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Abstract

Variations in environmental conditions along gradients play an important role in species distri-
bution through environmental filtering of morphological and physiological traits; however,
their effects on bat diversity remain poorly understood. Here, we investigate the effect of
the distance to the nearest watercourse, terrain elevation, vegetation clutter, basal area and
canopy height on taxonomic, functional and phylogenetic diversity and on the predominance
of some functional traits (body mass, wing morphology and trophic level) of bat assemblages
(phyllostomid and mormoopid bats) in a terra firme forest, in the northeastern Brazilian
Amazon. We captured bats using mist nets in 15 permanent plots over a 25 km2 area of
continuous forest. We captured 279 individuals belonging to 28 species with a total of
77.760 m2.h of sampling effort. Our results showed that bat richness increases as a function
of distance to the nearest watercourse and that the assemblage also changes, with more diverse
taxonomic and functional groups in areas further from the watercourse. Furthermore, elevation
positively affects species richness, and the basal area of the forest positively influences the
average body mass of bats. Taken together, our results demonstrate that subtle variations in
the environmental conditions along a local scale gradient impact on the main dimensions
of bat diversity in primary forests.

Introduction

One of the main goals in ecology is to understand how environmental factors structure animal
communities (Guilherme et al. 2019, McGill et al. 2006), and researchers have long studied the
mechanisms involved (Grinnell 1917, Levin 1992, Sobral & Cianciaruso 2016). Niche parti-
tioning, interspecific competition and environmental filtering through the selection of morpho-
logical, physiological and behavioural characteristics suitable for species permanence in a given
environment (Keddy 1992) play important roles in the distribution of species in a habitat, gener-
ating differences in taxonomic, functional and phylogenetic diversity at different spatial and
temporal scales (Baccaro et al. 2013, Carvalho et al. 2021, Guilherme et al. 2019, Poff 1997).

The relevance of different environmental characteristics, such as vegetation structure, food
availability, terrain elevation and distance to the nearest body of water, has been demonstrated
for amphibians and reptiles (Atauri & Lucio 2001, Fraga et al. 2011), birds (Bueno et al. 2012,
Poulsen 2002), terrestrial mammals (Lees & Peres 2008, Williams et al. 2002) and bats
(Marciente et al. 2015, Pereira et al. 2019, Ramos Pereira et al. 2009). Bats make a good model
for understanding how environmental changes along a gradient affect the distribution of
species within a habitat because they have a high number of species, well-known food guilds
(López-Baucells et al. 2016, Reis et al. 2017), and are very sensitive to environmental variations
(Capaverde et al. 2018, Carvalho et al. 2021).

New World bat assemblages are widely distributed and functionally and taxonomically
diverse, increasingly so towards the equator (Bogoni et al. 2021, Kaufman 1995, Stevens
et al. 2003). In the tropics, more ecological niches have contributed to diversification
of bats into various functional groups, from just one food guild (aerial insectivores) at high
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latitudes to five (i.e., frugivores, insectivores, nectarivores, carnivores
and sanguivores; Kalko et al. 1996a, Stevens &Willig 2000) closer to
the equator. This pattern can be largely explained by the broad
ecological and phenotypic radiation of Phyllostomid bats
(Monteiro & Nogueira 2011), the most diverse family in
terms of feeding guilds (Schnitzler & Kalko 1998). However, because
of their trophic strategies and physiological and morphological
features such as precise thermoregulation and relatively large body
size, phyllostomids are limited to lower latitudes (McNab 1969).
Thus, such features as trophic strategy, physiology and morphology
define specific limits for diversity in New World bats, resulting in
family-specific latitudinal gradients (Stevens & Willig 2000).

In the Tropics, bats have a greater diversity of species at the level
of local assemblages than any other mammal group (Patterson
et al. 1996, Tavares et al. 2017). In the Amazon alone, one of
the regions with highest diversity of bats in the world (López-
Baucells et al. 2016), approximately 90 species can coexist in a
single 25 km2 site (Delgado-Jaramillo et al. 2020). This diversity
of bat species is due to the diversity of microhabitats (e.g., height
and foliage structure) found in the Amazon rainforest (Estrada-
Villegas et al. 2012). Bats, as the only mammals with real flight
capability (Norberg & Rayner 1987), have the potential to exploit
resources in all forest strata. However, the structural complexity of the
forest demands functional characteristics from bat species that allow
them to use these plant strata (Marinello & Bernard 2014). For
example, bats that have wings with a large surface area and rounded
tips are more adapted to the lower strata of the forest, as such charac-
teristics favour shorter flights and greater maneuverability, allowing
greater agility to dodge obstacles in the most obstructed vegetation
of the understory (Marinello & Bernard 2014). On the other hand,
large bats tend to be less agile in more obstructed spaces such as
the understorey; however, their long and narrowwings allow for faster
and longer distance flights to forage in the forest canopy (Marinello &
Bernard 2014). As such, the vegetation structure of the forest provides
different microhabitats and leads to different uses of the space by
different species and bat guilds.

