proof of Theorem

2.30), we can reduce to this case. The τ -Hodge polygon is given by two integers aτ,1 ≥ aτ,2
such that if x ∈Xκ(k), then ωτ,x[π] is a k -vector space of dimension aτ,1 and ωτ,x is of

dimension aτ,1 + aτ,2. As ω
[1]
τ,x is of dimension dτ,1 and of π-torsion by the Pappas–

Rapoport condition, we have that dτ,1 ≤ aτ,1. Thus all the possible τ -Hodge polygons are

classified by couples (aτ,1,aτ,2) with aτ,1 ≥ dτ,1 and aτ,1+aτ,2 = dτ,1+dτ,2. Moreover, if
(aτ,1,aτ,2) and (bτ,1,bτ,2) are two τ -Hodge polygons, the former is above the latter if and

only if aτ,1 ≥ bτ,1. The generalized Rapoport locus corresponds to (aτ,1,aτ,2) = (dτ,1,dτ,2).

Thus we will prove that given any point x ∈X(k) with τ -Hodge polygon (aτ,1,aτ,2) not
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in the generalized Rapoport locus, there is a deformation to k[[t]] with τ -Hodge polygon

(aτ,1−1,aτ,2+1). Fix such a point, and fix a k[π]/π2 basis of H1
dR,τ , e1, . . . ,eh such that

πe1, . . . ,πed1
is a basis of ω

[1]
τ over k and e1, . . . ,er,πed1+1, . . . ,πed1+s (necessarily with

r ≤ d1) induces a basis of ωτ/ω
[1]
τ . Then r+ s = d2 and aτ,1 = d1 + s. As this point is

not in the generalized Rapoport locus, we have s > 0, and thus r < d1. Then set in

H1
dR,τ ⊗k[π]/π2

(
k[π]/π2

)
[[t]]

ω̃τ
[1]

= k[[t]](πe1, . . . ,πed1
) and ω̃τ = ω̃τ

[1]

+k[[t]] (e1, . . . ,er,ed1+s+ ter+1,πed1+1, . . . ,πed1+s−1) .

In case (C), we need to choose a lift of Vect(e1, . . . ,er,πed1+1, . . . ,πed1+s) in π−1ω̃τ
[1]
/ω̃τ

[1]

(which has a perfect pairing), whose intersection with H1
dR,τ [π]/ω̃τ

[1]
is of dimension s−1.

But we can quotient further by Vect(e1, . . . ,er) (which is totally isotropic), and we are

reduced to the case r = 0. In this case, this is as in the proof of the first part of Lemma
3.2, taking the matrix A to be symmetric of rank 1.

Then, as in the proof of §3.2.1, there is a lift of x whose Hodge filtration is given by

ω̃τ . Moreover,

dimk((t))perf
(
ω̃τ ⊗k((t))perf

)
[π] = d1+s−1.

Remark 3.11. The calculation of Appendix A still shows that even when e = 2, the
analogous result in case (AR) is false.

4. The μ-ordinary locus

4.1. Density of the μ-ordinary locus

The goal of this section is to show the following theorem:

Theorem 4.1. Let π be a prime as in §2.5, and assume that it falls into case (AL),
(AU), or (C). Then the μ-ordinary locus (for π) Xν=PR inside X is dense.

To prove the theorem, we will once again follow the strategy of deformations of the
p-divisible group (by Serre and Tate’s theorem), one prime at a time in each case.

Moreover, by Theorem 3.3, we only need to deform p-divisible groups that are already in

the generalized Rapoport locus. Our main tool is proposition 2.33. From now on we will
consider only lifts of a crystal in the sense of [26, §3.2.3]. We thus call a deformation of a

crystal over k a display over k[[t]] of the form Pα for some α∈HomW (k[[t]])(P,W (tk[[t]])P )

in the notation of [26] (with P the base change to k[[t]] of our crystal). A generization
will then be the generic fiber of a deformation.

Remark 4.2. In case (AR), our argument breaks down. It is likely that in general the
μ-ordinary locus is not dense in every irreducible component, similar to the Hilbert case

at Iwahori level described in [24]. This is confirmed by the case of U(1,n−1), calculated

by [13], whose calculation is shown in Appendix A.
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Moreover, for cases (AU) and (C) we will have to use slightly more adapted

polarizations. Indeed, the objects considered have a natural polarization, compatible in a

certain sense to the additional action of a ring O, but not O-Hermitian (or bilinear). As
the methods used in this section are of purely local nature, we can forget about the PEL

datum used to define the variety X, and thus we will freely reuse notation; in particular,

F will denote Frobeniuses in this section. Denote by L/L+ the extension of (local) fields
at the prime considered (thus L = L+ in case (C)), and denote by s ∈ Gal(L/L+) the

nontrivial automorphism (if it exists; s= id otherwise). We denote by e,f the ramification

index and residual degree of L+, and by κ the residue field of L. Denote by Diff−1 =Diff−1
L

the inverse different of L, and O = OL, and tr : Diff−1 −→ Zp. We call a p-divisible D-

module (resp., a D-crystal, a D-display) a p-divisible group (resp., a crystal, a display)

with extra structure depending on the situation (that is, an action of O, together with

a polarization in case (AU) or (C) satisfying certain properties). In this section we can
forget a bit about the Pappas–Rapoport data, as explained later, thanks to Theorem 3.3,

and thus we will not make it appear in the datum D. In cases (AU) and (C), we have the

following:

Proposition 4.3. Let k be a perfect field of characteristic p and G be a p-divisible
D-module. Its Dieudonné module M, a free W(k)⊗Zp

O-module – together with two

applications

V :M −→M and F :M −→M,

which are σ−1 (resp., σ)-linear, satisfying FV = V F = p id – is endowed with an s-anti-
Hermitian WO(k)-pairing

h :M ×M −→W (k)⊗Diff−1

satisfying

h(x,Fy) = h(V x,y)σ, ∀x,y ∈M.

