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Abstract

We present novel approaches for constructing linear codes over Z4 from the known ones. We obtain
new linear codes, many of which are optimal. In particular, we find all optimal codes of type 4k1 2k2 for
k1 = 2, k2 = 0 and many optimal codes for k1 = 3, k2 = 0.
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1. Introduction

In its early development, algebraic coding theory considered codes over finite fields.
Codes over finite rings were introduced in the first half of the 1970s by Blake [7, 8].
He showed how to construct codes over Zm from cyclic codes over Fp, where p is a
prime factor of m [7]. He then determined the structure of codes over Zpr [8]. Spiegel
generalised Blake’s results to codes over Zm, where m is an arbitrary positive integer
[24, 25]. Hammons et al. showed how several well-known families of nonlinear binary
codes were intimately related to linear codes over Z4 [16]. Since the work by Hammons
et al. [16], there has been great interest in codes over many other finite rings.

Pless and Qian considered cyclic and quadratic residue codes over Z4 [21]. Cyclic
and negacyclic codes and the mass formula for the codes over Z4 have been explored
by Abualrub and Oehmke [1], Blackford [5, 6] and others. In 1997, Bonnecaze and
Duursma considered the translate of linear codes over Z4 and computed the complete
weight enumerators of the translate codes [9]. The decoding algorithm for linear codes
over Z4 was given by Byrne et al. [11].

Regarding the construction of optimal codes over Z4, so far, only self-dual codes are
available (see [17, 22]). There are only a few publications on linear (but not self-dual)
codes over Z4, for example, Gulliver and Wong [15], Dougherty et al. [13] and Aydin
and Asamov [2, 3]. New linear codes over Z4 were obtained indirectly, as a Z4-image
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of certain Gray maps from finite rings to Z4. In many cases, the resulting codes have
not-so-good minimum distances (see [10, 12, 23] for recent developments).

The purpose of this paper is twofold. First, we reprove the Plotkin bound for the
Lee distance of linear codes over Z4 by an elementary approach. Second, we develop
new constructions of linear codes over Z4. By using these methods, we obtain many
new free linear codes over Z4 with the highest known minimum Lee distance as well
as optimal linear codes over Z4. Our results contribute significantly to the Aydin and
Asamov database of Z4 codes [2, 3].

The organisation of the paper is as follows. In Section 2, we describe several basic
facts regarding linear codes over Z4. Section 3 contains the proof of the Plotkin bound
for the Lee distance. Section 4 contains several construction methods for linear codes
over Z4 and their applications to obtain new optimal codes over Z4 as well as the
linear codes over Z4 with the highest known minimum Lee distance. We finish with
concluding remarks. We follow [18] for undefined terms in coding theory.

2. Preliminaries

A code of length n over the ring Z4 is a nonempty subset of Zn
4. If the code is also a

submodule of Zn
4, then we say that the code is linear. The linear code is called free if it

is a free submodule of Zn
4.

A matrix G ∈ Zk×n
4 is called a generator matrix of a linear code C of length n over

Z4 if the rows of G generate C and no proper subset of the rows of G generates C.
Two codes are said to be equivalent if one can be obtained from the other by permut-

ing the coordinates and (if necessary) changing the signs of certain coordinates. Codes
differing by only a permutation of coordinates are called permutation-equivalent. It is
well known (see [16]) that any linear code over Z4 is permutation-equivalent to the
linear code C with generator matrix G of the form

G =
(
Ik1 A B1 + 2B2

0 2Ik2 2D

)
, (2.1)

where A, B1, B2 and D are (0, 1)-matrices. Moreover, the code C is a free linear code
if and only if k2 = 0. The generator matrix of a linear code C over Z4 is said to be in
standard form if it has the form given in (2.1).

The Lee weight of x ∈ Z4, denoted by wL(x), is defined by wL(0) = 0,
wL(1)= 1, wL(2) = 2 and wL(3) = 1. The Lee weight of a vector x = (x1, x2, . . . , xn) ∈
Z

n
4 is wL(x) =

∑n
i=1 wL(xi). For x, y ∈ Zn

4, the Lee distance between x and y, denoted by
d(x, y), is d(x, y) = wL(x − y). The minimum Lee distance of a linear code C ⊆ Zn

4 is

dL = dL(C) := min{dL(x, y) : x, y ∈ C, x � y}.