In the Amazon rainforest, terrain elevation and vegetation
structure are already well documented as predictors of bat commu-
nity structure (Bobrowiec & Tavares 2017, Carvalho et al. 2018,
Marques et al. 2012, Marciente et al. 2015, Silva 2012).
However, the studies showing these links have been carried out
comparing very different habitat types: terra firme versus flood-
plain (Bobrowiec et al. 2014), terra firme versus savannas versus
campinaranas (Carvalho et al. 2018) and terra firme versus flood-
plain versus igapó (Ramos Pereira et al. 2010). As such, observed
changes in species composition are abrupt due to more
pronounced differences in the terrain elevation and the vegetation
composition and structure between habitats. However, it is not well
known how bat, or indeed animal assemblages, responds to finer
changes in environmental conditions within each habitat
(Capaverde et al. 2018, Tews et al. 2003). It is possible that more
subtle variations of the same vegetation type can also influence the
diversity and composition of bats at a local scale (Capaverde et al.
2018, Estrada-Villegas et al. 2012, Ober & Hayes 2008).
Furthermore, there is a spatial bias in studies carried out on the
bat fauna of the Amazon, with most located along the Amazon
River channel in areas of easy access, close to large urban centers
such as Manaus, Belém and Santarém (Delgado-Jaramillo et al.
2020). Finally, there is also a clear knowledge gap regarding the
natural and evolutionary history and biotic and abiotic interactions
of bat fauna in the Amazon (Crane et al. 2022, Hortal, et al. 2015),
with few studies analyzing the influence of vegetation structure,

terrain elevation and proximity to water bodies on aspects of
the richness and taxonomic composition of bat assemblages
(e.g., Capaverde et al. 2018, Marciente et al. 2015, Pereira
et al. 2019).

To date, no study has simultaneously assessed the taxonomic,
functional and phylogenetic dimensions of bat diversity in a
continuous forest gradient in the Amazon. Multidimensional
approaches that incorporate species diversity, functional traits
and phylogenetic trees can increase the detectability of ecological
patterns (McGill et al. 2006) because the different components of
diversity can capture different variations in the community. The
mechanisms that give rise to variations in species richness may
not be the same ones responsible for the variation in functional
and phylogenetic characteristics (Cisneros et al. 2014). For
example, Blanchet et al. (2014) demonstrated that themean annual
water temperature and the distance of the river’s upstream–down-
stream gradient negatively affected the phylogenetic diversity of
fish, while these same predictors positively affected species rich-
ness. Graça et al. (2016) demonstrated that the relationship
between the diversity of tropical butterflies and birds was evident
when assessing the variation in butterfly body size (functional
component), but when analyzing species composition (taxonomic
component), there was no relationship. Therefore, the use of func-
tional and phylogenetic approaches, together with the taxonomic
approach, provide more robust information on the mechanisms
that determine the variation in diversity along environmental
gradients (Freitas & Mantovani 2017, Tucker et al. 2017).

In this study, we aim to distinguish how vegetation structure
(vegetation clutter, canopy height and basal area), terrain elevation
and distance to the nearest watercourse affect the three dimensions
(taxonomic, functional and phylogenetic) of α-diversity (richness
and Simpson’s diversity) and the predominance of some functional
traits of the bat assemblage (phyllostomid andmormoopid bats) in
a protected area terra firme forest area in the northeastern Brazilian
Amazon.We expect vegetation clutter to be a physical barrier at the
understory level for bats (Marciente et al. 2015), negatively
affecting all dimensions of α-diversity. Basal area is an indicator
of perches, shelter and food availability (Aguirre et al. 2003,
Carbone et al. 2013, Minor & Kobe 2019). Therefore, we expect
that a higher basal area index will positively impact on the dimen-
sions of α-diversity. Tropical forests show considerable vertical
variation from soil to canopy in terms of vegetable stratification
(Clark et al. 2008), temperature, humidity and light (Parker
et al. 1995), and this complexity of environmental factors stimu-
lates different strategies to take advantage of available resources
(Bazzaz 1975). Therefore, considering that vegetation structure
is an important factor in the availability of shelter and food, we
expect an increase in the dimensions of α-diversity in the higher
parts of the terrain. In addition, soils are sandier, waterlogged
and poorly oxygenated in areas close to water bodies, which limits
the growth of many plant species, affecting the diversity of
resources such as food and shelter for bats in these areas (Costa
et al. 2005, Toledo et al. 2017). Due to these conditions, we expect
a positive relationship between the distance from the nearest
watercourse and the dimensions of α-diversity.

