

Volume: 31

Number: 1

June 2018

Available online at www.journals.cambridge.org

Nutrition Research Reviews

Volume 30, 2017 ISSN: 0954-4224

Aims and Scope

Nutrition Research Reviews publishes comprehensive and challenging review articles on selected key topics in nutritional science. Authors are encouraged to take a critical approach in appraising the literature while also aiming to advance new concepts and hypotheses. The journal publishes both solicited and unsolicited articles.

Nutrition Research Reviews is published twice a year by Cambridge University Press on behalf of The Nutrition Society.

The contents page of this journal is available on the Internet before publication at www.cambridge.org/nrr

Editor-in-Chief

J V Woodside, Belfast, UK

Deputy Editor Jos Houdijk, Scottish Agricultural College, UK **Editorial Board** M Ashwell, Baldock, UK E Bandera. New Brunswick, USA J L Black, Warrimoo, Australia D Dardevet, Theix, France C Edwards, Glasgow, UK Javier Gonzalez, Bath, UK C Haskell-Ramsey, Newcastle, UK J M Hibbert, Atlanta, GA, USA T Hill, Newcastle-upon-Tyne, UK J K Lodge, Newcastle-upon-Tyne, UK C Lowis, Norwich, UK H C Lukaski, Grand Forks, ND, USA N W Solomons, Guatemala City, Guatemala W Stonehouse, Adelaide, Australia C M Weaver, West Lafayette, IN, USA K M Younger, Dublin, Ireland

The Nutrition Society has as its objective the advancement of the scientific study of nutrition and its applications to the maintenance of human and animal health.

Application of membership is invited from anyone whose work has contributed to the scientific knowledge of nutrition, whether such work has been in the laboratory, the field or the clinic, and whether experimental, clinical, agricultural or statistical in nature. There is also a student membership scheme with reduced subscriptions.

Particulars of The Nutrition Society and application forms for membership are available from The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Tel: +44 (0)20 7602 0228, Fax: +44 (0)20 7602 1756, Email: office@nutsoc.org.uk

The Nutrition Society Home Page is at http://www.nutritionsociety.org

NUTRITION RESEARCH REVIEWS 2018

Volume 31 No. 1 June 2018

Editor-in-Chief

J V Woodside Belfast, UK

Nutrition Research Reviews Volume 31, 2018 ISSN: 0954-4224

Publishing, Production, Marketing, and

Subscription Sales Office: Cambridge University Press University Printing House Shaftesbury Road Cambridge CB2 8BS, UK

For Customers in North America: One Liberty Plaza New York NY 10006

NY 10006 United States

Publisher: Caroline Black

Nutrition Research Reviews is an international journal published biannually (June and December) by Cambridge University Press on behalf of the Nutrition Society.

Subscription information:

Volume 31 2018 (2 issues) Internet/print package: £315/\$615 American only/€467 EU only Internet only: £213/\$395 Americas only/€305 EU only

Back volumes are available. Please contact Cambridge University Press for further information.

Claims for non-receipt of journal issues will be considered on their merit and only if the claim is received within six months of publication. Replacement copies supplied after this date will be chargeable.

US POSTMASTERS: please send address corrections to *Nutrition Research Reviews*, Cambridge University Press, 100 Brook Hill Drive, West Nyack, New York 10994–2133.

Information for Authors: The journal publishes both solicited and unsolicited review articles. For unsolicited material, authors are asked to submit a summary of the article to the Editor-in-chief in the first instance:

Professor Jayne Woodside Centre for Public Health Queen's University Belfast Institute of Clinical Science B Grosvenor Road Belfast, BT12 6BJ UK Tel: 44(0)2890632585 Fax: 44(0)2890235900 Email: j.woodside@qub.ac.uk

Directions to Contributors: are available from the Editor-in-chief.

Offprints: The author (or main author) of an accepted paper will receive a free PDF of their paper and a voucher copy of the issue in which their paper has been published. Additional offprints are available for a fee and should be ordered at proof stage. No page charges are levied by this journal.

Copyright: As of July 2000 the copyright of all articles submitted to *Nutrition Research Reviews* are retained by the authors or their institutions. For articles prior to this date permission for reproduction of any part of the journal (text, figures, tables or other matter) in any form (on paper, microfiche or electronically) should be sought directly from the Society, at: The Publications Office, The Nutrition Society, 10 Cambridge Court, 210 Shepherds Bush Road, London W6 7NJ, UK.

Disclaimer: The information contained herein, including any expression of opinion and any projection or forecast, has been obtained from or is based upon sources believed by us to be reliable, but is not guaranteed as to accuracy or completeness. The information is supplied without obligation and on the understanding that any person who acts upon it or otherwise changes his/her position in reliance thereon does so entirely at his/her own risk. Neither the Society nor Cambridge University Press accepts responsibility for any trade advertisement included in this publication.