It is clear that for a linear code C, the minimum Lee distance is exactly the same
as the minimum Lee weight, namely dL(C) = min{wL(x) : x ∈ C, x � 0}. We write
the parameters of a linear code C over Z4 as [n, 4k1 2k2 , dL], where n is the length
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of C, |C| = 4k1 2k2 and dL = dL(C). Following Hammons et al. [16] (see also [26]), we
say that C is of type 4k1 2k2 .

Determining or estimating the minimum distance of a given linear code is one of
the fundamental problems in coding theory, because the minimum distance of the
code determines its capability in detecting and correcting errors that appear during the
transmission of information. In 2001, Dougherty and Shiromoto [14] proved an upper
bound for the minimum Lee distance of codes over Z4.

THEOREM 2.1 (Singleton Lee distance bound; [14, Theorem 3.1]). If C is a linear code
of length n over Z4 with parameters [n, 4k1 2k2 , dL], then

dL ≤ 2n − 2k1 − k2 + 1. (2.2)

REMARK 2.2. Dougherty and Shiromoto [14] called the codes meeting the bound (2.2)
maximum Lee distance separable (MLDS) codes.

3. Plotkin Lee distance bound

For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Zn
4, the Euclidean inner product of x

and y is x · y = ∑n
i=1 xiyi ∈ Z4. For x ∈ Zn

4, let x′ = (x1, . . . , xn−1) ∈ Zn−1
4 , that is, the

vector obtained from x by dropping its last entry. Let 0 denote the zero vector.
Let G ∈ Z(k1+k2)×n

4 be a generator matrix of a linear code C over Z4. Following
Kløve [19], for any c ∈ Zk1+k2

4 , the multiplicity of c, denoted by μ(c), is the number of
occurrences of c as a column vector in G. Observe that for any x ∈ Zk

4 with k := k1 + k2,

wL(xG) =
∑
c∈Zk

4

μ(c)wL(x · c).

It is also clear that ∑
c∈Zk

4

μ(c) = n.

The next lemma shows that for any given nonzero codeword c ∈ Zk
4, the sum∑

x∈Zk
4

wL(x · c) depends only on k. This result is very important in what follows.

LEMMA 3.1. Let k be a positive integer. If c = (c1, c2, . . . , ck) ∈ Zk
4 is a nonzero vector,

then ∑
x∈Zk

4

wL(x · c) = 4k.

PROOF. It is clear for the case k = 1. Since c is a nonzero vector, there exists i such
that ci � 0. Without loss of generality, let i = k. If c′ = 0, then∑

x∈Zk
4

wL(x · c) =
∑
x∈Zk

4

wL(xkck) = 4k.
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If c′ � 0, define Hi := {y ∈ Zk−1
4 : y · c′ = i} for i ∈ Z4. Since ck � 0,

∑
x∈Zk

4

wL(x · c) =
3∑

i=0

∑
x′∈Hi

3∑
xk=0

wL(x′ · c′ + xkck)

= 4|H0| + 4|H1| + 4|H2| + 4|H3| = 4k. �

The next lemma follows by applying Lemma 3.1.

LEMMA 3.2. Let n and k be positive integers. If a matrix G ∈ Zk×n
4 has no zero column,

then ∑
x∈Zk

4

wL(xG) = 4kn.

LEMMA 3.3 (Constant sum of Lee weights). Let C be a linear code over Z4 with
parameters [n, 4k1 2k2 , dL]. If μ(0) = 0, then∑

c∈C
wL(c) = |C|n.

PROOF. Let G be a generator matrix of C in standard form. Since G does not have any
zero column, then, by Lemma 3.2,

∑
x∈Zk

4
wL(xG) = 4kn for k := k1 + k2. If k2 = 0, then

∑
c∈C

wL(c) =
∑

x∈Zk1
4

wL(xG) = 4k1 n = |C|n.