Regarding the functional traits of the bat assemblage, we expect
higher values for mean body mass and wing morphology (relative
wing loading and wing aspect ratio) in environments with fewer
obstacles, which tend to have less vegetation clutter and understory
obstruction, a lower basal area, and a higher canopy. We also
expect higher mean values for body mass, wing aspect ratio and
relative wing loading in lower areas and closer to the nearest
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watercourse due to less vegetation clutter that favors bat navigation
(Ober & Hayes 2008, Sleep & Brigham 2003). Animalivorous bats
have lower values for aspect and relative wing loading (Marinello &
Bernard 2014), and these characteristics allow them to better
exploit environments with more obstacles. Therefore, we expect
a higher average weight of bats of this trophic level in areas with
greater vegetation cluttering, basal area, and lower canopy height
and in higher areas and further away from watercourses, where
vegetation is more obstructed (Oliveira et al. 2015). On the other
hand, phytophagous bats that are more generalists will have higher
average weight in less complex environments, less elevated areas
and closer to the nearest watercourse, due to the greater abundance
of fruits in these areas (Marques et al. 2012).

Methods

Study area

This study was carried out in the Floresta Nacional do Amapá
(FLONA of Amapá), a sustainable use protected area located in
the extreme northeast of the Brazilian Amazon. The FLONA of
Amapá has an area of 459,800 ha (Figure 1 – ICMBio 2016).
The region’s climate is hot and humid, with temperatures ranging
from 24 to 28 °C, and annual precipitation ranging between 2,300
and 2,900 mm (Oliveira et al. 2010, 2020). The wet season, which
lasts from February to May, concentrates 70% of the total annual
precipitation, which can exceed 500 mm/month. The dry season
(September to November) concentrates 30% of annual precipita-
tion and is characterised by <250 mm/month (Oliveira et al.
2010, 2020).

Most of the FLONA of Amapá is located at elevations between
50 and 160 m a.s.l (ICMBio 2016); however, in the northwest and
east portions, the elevation varies from 200 m a.s.l. The phytophy-
siognomy of the FLONA of Amapá is heterogeneous, and the main
vegetation types are dense alluvial forest and dense ombrophilous
forest (ICMBio 2016).

Bat sampling

Sampling was carried out in 15 permanent plots installed in a
system of trails established by the Brazilian Program for

Research in Biodiversity (PPBio; https://ppbio.inpa.gov.br/ –
Figure 1). PPBio uses the RAPELD method (in Portuguese,
RAP = rapid assessment protocol; PELD = long-term ecological
survey) for sampling different biological groups (Magnusson
et al. 2005). The trail system consists of 6 trails installed along
the east-west gradient and 6 trails along the north-south gradient,
covering a total area of 25 km2. The trails allow access to 30 perma-
nent plots systematically distributed at 1 km intervals along the
east-west trails (Magnusson et al. 2013). The plots are 250 m long
and follow the ground-level relief, thus minimising internal varia-
tions in soil and topography. The 15 plots were chosen to ensure
the greatest variation in topography (elevation) and vegetation
structure (e.g., diameter and height of trees) and distance to the
nearest watercourse (Figure 1).

We visited each plot twice during the dry season, between
November 15 and December 2, 2017, and once in the rainy season,
between February 27 and March 7, 2018. During each visit
(sampling night), we captured bats using eight mist nets
(12 × 3 m in size and 14 mm mesh) per plot. The nets were set
up 15 minutes before sunset (~18h:00) at ground level and
remained open for 6 hours (~00h:00), being inspected every 15
minutes (Carvalho et al. 2016). The sampling effort was calculated
following recommendations by Straube and Bianconi (2002), total-
ling 5.184 m2.h per plot and 77.760 m2.h across all plots.

After removing bats from the mist net, we measured their
forearm size with a caliper and body mass with a spring scale
(Pesola brand with an accuracy of ±0.3%). Subsequently, bats were
identified in the field with the help of taxonomic keys and descrip-
tions (Lim & Engstrom 2001, López-Baucells et al. 2016, Reis et al.
2013, 2017). Captured individuals were marked with a collar
with individual identification (Esbérard & Daemon 1999) and
later released. We restricted our analyses to bats of the
Phyllostomidae family and the aerial insectivore Pteronotus sp.
(family Mormoopidae) because bats from other families are not
commonly captured in ground-level mist nets (Kalko et al. 1996a).