Moreover, if 〈.,.〉 denotes the original alternating pairing on M, we have trF/Qp
h= 〈.,.〉.

Such an h is unique. In particular, in case (C), h is alternating. If P =
(
P,Q,F,V −1

)
is a

D-display over k[[t]] with pairing 〈,〉, then there exists an s-anti-Hermitian W (k[[t]])⊗Zp

O-pairing

h : P ×P −→W (k[[t]])⊗Zp
Diff−1

satisfiying trh= 〈,〉 and vh
(
V −1x,V −1y

)
= h(x,y) for all x,y ∈Q, and which is moreover

compatible with the previous construction over k and k((t))perf .

Proof. The existence of h, the s-anti-Hermitian satisfying trh= 〈,〉, is [14, Lemma 1.1.4.5]

for R =W (k) or R =W (k[[t]]) and R0 = Zp. Thus it suffices to prove the compatibility
with F and V. But for all x,y ∈M,o ∈ O,

troh(x,Fy) = trh(ox,Fy) = 〈ox,Fy〉= 〈V ox,y〉σ = 〈oV x,y〉σ

= tr(h(oV x,y)σ) = tr(oh(V x,y)σ).
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Thus, by [14, Corollary 1.1.4.1] we have h(x,Fy) = h(V x,y)σ, for all x,y ∈M . Similarly,

for a display P,

tr
(
o ·v h

(
V −1x,V −1y

))
= tr

(
vh

(
V −1(ox),V −1y

))
= v tr

(
h
(
V −1(ox),V −1y

))
= v

〈
V −1(ox),V −1y

〉
= 〈ox,y〉= tr(h(ox,y)) = tr(oh(x,y)),

for all o ∈ O, and thus vh
(
V −1x,V −1y

)
= h(x,y). The compatibility is obvious when

looking at the display associated to a Dieudonné module (and unicity).

Unfortunately, it will not always be possible to assume h alternating, even if 〈,〉= trh
is, as shown by the following example:

Example 4.4. Let C = R2 endowed with the R-linear alternating pairing C×C −→ R

given in basis (1,i) of C by (
0 −1

1 0

)
,

whose h is given by i
2z1z2.

But in case (C), as s ∈ Gal(L/L+) satisfies s = id, we have that h is antisymmetric,

and thus alternating (as Char(WO(k)) �= 2).

4.2. Case (AL)

Let xG be a point in the Rapoport locus, with values in a perfect field k, corresponding to

a group G, and fix τ0. Note that any generization of xG still lives in the Rapoport locus.

Let M be the Dieudonné crystal of G over k.

Lemma 4.5. In order to prove the density result, one can assume that for all τ , the first

slope of the Hodge polygon is 0. In particular, for all τ there exists xτ ∈Mτ such that

Fτ (xτ ) �≡ 0(mod π).

Proof. Indeed, otherwise denote by aτ the first slope for all τ ; this means that Fτ :

Mσ−1τ −→ Mτ is divisible by πaτ on the Dieudonné module of G. Denote F 0
τ = 1

πaτ Fτ

and V 0
τ = πaτVτ . Denote by G′ the p-divisible group associated to

(
M,F 0,V 0

)
. Then

it is easily checked that the association G �→ G′ is bijective on a p-divisible group with

O-action with fixed τ -Hodge polygons on the source to fixed τ -Hodge polygons where

each τ -slope is decreased by aτ . Moreover, this is compatible with display deformations

to k[[t]] and specialization to k((t))perf in Proposition 2.33. Thus we only need to deform
G′, whose first Hodge slope is 0 for all τ .

Thus, assume the first slope of Hdgτ (G) is 0 for all τ . If the first slope for Newt(xG)

is also 0, then there is a splitting

G=G0×G′,

where the Newton polygon of G′ does not have a slope 0 [3, Théorème 1.3.2]. If we can

find a deformation of G′ which is μ-ordinary, then we are finished. Thus up to exchanging
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G by G′, we can suppose that the first slope of Newt(G) is nonzero and proceed by

induction on the height of G.

Set x ∈Mτ0 such that F (x) �≡ 0(mod π) (this is possible by the preceding lemma). Let
i(x) be the minimal integer such that

F i(x)(x)≡ 0(mod π).

As the Newton polygon of G does not have a zero slope, there exists such an i(x). Denote

by i(G) (or i(xG)) the maximum of i(x), for x ∈Mτ0 . By the preceding, we know that

i(G)≥ 2.

Lemma 4.6. There exists a generization x′
G of xG such that i(x′

G)> f .

Proof. Suppose i = i(xG) ≤ f . Thus F i(x) ≡ 0(mod π). By the previous lemma, there

is xi−1 ∈ Mσi−1τ such that F (xi−1) �≡ 0(mod π). As y = F i−1(x) �≡ 0(mod π) but

F (y)≡ 0(mod π), (xi−1,y) is a linearly independent family in Mσi−1τ/πMσi−1τ . Define a

homomorphism of M/πM by

Nτ ′ = 0, ∀τ ′ �= σi−1τ, and Nσi−1τy = xi−1, Nσi−1τxi−1 = 0,

and extend N by zero on a complementary basis of Mσi−1τ . Denote by N any nilpotent
lift of N to M. Define DN as the extension of M to W (k[[u]]) given by N as in [26] (see

also [28]). We can calculate

F i
N (x)=FN

(
FN

(
F i−2
N (x)

))
=FN

(
FN

(
F i−2(x)

))
= FN (y⊗1+xi−1⊗u)≡FN (xi−1⊗u)

≡ F (xi−1)⊗u �≡ 0(mod π).

Thus over W
(
k((u))perf

)
, the display DN corresponds to a p-divisible group G′ such

that i(G′)> i, by Proposition 2.33. By induction, we get the result.