This journal is printed on acid-free paper from renewable sources. Printed in the UK by Bell & Bain Ltd., Glasgow.

This journal issue has been printed on FSC-certified paper and cover board. FSC is an independent, non-governmental, not-for-profit organization established to promote the responsible management of the world's forests. Please see www.fsc.org for information.

Subscribers may register for free access to the electronic version of *Nutrition Research Reviews*. For more information visit the website at: journals.cambridge.org

Nutrition Research Reviews is covered by the Science Citation Index[®], Current Contents[®] / Agriculture, Biology & Environmental Sciences, SciSearch[®], Research Alert[®], Index to Scientific Reviews[®], EMBASE/Excerpta Medica, Chemical Abstracts Services, CINAHL[®] Database, CAB ABSTRACTS[®], Global Health, BIOSIS[®] Database, SIIC Databases

Vol. 31 No. 1 June 2018

Denis Burkitt and the origins of the dietary fibre hypothesis	
John H. Cummings & Amanda Engineer	
Introduction	1
Surgeon Captain T. L. (Peter) Cleave MRCP, RN (1906–1983)	2
G. D. Campbell MD, FRCP, FRS (South Africa) (1925–1998)	3
Cleave and Campbell	3
Neil Stamford Painter, MS (London), FRCS, FACS (1923–1989)	4
A. R. P. Walker PhD, DSc (1913–2007)	6
Hubert (Hugh) Carey Trowell OBE, MD, FRCP (1904–1989)	6
Denis P. Burkitt CMG, MD, FRCS, FRS (1911–1993)	8
Defining dietary fibre	11
Credit to Cleave	12
An abiding truth?	13
Acknowledgements	13
References	13

16
17
17
18
18
20
20
23
23
27
27
27
29
29
29
29

Probiotics, prebiotics, synbiotics and insulin sensitivity	
Y. A. Kim, J. B. Keogh & P. M. Clifton	
Introduction	35
Gut microbiota in individuals with type 2 diabetes mellitus and obesity	35
Probiotics and effects of probiotics on glucose metabolism in human interventions	36
Other fermented food	39
Potential mechanisms of action of probiotics	39
Prebiotics and effects of prebiotics on glucose metabolism in human interventions	40
Fructo-oligosaccharides	40
Inulin	43

Oligofructose-enriched inulin	43
Resistant starch	43
Other potential prebiotics	43
Potential mechanisms of action of prebiotic-derived SCFA in insulin sensitivity	43
SCFA and free fatty acid receptors	43
Anti-inflammatory effects	43
SCFA and angiopoietin-like protein 4	44
SCFA and intestinal gluconeogenesis	44
Synbiotics and effects of synbiotics on glucose metabolism in human interventions	46
Conclusion	46
Acknowledgements	46
References	46

<i>In vitro</i> and <i>in vivo</i> antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative
review of evidence
Anthony Fardet & Edmond Rock
Introduction
In vitro studies
Dairy products (among food groups)
Milk
Antioxidants in milk
Influence of animal species, fat content, thermal treatments and storage
Conclusions
Yoghurts and other fermented milks
Antioxidant potential
Influence of the mammal species
Influence of casein polymorphism
Influence of fermentation and storage
Influence of the probiotic strain
Specific case of kefir
Influence of <i>in vitro</i> digestion
Conclusions
Cheeses
Influence of cheese processing and composition
Influence of ripening time
Influence of <i>in vitro</i> digestion
Conclusions
Animal studies
Milk and milk proteins
Fermented milks
Cheeses
Conclusions
Human studies
Dairy products
Milk and milk-derived proteins
Fermented milk and probiotic yoghurt
Conclusions
Conclusions
Acknowledgements
References

Milk products in the dietary management of childhood undernutrition – a historical review	
Veronika Scherbaum & M. Leila Srour	
Introduction	71
Terms used in this review	72
Use of milk products in infant and young child feeding until the 20th century	72
Use of milk products in nutrition programmes in the first half of the 20th century	73
Nutritional interventions and protein-role controversies	73
Development of milk products used for dietary interventions	74
Growing commercialisation of ready-to-use foods	75
Strategies to reduce the costs of milk-based ready-to-use foods	75
Limitations of current studies, knowledge gaps and research needs	76
Challenges regarding milk-based dietary interventions	76
Conclusion	77
Acknowledgements	77
References	77