Forest structure

We estimated the vegetation clutter using the point-of-intercept
sampling method (Dias-Terceiro et al. 2015). This method consists
of quantifying the number of direct contacts with leaves and

Figure 1. Location of the study area in the
state of Amapá, Brazil (a), southern part of the
Amapá National Forest (b), highlighting the
15 sampling points (black squared) in the
permanent plots (solid line) of the Biodiversity
Research Program (c).
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branches on a 1.5 m long stick held vertically to 50 cm above the
ground (Bobrowiec & Tavares 2017, Dias-Terceiro et al. 2015). We
counted the number of points that touched the stick every 2 m in a
100 m stretch located on the central track of the plot and in the
same portion where the mist nets were installed. This procedure
to estimate the vegetation clutter was carried out in parallel to
and 1 m from the mist nets in order to minimise interferences
caused by the removal of vegetation when the nets were placed.
Thus, the vegetation clutter in each plot was represented by the
total number of contacts with the stick over the 100 m.

Basal area (BA) and canopy height data were obtained through
a vegetation structure inventory carried out previously in accor-
dance with the protocol established by PPBio (Castilho et al.
2014). Trees with diameter at breast height (DBH) ≥1 cm and
<30 cm were inventoried within the plots in an area of
2 × 250 m and trees with a DBH≥ 30 cm were sampled in an area
of 40× 250m. DBHwasmeasured at 1.3m above ground level or at
50 cm above tabular roots or trunk irregularities. The basal area of
the plot was calculated by adding the basal area values derived from
the DBHi of each tree, using the following equation:

BA ¼
X

n
i¼1

�
DBHi
2

� �
2

(1)

where BA is the basal area inm2. The calculation was performed for
trees with 1 ≤ DBH< 30 cm and DBH≥ 30 cm separately (due to
sampling in differently sized areas), and the basal areas were multi-
plied by 20 and 1 (respectively), then added together to provide an
estimate per hectare.

A laser hypsometer (TruPulse® 360) was used to measure the
total height (from the base of the trunk to the top of the crown)
of 1.156 trees (1 – 109 cm DBH) selected in 5 plots. The height
calculation was performed using the tangent method (Larjavaara
& Muller-Landau 2013), using the distance and the lower and
upper angles of the tree in relation to the operator. The relationship
between total height and DBH was adjusted using the Michaelis–
Menten equation to generate an allometric model capable of
predicting height using the following equation:

H ¼ 51:1
DBHi

25:1þ DBHið Þ (2)

Equation 2 was then used to estimate the total height of the
inventoried trees, and the mean height was calculated to represent
the canopy height of the plot as a function of DBH.

Terrain elevation and distance to the nearest watercourse

We used the geographic coordinates of the initial part of each plot
to determine its position and thus obtain the elevation through a
digital elevationmodel (DEM) from the Topodata project available
at http://www.webmapit.com.br/inpe/topodata/, which is derived
from the Shuttle Radar Topography Mission – STRM. The
distances to the nearest watercourse were measured from the loca-
tion of the plots and the network of river channels generated with
the DEM data. Using Quantum GIS 3.6.3 software and data on
river channel networks (Fill sinks modules), we calculated the
shortest distance from the central point of each plot to the closest
point of the river channel.

Functional traits

We chose four functional traits that have previously been shown to
be correlated with the distribution of bats in tropical forests,
namely: body mass, trophic level, relative wing loading and wing
aspect ratio (Castillo-Figueroa & Pérez-Torres 2021, Cisneros
et al. 2014, Marciente et al. 2015). The trait data were obtained
based on data collected during the manipulation of bats in the field
and data from the literature.

Bat body mass may be a determining factor in habitat use
(Hanspach et al. 2012, Ramos Pereira et al. 2009). Large, heavier
bats, such as Artibeus lituratus and Phyllostomus hastatus, prefer
to forage on larger fruits that occur in the tree canopy, whereas
small bats like Carollia spp. prefer smaller fruits that are available
in the lower forest strata (Kalko et al. 1996b, Marques et al. 2012,
Rex et al. 2011, Shanahan & Compton 2001, Voigt 2010). Body
mass was determined as the mean of the body mass of adult indi-
viduals of each species captured in this study.