Lemma 4.7. There exists a deformation of xG such that the generic fiber is not

infinitesimal.

Proof. By the previous lemma, we can assume F f (x) �≡ 0(mod π). If G is not itself

infinitesimal, let r0 be the minimal integer such that

F r0f (x)≡ 0(mod π).

The family
(
x,F f (x), . . . ,F (r0−1)f (x)

)
is linearly independent mod π. Indeed, suppose we

are given

λ0x+λ1F
f (x)+ · · ·+λr0−1F

(r0−1)f (x)≡ 0(mod π),

and denote by i the smallest integer such that λi �= 0(mod π). Then

F if (x) = λ−1
i

(
λi+1F

(i+1)f (x)+ · · ·+λr0−1F
(r0−1)f (x)

)
,

and thus F (r0−i−1)f
(
F if (x)

)
= F (r0−1)f (x)≡ 0(mod π), which is impossible. Set N such

that

Nτ ′ = 0, ∀τ ′ �= τ, Nx=NF if (x) = 0, ∀i �= 1, and NF f (x) = x.
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Set DN,FN the associated display over W (k[[u]]) which reduces to (M,F ). We calculate

F f
N (x) = F f (x)+uNF f (x) = F f (x)+ux,

and more generally,

F if
N (x) = F if (x)+uF (i−1)f (x0)+ · · ·+uix0.

In particular,

F r0f
N (x) = 0+uF (r0−1)f (x)+ · · ·+ur0x �= 0(mod π).

Thus, the base change to W
(
k((u))perf

)
of DN satisfies r0(DN )> r0(M). By induction,

we can assume that r0 > dimD, and thus that D is not infinitesimal.

By induction on the number of Newton and Hodge slopes of G that are not equal (see

Lemma 4.5), we get a chain of generizations starting to xG and ending at a μ-ordinary

point.

Corollary 4.8. In case (AL), the μ-ordinary locus XPR
μ−ord is dense.

4.3. Case (AU)

In the linear case, as our deformation by N will be polarized – which means that we
deform at the same time Fτ and Fτ – these two deformations might cancel out. Thus, we

will work almost as in [26], by finding a deformation sequence (which ensures that there

will be no cancellations in calculating F 2f
N ). We denote M =M(mod π).

Definition 4.9. (xτ ) ∈M =
⊕

τ Mτ is a deformation sequence if

1. xτ ∈Mτ for all τ ,

2. Fxτ �≡ 0(mod π) for all τ ,

3. if F 2xτ �≡ 0(mod π), then Fxτ = xστ .

We will use Proposition 2.33 to deform a given p-divisible O-module to a μ-ordinary
one. By Theorem 3.3 we can suppose that the p-divisible group G associated to a point

xG ∈ XPR we start with is in the Rapoport locus – that is, Hdg(xG) = PR(xG). In

particular, the first slope of Hdg(xG) coincides with that of PR(xG). We will construct

the deformation by induction, using the fact that if G is not bi-infinitesimal, we can
decompose

G=Get×Gbi×Gm,

where Get is étale, Gm is multiplicative, and Gbi is bi-infinitesimal. If Gbi is μ-ordinary,
then so is G, and thus we only need to deform Gbi. From now on, suppose G is bi-

infinitesimal; we will prove that there exists a deformation of (some modification of)

G that is polarized but not necessarily bi-infinitesimal generically. By induction on the
Newton polygon of the bi-infinitesimal part, we will then deduce that we can deform G

to a μ-ordinary p-divisible group. Just like in the beginning of §4.2, we can suppose that

the first slope of Hdgτ (xG) is 0 for all τ , but here there will be some minor complications,
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and we need to introduce the notion of a not necessarily parallel (NNP) O-crystal, and

the version for displays.

Definition 4.10. Let (aτ )τ∈T be a collection of nonnegative integers such that aτ +aτ ≤
e for all τ . An NNP polarized O-crystal (of type (AU)) of amplitude (aτ )τ over a perfect

field k is a tuple (M,V ,F,ι,h(·,·)), where the following are true:

1. M is a free W (k) module.

2. F is σ-linear and V is σ−1-linear.

3. ι :O −→ EndW (k)M such that F (ι(x)m) = ι(x)F (m) and V (ι(x)m) = ι(x)V (m) for

all x ∈ O,m ∈M .

4. The pairing

h(·,·) :M ×M −→W (k)⊗Diff−1

is perfect and anti-Hermitian, and satisfies

ι(x)h(m,n) = h(ι(x)m,n) = h(m,ι(x)n), ∀x ∈ O,m,n ∈M.

Thus we can decompose

M =
⊕

τ :Lur↪→Cp

Mτ ,

and accordingly we have maps

Fτ :Mσ−1τ −→Mτ and Vτ :Mτ −→Mσ−1τ

such that for all τ , we have VτFτ = pπ−aτπ−aτ IdMσ−1τ
, FτVτ = pπ−aτπ−aτ IdMτ

, and

h(Fτxτ ,xστ ) = h(xτ ,Vτxστ )
σ

and h(Vτxστ ,xτ ) = h(xστ ,Fτxτ )
σ−1

.

The tuple of integers (aτ )τ∈T is called the amplitude of (M,F,V ,ι).

Similarly, we can make the following analogous definition:

Definition 4.11. Assume R= k[[t]] for a perfect field k⊃ κ. An NNP polarized O-display
P over R of amplitude (aτ )τ is a quintuple

(
P,Q,F,V −1,ι,h

)
such that the following are

true:

1. P is a locally free W (R)⊗Zp
O-module via ι :O −→ EndW (R)P .

2. Q⊂ P is a W (R)⊗O-submodule.

3. F : P −→ P and V −1 :Q−→ P are σ-linear and V −1 is an epimorphism.

4. ι :O−→EndW (k)M such that F (ι(x)m) = ι(x)F (m) and V −1(ι(x)n) = ι(x)V (n) for

all x ∈ O,m ∈ P,n ∈Q.