Resveratrol and inflammatory bowel disease: the evidence so far	
Sandra Nunes, Francesca Danesi, Daniele Del Rio & Paula Silva	
Introduction	85
Resveratrol occurrence and synthesis	85
Absorption, bioavailability and metabolism of resveratrol	86
Effects of resveratrol on inflammation and inflammatory bowel disease	88
Inflammatory bowel disease pathophysiology	88
Effects of resveratrol on inflammation in vitro	88
Effects of resveratrol on inflammation in animal studies	90
Resveratrol in human clinical trials	93
Conclusions	94
Acknowledgements	94
References	95

Evidence for the age-specific relationship of food insecurity and key dietary outcomes among US children and adolescents

Heather A. Eicher-Miller & Yanling Zhao	
Introduction	98
Methods	101
Results	101
Children aged 1–5 years	101
Children aged 6–11 years	108
Children aged 12–19 years	108
Discussion	109
Children aged 1–5 years	109
Children aged 6–11 years	109
Children aged 12–19 years	109
Limitations	110
Temporality	110
Specificity	110
Other considerations	111
Conclusion	111
Acknowledgements	111
References	112

Magnesium homeostasis in cattle: absorption and excretion	
Holger Martens, Sabine Leonhard-Marek, Monika Röntgen & Friederike Stumpff	
Introduction	114
Magnesium homeostasis	114
Plasma magnesium	115
Distribution of magnesium	115
Regulation of magnesium homeostasis	115
Mg ²⁺ absorption from the ruminant gastrointestinal tract	115
Site of magnesium absorption	115
Physiological significance of the rumen	116
Absorption from the large intestine	116
Mechanism of ruminal Mg ²⁺ transport	116
Epithelial mechanisms	116
Saturation of Mg ²⁺ transport	117
Modulation of ruminal Mg ²⁺ transport	118
The classical implications of K^+	118
Site of K ⁺ effect	118
The effect of K^+ and Mg^{2+} concentrations	118
Meta-analysis of Mg^{2+} digestion: reduction by K^{+}	118
The role of Na^+	119
Protein and ammonia	119
Ruminal pH	120
Mg_{2+}^{2+} absorption and readily fermentable carbohydrates	120
Mg^{2+} intake and digestion	120
Endogenous Mg ²⁺ secretion	121
Animal breeds and Mg^{2+} absorption	121
Vitamin D and Mg ²⁺ homeostasis	121
Ionophores and Mg ² digestion	121
Sequestration of magnesium	121
Urinary Mg ⁻⁺ excretion	121
Mg ⁻ filtration	122
Re-absorption proximal tubule	122
Re-absorption ascending limb of Henle	122
Re-absorption distal tubule	122
Urinary Mg excretion	122
Interaction of magnesium and calcium	122
Magnesium in milk	123
Magnesium and tetany $P_{1}^{2+} = 1444$	123
Plasma Mg and tetany	123
United hypomagnesiaemia	123
Sub-linical homeonoccuric	123
Subclinical hypomagnesiaemia	124
A altrowledgements	124
Acknowledgements	124
NULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	124

Food pyramid for subjects with chronic pain: foods and dietary constituents as anti-inflammatory and antioxidant agents *Mariangela Rondanelli, Milena Anna Faliva, Alessandra Miccono, Maurizio Naso, Mara Nichetti, Antonella Riva, Fabio Guerriero, Manuela De Gregori, Gabriella Peroni & Simone Perna* Introduction Methods

Water

131 132 132

Fruits and vegetables	132
Carbohydrates with low glycaemic index/load	132
Olive oil and olives	132
Red meat, white meat and fish	133
Legumes	133
Yogurt	133
Oil seeds	133
Spices	133
Eggs	133
Cheeses	133
Red wine	133
Homemade sweets	133
Vitamin D	133
Vitamin B.,	133
$n-3 \text{ PUFA}^{12}$	133
Fibre	133
Role of dietary fibre in opioid-induced constipation	133
Micronutrients: zinc and selenium	133
Levels of evidence	134
Results	134
Water	134
Fruits and vegetables	134
Carbohydrates with low glycaemic index/load	136
Olive oil and olives	137
Red meat, white meat and fish	137
Legumes	138
Yogurt	138
Nuts and seeds and their oils	139
Spices	140
Eggs	140
Cheeses	140
Red wine	141
Alcohol consumption and opioids	142
Homemade sweets	142
Dietary supplements	142
Vitamin D	142
Vitamin B ₁₂	143
$n-3 \text{ PUFA}^{12}$	143
Fibre	143
Role of dietary fibre in opioid-induced constipation	144
Micronutrients: zinc and selenium	144
Conclusion and limitations	145
Acknowledgements	145
Supplementary material	145
References	145