Both the relative wing loading (division of body mass by the
wing area) and wing aspect ratio (division of the square of the
wingspan by the wing area) directly influence the maneuverability,
agility and flight speed of bats (Marinello & Bernard 2014), being
important predictors of habitat use in foraging (Muller et al. 2012,
Norberg & Rayner 1987). Bats that have a low relative loading and
a lower wing aspect ratio are better able to forage in places with
more obstacles (Marinello & Bernard 2014, Silva 2012). Species
with these characteristics have wings capable of producing the high
curvature necessary to maintain lift in low-speed flights, favoring
success in environments with higher levels of obstruction
(Stockwell 2001). Bats that have a high relative wing loading
and a high wing aspect ratio have constant high-speed flights
and low-energy costs (Norberg & Rayner 1987). These character-
istics favor flights in less obstructed environments and over long
distances in search of food (Norberg & Rayner 1987). Values for
relative loading and wing aspect were obtained from Marinello
& Bernard (2014).

Resource availability is a factor in the distribution of individuals
of all animals trophic guilds, with individuals seeking areas with
better chances of finding available food (Capaverde et al. 2018,
Marinello & Bernard 2014, Marciente et al. 2015, Oliveira et al.
2015, Silva 2012). We classified bats into two trophic guilds:
animalivorous, which includes insectivorous, carnivorous and
hematophagous bats, and phytophagous, which includes frugivo-
rous and nectarivorous bats (Giannini & Kalko 2004, Schnitzler
et al. 2003).

Alpha diversity

We quantified the taxonomic, functional and phylogenetic rich-
ness and diversity of bat assemblages sampled in each plot using
Hill numbers (Chao et al. 2014a, Hill 1973). Hill numbers are
defined by the q parameter, which reflects their respective sensi-
tivity to relative species abundances, facilitating data comparison
(Chiu & Chao 2014, Hill 1973, Roswell et al. 2021). Thus, as the
q parameter increases, the diversity index becomes more sensitive
to common species and less dependent on rare species (Chiu &
Chao 2014). For Hill numbers, q = 0 equals species richness,
as species abundances are not considered, and for q = 2, domi-
nant species receive greater weight than rare species, representing
the inverse of the Simpson dominance index (Chiu & Chao 2014,
Daly et al. 2018, Li 2018a). Thus, for each plot, the taxonomic,
functional and phylogenetic richness and diversity were quanti-
fied considering the variation of the parameter q (q = 0, q= 2),
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through the “hillR” R package (Li 2018b). Specifically, the taxo-
nomic richness (q= 0) of each plot was estimated by constructing
interpolated and extrapolated species accumulation curves using
the “iNEXT” package in R (Chao et al. 2014b, Hsieh et al. 2016).
Comparisons were made with a sample size of 15 individuals,
which is triple the size of the smallest sample. For functional
diversity, Hill numbers incorporate functional distances between
pairs of species using the functional characteristics of the species
(Chiu & Chao 2014, Chao et al. 2019). For phylogenetic diversity,
Hill numbers incorporate a phylogenetic tree (Li 2018a), and we
used a tree derived from the most current phylogeny (Upham
et al. 2019).

Community weighted indexes

The use of indices weighted by the relative abundances of the
species allows for an evaluation of the changes in the mean values
of the characteristics of the assemblage/community (Lavorel et al.
2008). We used the community weighted mean (CWM), which is
the predominance of functional traits of the bat assemblages of
each plot using a weighted average of the functional trait for the
community. The CWM allows access to the average value of func-
tional traits for the community (in our case, the bat assemblage of
each plot), weighting this value by the relative abundances of the
species in the sample in question (Lavorel et al. 2008). We estimate
the CWM through the BAT’ R package (Cardoso et al. 2021).

Data analysis

We evaluated the effect of vegetation clutter, terrain elevation,
distance to nearest watercourse, basal area and canopy height on
each of the richness and diversity dimensions: taxonomic, func-
tional and phylogenetic and on CWM. First, we tested for the exist-
ence of multicollinearity between the predictor variables using
variance inflation factors (VIFs). All predictors showed inflation
results below 4, indicating that collinearity was not affecting the
estimates (Chatterjee & Hadi 2006).

Posteriorly, using generalised linear models (GLM, Gaussian
family), we selected models separately for each q parameter
(q = 0, q = 2) of richness, diversity and for CWM, with all possible
combinations of predictor variables. Model residuals were tested
for normality (Shapiro Wilks, p≥ 0.05) and homoscedasticity
(Breusch–Pagan test, p≥ 0.05). Based on this, we had to perform
two transformations so that the residuals of the models followed a
normal distribution: (1) a square root transformation of the
distance to the nearest watercourse in the selection of models
for CWM of the animalivorous and phytophagous trophic levels;
and (2) a square transformation of mean body mass response vari-
able in models.