If k2 > 0, let g(1), . . . , g(k2) be all distinct k2 row vectors of G which have entries 0 or 2
only. We have

xG = xG +
k2∑

i=1

xig(i) = (x + [0, . . . , 0, x1, . . . , xk2 ])G

for x1, . . . , xk2 ∈ {0, 2}. There are 2k2 possible different values for x1, . . . , xk2 . Hence, in
the summation

∑
x∈Zk

4
wL(xG), every codeword in C appears exactly 2k2 times. Thus,

4kn =
∑
x∈Zk

4

wL(xG) = 2k2
∑
c∈C

wL(c).

Therefore,

∑
c∈C

wL(c) =
4kn
2k2
= 4k1 2k2 n = |C|n.

�

Next, we prove the Plotkin bound for the minimum Lee distance.
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THEOREM 3.4 (Plotkin Lee distance bound). Let C be a linear code over Z4 with
parameters [n, 4k1 2k2 , dL]. Then

dL ≤
|C|
|C| − 1

n. (3.1)

PROOF. Let μ(0) = m. From Lemma 3.3, |C|(n − m) =
∑

c∈C wL(c) ≥ (|C| − 1)dL.
Therefore,

dL ≤
|C|
|C| − 1

(n − m) ≤ |C|
|C| − 1

n. �

The linear codes C whose minimum Lee distance dL(C) is the integer nearest to
the upper bound of the Plotkin Lee distance bound (3.1) as given in Theorem 3.4 are
called Plotkin-optimal. In other words, a linear code C is Plotkin-optimal if

dL(C) =
⌊ |C|
|C| − 1

n
⌋
.

REMARK 3.5. The bound similar to Theorem 3.4 for (not necessarily linear) codes
over Zm is presented in [4, Theorem 13.49]. It was originally proved by Wyner and
Graham [27]. Our proof above is very simple (compared with the proof in [4, 27]),
although limited to linear codes over Z4.

4. Optimal codes

The nonexistence of MLDS codes over Z4, except for the trivial ones, was proved
by Dougherty and Shiromoto [14].

THEOREM 4.1 [14]. There are no MLDS codes over Z4 except the trivial ones, namely
the linear codes with parameters [n, 4021, 2n], [n, 4n20, 1] or [n, 4n−121, 2].

Since there are no linear codes over Z4 whose minimum Lee distance attains the
Singleton Lee distance bound (2.2) except the trivial ones, we consider the optimality
of the codes with respect to the Plotkin Lee distance bound (3.1).

4.1. Optimal linear codes. In this section, we discuss several methods to construct
optimal codes. For any nonnegative integers k1, k2 with k1 + k2 > 0, let G(k1,k2) denote
the generator matrix of a linear code C(k1,k2) whose columns consist of all possible
nonzero vectors in Zk1

4 × (2Z4)k2 . We can define G(k1,k2) recursively as follows:

G(0,1) := [2], G(1,0) := [1 2 3],

G(k1+1,0) :=
⎡⎢⎢⎢⎢⎣ G(k1,0) G(k1,0) G(k1,0) G(k1,0) 0 0 0
0 0 . . . 0 1 1 . . . 1 2 2 . . . 2 3 3 . . . 3 1 2 3

⎤⎥⎥⎥⎥⎦ ,

G(k1,k2+1) :=
⎡⎢⎢⎢⎢⎣ G(k1,k2) G(k1,k2) 0
0 0 . . . 0 2 2 . . . 2 2

⎤⎥⎥⎥⎥⎦ .
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The theorem below shows the existence of a linear code over Z4 of length n satisfying
the bound (3.1), for any given k1 and k2. Moreover, the code has a constant Lee weight.

THEOREM 4.2 (Existence of optimal codes). The linear code C(k1,k2) with parameters
[n, 4k1 2k2 , dL], where n = 4k1 2k2 − 1 and dL = 4k1 2k2 , is optimal. Moreover, all nonzero
codewords in C(k1,k2) have the Lee weight dL.

PROOF. First, consider the case k2 = 0. Observe that for any nonzero vector y ∈ C(k1,0),
there exists a unique x ∈ Zk1

4 such that y = xG(k1,0). By Lemma 3.1, wL(y) is equal to

wL(xG(k1,0)) =
∑

c∈Zk1
4

μ(c)wL(x · c) =
∑

c∈Zk1
4

wL(c · x) = 4k1 .