5. The pairing

h(·,·) : P ×P −→W (R)⊗Diff−1
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is perfect and anti-Hermitian, and satisfies

ι(x)h(m,n) = h(ι(x)m,n) = h(m,ι(x)n), ∀x ∈ O,m,n ∈ P.

Thus, we can decompose the action of Our :=OLur ,

P =
⊕
τ

Pτ and Q=
⊕
τ

Qτ

with

Fτ : Pσ−1τ −→ Pτ and V −1 :Qσ−1τ −→ Pτ ,

such that for all τ ,

IRPσ−1τ ⊂ πaτQσ−1τ ,

Qτ/IRPτ ⊂ Pτ/IRPτ is locally a direct W (R)-factor, and

V −1
τ (v(w)x) = πaτπaτwFτ (x), ∀x ∈ Pσ−1τ ,w ∈W (R).

Moreover, we ask that

vh
(
V −1x,V −1y

)
= πaτ+aτh(x,y), x ∈Qσ−1τ ,y ∈Qσ−1τ .

Example 4.12. A polarized O-crystal is a particular case of an NNP polarized O-crystal

for which the amplitude is constant equal to 0 – that is, aτ = 0 for all τ – and similarly

for a display. The Dieudonné module of a p-divisible group over a perfect field k with O-

action, such that the τ -Hodge polygon of G [3] has first slope aτ for all τ , can be modified
to get an NNP crystal of amplitude (aτ )τ (see Proposition 4.14). The base change to k[[t]]

of (the display associated to) this NNP crystal is then an NNP display of amplitude (aτ )τ .

Definition 4.13. The τ -Hodge polygon of an NNP O-crystal (M,F,V ,ι) is defined by

Hdgτ (M,F,V ,ι)(i) =
c1+ · · ·+ ci

e
,

where d= dimOMτ , Mτ/FMσ−1τ 

⊕d

i=1WO(k)/π
ciWO(k), and c1 ≤ c2 ≤ ·· · ≤ cd.

Proposition 4.14. Assume k is perfect and contains κ, the residue field of L. To any

polarized O-crystal (M,F,V ,ι,h), we can associate an NNP polarized O-crystal(
M0,F 0,V 0,ι0,h0

)
,

for which the first slope of Hdgτ
(
M0,F 0,V 0,ι0

)
is 0. Moreover, if aτ denotes for all τ the

first slope of Hdgτ (M,F,V ,ι), then
(
M0,F 0,V 0,ι0,h0

)
is of amplitude (aτ )τ . Moreover,

we have
(
M0,ι0,h0

)
= (M,ι,h), and for all τ ,

Fτ = πaτF 0
τ and Vτ = πaτV 0

τ .

If
(
P,Q,V −1,F,ι,h

)
is the base change of (M,F,V ,ι,h) to k[[t]] (that is, the polarized O-

deformation with N = 0 in Proposition 2.33), we can also associate to it another (NNP)
display by the same operation, such that the Dieudonné modules of the base change over

k and k((t))perf coincide with the previous construction for crystals. In particular, the

association M −→P −→D := P ⊗k((t))perf does not change the Hodge polygons.
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Proof. Indeed, M is a module over W (k)⊗Zp
O, which we can split as M =

⊕
τ Mτ over

τ : Our ↪→ OC . As F is σ-linear, Fτ : Mσ−1τ −→ Mτ , and Fτ is generically inversible,

thus M is free as a W (k)⊗Zp
O-module. By hypothesis, Fτ is divisible by πaτ ; so set

F 0
τ = π−aτFτ . As F∨

τ = Vτ , we have that Vτ is also divisible by πaτ , thus by πaτ , and

we can set V 0
τ = π−aτVτ : Mτ −→ Mσ−1τ . By Proposition 4.3, M is endowed with an

Hermitian pairing

h :M ×M −→W (k)⊗Zp
Diff−1 ,

such that trh= 〈.,.〉 and h(x,Fy) = h(V x,y)σ. Thus, for x ∈Mσ−1τ ,y ∈Mτ ,

h
(
πaτF 0

τ x,y
)
= πaτh

(
F 0
τ x,y

)
and h

(
x,πaτV 0

τ y
)
= πaτh

(
x,V 0

τ y
)
.

Thus,

h
(
F 0
τ x,y

)
= h

(
x,V 0

τ y
)σ

.

M is free over W (k)⊗O, and we have V 0Mτ = 1
πaτ

VMτ , and thus as a display over

W (k), (
V 0

)−1
: V 0Mτ

πaτ−→ VMτ
V −1

−→Mτ .

Now if
(
P,Q,V −1,F

)
is the base change of (M,F,V ,ι,h), we have that P is free over

W (k[[t]])⊗Zp
O. We can thus decompose P and Q over W (R)⊗Zp

O =
∏

τ W (R)τ ⊗Our
τ

O =
∏

τ W (R)τ [π]/(Eτ (π)).
We have the σ-linear morphism

V −1
τ :Qσ−1τ −→ Pτ ,

and we set Q0 = VM0 ⊗W (k) W (k[[t]]), with
(
V 0
τ

)−1
= (1⊗πaτ )V −1

τ : Q0
σ−1τ

πaτ ⊗1−→

Qσ−1τ
V −1
τ−→ Pτ . As Pτ is a free W (R)τ [π]/(Eτ (π))-module, we can also divide Fτ,P =

Fτ,M ⊗ 1 by πaτ , and the rest is a simple verification. As Qσ−1τ = πaτQ0
σ−1τ , we have

that both the τ -Hodge polygons of M and M ′ are those of Q0 – that is, of M0 – with

τ -slopes increased by aτ .