To identify the predictor variables with greater explanatory
support for the response variables, the generated models were
selected considering the Akaike information criterion, corrected
for small samples (AICc – corrected Akaike Information
Criterion). The best model was considered to be the one with
the lowest value of AICc (Burnham&Anderson 1998), andmodels
that presented ΔAICc values <2 were considered to also be well
supported. Subsequently, we calculated the parameter estimates,
importance and the unconditional mean of the regression coeffi-
cients and their standard errors for each predictor variable, based
on all models with ΔAICc < 2. The parameter estimates of the
predictor variables were only calculated for the model selections
that did not have the null model as the “best” model (i.e., the
one with greatest explanatory support – ΔAICc = 0). These

estimates and model selection were made using the “Multi-model
inference” package (MuMIn), version 1.40.0 (Barton 2018).
We also confirmed the absence of spatial autocorrelation for the
residuals of all models using Moran’s I (Dale & Fortin 2014).
All packages mentioned above were loaded in the R program,
version 3.6.1 (R Development Core Team 2019).

Results

Diversity trends and environmental features

We captured 279 individuals belonging to 28 bat species of two
families. The most captured species were Rhinophylla pumilio
(46 individuals), Artibeus planirostris (44), Artibeus lituratus
(31) and Pteronotus sp. (31). The species R. pumilio and A. planir-
ostris represented 32% of all captured bats. Phytophagous bats
were more captured (199 captures of 16 species) than were animal-
ivorous bats (80 captures of 12 species – (Supplementary
Material – Table S1)).

The plots covered an understory obstruction gradient between
513 and 2.378 touches (1.354.53 ± 636.62; mean ± SD), while basal
area ranged from 5.46 to 18.5 m2/ha (12 .51 ± 3.32 m2/ha;
mean ± SD), and the canopy height varied from 10.69 to
15.26 m (12.38 ± 1.45; mean ± SD. Supplementary Material –
Table S1). The terrain elevation varied in altitude from 99 to
149 m (123.6 ± 13.70 m; mean ± SD). The distance to the stream
ranged from 37.48 to 671.46 m (307.11 ± 160.32 m; mean ± SD.
Supplementary Material – Table S2).

Environmental factors driving richness and alpha diversity
components

Considering the five predictor variables used for model selection,
distance to the nearest watercourse was the most important
predictor (0.64) for taxonomic richness (q = 0), followed by eleva-
tion (0.36). Taxonomic richness increased with distance to the
nearest watercourse and with elevation (Figure 2; Table 1).
Taxonomic and functional diversity also increased with distance
to the nearest watercourse (q = 2; Figure 2; Table 1), this being
the most important predictor for taxonomic (0.62) and functional
diversity (0.83).

No predictor variable explained phylogenetic richness (q = 0;
Supplementary Material – Table S7). For functional richness
(q = 0) and phylogenetic diversity (q = 2), the null model had
the greatest explanatory support (Supplementary Material –
Tables S5 and S8).

Environmental factors that drive the predominance of
functional traits

For CWM, the null model had the greatest explanatory support in
all cases except bodymass (ΔAICc< 2 – SupplementaryMaterial –
Table S9-S13). For this functional trait, basal area and vegetation
clutter had greater explanatory support, with basal area being
present in two of the best selected models (Supplementary
Material – Table S9). The basal area was more important (0.76),
followed by vegetation clutter (0.29), to predict the variation in
mean body mass. However, only the relationship between basal
area and mean body mass was significant (p= 0.05 – Table 1).
Thus, areas occupied by trees with greater basal area tend to also
be occupied by bat species with higher mean body mass (Figure 3).
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Figure 2. Relationship between the variables selected as the best predictors for taxonomic richness (q = 0 – a, b), taxonomic diversity (q = 2 – c), and functional diversity
(q = 2 – d) in a community of phyllostomid and mormoopid bats in the terra firme forest of the northern Brazilian Amazon. The straight line represents the model estimate
and the gray area the 95% confidence interval.

Table 1. Estimates of parameters, standard error and unconditional regression coefficient (SE) of the set of models withΔAICc< 2 related to predictor variables with
taxonomic richness (q= 0), taxonomic diversity (q= 2), functional diversity (q= 2), and with the CWM of themean bodymass. The predictors that enter the models are
distance from the nearest watercourse – DNW; elevation – ELE; basal area – BA; and vegetation clutter – VCL.