For the case when k2 > 0, we do an induction on k2. For any nonzero y ∈ C(k1,k2), there
exists a unique x ∈ Zk1

4 × (2Z4)k2 such that y = xG(k1,k2). Define k := k1 + k2. Then

wL(y) =
∑
c∈Zk

4

μ(c)wL(x · c) =
∑

c′∈Zk1
4 ×(2Z4)k2−1

wL(c′ · x′) + wL(c′ · x′ + 2xk),

and the last sum is equal to 4k1 2k2 . �

The construction in the next lemma is easy to verify.

LEMMA 4.3 (Construction A). If C1 and C2 are linear codes of type 4k1 2k2 with
n(C1) + n(C2) < 4k1 2k2 − 1, having generator matrices (in standard form) G1 and G2,
respectively, then the linear code C′generated by the matrix G′ := [G1 |G2] is of length
n(C1) + n(C2) with dL(C′) ≥ dL(C1) + dL(C2).

The following construction is a special case of Lemma 4.3.

COROLLARY 4.4 (Construction 1 for optimal codes). If C is a Plotkin-optimal linear
code with parameters [n, 4k1 2k2 , dL] with generator matrix (in standard form) G, then
the linear code C′generated by the matrix G′ := [G | G(k1,k2)] is also optimal of length
n + 4k1 2k2 − 1.

PROOF. It is clear that n(C′) = n(C) + n(C(k1,k2)) = n + 4k1 2k2 − 1 and |C| = |C′|. More-
over, since the Lee weight of any nonzero codeword in C(k1,k2) is 4k1 2k2 (Theorem 4.2),
then dL(C′) ≥ dL(C) + dL(C(k1,k2)) = �|C|n(C′)/(|C| − 1)�. Therefore, C′ is optimal by
Theorem 3.4. �

COROLLARY 4.5 (Construction 2 for optimal codes). If C1 and C2 are Plotkin-optimal
linear codes of type 4k1 2k2 with n(C1) + n(C2) < 4k1 2k2 − 1, having generator matrices
(in standard form) G1 and G2, respectively, then the linear code C′ generated by the
matrix G′ := [G1 | G2] is also optimal of length n(C1) + n(C2).

PROOF. Straightforward from Lemma 4.3 and Theorem 3.4. �

By using a similar idea as in proving Theorem 4.2, we obtain the following result.
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THEOREM 4.6 (Construction B). If C is a linear code with parameters [n, 4k1 2k2 , dL]
with generator matrix (in standard form) G, then the code C′1 generated by the matrix

G′1 :=
[

G G G G
0 0 . . . 0 1 1 . . . 1 2 2 . . . 2 3 3 . . . 3

]
(4.1)

is linear with parameters [4n, 4k1+12k2 , dL(C′1)], and the code C′2 generated by

G′2 :=
[

G G
0 0 . . . 0 2 2 . . . 2

]
(4.2)

is linear with parameters [2n, 4k1 2k2+1, dL(C′2)]. Moreover, dL(C′1) ≥ min{4n, 4dL} and
dL(C′2) ≥ min{2n, 2dL}.

COROLLARY 4.7 (Construction 3 for optimal codes). If C is a Plotkin-optimal linear
code with parameters [n, 4k1 2k2 , dL] and n(C) < 4k1 2k2 − 1, having generator matrix (in
standard form) G, then the linear code C′1 generated by the matrix G′1 in (4.1) is optimal
with parameters [4n, 4k1+12k2 , 4n] and the linear code C′2 generated by the matrix G′2
in (4.2) is also optimal with parameters [2n, 4k1 2k2+1, 2n].

PROOF. Straightforward from Theorems 3.4 and 4.6. �

It is easy to see that the linear codes with parameters [1, 4120, 1] and [4, 4220, 4] are
both Plotkin-optimal. By applying Construction 3 as given in Corollary 4.7 repeatedly,
we obtain a class of optimal codes.

COROLLARY 4.8. Let k1, k2 be nonnegative integers with k1 + k2 > 0. Then there exists
an optimal linear code with parameters [4k1 2k2 , 4k1+12k2 , 4k1 2k2 ].

REMARK 4.9. Zinoviev and Zinoviev [28] have also constructed codes over Z4 with
parameters (n, 4n, n). Their construction uses Hadamard matrices of order n. Our
construction is simpler and produces linear codes.