Proposition 4.15. Denote by M a polarized O-crystal and by M0 the nonparallel crystal

associated to it above. Suppose we have a (polarized O-)deformation P0 of M0 by an NNP

display over k[[t]], given as in Proposition 2.33; then we have an associated (polarized

O-)deformation P of M (with P a parallel display) such that
(
P ⊗k[[t]] k((t))

perf
)0

=

P0⊗k[[t]] k((t))
perf . If, moreover, the crystal D0 = P0⊗k((t))perf is not bi-infinitesimal,

then we can decompose

D0 =D0,et×D0−bi×D0,mult,

and we have an associated decomposition of D = P ⊗k((t))perf

D =Da−et×Dbi×Da−mult,

where Da−et is isoclinic of slope 1
ef

∑
τ aτ and Da−mult = (Da−et)

∨
. Moreover, the

association M �→D does not change the Hodge polygons.
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Proof. Let P0 =
(
P 0,Q0,F 0,

(
V 0

)−1
)

be the display associated to the base change of

M0 to k[[t]], and P the analogous display for M. Suppose we are given N a W (k)-linear

morphism of P0⊗k[[t]] k of square 0, which is O-linear and skew-symmetric. We thus have

a deformation P0
N by setting F 0

N = (id+[t]N)F 0 and
(
V 0
N

)−1
= (id+[t]N)

(
V 0

)−1
. Let us

set PN the analogous deformation for P.
We claim that the crystal PN ⊗k[[t]] k((t))

perf satisfies
(
PN ⊗k[[t]] k((t))

perf
)0

=

P0
N ⊗k[[t]] k((t))

perf . Indeed, as FN = (id+[t]N)F on P, and F is the pullback of F

on M , we have that Fτ is divisible by πaτ for all τ ; thus on P ⊗ k((t))perf , (FN )0 is
1

πaτ FN = (id+[t]N) 1
πaτ F , as N is O-linear, and this is

(
F 0

)
N
. The same is true for V −1,

and thus we have the claim. Now if D0 is not bi-infinitesimal, we have a decomposition

D0 =D0−et×D0−bi×D0,mult,

where D0,mult 

(
D0,et

)∨
by the polarization on D0. But as D0 = (D)0, we have the

asserted decomposition of D, and a direct calculation gives the slope of Da−et. As passing

from P to PN does not change the Hodge filtration, we have the assertion on Hodge

polygons.

With this proposition we can explain our strategy. We start with a point in the Rapoport
locus. As any deformation of it is still in the Rapoport locus – by Proposition 4.15, for

example – we will be able to lift the Pappas–Rapoport filtration canonically (compare

Theorem 3.3) and the deformation will still be in the Rapoport locus; thus we can forget
about the Pappas–Rapoport datum for now. Then we will modify the crystal M of our

p-divisible group by Proposition 4.15, deform this crystal inductively by a display, and

ultimately the NNP crystal generization of M0 will not be bi-infinitesimal anymore. Thus

the associated deformation of M will split, and by induction on the Newton polygon we
will be able to conclude. More precisely, we can always write

G=G1×G00×
(
G1

)D
,

by Hodge–Newton decomposition [3, Théorème 1.3.2], where G1 is the biggest subgroup

of G such that the Hodge and Newton polygons of G1 are equal. Note that G00 is still

polarized (and in the Rapoport locus, if G is). The induction is on the height of G00.

There will be a slight issue in the case where aτ + aτ = e for all τ in our method.
Fortunately, we have the following proposition:

Proposition 4.16. Let M be a polarized O-crystal such that for all τ , if aτ denotes the
first slope of Hdgτ , we have aτ + aτ = e. Then the p-divisible group associated to M is

μ-ordinary.

Proof. As FτVτ = p IdMτ
for all τ , this implies that F 0

τ and V 0
τ are, respectively, invertible

σ- and invertible σ−1-W (k)⊗O-morphisms. Thus the Newton slopes of F 0
σf−1τ ◦ · · · ◦F 0

τ

are all equal to 1, and thus Fσf−1τ ◦ · · · ◦Fτ (which we write usually F f ) is isoclinic of
slope 1

e

∑
τ aτ . Thus G is isoclinic, and thus μ-ordinary.

Thus let xG ∈ XPR be a point in the Rapoport locus, and denote by M the bi-

infinitesimal part of its crystal. From now on, by Proposition 4.14, we can suppose that
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M is an NNP crystal, whose first slope for Hdgτ is 0 for all τ . In particular, this means
that for all τ there exists x ∈Mτ such that

F (x) �≡ 0(mod π).

By Proposition 4.16, we can moreover assume that there exists τ0 such that aτ0 +aτ0 <e

(otherwise xG is in the μ-ordinary locus and we are done). Thus we have that Fτ0Vτ0 ≡ 0
(mod π).

Lemma 4.17. Denote f = 2d where [L :Qp] = ef . Let M/W (k) be an NNP polarized

O-crystal as before (bi-infinitesimal with first slope of Hdgτ being 0). Then there exist a

deformation of M to a (NNP polarized O-)display P =
(
P,Q,F,V −1,h

)
over k[[X]] and

x ∈ Pτ0 such that F d(x) �= 0(mod π).

Proof. Suppose that it is not already the case for M – that is, for all x ∈Mτ0F
d(x)≡ 0

(mod π). Take x ∈Mτ0 such that F (x) �≡ 0(mod π). Let r be the maximal integer such
that F r(x) �≡ 0(mod π). Set F r(x)∈Mσrτ and take y ∈Mσrτ such that F (y) �≡ 0(mod π).