Dependent variable Predictor Estimation Standard error SE Z-value p-value

Taxonomic richness (q= 0) DNW 0.91 0.37 0.18 1.64 0.02

ELE 0.83 0.39 0.07 1.59 0.05

Taxonomic diversity (q= 2) DNW 0.95 0.47 0.03 1.87 0.06

Functional diversity (q= 2) DNW 7.12 2.73 1.77 12.47 0.02

CWM – mean body mass (g) BA 179.07 83.53 15.35 342.79 0.05

VCL −128.17 80.68 286.30 29.96 0.15
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Discussion

We found that taxonomic richness was positively influenced by the
distance to the nearest watercourse and terrain elevation (Figure 4).
In addition, taxonomic and functional diversity were positively
influenced by the distance to the nearest watercourse. Across
the Amazon basin, terrain elevation and distance to water bodies
have been shown to be important predictors of the richness and
taxonomic composition assemblages of bats (Bobrowiec &
Tavares 2017, Capaverde et al. 2018), terrestrial mammals
(Kinap et al. 2021, Michalski et al. 2015), understory birds
(Bueno et al. 2012, Cintra & Naka 2012, Oliveira et al. 2019),
amphibians and reptiles (Fraga et al. 2011, Rojas-Ahumada
et al. 2012, Tavares et al. 2019) and plants (Drucker et al. 2008,
Schietti et al. 2014). Therefore, our results show that, as occurs
in the southwest and central Amazon, variations in terrain eleva-
tion and distance to waterbodies are crucial for structuring bat
assemblages at small scales in terra firme forests in the northeastern
Brazilian Amazon.

We found that the taxonomic richness of bats increases with
terrain elevation. Subtle variations (up to 100 m a.s.l.) in terrain
elevation have been shown to be fundamental for the structuring
of bat assemblages (Bobrowiec & Tavares 2017, Capaverde et al.
2018), as terrain elevation has a direct influence on the hydrolog-
ical and edaphic characteristics of the soil, playing an important
role in determining the composition of the plant assemblage
(Costa et al. 2008, Schietti et al. 2014). For example, in the central
Amazon, the richness and abundance of palm trees and shrubs
(Kinupp & Magnusson 2005, Rodrigues et al. 2014) and the struc-
ture of woody vegetation (Castilho et al. 2006) tend to increase with
elevation of the terrain. In addition, tall trees (>70 m) are more
frequently found at higher elevations (>100 m a.s.l.) in
Amazonian forests (Gorgens et al. 2021). More complex forest
provides more niches and different ways to harness environmental
resources, greater availability of food, shelter and nesting sites
(Bazzaz 1975, Tews et al. 2003). Thus, forests in higher elevation

areas of the Amazon lowlands tend to have a greater frequency of
large trees, which produce greater structural complexity, increasing
the number of available niches and allowing more bat species to
coexist.

The lower value of taxonomic and functional diversity found
for areas closer to watercourses may be due to the greater domi-
nance of the frugivores Rhinophylla pumilio, Artibeus planirostris,
Artibeus lituratus and the insectivore Pteronotus sp. In these
regions, these species represented 54% of the total captures.
Soils are more sandy and poorly oxygenated in regions close to
waterbodies, which limits the growth ofmany plant species in these
regions (Costa et al. 2005, Pansonato et al. 2012, Rodrigues et al.
2014, Toledo et al. 2017). However, in the Amazon region, several
plant species, including pioneers such as Ficus, Cecropia and
Vismia, manage to persist under these conditions (Ferreira 2000,
Salo et al. 1986). Bats of the genera Artibeus and Rhinophylla
are known for their strong associations with fruits of plants of these
genera (Andrade et al. 2013, Giannini & Kalko 2004). In the
FLONA of Amapá, in the present study, we observed a higher
occurrence of Ficus spp., including fruiting individuals, closer to
the watercourses. In addition, natural erosion, and subsequent
sediment deposition due to river dynamics, forms sandbanks
and creates habitats of primary succession on riverbanks
(Peixoto et al. 2009). In these environments, there is less competi-
tion for solar radiation, and the water table is closer, which allows
plants adapted to these conditions to allocate more energy to fruit
production (Van Schaik et al. 1993). Consequently, plants of the
genus Ficus, Cecropia, Piper and Vismia on riverbanks offer a
greater abundance of fruit than plants of these genera in the forest
interior (Marques et al. 2012). In addition to this fruit abundance
for frugivorous bats, habitats close to watercourses have a signifi-
cant influence on insect biomass and represent an important
foraging habitat for many insectivorous bats (Fukui et al. 2006,
Holloway & Barclay 2000, Hagen & Sabo 2011, 2014). Thus,
the abundance of food for the bats R. pumilio, A. planirostris,
A. lituratus and Pteronotus sp. in areas close to the watercourses
may have contributed to the increase in the number of individuals
of these species, reducing the Simpson diversity values (q = 2),
as this index is more sensitive to dominant species (Chiu &
Chao 2014).