Next, we derive another method to construct optimal codes.

THEOREM 4.10. The linear code C having a generator matrix G given by

G :=
[

G(k1,0) G(k1,0) G(k1,0) 0 0 0
1 1 . . . 1 2 2 . . . 2 3 3 . . . 3 1 2 3

]

is optimal with parameters [3.4k1 , 4k1+120, 3.4k1 ].

PROOF. Since the code C(k1+1,0) has a generator matrix

G(k1+1,0) :=
[

G(k1,0) G(k1,0) G(k1,0) G(k1,0) 0 0 0
0 0 . . . 0 1 1 . . . 1 2 2 . . . 2 3 3 . . . 3 1 2 3

]
,

for any c ∈ C, we have wL(c) = wL(c1) − wL(c2) for some c1 ∈ C(k1+1,0) and c2 ∈ C(k1,0).
Since the Lee weight of all nonzero codewords in C(k1+1,0) is 4k1+1 and the Lee weight of
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TABLE 1. All optimal linear codes for k1 = 2, k2 = 0.

n 15m 15m+1 15m+2 15m+3 15m+4

PLDB 16m 16m+1 16m+2 16m+3 16m+4
OPTIMAL 16m 16m 16m+1 16m+2 16m+4

n 15m+5 15m+6 15m+7 15m+8 15m+9
PLDB 16m+5 16m+6 16m+7 16m+8 16m+9

OPTIMAL 16m+4 16m+6 16m+6 16m+8 16m+8
n 15m+10 15m+11 15m+12 15m+13 15m+14

PLDB 16m+10 16m+11 16m+12 16m+13 16m+14
OPTIMAL 16m+10 16m+10 16m+12 16m+13 16m+14

PLDB, Plotkin Lee distance bound (3.1); bold text, Plotkin-optimal.

all nonzero codewords in C(k1,0) is 4k1 (Theorem 4.2), the Lee weight of any codeword
in C is either 0, 3.4k1 or 4k1+1. Therefore, dL(C) = 3.4k1 . �

REMARK 4.11. Theorem 4.10 gives us a way to obtain free optimal two-weight codes
(codes with exactly two nonzero weights).

By applying Corollary 4.7 to the code in Theorem 4.10, or by attaching three codes
with parameters [4k1 2k2 , 4k1+12k2 , 4k1 2k2 ] (see Corollary 4.8) using Corollary 4.5, we
obtain another class of optimal codes.

COROLLARY 4.12. Let k1, k2 be nonnegative integers with k1 + k2 > 0. Then there exist
an optimal linear code with parameters [3.4k1 2k2 , 4k1+12k2 , 3.4k1 2k2 ].

We end this subsection by deriving a construction for free optimal linear codes.

COROLLARY 4.13 (Construction 4 for optimal codes). If C is a Plotkin-optimal linear
code of type 4k1 20 and length n < 4k1 − 1 with generator matrix (in standard form) G,
then the linear code C′ with generator matrix

G′ :=
[

G G(k1,0) G(k1,0) G(k1,0) 0 0 0
0 0 . . . 0 1 1 . . . 1 2 2 . . . 2 3 3 . . . 3 1 2 3

]

is optimal with parameters [3.4k1 + n, 4k1+120, 3.4k1 + n].

PROOF. Every nonzero codeword c′ ∈ C′ satisfies wL(c′) = wL(c) + wL(c∗) for some
c ∈ C, where c∗ is a codeword of Lee weight 3.4k1 or 4k1+1 (Theorem 4.10). Here, if
wL(c) = 0, then wL(c∗) = 4k1+1, which implies wL(c′) = wL(c) + wL(c∗) = 4k1+1. More-
over, if wL(c) > 0, then wL(c′) = wL(c) + wL(c∗) ≥ n + 3.4k1 . Hence, dL ≥ 3.4k1 + n. By
Theorem 3.4, C′ is optimal. �

4.2. Optimal codes for k1 = 2, k2 = 0. In this subsection, we determine all
optimal codes with k1 = 2, k2 = 0. In Table 2, we compare the codes constructed
by our methods with the codes having the highest minimum Lee distance in the
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TABLE 2. New Plotkin-optimal and good linear codes for k1 = 2, k2 = 0, 2 ≤ n ≤ 61.