Thus F r(x) and y are not collinear and are nonzero modulo π; then we can construct an

endomorphism Nr of Mσrτ that is Oσrτ -linear and such that Nr(F
r(x)) = y and Nr(y) =

0, and N2
r = 0. Then set Nr =−N∗

r ∈ End(Mσrτ ), and for every embedding χ �= σrτ,σrτ ,

set Nχ = 0. N is O-linear and polarized, and N2 = 0. Now in PN =M ⊗W (k)W (k[[X]]),

we can calculate

F r+1
N (x⊗1) = F 2

N

(
F r−1
N (x⊗1)

)
= F 2

N

(
F r−1(x)⊗1

)
= FN (F r(x)⊗1+y⊗X)

= F r+1(x)⊗1+F (y)⊗X ≡XF (y) �≡ 0(mod π).

By induction, we can thus assume that F d(x) �≡ 0(mod π) up to deforming M.

Lemma 4.18. Let M be as in the conclusion of the previous lemma. There exists a

generization D of M such that there exists y ∈Dτ0 satisfying

F d(y) �≡ 0(mod π).

Moreover, there is still x ∈Dτ0 such that F d(x) �≡ 0(mod π).

Proof. If it is not already the case for M, set y ∈ Mτ0 such that F (y) �≡ 0(mod π)

and denote by r the maximal integer such that F r(y) �≡ 0(mod π). We will construct a
deformation such that F r+1(y) �≡ 0(mod π). Choose z ∈Mσrτ such that F (z) �≡ 0(mod π).

We then set N as in the previous lemma:

Nσrτ (F
r(y)) = z, Nσrτ (z) = 0, Nσrτ =−N∗

σrτ , Nχ = 0, ∀χ �= σrτ,σrτ .

The same calculation shows that F r+1
N (y⊗ 1) �≡ 0(mod π). Moreover, F d

N (x) reduces to
F d(x) modulo X, and thus F d

N (x) is still nonzero modulo π as F d(x) is.

Lemma 4.19. Let M be as in the conclusion of Lemma 4.17. Then there exists a

generization D such that F 2d(x) �≡ 0(mod π) for some x ∈Dτ0 .
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Proof. If it is not already the case, let x be the element given in Lemma 4.17, and up
to deforming M, we can also have an element y ∈ Mτ as in Lemma 4.18. Then we can

construct an O-linear N such that N2 = 0 and

NτF
d(x) = y, Nτ (y) = 0, Nτ =−N∗

τ , Nχ = 0 ,∀χ �= τ,τ .

Set
(
P,Q,FN,V

−1
N

)
as in [26]. Then we can calculate

F 2d
N (x) = F 2d(x)+XNF 2d(x)+XF d(y)+X2NF d(y).

But F 2d(x) ≡ 0(mod π), and thus NF 2d(x) ≡ 0(mod π) as well by the linearity of N.
Moreover, F d(y) �≡ 0(mod π), thus

F d(y)+XNF d(y) �≡ 0(mod π),

as it is the case modulo X, and thus F 2d
N (x) �≡ 0(mod π).

Proposition 4.20. Set x ∈ XPR(k). Then there exists a sequence of deformations xi,

i= 0, . . . ,n, such that xi ∈XPR(ki[[Xi]]) for all i= 1, . . . ,n and some perfect field ki above

ki−1((Xi−1)), with k1 = k and x0 = x, xi(mod X) = xi−1 ⊗ki−1[[X]] ki, and xn ⊗kn[[Xn]]

kn((Xn))
perf is μ-ordinary.

Proof. By Theorem 3.3, we can assume that we have constructed x1 and that x1⊗k((X1))

is in the Pappas–Rapoport locus. We will proceed by induction on the number of slopes
of the bi-infinitesimal part of xi already constructed. If xi has no or only one slope for its

Newton polygon, we are done, as it is μ-ordinary. Otherwise we can always assume that

Gxi
is split,

Gxi
=G1

xi
×G00

xi
×G2

xi
,

with the Hodge and Newton polygons of G1
x1

being equal, G2
xi

=
(
G1

xi

)D
, and the first

slopes of the Newton and Hodge polygons of G00
xi

differing. By the previous results, we
can moreover assume that there exists r > 0 and that we have constructed x1, . . . ,xr such

that M0 :=M
((

Gxr
⊗kr((Xr))

perf
)00)0

satisfies the conclusion of Lemma 4.19. Denote

x ∈M0
τ0 such that

(
F 0

)2d
(x) �≡ 0(mod π). We can always assume that

h
(
x,
(
F 0

)d
(x)

)
≡ 0(mod π)). (1)

Indeed, if it is not the case, then for all m ∈Mστ0 ,

h
(
x+V 0m,

(
F 0

)d
(x)

)
= h

(
x,
(
F 0

)d
(x)

)
+h

(
V 0m,

(
F 0

)d
(x)

)
= h

(
x,
(
F 0

)d
(x)

)
+h

(
m,

(
F 0

)d+1
(x)

)σ−1

.
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As
(
F 0

)d+1
(x) �= 0(mod π), there exists m such that this expression vanishes. Replacing

x by x+V 0m – which does not change F 0(x), as F 0
τ0V

0
τ0 ≡ 0(mod π)3 – we are done.

Denote by s the maximal integer such that
(
F 0

)s
(x) �≡ 0(mod π), and write

s= 2dq+ j, 0≤ j < 2d.

Set m0 = F 2(q−1)d+j(x). Then the sequence
(
m0,F

0(m0), . . . ,
(
F 0

)2d−1
(m0)

)
is a defor-

mation sequence. Moreover, by applying
(
F 0

)2(q−1)d+j+i
to formula (1) and by the

semilinearity of h on the left, we have

h
((

F 0
)i
(m0),

(
F 0

)i+d
(m0)

)
= 0, ∀i ∈ {0, . . . ,d}.

We can now follow [26] to construct N and thus a deformation ofM0 which is not infinites-

imal anymore. As h
(
F 2d(m0),F

d(m0)
)
= 0, the subspace Vect

(
F 2d(m0),m0,F

d(m0)
)

(mod π) ⊂ Mσjτ/π⊕Mσjτ/π is totally isotropic. We can thus find a totally isotropic
complement U = Uσjτ ⊕Uσjτ such that h(.,.) induces a perfect pairing between

M0 := Vect
(
F 2d(m0),m0,F

d(m0)
)
(mod π) and U.