In addition to the increased dominance of a few species close to
the watercourses, the decrease in taxonomic richness may be one of
the factors responsible for the lower taxonomic diversity in these
locations. The conditions that favor the dominance of some species
(e.g., high abundance of some food resources, less dense under-
growth) close to watercourses may inhibit the existence of other
species in these areas (Oliveira et al. 2015), reducing the taxonomic
richness. Locations away from watercourses may not have a great
abundance of certain resources, but they may contain a greater
diversity of them, contemplating a greater number of bat species.

Contrary to our expectations, only one functional trait of the bat
assemblages was influenced by environmental variables. The mean
body mass weighted by abundance was higher in areas that had a
larger basal area (Figure 5). Larger trees have a greater ability to
acquire and store nutrients and carbohydrates (Carbone et al.
2013) and tend to produce more fruits (Minor & Kobe 2019).
Thus, this greater availability of fruits reflects in a greater biomass
of primary consumers, such as bats (Ramos Pereira et al. 2009).
In addition, bat size can be an important and limiting
criterion in habitat use (Hanspach et al. 2012, Stockwell
2001). For example, locomotion through flight requires bat
species to expend high rates of energy during foraging
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Figure 3. Relationship between the mean body mass of phyllostomid and
mormoopid bat species (measured using the community weighted mean – CWM)
and basal area in a terra firme forest in the northeastern Brazilian Amazon. The straight
line represents the model estimate and the gray area the 95% confidence interval.
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(Norberg & Rayner 1987, Voigt & Holderied 2012), and larger bats
have a higher absolute energy demand (Winter & Von Helversen
1998). Therefore, larger bats are more favored when foraging in
areas where the trees have a larger basal area, as the energy costs
incurred by the flight activity are offset by the greater availability of
food in these areas.

Despite the low number of captures, compared to other studies
carried out in terra firme forests (e.g., Capaverde et al. 2018,

Carvalho et al. 2021, Marciente et al. 2015), our multidimensional
approach proved to be efficient to understand the effect of environ-
mental filters on the distribution of bats in this Amazon ecosystem.
Overall, our study supports the hypothesis that variations in
environmental factors in the same forest habitat are sufficient to
structure bat assemblages. Specifically, we show that increasing
distance to the nearest watercourse and small variations (<50 m
a.s.l) in elevation exert a positive effect on the taxonomic and

Figure 4. Schematic illustration of the main results regarding the alpha diversity of bats (different types of colours). Higher and more distant areas of waterbodies are richer in
species (Hill numbers q= 0). Furthermore, the bat assemblage is more taxonomically and functionally diverse (Hill numbers q = 2) in higher areas and further away from
waterbodies.

Figure 5. Schematic illustration showing the relationship of mean body mass of bat species (measured using community weighted mean – CWM) with basal area in a terra firme
forest in the northeastern Brazilian Amazonia. In the forest, bats with higher mean bodymass (in green) weremuchmore favored in areas with a higher basal area index (pink band
delimitation).
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functional richness and diversity of bats in terra firme forest.
Furthermore, only the average body mass stood out among the
functional traits of the bat assemblage (CWM), showing an asso-
ciation with the basal area of the forest.

Implications for conservation

Our study demonstrated that taxonomic and functional diversity
increase with distance (up to 600 m) to the nearest watercourse.
Brazilian environmental legislation requires that the vegetation
along watercourses is protected in Areas of Permanent
Preservation. However, this legislation only protects 30 m from
the riparian strip in streams <10 m wide (Brasil 2012).
Therefore, if we consider our results, the minimum strip of
30 m left on each side of the streams may not be sufficient for
the preservation of different species of bats, and consequently,
of the ecosystem services provided by the group (e.g., seed
dispersal).

We also found a positive relationship between the mean body
mass of bats and the basal area of trees, which could be a variable to
be considered in future management plans for selective logging.
Due to the increase in human population, and with it the increased
demand for timber resources (Kraxner et al. 2013), tropical forests
are being degraded at an alarming rate by selective logging (Asner
et al. 2005, Hansen et al. 2013, Lindquist et al. 2012). In Brazil, the
current government has tried to make the bidding model and
contracts for forest concessions more flexible to make the process
faster and more attractive (Menegassi 2021). For example, the
FLONA of Amapá started a process for logging in an area of
226.000 hectares, which corresponds to almost half of this
protected area (Serviço Florestal Brasileiro 2019, 2020).
Therefore, it is necessary to promote forest management plans that
prioritise the preservation of biological and physical elements such
as large trees, which are the focus of current exploration, as well as
hollow and dead trees, which are crucial for the supply of food,
perches, and shelters for the bat fauna.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/S0266467422000438
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