n Note DB Good PLDB LDB n Note DB Good PLDB LDB

2 Known [3] 1 1 2 1 32 L 4.3 32 33 34 61
3 Known [3] 2 2 3 3 33 L 4.3 34 34 35 63
4 Known [3] 4 4 4 5 34 C 4.4 34 36 36 65
5 Known [3] 4 4 5 7 35 L 4.3 36 36 37 67
6 Known [13] 5 6 6 9 36 C 4.4 36 38 38 69
7 L 4.3 6 6 7 11 37 L 4.3 38 38 39 71
8 C 4.5 8 8 8 13 38 C 4.4 38 40 40 73
9 L 4.3 8 8 9 15 39 L 4.3 40 40 41 75
10 C 4.5 9 10 10 17 40 C 4.4 40 42 42 77
11 L 4.3 10 10 11 19 41 L 4.3 42 42 43 79
12 C 4.5 12 12 12 21 42 C 4.4 42 44 44 81
13 # 12 13 13 23 43 C 4.4 44 45 45 83
14 C 4.5 13 14 14 25 44 C 4.4 44 46 46 85
15 T 4.2 14 16 16 27 45 C 4.4 46 48 48 87
16 # 16 16 17 29 46 L 4.3 46 48 49 89
17 L 4.3 16 17 18 31 47 L 4.3 48 49 50 91
18 L 4.3 17 18 19 33 48 L 4.3 48 50 51 93
19 C 4.4 18 20 20 35 49 C 4.4 50 52 52 95
20 L 4.3 20 20 21 37 50 L 4.3 50 52 53 97
21 C 4.4 20 22 22 39 51 C 4.4 52 54 54 99
22 L 4.3 21 22 23 41 52 L 4.3 52 54 55 101
23 C 4.4 22 24 24 43 53 C 4.4 54 56 56 103
24 L 4.3 24 24 25 45 54 L 4.3 54 56 57 105
25 C 4.4 24 26 26 47 55 C 4.4 56 58 58 107
26 L 4.3 25 26 27 49 56 L 4.3 56 58 59 109
27 C 4.4 26 28 28 51 57 C 4.4 58 60 60 111
28 C 4.4 28 29 29 53 58 C 4.4 60 61 61 113
29 C 4.4 30 30 30 55 59 C 4.4 60 62 62 115
30 C 4.4 30 32 32 57 60 C 4.4 62 64 64 117
31 L 4.3 32 32 33 59 61 L 4.3 64 64 65 119

DB, The highest minimum Lee distance among all existing linear codes of length n in the database
[3]; C, Corollary; T, Theorem; L, Lemma; PLDB, Plotkin Lee distance bound (3.1); LDB, Single-
ton Lee distance bound (2.2); bold-italic text, Plotkin-optimal; bold text, New good linear code;
#, Constructed by adding or removing column(s) from the generator matrix of the nearest optimal code.

database [3]. All computations were done using the Magma Calculator [20]. By
applying Lemma 4.3 to the codes in Table 2, we obtain all optimal codes with
k1 = 2, k2 = 0, as presented in Table 1. We conclude that the difference between the
bound (3.1) and the minimum Lee distance of optimal codes we derived is at most 1.
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TABLE 3. New Plotkin-optimal and good linear codes for k1 = 3, k2 = 0, 3 ≤ n ≤ 66.