We can then set N
(
F 2d(m0)

)
=m0,Nm0 =NF d(m0) = 0, and extend N uniquely to U

such that N is skew-symmetric. Then N2 = 0(mod π) and we can extend N by zero on

(M0⊕U)⊥ and lift to M so that N2 = 0 and is still skew-symmetric and O-linear. Then
we can calculate that for the deformation PN ,(

F 0
N

)2d
(m0⊗1) = F 0

N

((
F 0

)2d−1
(m0)⊗1

)
=
(
F 0

)2d
(m0)⊗1+m0⊗X ≡Xm0(mod Ker(F (mod π))).

In particular, F 0
N is not nilpotent, and thus N0 =P0

N ⊗k((X))perf is not bi-infinitesimal.

The p-divisible group associated to PN gives a k[[X]]-point xr+1 of XPR such that

Gxr+1
⊗k[[X]] k =Gxr

⊗kr[[X]] k and Gxr+1
⊗k((X)) is split,

Gxr+1
=G1

xr+1
×G00

xr+1
×G1,D

xr+1
,

with G00
xr+1

having height less than G00
xi
. By induction on this height, we get the result.

Corollary 4.21. In case (AU), the μ-ordinary locus XPR
μ−ord is Zariski dense.

4.4. Case (C)

In this case, M =⊕τMτ and

h :M ×M −→W (k)⊗Diff−1
F

is OF -linear and alternating. Let xG ∈X(k) be a point corresponding to a group G (with

k perfect). We suppose that xG is in the Rapoport locus (by Theorem 3.3, as in this case

the Rapoport and generalized Rapoport loci coincide).

3Here we use the fact that aτ0 +aτ0 < e.
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Lemma 4.22. If G is bi-infinitesimal and in the generalized Rapoport locus, there exists
a deformation sequence (as in Definition 4.10).

Proof. As G is bi-infinitesimal, denote (for x ∈M) w(x) = sup{n | Fn(x) �≡ 0(mod π)}.
As G is in the generalized Rapoport locus (and in case (C) we have dτ = h

2 , for all τ),

we have for all τ that a xτ ∈Mτ such that w(xτ ) ≥ 1. This is proved exactly as in [26,

Proposition 4.1.4].

Lemma 4.23. There exists a deformation G′ of G such that G′ is not bi-infinitesimal.

Proof. If G is not bi-infinitesimal, any deformation will do. Otherwise, let (xτ )τ
be the deformation sequence given by Lemma 4.22. We can construct a deformation

endomorphism N such that NFxτ = 0 if Fxτ = xστ and NFxτ = xστ otherwise. Indeed,

as h is OF -linear, this is done exactly as in [26, Proposition 4.4.3]. The calculation of
FN using this deformation shows that G′, the deformation of G associated to N, is not

bi-infinitesimal in generic fiber.

Proposition 4.24. In case (C), the ordinary locus is dense.

Proof. By Theorem 3.3, it suffices to prove that each x ∈XPR(k), with k a perfect field,

can be deformed into an ordinary p-divisible group. We can split

G=Gm×G00×Get,

where G00 is bi-infinitesimal. We will argue on the height of G00. If G00 is trivial, then

G is ordinary and we are done. Otherwise, by Lemma 4.23, there is a deformation H of

G00 which is not bi-infinitesimal, and thus G̃=Gm×H×Get is a deformation of G and

htO G̃00 = htOH00 < htOG00.

Thus by induction there exists a deformation of G which is ordinary.

4.5. Ordinary locus

Definition 4.25. A p-divisible group over a base of characteristic p is said to be ordinary

if it is an extension of an étale group by a multiplicative one. Equivalently, it is ordinary

if its Hasse invariant is invertible. Denote by Xord the (open) subset of Xκ of ordinary

p-divisible groups.

Proposition 4.26. We have the following properties;

1. If the ordinary locus is nonempty, it is equal to the μ-ordinary locus and is thus

dense.

2. The ordinary locus is nonempty if and only if
(
d
[i]
τ

)
is constant for all τ,i.

3. The ordinary locus is nonempty if and only if the local reflex field E is equal to Qp.

Proof. If
(
d
[i]
τ

)
is constant, say equal to d, then the Pappas–Rapoport polygon has slopes

0 (d times) and 1 ((h−d) times). In particular,

Xμ−ord =Xord.

https://doi.org/10.1017/S1474748022000019 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000019


On the Geometry of the Pappas–Rapoport Models 2441

If the ordinary locus is nonempty, then a point x corresponding to an ordinary p-divisible
group has a Newton polygon with only slopes 0 and 1, and the same ending point as

PR; and thus as N ewt(x)≥ PR, this means that PR
(
d
[i]
τ

)
has only slopes 0 and 1, and

thus, as the breaking points are at the abscissa d
[i]
τ , the collection

(
d
[i]
τ

)
is constant.

This proves 1 and 2. E is the (finite) extension of Qp, inside K, fixing the collection(
d
[i]
τ

)
. Thus if the ordinary locus is nonempty, E = Qp. For every σ ∈ Gal

(
K/K0

)
, we

have σ · d[i]τ = d
[σ·i]
τ , where i corresponds to a conjugate πi of π and πσ·i = σ(πi). Thus

Gal
(
K/K0

)
is transitive on the collection

(
d
[i]
τ

)
i
. Thus if E = Qp, then d

[i]
τ = dτ for all

i. But Gal
(
K0/Qp

)
is transitive on the set T , and thus if E = Qp, d

[i]
τ = d for all τ,i.

Another way to say it is that using the characteristic 0 description di,τ ′ , τ ′ ∈Hom
(
K,Qp

)
,

we have that Gal(K/Qp) acts transitively on Hom
(
K,Qp

)
.

Appendix A. A specific example in case (AR)

In this appendix we give explicit calculations for the local rings of the Pappas–Rapoport

model for U(1,1) and U(2,1) and a quadratic extension in which p �= 2 is ramified. This

setting has been studied (in slightly greater generality) in [13]. Thus we fix p �=2 and F/Qp

a ramified extension of degree 2, with uniformizer π, and denote π = s(π) its conjugate.

A.1. The case of U (1,1)

For U(1,1), the moduli problem PRZ (local analogue of Definition 2.21 of X ) with values
in an OF -scheme S is given by

– a p-divisible OF -module G over S of OF -height 2 and dimension 2, denoting ι :

OF −→ End(G);

– a polarization – that is, an isomorphism GD 
G(s);

– a locally direct factor ω[1] ⊂ ωG of rank 1, such that

(ι(π)⊗1−1⊗π)ω[1] = {0},
(ι(π)⊗1−1⊗s(π))(ωG)⊂ ω[1].

In characteristic p, we have

ω[1] ⊂ ωG ⊂H1
dR(G) =H1

dR(G)
[
π2

]
.

We can thus look at π−1ω[1], which contains ωG by hypothesis on ω[1], and is locally free

of rank 3. Thus

ω[1]′ :=
(
π−1ω[1]

)⊥
,

where ⊥ denotes the orthogonal with respect to the perfect pairing on H1
dR induced by

the polarization, is locally free of rank 1 and is inside ωG.
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The associated local model M is given by
(
F [1] ⊂F

)
in Λ⊗OE

OS = O2
F ⊗Zp

OS ,
endowed with (say) the pairing in the basis πe1,e1,πe2,e2:

J =

⎛
⎜⎜⎝

0 1

−1 0
0 1

−1 0

⎞
⎟⎟⎠,

satisfying analogous conditions [13, Definition 4.1]. The induced pairing on H1
dR[π] or

Λ/πΛ is given by J̃ (πei,πej) = J (πei,ej) and thus by the matrix I2. To understand

locally the moduli space PRZ⊗Fp, we can make the calculation on the local model M.
As Λ/pΛ is of rank 4 over Zp, this amounts to understanding the possible inclusions F [1] ⊂
F ⊂ Λ⊗OS and their deformations. We will fix once and for all the basis πe1,πe2,e1,e2
of Λ and identify the points of M⊗Fp with 4× 2 matrices, the first column generating
F [1] and the first two columns generating F .

Up to obvious symmetries, a point of M is given by

ω =

⎛
⎜⎜⎝

1 0

x a
b

y

⎞
⎟⎟⎠,

and as πF ⊂ F [1], we must have bx = y; and F is totally isotropic, so b+xy = 0 – that

is, b
(
1+x2

)
= 0. Thus there are two possibilities. It may be that b= 0 and we have

ω =

⎛
⎜⎜⎝

1 0

x 1
0

0

⎞
⎟⎟⎠,

which is not in the generalized Rapoport locus (here this is just the Rapoport locus), as

ω is π-torsion. Or b �= 0 and thus

ωPR =

⎛
⎜⎜⎝

1 0

x a
1

x

⎞
⎟⎟⎠ .

Thus M⊗Fp is locally given by two lines Lb=0 and L1+x2=0 = 0 intersecting at a point

outside of the Rapoport locus,

x0 =

⎛
⎜⎜⎝

1 0

x 1
0

0

⎞
⎟⎟⎠,

such that 1+x2 = 0. Note that 1+x2 = 0 is exactly the condition so that F [1]′ = F [1] –

that is, F [1] is totally isotropic for the induced pairing on Λ/π. L1+x2 is the closure of the

Rapoport locus, and Lb=0 is completely away from the Rapoport locus. In particular, the
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(generalized) Rapoport locus is not dense (and thus neither is the (μ-)ordinary locus).

The local ring at x0 is given by(
Fp[A,B,X]/

(
B
(
1+X2

)))
(B,X−x,A−a)

.

A.2. The case of U (2,1)

The problem is similar. In this case, we define M parametrizing F [1] ⊂ F ⊂ Λ⊗OS

a locally direct factor of ranks 2 and 3, with F being totally isotropic, satisfying

analogous assumptions with respect to π, and Λ = O3
F with the pairing given in the

basis (πe1,e1,πe2,e2,πe3,e3):

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1

−1 0
0 1

−1 0

0 1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Looking at points of M⊗Fp as matrices in the basis (πe1,πe2,πe3,e1,e2,e3), we see that,

up to obvious symmetries,

ω =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0
0 1 0

x y a

b
c

d

⎞
⎟⎟⎟⎟⎟⎟⎠
,

with bx+ cy = d (as πF ⊂ F [1]) and b+xd= 0 and c+yd= 0 (as F is totally isotropic).

This amounts to variables x,y,a,d and an equation d
(
1+x2+y2

)
. Thus, as before, we

have two smooth surfaces (given by d=0 when ω is π-torsion and by 1+x2+y2 when F [1]′

is totally isotropic for the induced pairing), intersecting along a smooth curve (given by
d= 1+x2+y2 = 0). Moreover, for any point z on the curve, the local ring at z is given by(

Fp[X,Y ,A,D]/
(
D
(
1+X2+Y 2

)))
(D,X−x,Y−y,A−a)

.

In this case the surface S : 1+x2+ y2 = 0 contains the generalized Rapoport locus as a
dense subset (corresponding to d �=0) and coincides with its closure, and the other surface

is completely disjoint from the generalized Rapoport locus. In particular, Theorems 2.30

and 3.3 (and thus also Theorem 4.1 and Proposition 3.10) are false in this example too,

as in the previous one.
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