n Note DB Good PLDB LDB n Note DB Good PLDB LDB

3 Known [3] 1 1 3 1 35 L 4.3 28 34 35 65
4 Known [13] 1 2 4 3 36 L 4.3 30 34 36 67
5 Known [3] 3 3 5 5 37 L 4.3 30 36 37 69
6 Known [3] 4 4 6 7 38 L 4.3 31 36 38 71
7 Known [3] 6 6 7 9 39 L 4.3 32 38 39 73
8 Known [3] 6 6 8 11 40 C 4.5 32 40 40 75
9 # 6 7 9 13 41 L 4.3 34 40 41 77
10 # 6 8 10 15 42 L 4.3 34 40 42 79
11 # 8 9 11 17 43 L 4.3 34 42 43 81
12 Known [3] 10 10 12 19 44 C 4.5 36 44 44 83
13 Known [3] 11 11 13 21 45 L 4.3 38 44 45 85
14 L 4.3 12 12 14 23 46 L 4.3 38 44 46 87
15 # 10 14 15 25 47 L 4.3 39 46 47 89
16 C 4.7 12 16 16 27 48 C 4.5 40 48 48 91
17 # 12 16 17 29 49 L 4.3 42 48 49 93
18 # 12 16 18 31 50 # 44 49 50 95
19 # 14 18 19 33 51 L 4.3 44 50 51 97
20 L 4.3 16 18 20 35 52 C 4.13 44 52 52 99
21 # 18 20 21 37 53 L 4.3 45 52 53 101
22 L 4.3 17 20 22 39 54 C 4.13 45 54 54 103
23 L 4.3 18 22 23 41 55 L 4.3 47 54 55 105
24 C 4.7 20 24 24 43 56 C 4.13 47 56 56 107
25 # 22 24 25 45 57 L 4.3 48 56 57 109
26 L 4.3 22 24 26 47 58 C 4.13 50 58 58 111
27 # 22 26 27 49 59 L 4.3 50 58 59 113
28 # 23 28 28 51 60 C 4.13 50 60 60 115
29 # 23 28 29 53 61 C 4.13 52 61 61 117
30 L 4.3 25 28 30 55 62 C 4.13 52 62 62 119
31 L 4.3 25 30 31 57 63 T 4.2 53 64 64 121
32 C 4.5 26 32 32 59 64 L 4.3 54 64 65 123
33 L 4.3 28 32 33 61 65 L 4.3 42 64 66 125
34 L 4.3 28 32 34 63 66 L 4.3 44 65 67 127
DB, The highest minimum Lee distance among all existing linear codes of length n in the database
[3]; C, Corollary; T, Theorem; L, Lemma; PLDB, Plotkin Lee distance bound (3.1); LDB, Single-
ton Lee distance bound (2.2); bold-italic text, Plotkin-optimal; bold text, New good linear code;
#, Constructed by adding or removing column(s) from the generator matrix of the nearest optimal code.

REMARK 4.14. In Table 1, we obtained the OPTIMAL codes after proving the
nonexistence of Plotkin-optimal codes. To prove the nonexistence of Plotkin-optimal
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linear codes C of length n ≡ 1, 3, 5 (mod 15), we consider the refined Plotkin bound
for binary codes [18] and apply it for Φ(C), where Φ is the Gray map defined in
[16]. It is not hard to prove the nonexistence of Plotkin-optimal linear codes of length
n ≡ 2, 7, 9, 11 (mod 15).

4.3. Optimal codes for k1 = 3, k2 = 0. In this subsection, we use our methods to
construct many new optimal and nearly optimal free linear codes presented in Table 3
which are not in the database of Z4 codes [3]. As before, all computations were done
using the Magma Calculator [20]. In many cases, the minimum Lee distance improved
significantly. From Table 3 and Lemma 4.3, we conclude that the difference between
the bound (3.1) and the minimum Lee distance of optimal codes is at most 2.

5. Concluding remarks

We can apply the Gray map defined in [16] to our new Plotkin-optimal linear
codes in Tables 2 and 3 to obtain many binary codes that are also Plotkin-optimal
and Z4-linear. This will be of interest for further investigation.

Regarding the existence of linear codes with good minimum Lee distance, we
propose the following conjecture.

CONJECTURE 5.1. There exist free linear codes C over Z4 with parameters [n, 4k20, dL]
and minimum distance satisfying

dL ≥
⌊ 4k

4k − 1
n
⌋
− (ak + b)

for some constants a, b.

For a = 1, b = 0, we notice that the conjecture holds for all n when k = 2, 3. For
k > 3, it holds for n ≡ m (mod (4k − 1)), with 0 ≤ m ≤ k + 1 and 3 · 4k−1 ≤ m < 4k − 1.

We are now working on a generalisation of our observation here to the linear codes
over the ring Z2r . So far, we have succeeded in proving that several properties given
here also hold for codes over the ring Z2r , with r ∈ Z+. As an example, we can obtain
a similar bound to that in Theorem 3.4 for linear codes over Z2r . The results will be
published in a separate paper.
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